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Abstract

Ricci flow deforms the Riemannian metric proportionallytie turvature, such that the curvature evolves according to
a heat diffusion process and eventually becomes constantweliere. Ricci flow has demonstrated its great potential
by solving various problems in many fields, which can be hahndihdled by alternative methods so far.

This work introduces the unified theoretic framework forcdéte Surface Ricci Flow, including all the common
schemes: Tangential Circle Packing, Thurston’s Circl&kiPag Inversive Distance Circle Packing and Discrete Yam-
abe Flow. Furthermore, this work also introduces a novedises, Virtual Radius Circle Packing and the Mixed Type
schemes, under the unified framework. This work gives eigleometric interpretation to the discrete Ricci energies
for all the schemes with all back ground geometries, and dheesponding Hessian matrices.

The unified frame work deepens our understanding to the 8wate surface Ricci flow theory, and has inspired
us to discover the new schemes, improved the flexibility avmistness of the algorithms, greatly simplified the
implementation and improved the efficiency. Experimergabits show the unified surface Ricci flow algorithms can
handle general surfaces with different topologies, andlisist to meshes with different qualities, and is effectore f
solving real problems.

Keywords: Unified, Ricci flow, circle packing, discrete Ricci energyessian matrix.

1. Introduction Suppos€S,g) is a metric surface, according to the
Ricci flow was introduced by Hamilton for the pur- Gauss-Bonnet theorem, the total Gaussian curvature

pose of studying low dimensional topology. Ricci flow [sKdAg equals to 2 (S), whereK is the Gaussian cur-
deforms the Riemannian metric proportional to the cur- vature,x(S) the Euler characteristics & Ricci flow
vature, such that the curvature evolves according to adeforms the Riemannian metric conformally, namely,
heat diffusion process, and eventually becomes constan-g(t) = €4Vg(0), whereu(t) : S— R is the conformal

t everywhere. In pure theory field, Ricci flow has been factor. The normalized Ricci flow can be written as
useq for .the proof of Po_ingaré‘s conjecture. In engi- dut) 2mx(S)

neering fields, surface Ricci flow has been broadly ap- at A(0) —K(t).
plied for tackling many important problems, such as pa-
rameterization in graphics![1], deformable surface reg-
istration in vision [2], manifold spline construction in
geometric modeling [3] and cancer detection in medi-
cal imaging |ﬂ4]. More applications in engineering and
medicine fields can be found il [5]. 20

(1.1)

where A(0) is the initial surface area. Hamilton! [6]
and chow/|[[7] proved the convergence of surface Ricci
flow. Surface Ricci flow is the negative gradient flow
of the Ricci energy. It is a powerful tool for designing
Riemannian metrics using prescribed curvatures, which
has great potential for many applications in engineer-
ing fields. Surface Ricci flow implies the celebrated
surface uniformization theorem as shown in Hig.1. For
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surfaces with boundaries, uniformization theorem still
holds as illustrated in Figl.2, where surfaces are confor-
mally mapped to the circle domains on surfaces with
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Figure 2: Uniformization for surfaces with boundaries bgdriflow.

Figure 3: Conformal mapping preserves infinitesimal cgcle

constant curvatures.

Conformal metric deformation transforms infinites-
imal circles to infinitesimal circles as shown in Fig. 3.
Intuitively, one approximates the surface by a triangulét-
ed polyhedron (a triangle mesh), covers each vertex by
a disk of finite size (a cone), and deforms the disk radii
preserving the combinatorial structure of the triangula-
tion and the intersection angles among the circles. This
deformation simulates the smooth conformal mappiag
with very high fidelity. Rodin and Sullivari [8] proved
that if the triangulation of a simply connected planar do-
main is subdivided infinite times, the induced discrete
conformal mappings converge to the smooth Rieman-
n mapping. The discrete version of surface Ricci flow
was introduced by Chow and Luo in [9] in 2003. It is
based on the circle packing method.

Historically, many schemes of circle packing or cir-
cle pattern have been invented. The discrete surface can
be constructed by gluing Spherical, Euclidean or Hy-
perbolic triangles isometrically along their edges. Ac-
cordingly, we say the triangle mesh has spheril
EuclideanE? or hyperbolicH? background geometry.
Under each background geometry, there are 6 schemes,
tangential circle packing, Thurston’s circle packing, in-
versive distance circle packing, discrete Yamabe flow,
virtual radius circle packing and mixed type scheme.
There are 18 combinations in total. Among them, the
hyperbolic and spherical virtual radius circle packing
and mixed type schemes are first introduced in this
work.

Most of the existing schemes were invented and de-
veloped individually in the past. This work seeks a co-
herent theoretic framework, which can unify all the ex-
isting schemes, and predicts undiscovered ones. This
leads to deeper understandings of discrete surface Ric-
ci flow and provides approaches for further generaliza-
tion. In practice, the theoretic discovery of virtual ra-
dius circle packing gives novel computational algorith-
m; the mixed schemes improves the flexibility; the u-
nified framework greatly simplifies the implementation;
the geometric interpretations offer better intuitions.

1.1. Contributions
This work has the following contributions:

1. This work establishes a unified framework for dis-
crete surface Ricci flow, which covers most exist-
ing schemes: tangential circle packing, Thurston’s
circle packing, inversive distance circle packing,
discrete Yamabe flow, virtual radius circle packing
and mixed type schemes, in Spherical, Euclidean
and hyperbolic background geometry. In Eu-
clidean case, our unified framework is equivalen-
t to Glickenstein's geometric formulation [10].To
the best of our knowledge, the unified frameworks
for both hyperbolic and spherical schemes are re-
ported for the first time.

2. This work introduces 4 novel schemes for discrete
surface Ricci flow: virtual radius circle packing
and mixed type schemes under both hyperbolic and
Euclidean background geometries, which are nat-
urally deduced from our unification work. To the
best of our knowledge, these are introduced to the
literature for the first time.

3. This work gives an explicit geometric interpreta-
tion to the discrete Ricci energy for all the 18
schemes. The geometric interpretations to 2 Yam-
abe flow schemes (both Euclidean and Hyperbolic)
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were first made by Bobenko, Pinkall and Spring- Yamabe Flow.Luo introduced and studied the combi-
born m]. natorial Yamabe problem for piecewise flat metrics on
4. This work also provides an explicit geometric in-  triangulated Surfa}ceam]-. Springborn, Schroder and
terpretation to the Hessian of discrete Ricci energy Pinkall [25] considered this combinatorial conformal
for all the 18 schemes. The interpretation in Eg- change of piecewise flat metrics and found an explicit
clidean case is due to GIickenstéEﬁlO]. To the best formula of the energy function. Glickenstein [26] 27] s-
of our knowledge, the interpretation in Hyperbol- tudied the combinatorial Yamabe flow on 3-dimensional
ic and Spherical cases are introduced for the first piecewise flat manifolds. Bobenko-Pinkall-Springborn
time. Recently, Glickenstein and Thomas discov- introduced a geometric interpretation to Euclidean and

ered the similar result independen@[lZ]. 150 hyperbolic Yamabe flow using the volume of gener-
alized hyperbolic tetrahedron iﬂll]. Combinatorial

The paper is organized as follows: sectidn 2 briefly Yamabe flow on hyperbolic surfaces with boundary has
reviews the most related theoretic works; secfibn 3 in- been studied by Guo iELlZ8]. The existence of the solu-
troduces the unified framework for different schemes of tion to Yamabe flow with topological surgeries has been
discrete surface Ricci flow, which covers 18 schemes proved recently in [29] and [30].
in total; sectio ¥ explains the geometric interpretation
of the Hessian matrix of discrete Ricci energy for al-
| schemes with different background geometries; sec-
tion[d gives a geometric interpretation of Ricci energy;
Experimental results are reported in secfibn 6, different
schemes are systematically compared. The work ¢@n-Mixed type Circle PackingThe Euclidean mixed type
cludes in sectiofl]7, future directions are discussed; Fi- circle packing appeared i|E|[5] and Glickenstein’s talk
nally, in the appendix, we give the implementation de- [31]. This work introduces hyperbolic and spherical
tails and reorganize all the formulae. mixted type schemes.

Virtual Radius Circle Packing.The Euclidean virtual
radius circle packing first appeared in [5]. The hyper-
bolic and spherical virtual radius circle packing are in-
troduced in this work.

Unified Framework.Recently GlickensteirEiO] set the
s theory of combinatorial Yamabe flow of piecewise flat
Thurston’s Circle Packing.In his work on constructing metric in a broader context including the theory of cir-
hyperbolic metrics on 3-manifolds, Thurston![13] stud- cle packing on surfaces. This work focuses on the hy-
ied a Euclidean (or a hyperbolic) circle packing on a perbolic and spherical unified frameworks.
triangulated closed surface with prescribed intersection o o o )
angles. His work generalizes Koebe’s and Andreev’s re- Varlatlon.al PrlnC|p.Ie. The variational approach to cir-
sults of circle packing on asphe@[ is, 16]. Thurstén cle packing was first introduced by Colin de Verdiére

conjectured that the discrete conformal mapping based Since then, many works on variational princi-
on circle packing converges to the smooth Riemann ples on circle packing or circle pattern have appeared.

mapping when the discrete tessellation becomes finer 0" €xample, see Bragger {32, (Rivin_I33], Leibon
and finer. Thurston’s conjecture has been proved by [34], Chow-Luo EJ_], Bobenko-Springbori [35], Guo-
Rodin and Sullivan[8]. Chow and Luo established tiie LU0 [36], and Springborri [37]. Variational principles

intrinsic connection between circle packing and surface for Polyhedral surfaces including the topic of circle
Ricci flow “g]_ packing were studied systematically in LJE[38]. Many

The rigidity for classical circle packing was proved energy functions are derived from the cosine law and its

by Thurston ] Marden-Rodifl_[L7], Colin de Ver- derivative. Tangent circle packing is generalized to tan-

diere _ Chow-Luo[9], Stephensoh [19], and Hf& 9ent circle packing with a family of discrete curvature.
I Eh] mg] P E[ ] For exposition of this work, see also Luo-Gu-dﬁ][39].

2. Previous Works

Discrete Uniformization.Recently, Gu et al established
Inversive Distance Circle PackingBowers-Stephenson  discrete uniformization theorem based on Euclidean
[21] introduced inversive distance circle packing which [29] and hyperbolic/[30] Yamabe flow. In a series of
generalizes Andreev-Thurston’s intersection angle Gir- papers on developing discrete uniformization theorem
cle packing. See Stephensbnl[19] for more information. [40],[41],[42] and [48], Sa’ar Hersonsky proved sever-
Guo gave a proof for local rigiditm2] of inversive dis-  al important theorems based on discrete harmonic maps
tance circle packing. Luo gave a proof for global rigid- and cellular decompositions. His approach is comple-
ity in [23]. mentary to the work mentioned above.
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called a discrete metric surface.
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Figure 4: Smooth surfaces are approximated by discrete&sf T

3. Unified Discrete Surface Ricci Flow

This section systematically introduces the unified Figure 5: Different background geometry, Euclidean, sishéand
framework for discrete surface Ricci flow. The whole YPerPolic.
theory is explained using the variational principle on Definition 3.3 (Background Geometry). Suppose is
discrete surfaces based on derivative cosine lal [39]. @ discrete metric surface, if each facexdi a spherical,
The elementary concepts and some of schemes can bé Euclidean or hyperbolic ) triangle, then we sayis

found in [38] and the chapter 4 il [5]. 225 With spherical, (Euclidean or hyperbolic) background
geometry. We us#?, [E2 and H? to represent spherical
3.1. Elementary Concepts Euclidean or hyperbolic background metric.

In practice, smooth surfaces are usually approximat- Triangles with different background geometries satisify
ed bydiscrete surfacediscrete surfaces are represent- different cosine laws:

ed as two dimensional simplicial complexes which are

manifolds, as shown in Fiff] 4. 1 = ‘%072%;:’5@ R2
- : : cod; = Soshrcosficosh o
Definition 3.1 (Triangular Mesh). Suppose is a two ! r%nej S'”r%
dimensional simplicial complex, furthermore it is also a cosh; = % H?
manifold, namely, for each point p &f there exists a
neighborhood of p, Up), which is homeomorphic to the The discrete Gaussian curvature is defined as angle

whole plane or the upper half plane. ThErs called a  deficit, as shown in Fig.]6.
triangular mesh.

If U (p) is homeomorphic to the whole plane, then p
is called an interior point; if U p) is homeomorphic to
the upper half plane, then p is called a boundary point.

Definition 3.4 (Discrete Gauss Curvature).The dis-
crete Gauss curvature function on a mesh is defined on
vertices, KV — R,

21— Ejk Gijik, Vvé oM
T— Ejkeijk, veIM

)

The fundamental concepts from smooth differential K(v) = {
geometry, such as Riemannian metric, curvature and
conformal structure, are generalized to the simplicial )
complex, respectively. 220 whereei‘k’s are corner angle atin the facelvi, vj, v,
In the following discussion, we use= (V,E,F) to anddM represents the boundary of the mesh.
denote the mesh with vertex 3ét edge seE and face
setF. A discrete surface is with Euclidean (hyperbolic
or spherical) background geometry if it is constructed
by isometrically gluing triangles ift? (H? or S2).

Definition 3.2 (Discrete Riemannian Metric). A dis- -
crete metric on a triangular mesh is a function defined zgi%v;
on the edges,IE — R™, which satisfies the triangle in- SRS
equality: on each facév,vj, v, li,lj, |k are the lengths

. . Figure 6: Discrete curvatures of an interior vertex
of edges against wj, Vi respectively,

The Gauss-Bonnet theorem still holds in the discrete
li415 > he, T4l >y e+ 1 > 15 case.



235

240

245

250

255

Theorem 3.5 (Discrete Gauss-Bonnet Theorem).
Suppose is a triangular mesh with Euclidean back-
ground metric. The total curvature is a topological
invariant,

K(v) + eA(Z) = 2mx (%),

KW+ (3.1)

Vgox veox

wherey is the characteristic Euler number, and K is the
Gauss curvature, &) is the total areag = {+1,0,—1}

if ¥ is with spherical, Euclidean or hyperbolic back-
ground geometry.

3.2. Unified Circle Packing Metrics

Definition 3.6 (Circle Packing Metric). Suppose& =
(V,E,F) is a triangle mesh with spherical, Euclidean
or hyperbolic background geometry. Each vertgxsv
associated with a circle with radiug. The circle radius
function is denoted ag: V — R.; a function defined
onthe vertices :V — {+1,0,—1} is called thescheme
coefficient a function defined on edges: E — R is
called thediscrete conformal structure coefficienf
circle packing metric is a 4-tupl€,y, n, €), the edge

length is determined by the 4-tuple and the background (d) Yamabe flow

geometry.

In the smooth case, changing a Riemannian metric by
a scalar functiong — e?'g, is called a conformal metric
deformation. The discrete analogy to this is as follows.

Definition 3.7 (Discrete Conformal Equivalence).
Two circle packing metricsy, W, Nk, &), k= 1,2, are
conformally equivalent i&; = 25, N1 = 2, & = &.
(y2 may not equals tgs.)

The discrete analogy to the concept of conformal fac-
tor in the smooth case is

Definition 3.8 (Discrete Conformal Factor). Discrete
conformal factor for a circle packing metri&, y,n, €)
is a function defined on each vertexV — R,

logy 2
u=< logtanh¥ H? (3.2)
logtan¥  §2 260

Definition 3.9 (Circle Packing Schemes)Suppose

> = (V,E,F) is triangle mesh with spherical, Euclidean
or hyperbolic background geometry. Given a circle
packing metric(%,y,n,¢), for an edgelv;,vj] € E, its

(c) Inversive distanPe C

(b) Thurston's CP

-1 0<n<le=1 n>1e=1

Figure 7: Tangential circle packing, Thurston's circle kiag and
inversive distance circle packing schemes, and the gemn&grpre-

(a) tangential CP

tations to their Ricci energies.

</

(e) virt.rad.cp

(f) mixed type

N

'

n>0e¢e=0 n>0¢e=-1

n>0
£e{+1,0,—-1}

Figure 8: Yamabe flow, virtual radius circle packing and rditgpe
schemes, and the geometric interpretations to their Riwigges.

length |; is given by

12 = 2njelitl 4 et g 2
costij = 4t +(1+£ie2”|)(1L—ls-£ (e 2
(1-g€?i)(1-gje™)
codij = 4" - g'ezu')(l ) S?
(L+ee)(Lee™)
(3.3)

The schemes are named as follows:

[ Scheme [ & [ g [ nj |
Tangential Circle Packing +1 +1 +1
Thurston’s Circle Packing +1 +1 [0,1]
Inversive Distance Circle Packing +1 +1 >0
Yamabe Flow 0 0 >0
Virtual Radius Circle Packing -1 -1 >0
Mixed type {-1,0,+1} | {-1,0,+1} | >0
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Fig.[@ and Fig[B illustrate all the schemes with for
discrete surfaces with Euclidean background geometry.

Remark 3.10. From the definition, the tangential circlg,

packing is a special case of Thurston’s circle packing;
Thurston’s circle packing is a special case of inversive
distance circle packing. In the following discussion, we
unify all three types as inversive distance circle packing.

290

3.3. Discrete Surface Ricci Flow

Definition 3.11 (Discrete Surface Ricci Flow).A dis-
crete surface witt§?, E2 or H? background geometry,
and a circle packing metri¢z, y,n, €), the discrete sur-
face Ricci flow is

du(t) ~

S = K-k, (3.4)

wherekK; is the target curvature at the vertex v

The target curvature must satisfy certain constraints to

is defined independent of the integration path. This fol-
lows from the following symmetry lemma, which has
fundamental importance. In this work, we give three
proofs. The following one is algebraic, more difficult
to verify, but leads to computational algorithm directly.
The second one is based on the geometric interpreta-
tion to the Hessian matrix in Secti@h 4. The third one
is based on the geometric interpretation to the discrete
Ricci energy. The later two proofs are more geometric
and intuitive.

Lemma 3.13 (Symmetry). A discrete surface wits?,
[E2 or H? background geometry, and a circle packing
metric (%,y,n,¢€), then for any pair of vertices;\and
Vi

oK _ oK)

30~ au° (3.8)

Proof 3.14. From the relation in Eqri_317, it is sufficient

ensure the existence of the solution to the flow, such @nd necessary to show the symmetry for each triangle
as Gauss-Bonnet equation EGA] 3.1, but also some addi Vi Vi- V| for all schemes,

tional ones described in [13], [17] ard [9], for instances.
The discrete surface Ricci flow has exactly the same
formula as the smooth counter part Egnl1.1. Further-
more, similar to the smooth case, discrete surface Ricci
flow is also variational: the discrete Ricci flow is the
negative gradient flow of the discrete Ricci energy.

Definition 3.12 (Discrete Ricci Energy).A  discrete
surface withS?, E? or H? background geometry, and
a circle packing metric(Z,y,n,€). For a triangle
[Vi,Vj,vi] with inner angles(&;,6;,6), the discrete
Ricci energy on the face is given by

(Ui, Uj Uy
Ei(wuu) = [ Bdu+6idy +Bduc (3.5)
The discrete Ricci energy for the whole mesh is defined
as

(UpUg, o+ tn) N

Es (U, U, Un) :/ 3 (K K)du.
. (3.6)

From definition, we get the relation between the surface
Ricci energy and the face Ricci energy

Es = ii(K_i —2m)u;i + f;Ef.

The description of the energy in terms of an integral re-
quires the fact that the inside is a closed form so that it

6

(3.7)

96 _ 06
0uj_0ui'

This is proven by finding the explicit formula for the
Hessain matrix of the face Ricci energy,

0(6;,6;,6) 1

__+ -1
300,00 = 2AL@L D, (3.9)
where .
A= Esinels(lj)s(lk) (3.10)
the matrix L
sli)y O 0
L= 0 s(lj) O (3.11)
0 0 sy
and the matrix@
—1 cosfc cosb;
©=| cos -1 cosb (3.12)
cosf; cosg -1
and
0 (i, j,k) i,k ])
D=1 1(j,i,k) 0 T(j,k,i) (3.13)
t(ki,j) t(kj,i) 0

where $x) and1(i, j,k) are defined as
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| | s(x) [ t(i,j,k | furthermore,

7 2 2 o 2

IE2 x' 1/2(]; 4—£,r.J &re) 26 he h 06, he h 26 o h

H sinhx COSHiCOSHJrj—COSHkI'k W:_I__I_-’W:_I__I_-’W:_I_-_I_-'

S? | sinx | codicosir; — coskry ' ke P8 ko ok ! (4f2)
By symbolic computation, it is straightforward to verify ~These two formula induces the formula for the Hessian
the symmetry of Eqf_3.9. of the Ricci energy of the whole surface. One can treat

the circle packingZ,y,n,€) as a power triangulation,

4. Geometric interpretation to Hessian which has a dual power diagrafn Each edgej € =

. . . . hasadual edgec Z, then
This section focuses on the geometric interpretation

to Hessian matrix of the discrete Ricci energy on each oKi  0K; |gj] 4.3)
face for E?, H? and S? cases. This gives the second ouj  ou el :
proof of the symmetry lemnia3.113. g
an
: oK oK
4.1. Euclidean Case R Wl
U Zﬁuj' (4.4)

The interpretation in Euclidean case is due to Glick-
enstein ] (z. He|E|4] in the case of circle packings) This gives a geometric proof for the symmetry lemma
and illustrated in[[5]. In the current work, we build 313 in Euclidean case.
the connection to the Power Delaunay triangulationand ~ Suppose on the eddwe, v;], the distance fronv; to
power voronoi diagram. the perpendicular foaw is djj, the distance from; to

We only focus on one triangle;, v;, v, with corner W is dji, thenlj; = dij +d;;, and
angles@, 6;, 6, conformal factorsu,uj,ux and edge
lengthslij for edgevi,vj], ljk for [vj,w] andly; for olij i, dlij —d;,

0Uj

[Vic, Vi) oui

Power Delaunay TriangulationAs shown in Fig. [I7 furthermore
and Fig[38, thepowerof g with respect toy; is
! d? + di +dZ = df + 0 + d?.

2
owWVi,q) = |Vi —q|°— ey . . : Lo .
pow(vi,d) = Vi —q V'Z This shows the power circle interpretation is equivalent
Thepower center @f the triangle satisifies =5 to Glikenstain's formulation.

POW(Vi,0) = POW(Vj,0) = POW(V,0). 4.2. Hyperbolic Case
. . . Let A123 be a hyperbolic triangle whose vertices are
The power circle Ccentered ab with radiusy, where labeled by 12,3. Letry, 1,5 be three positive numbers

Y= poW(V;,0). associated to the vertices &, € —1,0,1} be
Therefore, for tangential, Thurton’s and inversive dis- indicators of the type of théﬁtié’e: €{-101

tance circle packing cases, t_he power circle is orthosgo— For the mixed type of discrete conformal geometry,

nal to three circles at the vertic€s Cj andC;; for Yam- the edge length of\1,3is given by

abe flow case, the power circle is the circumcircle of

the triangle; for virtual radius circle packing, the power coshi=4n;

circle is the equa;gr of theyzsphere,y\;vhich goes through

three points{vi + y°n,vj + y7n, v+ ygn}, wheren is o

the normal to the [;Ianej. J ‘ wherefi, j,k} = 1,2,3. _
Through the power center, we draw line perpendicu-  Via the cosine law, the edge lengthd,, |5 determine

lar to three edges, the perpendicular feetsmrer; and the angles;, 6, 5. o

wi respectively. The distance from the power cerfer Whenéi =& = &3 = 0, this is the case of Yamabe

to the perpendicular feet atg, h; andhy respectively. flow. There is a circle passing through the three vertices

sinhr; sinhr;
(1—¢g)coshri+1+¢ (1—¢gj)coshrj +1+¢;

+cosHi ri cosHi rj,

Then it can be shown easily that of A1p3. Itis still called thepower circle
Wheneg; = & = &5 = 1, this is the case of inversive
06 09, h, d6; 06 h 96 96 h; distance circle packing. Centered at each vertéxere
duj  du Iy duc duj  Ii7du  due |} w0 isacircle with radiusi. Then there is theower circle
(4.1) orthogonal to the three circles centered at the vertices.
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Wheng; = &, = g3 = —1, this is the case of virtu-
al radius circle packing. Lef\;,3 be on the equatoks
plane of the ball model of the hyperbolic spd&& For

each vertex, letii’ be the geodesic arc perpendicular

to the equator plane with length Assume 12,3 are

Substituting the three formulas into the equation
(4.8), we obtain a relation between the 6 numbers
|1,|2,|3,X,y,2.

Substituting the equations{4.5) into this relation, we
obtain a relation between Jl,,l3,r1,r2,r3andr.

above the equator plane. There is a hemisphere passing Solving for r, we getosifr = 7, Where

through 1,2'.3" and orthogonal to the equator plane.
The power circlein this case is the intersection of the
hemisphere and the equator plane.
For a mix type, the power circle can still be defined.
For any type, leh; be the distance from the center of
the power circle to the edde whose length ig.

Theorem 4.1. Let

) gi—-1 I
U|:—: —
€ o1 tanhz.
Then
26, _ 06,
0U2_0U1

which equal to

tanhhg
sintflg

\/2 coshtrycostzrpcoshs — costétry — costfézry.

N = 1+2cosh cosh,coshs —costf I, —costf I, —cosif 3,

= costfri(1—coslfly) 4+ 2coshr coshra(cosH, coshis — cosHy)

+costfr(1—cosifly) +2coshracostry (coshiz coshly — coshiz)

+cost r3(1—cosltlz) +2coshry coshry(cosHy cosh, — coshi).
Step 2. Since Rk is the height of the trianglé\ o2 with

bottom the edgé&2. By the standard formula of height
of a hyperbolic triangle, we have

1+ 2coshxcoshycoshz — cosif x — cosify — cosif I3
sintéls '

sinkthg =

After substituting the equations (#.5) into the above
formula, we have

cosifr(2costri coshracoshlz — costfry — costry) — sintf I3

tant hy =
3 coslfr(2costri coshrocosHz — costfry — costry)

After substituting the equatiarostr = %, we have

This gives a geometric proof for the symmetry lemma .. N(2costry costracoshis — cosifry — costfra) — DsintPls
3= .

[B.13 in hyperbolic case.

N(2costri coshrpcosHg — costfry — cosifry)

We only need to prove the theorem for the case of After substituting the expressionsdéfand D in step 1,

& = & = & = 1. General case can be proved similarly.

Proof 4.2. Step 1. Denote the center of the power circle
by o, the radius by r. Let,¥,z be the distance from o to
the verticedl, 2,3. Then

365

coslx = cosltrcoshry
costy = coshrcostr; (4.5)
costz = coshrcoshrs

Leta be the angleZ130 andf the angle£23o0. Then
a + 3 = 6;. Therefore

1+ 2 cosr cosB costs = cos a + cos B + cos 6.

(4.6)
By the cosine law,
— coshx+ costecosHho
cosa = : .
sinhzsinhl,
—coshy + coslecosh;
co - i - 9
B sinhzsinhl,
—cosHh H H 370
CoS6; — 3 + co.s 1cosHy
sinhly sinhl,

we have

tantfhs =

[(cosHy cosHs — cosHy) costry 4 (cosH, costz — cosHy ) coshr, — sint? 13 coshrs)?
N(2costricoshracoshs — costry —cosir) '

Step 3. By direct calculation, we have

00 _96 -1
du  dup  sing sinhl; sinhly
cosH; cosHz —cosH,

sink I3

cosH,coshz — cosHy

coshrz —
( 8 sink I3

costry coshry) =

(cosHj cosHz — cosHy) coshry + (cosh, coshz — coshy) coshr, — sint?lzcostrs

VN -sinifls

Comparing with the last formula of step 2, we have
061 006, tanhhg

o, dur  sintfls

\/2 coslr coshracoshs — costry — costr.

4.3. Spherical Case

According to a general principle of the relation of hy-
perbolic geometry and spherical geometry, to obtain a
formula in spherical geometry, we only need to replace
sinh and cosh in hyperbolic geometry ky—1sin and
COoS.
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For the mixed type of discrete conformal geometry Ay

with spherical background geometry, the edge length of &7
A123is given by
coshijj =
. sinr sinrj e [y N
Anj (1—g)cosri+1+¢ (1—¢gj)cosrj+1+¢ +cosiricosir;. wi w;
Via the cosine law, the edge lengthd, |5 determine Figure 9: Generalized hyperbolic tetrahedron.
the angledy, 6;, 3. w0 the xy-plane is the ideal boundary. Consider a trian-

~We can define power circles similarly. Litbe the gle [vi,vj, v, its Ricci energy is closely related to the
distance from the center of the power circle to the edge ygjume of a generalized hyperbolic tetrahedron whose

ij whose length ig. vertices can be ifil®, truncated by a horosphere or trun-
cated by a hyperbolic plane.
Theorem 4.3. Let . 405 In Fig. [3, the generalized hyperbolic tetrahedron has
el = tan—. 4 verticeswp, Wi, Wj, Wi. The tetrahedron vertewp is
2 called thetop vertex The 4 faces of the tetrahedron are
Then hyperbolic planes, the 6 edges are geodesics. The 6 edge
‘9_91 — ‘9_92 lengths of the generalized tetrahedron-acg, —uj, — Uy
Ju; dup a0 andAij, Ajk, Ai. The generalized tetrahedron is uniquely
which equal to determined by these 6 edge lengths.
tanh The followings are the common principles for
2 \/—2cogir; cogzracosl3 + COFELry +COFE2 . constructing the generalized tetrahedron for all the
sin’ls schemes

1. For allE? schemes, the top vertay, is ideal (at
infinity) and truncated by a horosphere; for Hf
schemes, the top vertex is hyperideal (exceeding
the boundary oH?) and truncated by a hyperbolic
plane; for allS? schemes, the top vertex isH?.

2. Forw;, if the corresponding vertey is of inver-
sive distance circle packing = +1, then it is hy-
perideal and truncated by a hyperbolic planey; if
is of Yamabe flowg; = 0, then it is ideal and trun-

This gives a geometric proof for the symmetry lemma
313 in spherical case.

This theorem is also proved by using the general prin-
ciple: replace sinh and cosh in hyperbolic geometry by
v/—1sin and cos

Here we can give the second proof for the symméify
lemmd3.1B based on the geometric interpretation to the
Hessian, which is geometric and intuitive.

Proof 4.4. Formula [41 show the symmetry for al- cated by a horosphere;\f is virtual radius circle

| schemes with Euclidean background geometry; theo- packinge; = —1, then it is inH3. Same results
rem[4.] proves the symmetry for the hyperbolic cases; holds forw; andwy.

theoreni 4B for the spherical cases. 3. The edges on the truncated tetrahedron, connecting

to the top vertex on the original tetrahedron, have
lengths—u;, —u;j and—uy respectively.
4. For the edge lengthk;, there is a unified formula
The geometric interpretation to Ricci energies of Eu- for three geometries: Euclidean, hyperbolic, spher-
clidean and hyperbolic Yamabe schemes were discov- ical,
ered by Bobenko, Pinkall and Springborn |E|[11]. The
interpretation to Ricci energies of Euclidean schemes
(without the mixed type) are illustrated ifl [5]. Inthg,  The triangle associated to the top venvexis the tri-
current work, we generalize the geometric interpreta- angle[vi,v;,viJ. It is obtained by truncating by a horo-

tions to all the schemes in all background geometries sphere, truncating by a hyperbolic plane or intersecting
covered by the unified framework, as shown in Eid. 13. \yith a sphere. Given-u;, —uj, —Ug, Mij , Nik, Nki» USING

5. Geometric Interpretations to Ricci Energies

Nij = %(e’\“ +ege ). (5.1)

We use the upper half space modelft, with Rie- cosine law, we can calculate the edge lengths of the tri-
mannian metric ws  anglevi,vj,v]. They are exactly given by the formula
2 A2 +dy? + dZ Eqn[338. That means the triangle, vj, vi] has lengths
d =z lij, ljk, Ik and angles}, 6;, 6.
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Here we can give the third proof for the symmetey 6. Experimental Results
lemma based on the geometric interpretation to the Ric-
ci energy, which is more geometric, intuitive and much  In this section, we report our experimental results
easier to verify. based on unified Ricci flow. We thoroughly compare
Proof5.1. As shown in Fig. [19, for a generalized hy- diffe'rent schemgg irj terms qf 'robustness, conformality,
perbolic tetrahedron, thd vertices can have any types. €fficiency and initialization difficulty.
The3vertical edges have lengthau;, —uj, —uy with di-
hedral angles3, 6;, 6. The bottom edges have lengths 6.1. Experimental Environment
)\ij 7)\jka)\ki with dihedral anglesﬁij 7Bjk7Bki' . " L .

Let V be the volume of the generalized hyperbolic ~We implemented the unified Ricci flow algorithm-
tetrahedron. By Schfli formula s using generic C++ language on Windows platform.

dv— 7% (—uid8) — U6 — tedB + A A + A Bk + AadB) Th.e method is based on optimizing the convex energy
(52 using Nevyton; methpd. The sparse linear systems are
oeffie solved using Eigen I|brarm5]. The mesh representa-
tion is based on dynamic halfedge data structure. The
current implementation covers all schemes: tangential
circle packing, Thurston’s circle packing, inversive dis-
tance circle packing, Yamabe flow, virtual radius circle
packing and mixed type schemes, for discrete surfaces
with Euclidean and hyperbolic background geometries.

During the Ricci flow, the conformal structure ¢
cientsnij, Nk, Nk are invariant, soij, Ajk, A are fixed.
Because the generalized tetrahedron is determined by
the edge lengths-uj, —uj, —uy, Aij, Ajk, Aki, during the
flow, all dihedral angles,, 6;, 6, Gij, Bjk, B« are func-
tions of u,uj,ux, the volume V is also the function &f

W ’(L;Jo’r?gider the function, The algorithms can handle surfaces different topologies.
WU, Uj, Ue) = U8+ U} 8] + UgB— Aij B — AjeBik — Al — 2V The .package is accessible for the whole research com-
(5.3) munity.
hence, a8 The computational time is tested on the desktop with
dw = 6du +6;dy; + bdu 2.00GHz CPU, 3.00G RAM. The geometric data sets
f;gj\?”jdej”kde“*’\”d&j ~ AidBjc — Adblg are from the public databases, suchlas$ [46] anH [47].

The human face surfaces were scanned from a high
speed and high resolution, phase shifting scanner, as
dW = 6du + 6;du;j + Bdug w0 described inl[48]. We tested our algorithm on a huge

amount of various models, including different sizes and
topology types. Some of them are without any refine-
W = /Gldu + 6;duj + Bduc+cC. ment or geometric processing, in order to test the ro-

bustness of the algorithms. Some of them are re-meshed
W in fact, is the discrete Ricci energy on face in & using the algorithm in [49].

gn.[35. This shows the differential 1-form

substitute Schilfli formula Eqn[5.2, we have

therefore

6idu + 8jdu; + G du (5.4) 6.2. Generality Testing
is exact, therefore closed. Nam8|y, the Hessian matrix F|gm ancDZ demonstrate the genera”ty of Ricci flow
(8, 6;,6) method to handle surfaces with all possible topolo-
m gies. Fig.[1 shows the uniformization for closed sur-

so faces, where surfaces are conformally mapped to the

unit sphere, Euclidean plane or the hyperbolic disk.
The formula Eqn_5]3 represents the Ricci energy on a Fig. [ illustrates the uniformization for surfaces with
face as the volume of the generalized hyperbolic tetra- boundaries, where compact surface with boundaries
hedron with other terms of conformal factors and con- are mapped to constant curvature spaces, such that all
formal structure coefficients. This formula was intres boundaries are mapped to geodesic circles. Suggested
duced first by Bobenko, Pinkall and Springbornlinl[11] by Glickenstein: Although there is not currently a ro-
for Euclidean and hyperbolic Yamabe flow. In the cur- bust theory of Ricci flow with boundary in the smooth
rent work, we generalize it to all 18 schemes. The d- setting, the discrete Ricci flow can compute the canoni-
ifferential in Eqn[5.# is independent of the choice of cal conformal mapping with high efficacy and efficien-
horospheres, since the Schlafli formula is independentcy. These two figures cover all the topology types of
of the choice of horospher for an ideal vertex. compact surfaces.

10
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mesh qualities, tangential circle packing outperforms al-
ss | other schemes. The other schemes either crash in the
flow process, or pass through with carefully chosen s-
mall step length, therefore, the running times are much
longer.
If we allow the connectivity to be modified during the
(a) low quality face (b) high quality face s flow, to preserve the power Delaunay condition, then all
schemes succeed on both surfaces. This shows the pre-
serving the power Delaunay condition greatly improves
the robustness of the Ricci flow algorithms.

Conformality. Fig.[T1 compares the qualities of differ-
55 ent schemes: tangential circle packing, inversive dis-

(c) low quality bimba  (d)high quality bimba tance circle packing, Yamabe flow and virtual radius
circle packing. The parameterization is denotedpas
Figure 10: Robustness testing. M — R2. We calculate each corner angle in the mesh

before and after the discrete conformal mapping. Then

The uniformization of the genus zero closed surfage we compute the ratio between two angle values, take the
can be computed using Ricci flow with spherical back- |ogarithm. The histogram of the logarithm of the angle
ground geometry, or Euclidean background geometry. ratios is a good measurement for the quality of the dis-
The spherical Ricci energy is non-convex, therefore the crete conformal mapping. If the mapping has high con-
spherical Ricci flow is not so stable as the Euclidean formality, then all angle ratios are close to 1, and the his-
Ricci flow. For surface with multiple boundaries, wg togram is a delta function at 0. Otherwise, the histogram

used Ricci flow method with Koebe's iteratidn [50]. is with high standard deviation. From the histograms in
Fig.[Id, we can see the tangential circle packing pro-
6.3. Comparisons Among Schemes duces mappings with lower conformity. The other three

In the following we compare different schemes of Sschemes produce mappings with similar conformality.

surface Ricci flow in details. )
so  Convergence RatefFig.[12 and tabl€]1l show one ex-

RobustnessIn practice, the biggest challenge for Ricci  periment for comparing the convergence rates of differ-
flow algorithm is the robustness. Given a target curva- ent schemes on four different genus one surfaces. In
tureK, we need to ensure the following two points: the experiment, the curvature error threshold is set to
. . le— 6 the step length in Newton’s method is chosen
L The target curvature is adm|SS|b|g, namely, the S0y, he 5 1. In the tablddL, each item shows the run-
lution to the R_'CC' flow EqﬂB]4'EXIStS.. ning time in seconds, and iterations in the optimization.
2. The s_olut|on is reachable. It is pos_S|bIe that the Erom the table, we can see the running time and itera-
flow hits the b_oupdary of the admissible curvature ons of different schemes are similar.
space before it hits the target curvature. In practice, tangential circle packing is more robust

For Tangential circle packing, Thurston’s circle packe to lower quality mesh qualities, the step length can be
ing, there are theorems describing the admissible curva-chosen to be larger, therefore, it converges faster than
ture spaces [13] and!/[9]. For Euclidean (or hyperbol- Other schemes.
ic) Yamabe flow, if the Delaunay condition is preserved Initialization. In practice, the discrete surfaces are giv-
during the flow by edge swapping, the admissible cur- en as triangular meshes, in the initialization stage, we
vature space is given in the recent works [29] andl [3@}. need to convert the edge length function to circle pack-
We test robustness to the mesh qualities of different ing metric(Z,y, n,¢). For different schemes, this con-
schemes. As shown in Fif 10, the low quality meshes version has different level of difficulties.
are simplified from the raw data, they have many ob-  For tangential circle packing and Yamabe flow, the
tuse angles and degenerated triangles; the high qualityinitializations are easy and the resulting circle packing
meshes are obtained using the method_in [49]. We sssemetrics are unique. The initialization is difficult for
different schemes to compute Riemann mappings. For Thurston’s circle packing, which requires the intersec-
surfaces with high mesh qualities, all schemes succeedtion angles between two vertex circles are acute, fur-
with comparable running time. For surfaces with low thermore, the resulting conformal structure coefficient

11
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Figure 11: Conformality test for different schemes. Thefawdel is
with high mesh quality, the kitten model is with lower mestalify.
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Figure 12: Convergence testing.

[ mesh T VIFIE [ Tan.CP T Inv.Dist. CP | Yamabe Flow | Vir. Rad. CP |
Knot 9792/19584/29376 2.324/18 2.314/17 2.223/17 2.234/17
Elk 9000/18000/27000 3.476/24 2.775/28 2.938/21 2.737120
Rocker 10044/20088/30132( 3.424/23 2.891/21 2.938/21 2.922/21
Kitten 10219/20438/30657| 4.298/23 3.941/21 3.933/21 3.896/21

Table 1: Convergence test.

n : E — R may not be unique. For inversive distance,
virtual radius and mixed type schemes, the initializa-
tions are relatively easier, but the resulting circle pack-
ing metrics may not be unique.

In theory, the conformal structure coefficiemtwill
affect the admissible curvature spacel [13] and [9]. In
practice, we haven’t found that different choicess
make differences in terms of conformality or robustness.

7. Conclusion

This work establishes a unified framework for dis-
crete surface Ricci flow, which covers most existing
schemes: tangential circle packing, Thurston’s cir-
cle packing, inversive distance circle packing, discrete
Yamabe flow, virtual radius circle packing and mixed
scheme, with Spherical, Euclidean and hyperbolic back-
ground geometry. The unified frameworks for hyperbol-
ic and spherical schemes are introduced to the literature
for the first time. For Euclidean schemes, our formula-
tion is equivalent to Glickenstein’s geometric construc-
tion.

Four newly discovered schemes are introduced,
which are hyperbolic and Euclidean virtual radius cir-
cle packing and the mixed schemes.

This work introduces a geometric interpretation to
the Hessian of discrete Ricci energy for all schemes,
which generalizes Glickenstein's formulation in Eu-
clidean case.

This work also gives explicit geometric interpreta-
tions to the discrete Ricci energy for all the schemes,
which generalizes Bobenko, Pinkall and Springborn’s
constructionll_;ljl] for Yamabe flow cases.

The unified frame work deepen our understanding to
the the discrete surface Ricci flow theory, and inspired
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us to discover the novel schemes of virtual radius circle [17] A. Marden, B. Rodin, Computational methods and furrctioe-
packing and the mixed scheme, improved the flexibility
and robustness of the algorithms, greatly simplified tfe
implementation and improved the efficiency.
Experimental results show the unified surface Ric- [19]
ci flow algorithms can handle surfaces with all possi-

5

ble topologies. We further compare different schemes

(18]

[20]

in terms of conformality, robustness, convergence rate, [21]
and the difficulty level of construction.

In the future, we will focus on answering the follow;.
ing open problems: whether all possible discrete surface 23]
Ricci flow schemes are the variations of the current u-
nified approach on the primal meshes and the dual dia-[24]

grams and so on.
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Appendix
In the appendix, we explain the unified surface Ricci
flow algorithm[d in details, and reorganize all the for-
mulae necessary for the coding purpose.

Algorithm 1 unified Surface Ricci Flow

Require: The inputs include:
1. A triangular mestt, embedded ifE3;
2. The background geometig?, H? or S?;
3. The circle packing scheme e {+1,0,—1};
4. Atarget curvaturd, S Ki = 27x(Z) andK; € (—oo, 21).
5. Step lengthdt
Ensure: A discrete metric conformal to the original one, which real-
izes the target curvatut€.

1: Initialize the circle radiy, discrete conformal factarand confor-
mal structure coefficiern, obtain the initial circle packing metric
(Z.y.n.e)

: while max |K; — Kj| > thresholddo
Compute the circle radji from the conformal factou
Compute the edge length froprandn
Compute the corner angtﬁk from the edge length using co-
sine law
Compute the vertex curvatuke
Compute the Hessian mattik
Solve linear systerhldu =K — K
Update conformal factar < u— ot x du
: end while
: Output the result circle packing metric.

aren

N2

e
= o

Step 1. Initial Circle Packingy,n). Depending on
different schemes, the initialization of the circle packin
is different. The mesh has induced Euclidean méiric
For inversive distance circle packing, we choose

1 . 785
Vi = §mj|nlij,

this ensures all the vertex circles are separated. For

Yamabe flow, we choose ajf to be 1. For virtual ra-
dius circle packing, we choose gls to be 1. Thery;

can be computed using the formula in Tab[2. e

Step 3. Circle Radiy. The computation for circle radii
from conformal factor uses the formulae in the first col-
umn in Tal.R.

14

| | uj Edge Lengthj; | (i, ], K) | S(x)

E2 logy Iizj :Znijeui+uj +gei +sje2uj %(Ii2+sj yjz—skyf) X

anij+(1+g A )(L+g i)
coshjj = —————————

m2 Iogtanhy' - cosH; cosi yi — cosifk sinhx
2 (ligiezlji J1-ej€ a) i | %

anij +(1-g i )1 Ui )

- sinx
(1+g 62 )(Ltej€ i)

S Iogtan% cosljj = cod; cos Yj —codk Y

Table 2: Formulae foF?, H? andS? background geometries.

Step 4. Edge Length IThe computation of edge
lengths from conformal facton and conformal struc-
ture coefficient] uses the formulae in the 2nd column

in Tab[2

Step 5. Corner Anglé. The computation from edge
lengthl to the corner angl® uses the cosine law for-
mulae,

Ig = ¥+ y?—2lljcosb R2

coshly = cosHjcoshj — sinhl;sinhlj cos8 H?

cosly = codjcodj— sinl;sinljcosf S2
Step 6. Vertex Curvature KThe vertex curvature is

defined as angle deficit

K(Vi)Z{

Step 7. Hessian Matrix H.

27— 5 v.vjw 93'; Vi ¢ 0%
TT= 3 Vivj eiJ Vi ¢ 0%

9(6,6;,6) _ 1, -1
0(Ui,uj,uk)__2ALeL >
where
A=sinds(lj)s(lk),
and
L = diag(s(li),s(lj),s(lk)),
and
0 1(i,j,k)  1(.k )
D={ t(ik 0 T(jki)
t(ki,j) t(kj,i) 0

Step. 8 Linear Systenif the X is with H? background
geometry, then the Hessian mattixis positive define;
else ifS is with E2 background geometry, théhis pos-
itive definite on the linear subspa§gu; = 0. The lin-
ear system can be solved using any sparse linear solver,
such as Eigen [45].

For discrete surface Ricci flow with topological surg-
eries, we can add one more step right after step 4. In this
new step, we modify the connectivity &fto keep the
triangulation to be (Power) Delaunay. This will greatly
improves the robustness as proved if [29] and [30].
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Figure 13: Geometric interpretation to discrete Ricci ggervolumes of generalized hyperbolic tetrahedra.
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