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Abstract: This is the first of a series of papers in which we systematically use singularity

theory to study four dimensional N = 2 superconformal field theories. Our main focus

in this paper is to identify what kind of singularity is needed to define a SCFT. The

constraint for a hypersurface singularity has been found by Sharpere and Vafa, and here

the complete set of solutions are listed using a related mathematical result of Stephen S.

T. Yau and Yu. We also study other type of singularities such as the complete intersection,

quotient of hypersurface singularity by a finite group and non-isolated singularity. We

finally conjecture that any three dimensional rational Gorenstein graded isolated singularity

should define a N = 2 SCFT. We explain how to extract various interesting physical

quantities such as Seiberg-Witten geometry, central charges, exact marginal deformations,

BPS quiver, RG flow trajectory, etc from the properties of singularity.
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1 Introduction

The space of four dimensional N = 2 superconformal field theory (SCFT) is becoming

increasingly larger since the Seiberg-Witten (SW) solution was found [1, 2]. The two

earlier examples studied in [2] are SU(2) gauge theory coupled with 4 fundamental flavors

and SU(2) gauge theory coupled with an adjoint hypermultiplet. It became immediately

clear that one can find many new SCFTs with Lagrangian descriptions [3, 4], and it was

also soon realized that more exotic SCFTs like Argyres-Douglas theories [5–7] exist. Quite

recently, the space of N = 2 SCFT is greatly enlarged by the so-called class S construction

in which one can engineered 4d N = 2 theory by putting 6d (2, 0) theory on a punctured

Riemann surface [8–12]. Usually some of SCFTs in this class can be described by non-

abelian gauge groups coupled to various matter contents, such as free hypermultiplets,

strongly coupled matter systems like TN theory and its cousins.

Given such rich set of theories found already, one might wonder if we can further

enlarge the space of N = 2 SCFTs. One feature of above class is that SW solution of

almost all the theories considered above is given by a curve fibered over the Coulomb

branch moduli space, namely, the SW curve is put in the form F (x, z, λi) = 0 where λi are

the parameter spaces of Coulomb branch including couplings, masses, and Coulomb branch

moduli. However, as pioneered and emphasized by Vafa and collaborators in a series of

papers [13–16] back in 90s, the SW solution of general N = 2 theory should be given by a

three fold fibered over the moduli space: F (z0, z1, z2, z3, λi) = 0, and only in special case

the solution can be reduced to a curve fibration. For example, the solution of quiver gauge

theory with affine E shape might only take a form of three fold fibration [14]. Recently,

this approach has bee used in [11, 17–20] to find many new interesting theories.

One could greatly extend the space of N = 2 SCFTs by looking at all possible theo-

ries whose SW solution is given by three-fold fibration. Now following the philosophy of

geometric engineering [16, 21], one only need to start with a three-fold singularity, and the

full SW solution is given by the deformation of the singularity [16]. So the classification of

N = 2 theory is reduced to the classification of possible singularities, and this significantly

simplifies the task of classification.

The main purpose of this paper is to try to use algebraic geometry of singularity

theory to systematically classify possible N = 2 theory following the ideas in [16]. The

constraints on isolated three-fold hypersurface singularities (IHS) defined by a polynomial

f(z0, z1, z2, z3) are already described in [15, 16]: a key feature for N = 2 SCFT is the

existence of a U(1)R symmetry and geometrically this implies that the three-fold singularity

should have a C
∗ action:

f(λqizi) = λf(zi), qi > 0; (1.1)
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Moreover to get a sensible SCFT, the weights of C∗ action have to satisfy the following

condition:
∑

qi > 1. (1.2)

Shapere and Vafa conjectured that that these are the necessary and sufficient conditions for

IHS to define a N = 2 SCFT [16]. Therefore the classification of SCFTs arising from IHS is

reduced to the classification of IHS with C
∗ action whose weights satisfy 1.2. Interestingly,

such singularities have already been classified by Stephen S.T. Yau and Yu in a rather

different mathematical context [22], and we simply reorganize their results here.

One of the most remarkable advantage of using singularity to define a SCFT is that the

SW solution is automatically given by the mini-versal deformation of the singularity [23].

Let’s take φα(z) as the monomial basis of the Jacobi algebra C[z0, z1, z2, z3]/(
∂f
z0
, ∂f
z1
, ∂f
z2
, ∂f
z3
),

then the SW geometry is simply given by the following formula [16]:

F (z, λ) = f(z) +

µ
∑

i=1

λαφα(z),

Ω =
dz0 ∧ dz1 ∧ dz2 ∧ dz3

dF
; (1.3)

Here µ is the dimension of Jacobi algebra, and Ω is the SW differential. The scaling

dimensions of λα can also be easily computed by requiring Ω having dimension one as it

gives the mass of BPS particles. Once the SW solution is given, we can study various

physical quantities such as low energy effective action, central charges, BPS spectrum, RG

flow, etc. It turns out that those properties are naturally related to the quantity studied

in the singularity theory [23–26].

One can also consider other type of three-fold singularities 1 to engineer N = 2 SCFTs:

• One can use an isolated complete intersection singularity (ICIS) defined by the map

f : (Cn+3, 0) → (Cn, 0). Assume the singularity is defined by the equations f1 =

f2 = . . . = fn = 0, we require that these polynomials are quasi-homogeneous so that

the weights of the coordinates zi are wi, i = 1, . . . , n + 3, and the degrees of fi are

di, i = 1, . . . , n. The condition for the existence of a SCFT is

∑

wi −
∑

di > 0; (1.4)

• If the ICIS has certain discrete symmetry group G which preserves the canonical

three form, we can form a quotient singularity using group G . This will produce a

large number of new SCFTs.

• We can also consider non-isolated singularity, and it appears that theory of class S

falls in this category.

• In general, we expect that a rational graded Gorenstein isolated three-fold sin-

gularity would give us a four dimensional N = 2 SCFT. Here graded means that the

1The isolated singularity can always be described by an affine variety [27].
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singularity should have a C
∗ action, and Gorenstein means that there is a canonical

well defined (3, 0) form on the singularity [27], finally rational means that the weights

of the (3, 0) form under the C
∗ action is positive.

For these constructions, we will discuss some basic ingredients and give some illustrative

examples. We leave a complete classification to the future study.

We should emphasize that the major perspective of this paper is to explore the relation

between geometric singularity theory and N = 2 theory. More generally, one could use any

2d (2, 2) SCFT with ĉ < 2 2 to construct a 4d N = 2 theories [16, 20] 3, and it would be

definitely interesting to further explore along this approach.

This paper is organized as follows: section two reviews the constraints on hypersurface

singularity so we can find a SCFT, and we further discuss various physical properties

which can be extracted from geometry; Section three gives a complete classification for

the hypersurface singularity which would define a SCFT; Section four discusses how to

use other type of singularities to define new SCFTs; Finally a short conclusion is given in

section five.

2 Isolated hypersurface singularity and N = 2 SCFT

The dynamics of four dimensional N = 2 theory is very rich, see [28] for a detailed review

and here we summarize some useful facts for later use. We are interested in N = 2 SCFT

so the theory has an SU(2)R × U(1)R R symmetry, and the theory might also have some

flavor symmetries G.

N = 2 theory has an interesting moduli space of vacua which could be separated into

Coulomb branch, Higgs branch, and mixed branches which is a direct product of a Coulomb

component and a Higgs component. The IR theory on the Higgs branch is just a bunch

of free hypermultiplets and the important question is to study its Hyperkahler metric.

The Coulomb branch is particularly interesting: the IR theory at a generic point of the

moduli space is an abelian gauge theory and the important task is to find out the photon

couplings; there are also various singular points with extra massless particles where the

IR theory is much more non-trivial. Seiberg-Witten discovered that for some theories the

low energy effective theory on the Coulomb branch could be described by a Seiberg-Witten

curve fibered over the moduli space:

F (x, z, λi) = 0; (2.1)

Here λs are the parameters including coupling constants, mass parameters, and expectation

values for Coulomb branch operators. The period integral of an appropriate one form over

the Riemann surface F (x, z, λ) = 0 with fixed λ determines the low energy photon coupling.

The SW curve contains a lot more information such as the central charge for BPS particles,

the physics at the singularities on the parameter space, etc.

2We might need to put some constraints on (c, c) ring.
3This point has been emphasized to us by C.Vafa.
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So one of the most important task of studying a N = 2 SCFT is to find its SW

curve for the Coulomb branch. It was soon realized that string theory provides the most

efficient way of solving a theory. One approach is to first engineer UV theory using the type

IIA brane configuration and then lifting IIA configuration to a M5 brane configuration to

find the SW curve [4], and this might be regarded as an open string method. The other

approach is to first put type IIA string theory on a singularity to engineer a UV theory,

and its SW solution is found by mirror type IIB geometry [13, 14]. One of the interesting

fact about the second approach is that the SW solution of some theories can only be put

in a three-fold fibration F (z0, z1, z2, z3, λ) = 0, and this suggests that the most general SW

solution should be a three-fold fibration rather than a curve fibration!

Instead of starting with a UV gauge theory using type IIA theory and then try to

find its SW solution using type IIB mirror, we directly try to classify all possible three

fold fibration in type IIB side which can give the SW solution of a SCFT. The task is

significantly simplified as it appears that the most singular points namely the SCFT point

on the Coulomb branch completely determine the full SW solution, so the task of classifying

a N = 2 SCFT is reduced to classify all possible three-fold singularity! In this section, we

focus on isolated hypersurafce singularity.

2.1 Constraint on hypersurface singularity

Let’s start with an isolated hypersurface singularity (IHS) f : (C4, 0) → (C, 0), and here

we summarize the condition on f that would give rise to a SCFT [16]:

• f has an isolated singularity at zi = 0, i = 0, 1, 2, 3, which means that f = ∂f
∂z0

=
∂f
∂z1

= ∂f
∂z2

= ∂f
∂z3

= 0 has a unique solution at zi = 0.

• 4d N = 2 SCFT has a U(1)R symmetry, which means that the polynomial f has to

have a C
∗ action such that all the coordinates have positive weights:

f(λqizi) = λf(zi), qi > 0; (2.2)

such polynomial is called quasi-homogenous polynomial. The U(1)R charge of 4d

SCFT is proportional to this C∗ action and the proportional constant will be deter-

mined later.

• To get a sensible SCFT, the weights has to satisfy the following condition:
∑

qi > 1; (2.3)

The third condition could be understood using string theory. Consider type IIB string

theory on following background R1,3 × X3, where X3 is an isolated three dimensional

hypersurface singularity defined by f . It is argued in [29, 30] that in taking string coupling

gs and string scale ls to zero, we get a non-trivial four dimensional SCFT. If we keep ls to

be finite, we get a little string theory which has a holographic description on background

R1,3 ×Rφ ×S1 ×LG(W = f) with proper orbifolding, here Rφ is the linear dilaton sector.

To have a stable string theory, we require that the central charge ĉ < 2 for the Landau-

Ginzburg piece. The central charge ĉ for the LG model defined by the superpotential

W = f is 4− 2
∑

qi, so ĉ < 2 condition is the same as
∑

qi > 1 condition.
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2.2 Mini-versal deformation and Seiberg-Witten solution

Let’s start with a IHS with a C∗ action, and assume the weights satisfy the condition
∑

qi >

1 so we expect to get a 4d N = 2 SCFT. The SW geometry is related to the deformation

of the singularity f , and there is a distinguished class of deformations called mini-versal

deformations which can be identified with the SW geometry. In the hypersurface case,

the mini-versal deformation can be described easily and this is one of the most powerful

advantage of using singularity to define a SCFT.

Let’s now describe explicitly the form of mini-versal deformations: given a quasi-

homogeneous polynomial f with an isolated singularity at the origin, we can define the

following Jacobi algebra:

J(f) = C[z0, z1, z2, z3]/(
∂f

∂z0
,
∂f

∂z1
,
∂f

∂z2
,
∂f

∂z3
); (2.4)

here C[z0, z1, z2, z4] is the polynomial ring of C4, and the above algebra has finite dimension

µ since f has an isolated singularity. Let’s take φ1(z), . . . , φµ(z) as the monomial basis of

the above Jacobi algebra, then the Seiberg-Witten solution is given by:

F (z, λ) = f(z0, z1, z2, z3) +

µ
∑

i=1

λαφα(z) = 0; (2.5)

There is a also an canonically defined SW differential:

Ω =
dz0 ∧ dz1 ∧ dz2 ∧ dz3

dF
. (2.6)

Let’s use zα to denote one basis vector of the Jacobi algebra, and uα to denote the

coefficient before the monomial in SW geometry. The coefficient uα corresponds to physical

parameter that would deform Coulomb branch of a N = 2 SCFT.

The scaling dimension of ∆(uα) can be easily found from the charge Qα of zα under

the C
∗ action presented in 2.2. The U(1)R charge is proportional to the charge under C∗

action, and so the scaling dimension of an operator on Coulomb branch is also proportional

to its C∗ charge as those operators are chiral primary. Based on above fact, we assume that

the scaling dimension ∆ of an operator is proportional to the C
∗ charge: ∆ = δQα. δ can

be found using the following condition: the canonical differential Ω has Q charge (
∑

qi−1),

and Ω is required to have scaling dimension 1 as the integration of this three form on three

cycles would give the mass for the BPS particle, so we have (
∑3

i=0 qi − 1)δ = 1, and we

find

δ =
1

∑3
i=0 qi − 1

=
2

2− ĉ
. (2.7)

with ĉ = 4 − 2
∑3

i=0 qi, here ĉ is the normalized central charge for the two dimensional

(2, 2) Landau-Ginzburg model defined by f . For a deformation uαz
α, the C

∗ charge of

uα is 1 − Qα so that the total weights of this deformation term is one, then the scaling

dimension of uα is

[uα] = (1−Qα)δ =
1−Qα
∑

qi − 1
=

2(1−Qα)

2− ĉ
. (2.8)
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Notice that generically there could be deformations whose coefficients have negative scaling

dimensions.

The Jacobi algebra plays a crucial role in defining the mini-versal deformations, and the

Poincare polynomial of the algebra J(f) can be computed using the weights information.

To define this polynomial, we introduce the following equivalent C∗ action

f(λw0z0, . . . , λ
w3z3) = λdf(x0, . . . , xn). (2.9)

Now the weights wi and degree d are all positive integers, and one can recover previous

weights using the relation qi =
wi

d
. Define the Poincare polynomial based on C

∗ action

P (t) =
∑

α

(dimHα)t
α; (2.10)

Here α is the weight of C∗ action and dimHα is the dimension of the subspace with charge

α. The Poincare polynomial is [23]:

P (t) =

3∏

i=0

1− td−wi

1− twi
. (2.11)

The dimension of Jacobi algebra is then

µ =

3∏

i=0

(
d

wi
− 1) =

3∏

i=0

(
1

qi
− 1); (2.12)

and the maximal degree of the monomial basis vector is

dmax = 4d− 2
∑

wi. (2.13)

The minimal degree is obviously zero.

There are several simple comments on the possible spectrum:

• The deformations are paired except for the deformation with scaling dimension 1,

and these pairs satisfy the following condition

[m] + [u] = 2; (2.14)

This is required by N = 2 supersymmetry.

• There is a unique operator with highest scaling dimension which is given by the

constant deformation λ · 1, and its scaling dimension is

[u]max = 2/(2 − ĉ). (2.15)

The spectrum of operators with positive scaling dimensions could be classified accord-

ing to their scaling dimensions:

• [u] > 1: Coulomb branch operators, and this happens if Qα < ĉ
2 . Among them, we

call an operator with scaling dimension 1 < [u] < 2 relevant operator.
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• The deformation [u] = 1 is called mass parameter, this happens if Qα = ĉ
2 .

• The deformation 0 ≤ [u] < 1 are called coupling constants, and this happens if Qα >
ĉ
2 ; An operator with scaling dimension [u] = 0 is called exact marginal deformation,

and this happens if Qα = 1.

In the following we use r to denote the number of deformations with scaling dimension

bigger than one, and r is called dimension of the Coulomb branch; We also use f to denote

the number of deformations with scaling dimension one which are mass parameters. The

rank of the charge lattice of the theory is then

R = 2r + f = µ; (2.16)

and the relation between the dimension of Jacobi algebra and the rank of the charge lattice

is due to the paring of mini-versal deformations.

Let’s make some comments on the spectrum of the theory engineered using hyper-

surface singularity: first, all kinds of possibilities can happen: it is possible to have mass

parameters or not to have mass parameters; it is possible to have the exact marginal defor-

mations or not have exact marginal deformations; the theory can have relevant or not have

relevant operators. If there is an exact marginal deformation in our theory, it is possible to

find a weakly coupled gauge theory description and it is interesting to study the S duality

behavior of the theory; If the theory has mass parameters, it is interesting to study whether

there is non-abelian flavor symmetry, etc.

One could try to classify N = 2 SCFT based on the property of the spectrum on the

Coulomb branch:

• One could classify the theory based on the dimension of the Coulomb branch (the

number of operators on Coulomb branch with scaling dimension bigger than one).

An attempt of trying to classify rank one theory based on Kodaira’s classification of

singular elliptic fibre has been given in [31]. Some of them can be realized using IHS:

H0 : f = z20 + z21 + z22 + z33 ,

H1 : f = z20 + z21 + z22 + z43 ,

H2 : f = z20 + z21 + z32 + z33 . (2.17)

It is interesting to classify all rank one, rank two theories which can be realized by

IHS.

• One could also classify the theory based on the number of irrelevant and exact

marginal deformations of the mini-versal deformations. For SCFT without any

marginal and irrelevant deformations in mini-versal deformation, one has the fol-
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lowing ADE sequences and their SW solutions:

Ak : f = z20 + z21 + z22 + zk+1
3 ,

F (z, λ) = f + λ1 + λ2z3 + . . .+ λkz
k−1
3 ;

Dk : f = z20 + z21 + zk−1
2 + z2z

2
3 ,

F (z, λ) = f + λ1 + λ2z3 + λ3z2 + . . . + λkz
k−2
2 ;

E6 : f = z20 + z21 + z32 + z43 ,

F (z, λ) = f + λ1 + λ2z2 + λ3z3 + λ4z
2
3 + λ5z2z3 + λ6z2z

2
3 ;

E7 : f = z20 + z21 + z32 + z2z
3
3 ,

F (z, λ) = f + λ1 + λ2z2 + λ3z3 + λ4z
2
3 + λ5z

3
3 + λ6z3z

2
2 + λ7z2z3;

E8 : f = z20 + z21 + z32 + z53 .

F (z, λ) = f + λ1 + λ2z2 + λ3z3 + λ4z
2
3 + λ5z

3
3 + λ6z2z3 + λ7z2z

2
3 + λ8z2z

3
3 ; (2.18)

These ADE Argyres-Douglas SCFTs are found as the maximal singular point at the

corresponding pure N = 2 ADE gauge theory [7]. The next class would be the

SCFT whose spectrum consists of operators with non-negative scaling dimension.

Those theories are actually called complete theory in [32]. In general, we would

try to classify the theory by the number of deformations with non-positive scaling

dimensions, and we denote this number as m. This number is actually the modality

in singularity theory [23].

Example: Let’s consider the singularity f = za0 + zb1 + zc2 + zd3 with the constraint
1
a
+ 1

b
+ 1

c
+ 1

d
> 1, and the Milnor number is µ = (a− 1)(b− 1)(c− 1)(d− 1). The relation

from Jacobi ideal generated by ∂f
∂zi

= 0 is simply

za−1
0 = 0, zb−1

1 = 0, zc−1
1 = 0, zd−1

1 = 0. (2.19)

So the corresponding Jacobi algebra has the following monomial basis:

zα0 z
β
1 z

γ
2 z

δ
3, 0 ≤ α ≤ a− 2, 0 ≤ β ≤ b− 2, 0 ≤ γ ≤ c− 2, 0 ≤ δ ≤ d− 2, (2.20)

The total dimension of this algebra is (a− 1)(b − 1)(c − 1)(d − 1). The scaling dimension

of the coefficient for the above deformation is

[u]αβγδ =
1− (α

a
+ β

b
+ γ

c
+ δ

d
)

1
a
+ 1

b
+ 1

c
+ 1

d
− 1

. (2.21)

2.3 Discriminant locus, bifurcation diagram and extra massless particles

Let f : (C4, 0) → (C, 0) be a IHS defining a N = 2 SCFT , and let’s denote the basis of

the Jacobi algebra as φα(z), α = 1, . . . , µ; The miniversal deformation of f is written as

F (z, λ) = f(z) +

µ−1
∑

i=0

λαφα(z) = 0; (2.22)

– 9 –



here we take φ0(z) = 1. The parameters λi control the deformation of SCFT in Coulomb

branch (some of λi are coupling constants, and we treat them at the same footing as the

operator with dimension larger than one as they all could change the low energy effective

theory). The subspace Σ on S at which F (z, λ) is singular is called as the discriminant

locus. It is known that Σ is an irreducible hypersurface and its multiplicity is equal to the

Milnor number µ, see figure. 1. On the space S
′

= S/Σ, the fibre is non-singular, and its

only non-vanishing homology class is H0 and H3. An amazing fact about the non-singular

fibre is that it is a bouquet of µ S3, so one can get BPS particle by wrapping D3 branes

on these S3s.

At the discriminant locus Σ, some of the S3 have vanishing area, and there are extra

massless particles coming from D3 brane wrapping on vanishing cycle. The IR theory

would be quite different at those special points. The study of the the structure of discrim-

inant locus is an important part in understanding the interesting dynamics of a N = 2

theory. In singularity theory, the structure of the discriminant locus is called bifurcation

diagram which is also a quite important subject. The result from singularity literature

could definitely teach us about the dynamics of N = 2 theory.

ba
S

Figure 1. S: the Coulomb branch moduli space for N = 2 theory. Here the curve on S means the

discriminate locus; a is a point on which the Milnor fiber becomes singular, b is a point where the

Milnor fiber is smooth.

Example: Let’s consider A2 AD theory defined by the IHS f = z20 + z21 + z22 + z33 , and

the mini-versal deformation of this singularity is z20 + z21 + z22 + z33 + λ1z3 + λ2 = 0. The

quadratic terms will not change the discriminant locus, and we can focus on the geometry

z33 + λ1z3 + λ2 = 0, and the discriminant locus is given by the equation

λ3
1 +

27

4
λ2
2 = 0. (2.23)

which is simply the condition that the roots of the above cubic equations are degenerate,

see illustration in figure. 2.
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1

2

Figure 2. The discriminate locus of A2 SCFT, here the parameters λ1, λ2 are taken to be real.

2.4 Period integral and low energy effective action

Let’s denote the moduli space as S, and the discriminant locus as Σ. The hypersurface

F (z, λ) = 0 over fixed λ is smooth away from Σ, see figure. 1. This is called central Milnor

fibration whose middle homology H3(Fλ, C) has dimension µ, which is called the Milnor

number.

We would like to understand the low energy spectrum from type IIB string theory

point of view. Type IIB string theory has a self-dual four form Aµνρσ, and if we comactify

IIB string theory on a compact Calabi-Yau manifold, we get h2,1 vector multiplet. This is

due to the fact that there is a hodge structure on the manifold such that h2,1 = h1,2, and

the self-duality condition could be solved automatically by this Hodge structure. In our

current context, there is no standard Hodge structure, but one can define a mixed Hodge

structure [24]. We do not explain the detail about mixed hodge structure here, and we just

point out a crucial fact that the paired hodge number is nothing but r which is equal to the

dimension of the coulomb branch (number of operators with scaling dimension bigger than

one). The unpaired Hodge number is equal to the number of mass parameters. With this

Hodge structure, we now have r vector multiplets in four dimension from compactification

of self-dual four form. From N = 2 field theory point of view, at a non-singular point of

the moduli space S, the IR theory is described by a U(1)r gauge theory.

The low energy coupling for the photons is related to the period integral associated

with the N = 2 geometry. Let’s discuss this period integral in more detail: take the vector

space of middle homology of the Milnor fibration, one can get a homology bundle; Similarly,

take the vector space of middle cohomology, one can a cohomology bundle. The period

integral is basically a pairing between the cohomology bundle and homology bundle. Let’s

take a continuous integral basis δ1(λ), . . . , δµ(λ) of the middle homology group of Milnor

fibration, and one can form the following period integral:

λ → (

∫

δ1(λ)
Ω, . . . ,

∫

δµ(λ)
Ω). (2.24)

Here Ω = dz0∧dz1∧dz2∧dz3
dF (z,λ) is the canonical holomorphic three form on the fibre. The low

energy effective action of the theory could be read from the information of these period
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integrals. There is an intersection form (possibly degenerate) on the middle homology, and

we can choose a basis such that they have the following intersection form:

Ai ·Bj = δij , i = 1, 2, . . . r;

Lα ·Ai = 0, Lα ·Bi = 0, Lα · Lβ = 0, α = 1, . . . , f.

(2.25)

Locally on the moduli space, We might identify the periods as the electric, magnetic and

the mass coordinates on the moduli space:

ai(λ) =

∫

Ai(λ)
Ω, aDi (λ) =

∫

Bi(λ)
Ω,

mα(λ) =

∫

Lα(λ)
Ω. (2.26)

In this basis, the photon coupling would be

τ ij =
daDi
duk

duk
dai

, i, j = 1, . . . , r. (2.27)

Here ui are the operators with scaling dimension bigger than one. For IHS and its defor-

mation, these period integral has important property such as holomorphy dependence on

the parameters, etc.

2.5 Monodromy, vanishing cycles and BPS quiver

The physical interpretation of the singularity on the base of the miniversal deformation

of IHS f is that there are extra massless particles [1]. There massless particles are from

the stable massive BPS particles on the non-singular locus of the moduli space. From

type IIB string point of view, the BPS particle comes from D3 brane wrapping on special

Lagrangian three cycle of the geometry F (z, λ) = 0, and therefore the existence of extra

particle is related to the vanishing cycle on the singularity.

To make this picture more precise, let’s focus on co-dimensional one singularity on S.

Let’s fix a point s0 and form a path α(t) connecting s0 and a co-dimension one singularity.

Certain three cycle becomes vanishing along the path , see figure. 3. One get an extra

massless particles from D3 brane wrapping on this vanishing cycle.

There is a monodromy action on the homology of the fibration which is associated

with the loop βi around one singularity si, see figure. 3. The monodromy action is given

by the Picard-Lefschetz transformation:

Ti(x) = x+ < x,∆i > ∆i, (2.28)

here x is an element of integral homology and ∆i is the vanishing cycle, and < x,∆i > is

the intersection number between x and ∆i. Considering the period integral, we have the

following monodromy transformation
∫

x

Ω →

∫

x+<x,∆i>∆i

Ω =

∫

x

Ω+ < x,∆i >

∫

∆i

Ω; (2.29)
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Figure 3. Up: The three cycle becomes vanishing cycle in approaching the singular point si.

Bottom: A path around the singular point on the moduli space.

These are just the electric-magnetic duality actions on the low energy effective U(1) theo-

ries.

More generally, for IHS, one can turn on deformations such that there are a total of µ

codimensional one singularities. These singularities are the so-called A1 singularity around

which the equation can be denoted as

z
′2
0 + z

′2
1 + z

′2
2 + z

′2
3 = λ0; (2.30)

here z
′

i is the local coordinates around the singularity. This kind of deformation is called

Morsification of the singularity. Let’s fix a point s0 which is sufficiently closed to origin.

One can choose a line L close to the origin which meets discriminant Σ in µ points s1, . . . , sµ.

We can take a non self-intersecting path αi from a fixed point s0 to si, see figure. 4. The

ordering of si and αi is given by rule such that they start from s0 and counting clockwise.

Since each path gives us a vanishing cycle, we therefore get a ordered basis ∆i, i = 1, . . . , µ

of the middle homology of the Milnor fibration. Given these paths, one can form a bunch

of loops which generate π1(S/Σ) and there is a total monodromy

T = T1T2 . . . Tµ. (2.31)

This monodromy matrix plays an important role in characterizing the singularity.

The above product of the monodromy is related to the total monodromy of singularity,

which is defined using a so-called Milnor fibration. The Milnor fibration is defined as

follows: Let’s take a disc Dδ = {t ∈ C; 0 < |t| < δ, and the Milnor fibration associated

– 13 –



s
1

s
2

s
1

s
0

1

2

Figure 4. A set of loops around various A1 singularities, and these generate the π1 of the base of

the fibration.

with a IHS is

Ψ : {|z0|
2 + |z1|

2 + |z2|
2 + |z3|

2 = ǫ2}
⋂

f−1(Dδ) → Dδ. (2.32)

This map is a topologically locally trivial fibration for any ǫ >> δ > 0. It is not hard to

see that this fibration is the fibration around the origin of the Coulomb branch by turning

on constant deformation. Choosing a small cycle around the origin, then the monodromy

acts on the homology of the Milnor fibration as

T : H3(Ψ
−1(t), C) → H3(Ψ

−1(t), C). (2.33)

This monodromy group is just the one defined earlier using the Picard-Lefshertz transfor-

mations around co-dimensional one singularity. There are several important features about

the monodromy:

• The eigenvalues of the monodromy matrix is a root of unity, and the eigenvalues are

related to basis of Jacobi algebra. Consider a monomial basis zα, then the eigenvalue

associated with it is exp(2πili) with

li =
3∑

j=0

(nj + 1)qj − 1, (2.34)

here nj is the exponent of z
α. It is easy to check that the number of unity eigenvalues

is equal to the number of mass parameters by noting the following two facts: a: li = 1

gives us a mass parameter; b: 0 < li < 2.

• The monodromy matrix satisfies the condition (TN − I)k = 0 for some N and k,

namely (TN − I) is an nilpotent matrix.

Those vanishing cycles are the distinguished basis of the middle homology of the Milnor

fibration. The important data is the intersection form on the set (∆1, . . . ,∆µ), and one

can form an antisymmetric intersection matrix as follows:

I∆ =< ∆i,∆j >1≤i,j≤µ, i 6= j

< ∆i,∆i >= 0 (2.35)
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These intersection form depends on the choices of paths and is not unique. There are two

operations which can be used to change the basis. The first operation is to change the

orientation of the cycle:

si : (∆1, . . . ,∆i, . . . ,∆µ) → (∆1, . . . ,−∆i, . . . ,∆µ) (2.36)

The second transformation is more nontrivial, and it acts the path by the so-called braiding,

and see figure. 5 for how the path is changed. The basis is changed as

ti : (∆1, . . . ,∆i,∆i+1 . . . ,∆µ) → (∆1, . . . ,∆i+1+ < ∆i+1,∆i > ∆i,∆i, . . . ,∆µ) (2.37)

It is straightforward to derive the change of the intersection form under this change of

basis.

We now conjecture that the intersection form of vanishing cycle might be identified

with the BPS quiver. Let’s choose the distinguished basis and perform the period integral

λ → (

∫

∆1(λ)
Ω, . . . ,

∫

∆µ(λ)
Ω) = (a1(λ), . . . , aµ(t)). (2.38)

Consider a special Lagrangian three cycle in Homology class L = n1∆1 + . . . nµ∆µ, then

the central charge of it is given by the integral of (3, 0) form on L

Z =

∫

L

Ω =

∫

∑
ni∆i

Ω =
∑

niai. (2.39)

Due to special Lagrangian condition, the mass of this particle is equal to the absolute

value of the central charge. The task of counting BPS spectrum is to determine which ni

are allowed in certain region of the moduli space, and study the wall crossing behavior of

various BPS particles. The BPS quiver plays a crucial role in finding the spectrum, so

knowing the BPS quiver is a first step. For many known theories in this class, the BPS

quiver is actually the intersection form of the vanishing cycle [17? –19], and we would like

to conjecture that this fact is true for all the theories defined by IHS, other evidences will

be given elsewhere.

We hope that the combination of geometric interpretation of the BPS quiver and the

representation theory of the quiver would give us more information about the full BPS

spectrum of these theories.
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Example: Consider A2 SCFT, the Milnor number is 2, and the intersection form

associated with vanishing cycle is < ∆1,∆2 >= 1. The monodromy group can be easily

found using Picard-Lefschetz transformation:

T1 =

(

1 0

1 1

)

,

T2 =

(

1 −1

0 1

)

,

T = T1T2 =

(

1 −1

1 0

)

. (2.40)

2.6 Central charge a and c

For four dimensional conformal field theory, there are two important central charges a, c

which measure the degree of freedom of a theory, usually it is pretty difficult to compute

those quantities. For N = 2 SCFTs , the central charges can be computed using various

methods such as free theory limit, three dimensional mirror, etc. Here we are going to give

an extremely simple formula for the central charges for all the theory defined using IHS.

The formula which we are going to use is the one discovered in [33]:

a =
R(A)

4
+

R(B)

6
+

5r

24
+

h

24
, c =

R(B)

3
+

r

6
+

h

12
, (2.41)

Here R(A) is given by the Coulomb branch spectrum consists of operators with scaling

dimension bigger than one:

R(A) =
∑

i

([ui]− 1), (2.42)

and r, h are the number of free vector multiplets and free hypermultiplets at the generic

point of Coulomb branch. Notice that there is no free hypermultiplet for the class of

theories we considered in this paper, which can be verified by the fact that there is only

non-vanishing middle homology class. The above remarkable formula is derived using the

topological twisting of a N = 2 theory [33, 34].

For theories defined by IHS, R(A) and r can be easily found from the mini-versal

deformation; Using the deformation pattern of singularity theory, we are going to give a

simple formula for R(B). R(B) is related to the co-dimensional one singularity on which

there is an extra massless hypermultiplet, and is given by the R charge of local coordinate

near such singularity 1
4R(δz). R(B) is the sum of contribution from all co-dimensional one

singularities:

R(B) = µ
1

4
R(δz); (2.43)

Here µ is the number of co-dimensional one singularity, R(δz) is the R charge of the local

coordinates. The crucial fact for us is that there are a total of µ co-dimension one A1

singularity at the Coulomb branch [25]. Near the singularity, the three fold takes the

following simple form:

δz20 + δz21 + δz22 + δz23 = λ0. (2.44)
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We would like to know the U(1)R charge of the local coordinates δzi. It is easy to see that

this singularity is the A1 singularity which represents a massless hypermultiplet. The only

deformations are constant deformation whose scaling dimension is

∆(λ0) =
2

2− ĉ
, (2.45)

so the local coordinates δzi has scaling dimension [δzi] =
1
2∆(λ0) and therefore its U(1)R

charge is R(δzi) = 2[δzi] =
2

2−ĉ
, so R(B) is equal to

R(B) =
µ

2(2− ĉ)
=

µ

4(
∑

qi − 1)
=

1

4
µ[u]max. (2.46)

Here [u]max is the operator with maximal scaling dimension on the Coulomb branch.

Example I: Let’s check our formula for the simplest theory defined by f = z20 + z21 +

z22 + z23 , and this is the free hypermultiplet. The ”Coulomb branch” is described by the

formula F = z20 + z21 + z22 + z23 + λ, and λ has scaling dimension one, so R(A) = 0. There

is only one A1 singularity on the origin, so R(B) = 1
4 . We have r = h = 0, and using the

formula in 2.41, we find the central charge

a =
1

24
, c =

1

12
. (2.47)

This is nothing but the central charge for a free hypermultiplet.

Example II: Let’s check our formula for a more complicated example. The singularity

is given by f = z30+z31+z32+z3k3 , and the Milnor number is µ = 8(3k−1). Using singularity

and its mini-versal deformation, we find:

R(A) = −6k + 12k2, R(B) = 6k(3k − 1), r = 12k − 7, (2.48)

and the central charge is given by

a = 6k2 −
35

24
, c = 6k2 −

7

6
. (2.49)

It is known [20] that this is affine E6 quiver gauge theory, see figure. 6 for the quiver.

This theory has a Lagrangian description and its central charge can be easily found using

the following formula

a =
nh

24
+

5nv

24
, c =

nh

12
+

nv

6
. (2.50)

Substitute nh = 24k2, nv = 24k2 − 7 into above formula, we find

a = 6k2 −
35

24
, c = 6k2 −

7

6
; (2.51)

which agrees with the result derived above using totally different method.
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2.7 Exact marginal deformations, duality group and moduli of singularity

If we can find a monomial zα with weights 1 in the monomial basis of Jacobi algebra, there

is an exact marginal deformation in our theory. The space of exact marginal deformations

is therefore identified with the following family of singularity.

f(z0, z1, z2, z3) +
∑

λαz
α = 0, (2.52)

Here the sum is over the monomials with weight 1. This family of deformations have a

distinguished feature that the Milnor number is constant along this deformation (notice

that the irrelevant deformation also gives rise to µ constant deformation). The coupling

constant space is therefore identified as C
p, where p is the number of weight one defor-

mations. However, these points do not give singularity with different complex structures

as two different number λ and λ
′

could give bi-holomorphic equivalent singularity. An

important question is to determine an invariant function so that two isomorphic coupling

constant would give the same answer (this is the analog of the J invariant for the elliptic

curve). After finding the invariant, one can find out the modular group G and the the

space of exact marginal deformations is therefore Cp/G. This G is nothing but the duality

group.

On the other hand, the equation defines a weighted homogeneous variety if we quotient

the above hypersurface by the defining C
∗ action, therefore the space of exact marginal

deformations are the space of complex structure deformations of the corresponding variety.

This is a generalization of class S theory in which the space of exact marginal deformations

are identified with the complex structure moduli of curves, here we would find the complex

structure moduli space of surfaces.

Whenever there is an exact marginal deformation, the theory should have a weakly

coupled gauge theory description and the exact marginal deformation could be identified

with the gauge coupling. It appears that the mirror symmetry for f plays a important

role in finding the gauge theory description. The detailed study of space of exact marginal

deformation and the gauge theory description of these theories will be left to a separate

publication, see also [20, 35, 36] for the studies of gauge theory descriptions of some sin-

gularities.
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Example I: Let’s consider the singularity f = z20+z31+z32+z33 , and there is one weight

one deformation z1z2z3. So we have a family of singularities F = z20+z31 +z32+z33+λz1z2z3
with the constraint λ3 + 27 6= 0 so that there is an isolated singularity at the origin. Let’s

ignore z0 term as it does not contribute anything to our problem. The projective variety

defined by z31 + z32 + z33 = 0 is a torus, and λ is the complex structure of this variety. The

invariant for this singularity has been calculated by Saito [37]:

J(λ) = −
λ3(λ3 − 216)3

1728(t3 + 27)
; (2.53)

Example II: Let’s consider following singularities:

z30 + z31 + z32 + z33 = 0,

z20 + z42 + z43 + z43 = 0,

z20 + z32 + z63 + z63 = 0. (2.54)

These IHS define quiver gauge theory of affine E6, E7, E8 shape respectively [14, 20]. The

number of exact marginal deformations are 4, 6, 8 respectively. The corresponding weighted

projective variety is the smooth Del Pezzo surface dP6, dP7, dP8 respectively. So the space

of gauge coupling is identified with the complex structure of those algebraic surfaces.

2.8 RG webs and adjacency of singularity

If there is a relevant deformation in our spectrum, we can turn on this deformation and

flow to other theories. Such RG flow has been studied in [38] for some theories, here we

will give a more general illustration.

One can turn on a relevant deformation of a N = 2 SCFT and flow to a new fixed

point in the infrared, i.e. one can turn on the deformation [6]:

∫

d4θ
〈v〉

µσ
U, (2.55)

where 〈v〉 is the expectation value of certain operator with dimension 1. The coupling

constant is identified as m = 〈v〉
µσ with scaling dimension

[m] = 1− σ, (2.56)

and the operator U has dimension [U ] = 1 + σ. U is an irrelevant operator when [U ] > 2,

marginal when [U ] = 2, and relevant when [U ] < 2. Here U is operator for which we

can turn on its expectation value which parameterizes the Coulomb branch. The scaling

dimensions of m and U satisfy the relation [m] + [U ] = 2. We would like to study the IR

theory in the limit µ → 0.

Let’s now consider a SCFT defined by a IHS. If we turn on the relevant deformation

m (without turning on the expectation value of U), the curve becomes

f(z0, z1, z2, z3) +
< v >

µσ
zα = 0 (2.57)
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with 0 < σ < 1 whose value is determined by the monomial zα. We would like to know

the new SCFT at the deep IR, which could be achieved by a scaling limit as we have done

in [38].

Here we give a much easier method to determine the IR SCFT. Let’s first define a

semi-quasihomogeneous isolated singularity f as the following type of polynomial

f = f1 + f2; (2.58)

Here f1 defines an quasi-homogeneous isolated singularity , and f2 consists of monomials

with weights bigger than one. f0 is called quasi-homogeneous piece of f . Now let’s start

with a quasi-homogeneous singularity f0, and deform it using relevant deformations, and

we have

fdef = f0 + f1. (2.59)

If fdef is a semi-quasihomogenous singularity, fdef can be written as fdef = f
′

1 + f
′

2 and

the IR theory is described by the quasi-homogenous piece f
′

1. Using this method, it is

easy to determine the singularity corresponding to the IR theory by turning on relevant

deformation m.

More generally we could also form a deformation by turning on deformations involving

more than one terms, this means that we also turn on expectation value for operators with

scaling dimension bigger than one. For example, let’s consider the A2 singularity and the

following deformation

F (z, t) = z20 + z21 + z22 + z33 + 3tz23 →

F (z, t) = z20 + z21 + z22 + z
′3
3 − 3t2z

′

3 + 2t3, z
′

3 = z3 + t. (2.60)

Notice that the deformation in first line is not a form of mini-versal deformation, while

the second one is written in the mini-versal deformation form by changing the coordinates.

Physically, it means that we turn on the relevant and the coulomb branch expectation

value simultaneously. We can take a scaling limit such that z33 term becomes irrelevant,

and the new singularity is just the A1 singularity. Alternatively, since the new singularity

is semi-quasihomogenous, and the quasi-homogeneous piece is just A1 singularity.

Using the above type of RG flow, one can connect the singularities, in particular, we

would like to find two theories whose charge lattice differ by dimension one and they can

be connected by a RG flow. This web is the adjacencies of singularities studied by Arnold

et al [23], see figure. 7 for an example.

2.9 Summary

Let’s summarize how to compute various physical quantities of N = 2 SCFT from singu-

larity theory:

• The SW geometry is given by the mini-versal deformation of the singularity:

F (z, λ) = f(z) +

µ
∑

i=1

λαφα(z) = 0, (2.61)
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Figure 7. Adjacency of singularities which is interpreted as a RG web.

here φi is the basis for the Jacobi algebra J(f) = C[z0, z1, z2, z3]/(
∂f
z0
, ∂f
z1
, ∂f
z2
, ∂f
z3
).

The scaling dimension of λα is given by the formula:

[λα] =
1−Qα

∑3
i=1 qi − 1

. (2.62)

• The SW differential is Ω = dz0∧dz1∧dz2∧dz3
dF

and the low energy effective action is

encoded in period integral

λ → (

∫

δ1(λ)
Ω, . . . ,

∫

δµ(λ)
Ω); (2.63)

• The monodromy around a co-dimensional one singularity is given by the Picard-

Lefchetz transformation,

T : x → x+ < x,∆i > ∆i. (2.64)

• The intersection form on the distinguished basis associated with vanishing cycle is

conjectured to be the BPS quiver.

• The central charge a, c can be found using the formula

R(A) =
∑

[ui]>1

([ui]− 1), R(B) =
µ

2(2− ĉ)
=

µ

4(
∑

qi − 1)
;

a =
R(A)

4
+

R(B)

6
+

5r

24
, c =

R(B)

3
+

r

6
. (2.65)

The Milnor number µ of the singularity plays a crucial role for the physical property

of N = 2 theory. Here let’s summarize its various meanings:

• It is the dimension of the Jacobi algebra and the dimension of the base of mini-versal

deformation of the singularity. Physically, it is equal to the number of deforma-

tions (those with negative scaling dimensions are irrelevant deformations) in N = 2

geometry;

• It is equal to the dimension of middle cohomology of Milnor fibration. Physically, it

is equal to the dimension of the charge lattice.
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• It is equal to the number of co-dimension one A1 singularity in the mini-versal defor-

mations. Physically, this is equal to the number of co-dimensional one singularity at

which there is an extra massless hypermultiplet.

3 Classification of hypersurface singularity

As discussed in last section, the isolated hypersurface singularity f(z0, z1, z2, z3) which

seems to define a N = 2 SCFT has to satisfy the following conditions:

• It has a good C
∗ action, namely

f(λqizi) = λfi(z), qi > 0; (3.1)

• The weights satisfy the following condition:
∑

qi > 1;

We would like to classify all such hypersurface singularity. Interestingly, same type of sin-

gularities have been studied by Yau and Yu [22], and they give a full classification. Mathe-

matically, what they are interested are rational isolated hypersurface singularity with a C
∗

action. The rational condition for the hypersurface is nothing but the condition two listed

above. In the following, we simply take their results and reorganize them appropriately.

To start with, we first classify isolated hypersurface singularity f with a C
∗ action. It

is easy to see that in order that there is an isolated singularity at z0 = 0, f has to include

one of the following terms (zk0 , z1z
k
0 , z2z

k
0 , z3z

k
0 ). Similar condition is applied to other three

variables. So we need to select one monomial within four possibilities for one variable, and

there are a total of 256 possibilities. After eliminating the simple equivalence class after

permuting the variables, the polynomials are classified into 19 types, see table. 1. The

weights qi of them are listed in table. 1. Once the weights are given, the Milnor number µ

is easy to compute, and it is equal to

µ =
∏

(
1

qi
− 1) (3.2)

See table. 2. This classification solves the first condition. In the following subsections, we

are going to impose the condition
∑

qi > 1 for each type and list all possible solutions.

Not all the solutions in different types are distinct. An important criteria for the equiv-

alence of two isolated hypersurface singularity is that their Jacobi algebra is isomorphic as

a graded algebra [39]. Since the basis of Jacobi algebra determines the N = 2 geometry

and the spectrum on the Coulomb branch, this indicates that the Coulomb branch spec-

trum determines the theory which can be defined by hypersurface singularity. Since the

Poincare polynomial for the Jacobi algebra of IHS with a C
∗ action is determined only by

the weights wi and degree d, if we find the weights and degree of two different polynomials

f and f
′

are the same, we know that they are isomorphic. In practice, one can also find

simple isomorphism between f and f
′

if f − f
′

are sum of weight one monomials.

One can represent the singularity by Newton polytope in R4. Let’s assume that the

singularity takes the following form

f =
∑

aαz
α (3.3)
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The lattice points of the Newton polytope are αs with aα 6= 0. For the hypersurface

singularity with a C
∗ action, the points are on the hyperplane defined by the following

equation

x0q0 + x1q1 + x2q2 + x3q3 = 1. (3.4)

The Newton polytope is formed by the points (aα + b), aα 6= 0, b ∈ R4+ . The condition
∑

qi > 1 implies that there are is no points (n0, n1, n2, n3) outside Newton polytope such

that (n0 + 1, n1 + 1, n2 + 1, n3 + 1) is in the interior of Newton polytope.

Once the normal form and Milnor number of a IHS is given, one can easily compute

various interesting physical quantities:

• The monomial basis of Jacobi algebra can be computed using Singular [40], and

N = 2 geometry is given by

F (z, λ) = f(z) +

µ
∑

i=1

λiφi(z), (3.5)

and one can also find the scaling dimensions of λi pretty easily. Once the spectrum

is known, one can list the number of Coulomb branch operators, the number of mass

parameters, and the number of exact marginal deformations, etc. This is helpful for

the classification purpose.

• The central charge a and c can be extracted from the information of spectrum and

the Milnor number.

The above computations can be made using the computer software Singular [40].

– 23 –



Type f(z0, z1, z2, z3)
∑

qi

I za0 + zb1 + zc2 + zd3
1
a
+ 1

b
+ 1

c
+ 1

d

II za0 + zb1 + zc2 + z2z
d
3

1
a
+ 1

b
+ 1

c
+ c−1

cd

III za0 + zb1 + zc2z3 + z2z
d
3

1
a
+ 1

b
+ d−1

cd−1 +
c−1
cd−1

IV za0 + z0z
b
1 + zc2 + z2z

d
3

1
a
+ a−1

ab
+ 1

c
+ c−1

cd

V za0z1 + z0z
b
1 + zc2 + z2z

d
3

b−1
ab−1 + a−1

ab−1 + 1
c
+ c−1

cd

VI za0z1 + z0z
b
1 + zc2z3 + z2z

d
3

b−1
ab−1 + a−1

ab−1 + d−1
c

+ cd−1
cd

VII za0 + zb1 + z1z
c
2 + z2z

d
3

1
a
+ 1

b
+ b−1

bc
+ b(c−1)+1

bcd

VIII za0 + zb1 + z1z
c
2 + z1z

d
3 + zp2z

q
3,

1
a
+ 1

b
+ b−1

bc
+ b−1

bd
p(b−1)

bc
+ q(b−1)

bd
= 1

IX za0 + zb1z3 + zc2z3 + z1z
d
3 + zp1z

q
2,

1
a
+ d−1

bd−1 + b(d−1)
c(bd−1) +

b−1
bd−1

p(d−1)
bd−1 + qb(d−1)

c(bd−1) = 1

X za0 + zb1z2 + zc2z3 + z1z
d
3

1
a
+ d(c−1)+1

bcd+1 + b(d−1)+1
bcd+1 + c(b−1)+1

bcd+1

XI za0 + z0z
b
1 + z1z

c
2 + z2z

d
3

1
a
+ a−1

ab
+ a(b−1)+1

abc
+ ab(c−1)+(a−1)

abcd

XII za0 + z0z
b
1 + z0z

c
2 + z1z

d
3 + zp1z

q
2

1
a
+ a−1

ab
+ a−1

ac
+ a(b−1)+1

abd
p(a−1)

ab
+ q(a−1)

ac
= 1

XIII za0 + z0z
b
1 + z1z

c
2 + z1z

d
3 + zp2z

q
3

1
a
+ a−1

ab
+ a−1

ac
+ a(b−1)+1

abd
p(a(b−1)+1)

abc
+ q(a(b−1)+1)

abd
= 1

XIV za0 + z0z
b
1 + z0z

c
2 + z0z

d
3 + zp1z

q
2 + zr2z

s
3

1
a
+ a−1

ab
+ a−1

ac
+ a−1

ad
p(a−1)

ab
+ q(a−1)

ac
= 1 = r(a−1)

ac
+ s(a−1)

ad

XV za0z1 + z0z
b
1 + z0z

c
2 + z2z

d
3 + zp1z

q
2

b−1
ab−1 + a−1

ab−1 + b(a−1)
c(ab−1) +

c(ab−1)−b(a−1)
cd(ab−1)

p(a−1)
ab−1 + qb(a−1)

c(ab−1) = 1

XVI za0z1 + z0z
b
1 + z0z

c
2 + z0z

d
3 + zp1z

q
2 + zr2z

s
3

b−1
ab−1 + a−1

ab−1 + b(a−1)
c(ab−1) +

b(a−1)
d(ab−1)

p(a−1)
ab−1 + qb(a−1)

c(ab−1) = 1 = r(a−1)
ac

+ s(a−1)
ad

XVII za0z1 + z0z
b
1 + z1z

c
2 + z0z

d
3 + zp1z

q
2 + zr0z

s
2

b−1
ab−1 + a−1

ab−1 + a(b−1)
c(ab−1) +

b(a−1)
d(ab−1)

p(a−1)
ab−1 + qb(a−1)

d(ab−1) = 1 = r(b−1)
ab−1 + sa(b−1)

c(ab−1)

XVIII za0z2 + z0z
b
1 + z1z

c
2 + z1z

d
3 + zp2z

q
3

b(c−1)+1
abc+1 + c(a−1)+1

abc+1 + a(b−1)+1
c(abc+1) + c(a(b−1)+1)

d(abc+1)
p(a(b−1)+1)

abc+1 + qc[a(b−1)+1]
d(abc+1) = 1

XIX za0 + z0z
b
1 + zc2z1 + z2z

d
3

[b(d(c−1)+1)−1
abcd−1 + [d(c(a−1)+1)−1

abcd−1

+ [a(b(d−1)+1)−1
abcd−1 + [c(a(b−1)+1)−1

abcd−1

Table 1. The canonical form for isolated hypersurface singularity with a good C∗ action whose

weights on coordinates zi are also given.

3.1 Type I

Here f = za0 + zb1 + zc2 + zd3 , and a, b, c, d ≥ 2 so that there is isolated singularity at the

origin. The
∑

qi > 1 condition is

1

a
+

1

b
+

1

c
+

1

d
> 1. (3.6)
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Type f(z0, z1, z2, z3) µ

I za0 + zb1 + zc2 + zd3 µ = (a− 1)(b− 1)(c − 1)(d − 1)

II za0 + zb1 + zc2 + z2z
d
3 µ = (a− 1)(b− 1)[c(d − 1) + 1]

III za0 + zb1 + zc2z3 + z2z
d
3 µ = (a− 1)(b − 1)cd

IV za0 + z0z
b
1 + zc2 + z2z

d
3 µ = [a(b− 1) + 1][c(d − 1) + 1]

V za0z1 + z0z
b
1 + zc2 + z2z

d
3 µ = ab[c(d− 1) + 1]

VI za0z1 + z0z
b
1 + zc2z3 + z2z

d
3 µ = abcd

VII za0 + zb1 + z1z
c
2 + z2z

d
3 µ = (a− 1)[bc(d − 1) + b− 1]

VIII za0 + zb1 + z1z
c
2 + z1z

d
3 + zp2z

q
3, µ = (a−1)[b(c−1)+1][b(d−1)+1]

b−1
p(b−1)

bc
+ q(b−1)

bd
= 1

IX za0 + zb1z3 + zc2z3 + z1z
d
3 + zp1z

q
2, µ = (a−1)d[c(bd−1)−b(d−1)]

d−1
p(d−1)
bd−1 + qb(d−1)

c(bd−1) = 1

X za0 + zb1z2 + zc2z3 + z1z
d
3 µ = (a− 1)bcd

XI za0 + z0z
b
1 + z1z

c
2 + z2z

d
3 µ = abc(d − 1) + a(b− 1) + 1

XII za0 + z0z
b
1 + z0z

c
2 + z1z

d
3 + zp1z

q
2 µ = (a(c−1)+1)(ab(d−1)+a−1)

a−1
p(a−1)

ab
+ q(a−1)

ac
= 1

XIII za0 + z0z
b
1 + z1z

c
2 + z1z

d
3 + zp2z

q
3 µ = [ab(c−1)+a−1][ab(d−1)+a−1]

a(b−1)+1
p(a(b−1)+1)

abc
+ q(a(b−1)+1)

abd
= 1

XIV za0 + z0z
b
1 + z0z

c
2 + z0z

d
3 + zp1z

q
2 + zr2z

s
3 µ = [a(b−1)+1][a(c−1)+1][a(d−1)+1]

(a−1)2

p(a−1)
ab

+ q(a−1)
ac

= 1 = r(a−1)
ac

+ s(a−1)
ad

XV za0z1 + z0z
b
1 + z0z

c
2 + z2z

d
3 + zp1z

q
2 µ = a[c(d−1)(ab−1)+b(a−1)]

a−1
p(a−1)
ab−1 + qb(a−1)

c(ab−1) = 1

XVI za0z1 + z0z
b
1 + z0z

c
2 + z0z

d
3 + zp1z

q
2 + zr2z

s
3 µ = a[c(ab−1)−b(a−1)][d(ab−1)−b(a−1)]

b(a−1)2

p(a−1)
ab−1 + qb(a−1)

c(ab−1) = 1 = r(a−1)
ac

+ s(a−1)
ad

XVII za0z1 + z0z
b
1 + z1z

c
2 + z0z

d
3 + zp1z

q
2 + zr0z

s
2 µ = [c(ab−1)−a(b−1)][d(ab−1)−b(a−1)]

(a−1)(b−1)
p(a−1)
ab−1 + qb(a−1)

d(ab−1) = 1 = r(b−1)
ab−1 + sa(b−1)

c(ab−1)

XVIII za0z2 + z0z
b
1 + z1z

c
2 + z1z

d
3 + zp2z

q
3 µ = ab[abc(d−1)+c(a−1)+d]

a(b−1)+1
p(a(b−1)+1)

abc+1 + qc[a(b−1)+1]
d(abc+1) = 1

XIX za0 + z0z
b
1 + zc2z1 + z2z

d
3

µ = abcd

Table 2. The Milnor number of the Hypersurface singularities.

There is an obvious symmetry exchanging (a, b, c, d), so we can require a ≤ b ≤ c ≤ d.

The solutions to inequality 3.6 are separated in seven infinite sequences which are

actually already studied (we also list their names used in literature) The first four classes

have been studied in [17], and they can be also engineered using M5 brane with the ADE

type on a sphere with a single irregular singularity [10, 11]. The last three classes always

have exact marginal deformations and can be described by a weakly coupled gauge theories,

– 25 –



Solution Other name

(2,2,p,q) (Ap−1, Aq−1)

(2,3,3,k) (D4, Ak−1)

(2,3,4,k) (E6, Ak−1)

(2,3,5,k) (E8, Ak−1)

(2,3,6,k) (E1,1
8 , Ak−1)

(2,4,4,k) (E1,1
7 , Ak−1)

(3,3,3,k) (E1,1
6 , Ak−1)

Table 3. Infinite sequence of type I singularity.

and some aspects of these theories are studied in [20]. There are also 13 class of sporadic

examples, see table. 4.

(2,3,7,k) 6 < k < 42 (2,3,8,k) 7 < k < 24 (2,3,9,k) 8 < k < 18

(2,3,10,k) 9 < k < 15 (2,3,11,k) 10 < k < 14 (2,4,5,k) 4 < k < 20

(2,4,6,k) 5 < k < 12 (2,4,7,k) 6 < k < 10 (2,5,5,k) 4 < k < 10

(2,5,6,k) 5 < k < 8 (3,3,4,k) 3 < k < 12 (3,3,5,k) 4 < k < 8

(3,4,4,k) 3 < k < 6

Table 4. Sporadic sequence of type I singularity.

3.2 Type II

Here f = za0+zb1+zc2+z2z
d
3 , and we require a, b, c ≥ 2, d ≥ 1 to have an isolated singularity

at the origin. There are some overlap with Type I singularity. Since the weights of z3 is
c−1
dc

, if we can find integer n such that n(c−1)
dc

= 1, then zn3 is an exact marginal deformation

and the singularity can be put in the equivalent form f
′

= za0 + zb1 + zc2 + zn3 , which is a

type I singularity. It is easy to find out that the reducible condition is

d

c− 1
∈ Z. (3.7)

The
∑

qi > 1 inequality is
1

a
+

1

b
+

1

c
+

c− 1

cd
> 1, (3.8)

This equation is symmetric in exchanging (a, b) and (c, d), so we could require a ≤ b and

c ≤ d in solving the inequality. The exchange of a, b gives us equivalent singularity, while

the exchange of (c, d) gives us different singularity.

We list the solutions by requiring a ≤ b and c ≤ d and one should keep in mind that

exchanging c and d would give us inequivalent theory. Some of the solutions can be reduced

to type I using the reduction discussed above. More generally, if we find the same spectrum

from the deformations with certain type I singularity, then those two singularities give the

same 4d SCFT.
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(r,s,t,1) (2,2,r,s) (2, r, 2, s) (3,s,2,2) (4,s,2,2)

(2,3,3,s) (2,3,4,s) ((2,3,5,s) (2,3,6,s) (2,4,3,s)

(2,5,3,s) (2,6,3,s) (2,s,3,3) (2,s,3,4) (3,3,2,s)

(3,4,2,s) (3,5,2,s) (3,6,2,s) (3,s,2,3) (2,4,4,s)

(4,4,2,s) (3,3,3,s)

Table 5. Infinite sequences of type II singularity.

(5,k,2,2) 4 < k < 20 (6,k,2,2) 5 < k < 12 (7,k,2,2) 6 < k < 10

(2,3,7,k) 6 < k < 36 (2,3,8,k) 7 < k < 21 (2,3,9,k) 8 < k < 16

(2,3,10,k) 9 < k < 14 (2,3,11,k) 10 < k < 12 (2,7,3,k) 6 < k < 28

(2,8,3,k) 7 < k < 16 (2,9,3,k) 8 < k < 12 (2, k, 3, 5) 5 < k < 30

(2, k, 3, 6) 6 < k < 18 (2, k, 3, 7) 7 < k < 14 (2, k, 3, 8) 8 < k < 12

(2, k, 3, 9) 9 < k < 11 (3,7,2,k) 6 < k < 21 (3,8,2,k) 7 < k < 12

(3,k,2,4) 4 < k < 24 (3,k,2,5) 5 < k < 15 (3,k,2,6) 6 < k < 12

(3,k,2,8) 8 < k < 10 (4,k,2,3) 3 < k < 12 (5,k,2,3) 4 < k < 8

(2,4,5,k) 4 < k < 16 (2,4,6,k) 5 < k < 10 (2, 4, 7, k) 6 < k < 8

(2,6,4,k) 5 < k < 9 (2,k,4,4) 4 < k < 16 (2,k,4,5) 5 < k < 10

(2,k,4,6) 6 < k < 8 (4,5,2,k) 4 < k < 10 (4,k,2,4) 4 < k < 8

(4,k,2,5) 5 < k < 7 (2,5,5, k) 4 < k < 8 (2,5,6,k) 5 < k < 7

(2,k,5,5) 5 < k < 8 (3,3,4,k) 3 < k < 9 (3,3,5,k) 4 < k < 6

(3,4,3,k) 3 < k < 8 (3,k,3,3) 3 < k < 9 (3,k,3,4) 4 < k < 6

(4,k,3,3) 3 < k < 6 (3,4,4,4) (5,5,2,4) (2,5,4,k) 4 < k < 16

Table 6. Sporadic sequences of type II singularity.

The infinite sequences of solutions are listed in table. 5, and the sporadic sequences

are listed in table. 6.

3.3 Type III

Here f = za0 + zb1+ zc2z3+ z2z
d
3 , and we require a, b, c, d ≥ 2 so that there is only an isolated

singularity at the origin. There is an obvious symmetry exchanging a, b, and c, d, so we

require b ≥ a and d ≥ c. The weights of z2 and z3 are

q(z2) =
d− 1

cd− 1
, q(z3) =

c− 1

cd− 1
(3.9)

If we can find an integer n such that nq(z2) or nq(z3) = 1, we can reduce it to type II

singularity. The solutions can be easily found, i.e

c− 1

d− 1
or

d− 1

c− 1
∈ Z (3.10)

The inequality we are going to solve is

1

a
+

1

b
+

d− 1

cd− 1
+

c− 1

cd− 1
> 1. (3.11)
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(2,2,r,s) (2,r,2,s) (3, s, 2, 2) (2,3,3,s) (2,3,4,s)

(2,3,5,s) (2,3,6,s) (2,4,3,s) (2,5,3,s) (2,6,3,s)

(2,s,3,3) (3,3,2,s) (3,4,2,s) (3,5,2,s) (3,6,2,s)

(2,4,4,s) (4,4,2,s) (3,3,3,s)

Table 7. Infinite sequence of type III singularity.

(4,k,2,2) 3 < k < 12 (5,k,2,2) 4 < k < 8 (2,3,7,k) 6 < k < 31

(2,3,8,k) 7 < k < 19 (2,3,9,k) 8 < k < 15 (2,3,10,k) 9 < k < 13

(2,7,3,k) 6 < k < 19 (2,8,3,k) 7 < k < 11 (2,k,3,4) 4 < k < 22

(2,k,3,5) 5 < k < 14 (2,k,3,6) 6 < k < 12 (2,k,3,7) 7 < k < 10

(2,k,3,8) 8 < k < 10 (3,7,2,k) 6 < k < 11 (3,k,2,3) 3 < k < 15

(3,k,2,4) 4 < k < 11 (3,k,2,5) 5 < k < 9 (3,k,2,6) 6 < k < 9

(2,4,5,k) 4 < k < 13 (2,4,6,k) 5 < k < 9 (2,5,4,k) 4 < k < 12

(2,6,4,k) 5 < k < 7 (2,k,4,4) 4 < k < 10 (2,k,4,5) 5 < k < 8

(2,5,5,k) 4 < k < 7 (3,3,4,k) 3 < k < 7 (3,4,3,k) 3 < k < 6

(3,k,3,3) 3 < k < 6 (4,5,2,5) (4,5,2,4)

Table 8. Finite sequence of type III singularity.

The infinite sequences of solutions are listed in table. 7, and the sporadic sequences are

listed in table . 8 Here again we list the possible theories and it is easy to identify them

with some of type II theories.

3.4 Type IV

Here f = za0 +z0z
b
1+zc2+z2z

d
3 , and we have a, c ≥ 2 and b, d ≥ 1 so that there is an isolated

singularity at the origin. There is an symmetry exchanging the pair (a, b) and (c, d), so we

also require d ≥ b. Again his can be reduced to the first two types if

b− 1

a
∈ Z or

d− 1

c
∈ Z (3.12)

The inequality we want to solve is

1

a
+

a− 1

ab
+

1

c
+

c− 1

cd
> 1, (3.13)

For this inequality, there is an symmetry exchanging (a, b) and (c, d), so we require b ≥ a

and d ≥ c for the solutions. One should keep in mind that the exchange of (a, b) or (c, d)

give us inequivalent singularity! The infinite sequence of solutions are listed in table .9,

and the sporadic sequence of solutions are listed in table. 10.
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(r,1,s,t) (r,1,s,1) (2, 2, 2, s) (2,2,3,s) (2,2,4,s)

(2,r,2,s) (2,3,3,s) (2,s,3,3 (2,s,3,4)

Table 9. Infinite sequence of type IV singularity.

(2,2,5,k) 4 < k < 16 (2,2,6,k) 5 < k < 10 (2,2,7,k) 6 < k < 8

(2,3,4,k) 3 < k < 9 (2,3,5,k) 4 < k < 6 (2,4,3,k) 3 < k < 16

(2,5,3,k) 5 < k < 15 (2,6,3,k) 6 < k < 9 (2,4,4,k) 3 < k < 7

(2,k,4,4) 4 < k < 8 (3,3,3,k) 2 < k < 6

Table 10. Sporadic sequence of type IV singularity.

3.5 Type V

The polynomial is f = za0z1 + z0z
b
1 + zc2 + z2z

d
3 , we have a, b, c ≥ 2, d ≥ 1 so that there is

an isolated singularity at the origin. There is a symmetry exchanging the pair (a, b). The

singularity is reduced to previous type if

b− 1

a− 1
∈ Z or

d

c− 1
∈ Z (3.14)

The inequality we want to solve is

b− 1

ab− 1
+

a− 1

ab− 1
+

1

c
+

c− 1

cd
> 1, (3.15)

and this inequality is invariant under exchange of c and d, so the solution is listed by

requiring d ≥ c, however the singularity associated with these two different ordering are

different! The infinite sequence of solutions are listed in table. 11, and the sporadic

sequence of solutions are listed in table. 12.

(r,s,t,1) (2,2,2,s) ((2,2,3,s) (2,r,2,s) (3,s,2,2)

(4,s,2,2) (2,s,3,3) (2,s,3,4) (3,3,2,s) (3,s,2,3)

Table 11. Infinite sequence of type V singularity.

(2,2,4,k) 3 < k < 9 (2,2,5,k) 4 < k < 6 (5,k,2,2) 4 < k < 13

(5,k,2,2) 4 < k < 13 (6,k,2,2) 5 < k < 9 (2,3,3,k) 2 < k < 10

(2,3,4,4) 3 < k < 5 (2,4,3,k) 3 < k < 7 (2,5,3,k) 4 < k < 6

(2,k,3,5) 5 < k < 8 (3,4,2,k) 4 < k < 11 (3,5,2,k) 5 < k < 8

(4,k,2,3) 3 < k < 7 (2,4,4,4) (4,4,2,4) (3,3,3,3) (3,4,3,3)

Table 12. Sporadic sequence of type V singularity.
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3.6 Type VI

The polynomial is f = za0z1 + z0z
b
1 + zc2z3 + z2z

d
3 , we have a, b, c, d ≥ 2 so that there is an

isolated singularity at the origin. Due to symmetry, we require b ≥ a, d ≥ c, and c ≥ a.

The singularity is reduced to previous type if

b− 1

a− 1
∈ Z or

d− 1

c− 1
∈ Z. (3.16)

The inequality we want to solve is

b− 1

ab− 1
+

a− 1

ab− 1
+

d− 1

c
+

cd− 1

cd
> 1 (3.17)

The infinite sequence of solutions are listed in table. 13. All of them can be reduced

to previous type, so there is no new infinite sequence of solutions. The sporadic set of

examples are listed in table. 14, and all of them can also be reduced to previous type of

singularities. Therefore there is no new solutions for this class of singularity.

(2,2,2,s) (2,2,3,s) (2,r,2,s) (2,s,3,3)

Table 13. Infinite sequence of type VI singularity.

(2,2,4,k) 3 < k < 7 (2,3,3,k) 2 < k < 7 (2,4,3,4) (2,5,3,4)

Table 14. Sporadic sequence of type VI singularity.

3.7 Type VII

The singularity has the form f = za0 + zb1 + z1z
c
2 + z2z

d
3 . We have a ≥ 2, b ≥ 2, c ≥ 1, d ≥ 1

so that there is an isolated singularity at the origin. The singularity can be reduced to

previous type if
c

b− 1
∈ Z, or

d(b− 1)

b(c− 1) + 1
∈ Z (3.18)

The inequality we want to solve is

1

a
+

1

b
+

b− 1

bc
+

b(c− 1) + 1

bcd
> 1. (3.19)

This inequality is invariant under exchange of (b, d), so the solution is listed by requiring

d ≥ b. However, two orderings give different solutions. The infinite sequence of solutions

are listed in table. 15, and the sporadic examples are listed in table. 16.
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(r,s,1,t) (r,s,t,1) (2,r,2,s) (2,2,r,s) (3,2,2,s)

(4,2,2,s) (s,2,2,2) (s,2,2,3) (r,2,s,2) (2,3,3,s)

(2,4,3,s) (3,3,2,s) (2,3,4,s) (2,3,s,3) (2,3,s,4)

(2,3,s,5) (2,3,s,6) (3,2,3,s) (3,2,s,3) (3,2,s,4)

(3,2,s,5) (3,2,s,6) (4,2,s,3) (5,2,s,3) (6,2,s,3)

(2,4,s,4) (4,2,s,4) (3,3,s,3)

Table 15. Infinite sequence of type VII singularity.

(5,2,2,k) 4 < k < 15 (6,2,2,k) 5 < k < 9 (k,2,2,4) 4 < k < 16

(k,2,2,5) 5 < k < 10 (k,2,2,6) 6 < k < 8 (2,5,3,k) 4 < k < 22

(2,6,3,k) 5 < k < 13 (2,7,3,k) 6 < k < 10 (2,8,3,k) 7 < k < 9

(3,4,2,k) 3 < k < 15 (3,5,2,k) 4 < k < 9 (3,6,2,k) 5 < k < 7

(2,3,5,k) 4 < k < 26 (2,3,6,k) 5 < k < 16 (2,3,7,k) 6 < k < 13

(2,3,8,k) 7 < k < 11 (2,3,9,k) 8 < k < 10 (4,3,2,k) 3 < k < 8

(2,3,k,7) 7 < k < 24 (2,3,k,8) 8 < k < 14 (2,3,k,9) 1 < k < 11

(k,3,2,3) 3 < k < 9 (k,3,2,4) 4 < k < 6 (3,2,4,k) 3 < k < 21

(3,2,5,k) 4 < k < 14 (3,2,6,k) 5 < k < 11 (3,2,7,k) 6 < k < 10

(3,2,8,k) 7 < k < 9 (4,2,3,k) 3 < k < 10 (5,2,3,k) 4 < k < 7

(3,2,k,7) 7 < k < 18 (3,2,k,8) 8 < k < 11 (k,2,3,3) 3 < k < 18

(k,2,3,4) 4 < k < 8 (7,2,k,3) 6 < k < 14 (k,2, 4,3) 4 < k < 12

(k,2,5,3) 5 < k < 10 (k,2,6,3) 6 < k < 9 (k,2,7,3) 7 < k < 9

(2,4,4,k) 3 < k < 13 (2,5,4,k) 4 < k < 8 (2,6,4,k) 5 < k < 7

(4,4,2,4) (2,4,5,k) 4 < k < 9 (2,4,6,k) 5 < k < 7

(2,4,k,5) 5 < k < 12 (2,4,k,6) 6 < k < 8 (4,2,4,k) 3 < k < 7

(4,2,5,k) 4 < k < 6 (4,2,k,5) 5 < k < 8 (k,2,4,4) 4 < k < 7

(5,2,k,4) 4 < k < 8 (2,5,5,5) (2,5,6,5)

(3,3,3,k) 2 < k < 7 (3,4,3,4) (3,3,4,4)

(3,3,5,4) (k,3,3,3) 3 < k < 6 (4,3,k,3) 3 < k < 6

Table 16. Sporadic sequence for type VII singularity.

3.8 Type VIII

The singularity has the form f = za0+zb1+z1z
c
2+z1z

d
3+zp2z

q
3 with constraint p(b−1)

bc
+ q(b−1)

bd
=

1. We require a, b ≥ 2, and c, d ≥ 1 such that there is an isolated singularity at the origin.

The singularity is reduced to previous class if

c

b− 1
∈ Z, or,

d

b− 1
∈ Z (3.20)

Here c and d are totally symmetric, and we assume d ≥ c. Notice that it is not always

possible to find a pair of integer (p, q) for a given set of integers (a, b, c, d).
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The inequality we want to solve is:

1

a
+

1

b
+

b− 1

bc
+

b− 1

bd
> 1, (3.21)

The infinite sequence of solutions are listed in table. 17, and the sporadic examples are

listed in table. 18

(r,s,1,t) (r,s,t,1) (2,2,r,s) (3,2,2,s) (4,2,2,s)

(2,r,2,s) (s,2,2,2) (r,s,2,2) (2,3,3,s) (2,3,4,s)

(3,2,3,s) (2,4,3,s) (2,s,3,3) (2,s,3,4) (2,s,3,5)

(2,s,3,6) (3,3,2,s) (3,s,2,3) (3,s,2,4) (3,s,2,5)

(3,s,2,6) (4,s,2,3) (5,s,2,3) (6,s,2,3) (2,s,4,4)

(4,s,2,4) (3,s,3,3)

Table 17. Infinite sequence of type VIII singularity.

(5,2,2,k) 5 < k < 12 (k,2,2,3) 3 < k < 12 (k,2,2,4) 4 < k < 8

(k,2,2,5) 5 < k < 7 (2,3,5,k) 4 < k < 20 (2,3,6,k) 5 < k < 12

(2,3,7,k) 6 < k < 10 (3,2,4,k) 3 < k < 12 (3,2,5,k) 4 < k < 8

(2,5,3,k) 4 < k < 24 (2,6,3,k) 5 < k < 15 (2,7,3,k) 6 < k < 12

(2,8,3,k) 7 < k < 11 (2,9,3,k) 8 < k < 10 (4,2,3,k) 3 < k < 6

(2,k,3,7) 7 < k < 22 (2,k,3,8) 8 < k < 13 (k,2,3,3) 3 < k < 6

(3,4,2,k) 3 < k < 18 (3,5,2,k) 4 < k < 12 (3,6,2,k) 5 < k < 10

(3,7,2,k) 6 < k < 9 (3,8,2,k) 7 < k < 9 (4,3,2,k) 3 < k < 8

(3,k,2,7) 7 < k < 15 (k,3,2,3) 3 < k < 9 (k,3,2,4) 4 < k < 6

(k,4,2,3) 4 < k < 8 (k,5,2,3) 5 < k < 8 (k,6,2,3) 6 < k < 8

(2,4,4,k) 3 < k < 12 (2,4,5,k) 4 < k < 8 (2,5,4,k) 4 < k < 8

(2,6,4,k) 5 < k < 7 (2,k,4,5) 5 < k < 11 (4,4,2,k) 3 < k < 6

(4,5,2,k) 4 < k < 6 (5,4,2,4) (2,5,5,5) (3,3,3,k) 2 < k < 6

(3,4,3,4) (4,3,3,3)

Table 18. Sporadic sequence of type VIII singularity.

3.9 Type IX

The singularity is f = za0+zb1z3+zc2z3+z1z
d
3+zp2z

q
3, with constraint p(d−1)

bd−1 + qb(d−1)
c(bd−1) = 1. To

have an isolated singularity at the origin, we need a, b, d ≥ 2, c ≥ 1. The simple reduction

condition is that
b− 1

d− 1
∈ Z,

d− 1

b− 1
∈ Z,

c(b− 1)

b(d− 1)
∈ Z (3.22)

The inequality we want to solve is

1

a
+

d− 1

bd− 1
+

b(d− 1)

c(bd − 1)
+

b− 1

bd− 1
> 1, (3.23)
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The infinite sequences of solutions (before imposing the constraint) are listed in table. 19,

and the sporadic solutions are listed in table. 20.

(r,s,1,t) (2,2,r,s) (2,r,2,s) (r,2,2,s) (3,2,s,2)

(3,s,2,2) (4,s,2,2) (2,3,3,s) (2,3,,4,s) (2,3,5,s)

(2,3,6,s) (2,3,s,3) (3,2,3,s) (3,2,4,s) (3,2,5,s)

(3,2,6,s) (2,4,3,s) (2,5,3,s) (2,6,3,s) (4,2,3,s)

(5,2,3,s) (6,2,3,s) (2,s,3,3) (2,s,3,4) (2,s,4,3)

(3,3,2,s) (3,4,2,s) (3,5,2,s) (3,6,2,s) (4,3,2,s)

(5,3,2,s) (6,3,2,s) (3,s,2,3) (3,s,3,2) (2,4,4,s)

(4,2,4,s) (4,4,2,s) (3,3,3,s)

Table 19. Infinite sequence of type IX singularity.

(k,2,3,2) 3 < k < 9 (k,2,4,2) 4 < k < 6 (5,k,2,2) 4 < k < 8

(k,3,2,2) 3 < k < 10 (k,4,2,2) 4 < k < 7 (2,3,7,k) 6 < k < 15

(2,3,8,k) 7 < k < 9 (2,3,k,4) 4 < k < 18 (2,3,k,5) 5 < k < 12

(2,3,k,6) 6 < k < 10 (2,3,k,7) 7 < k < 9 (3,2,7,k) 6 < k < 8

(3,2,k,3) 3 < k < 12 (3,2,k,4) 4 < k < 9 (3,2,k,5) 5 < k < 8

(3,2,k,6) 6 < k < 8 (2,7,3,k) 6 < k < 19 (2,8,3,k) 7 < k < 12

(2,4,k,3) 3 < k < 16 (2,5,k,3) 4 < k < 10 (2,6,k,3) 5 < k < 8

(4,2,k,3) 3 < k < 6 (2,k,3,5) 5 < k < 21 (2,k,3,6) 6 < k < 14

(2,k,3,7) 7 < k < 11 (2,k,3,8) 8 < k < 10 (2,k,5,3) 5 < k < 15

(2,k,6,3) 6 < k < 9 (k,2,3,3) 3 < k < 8 (k,2,3,4) 4 < k < 7

(k,2,3,5) 5 < k < 7 (3,7,2,k) 6 < k < 13 (3,3,k,2) 2 < k < 9

(3,4,k,2) 3 < k < 6 (3,k,2,4) 4 < k < 16 (3,k,2,5) 5 < k < 11

(3,k,2,6) 6 < k < 10 (3,k,2,7) 7 < k < 9 (3,k,4,2) 4 < k < 8

(k,3,2,3) 3 < k < 8 (k,3,2,4) 4 < k < 8 (k,3,2,5) 5 < k < 7

(4,3,3,2) (4,4,3,2) (5,4,2,3) (2,5,5,4) (4,k,2,3) 3 < k < 7

(2,4,5,k) 4 < k < 9 (2,4,k,4) 4 < k < 8 (2,4,k,5) 5 < k < 7

(2,5,4,k) 4 < k < 9 (2,k,4,4) 4 < k < 10 (2,k,4,5) 5 < k < 7

(2,6,5,4) (4,5,2,4) (3,3,4,3) (3,4,3,3)

Table 20. Sporadic sequence of type IX singularity.

3.10 Type X

The singularity is f = za0 + zb1z2 + zc2z3 + z1z
d
3 . We require a ≥ 2 and b, c, d ≥ 2 so that

there is an isolated singularity at the origin. The singularity is reduced to previous type if

b(d− 1) + 1

d(c− 1) + 1
∈ Z, or

c(b− 1) + 1

b(d− 1) + 1
∈ Z or

d(c− 1) + 1

c(b− 1) + 1
∈ Z. (3.24)
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The inequality we would like to solve is:

1

a
+

d(c − 1) + 1

bcd+ 1
+

b(d− 1) + 1

bcd+ 1
+

c(b− 1) + 1

bcd+ 1
> 1. (3.25)

There is a symmetry in exchanging (b, c, d) so we only label the solution with b ≤ c ≤ d.

Notice that there are two inequivalent singularity labeled by (b, c, d) and (b, d, c) though (if

two triples are related by cyclic permutation, then they define the same singularity). The

infinite sequence of solutions are listed in table. 21, and the sporadic sequence of solutions

are listed in table. 22.

(r,1,s,t) (2,2,r,s) (3,2,2,s) (4,2,2,s) (s,2,2,2)

(2,3,3,s) (2,3,4,s) (2,3,s,4) (3,2,3,s) (3,2,s,3)

Table 21. Infinite sequence of type X singularity

(5,2,2,k) 4 < k < 11 (6,2,2,k) 5 < k < 7 (k,2,2,3) 3 < k < 13

(k,2,2,4) 4 < k < 9 (k,2,2,5) 5 < k < 7 (2,3,5,k) 4 < k < 19

(2,3,6,k) 5 < k < 12 (2,3,7,k) 6 < k < 9 (2,3,k,5) 5 < k < 19

(2,3,k,6) 6 < k < 12 (2,3,k,7) 7 < k < 9 (3,2,4,k) 3 < k < 13

(3,2,5,k) 4 < k < 8 (3,2,6,k) 5 < k < 7 (3,2,k,4) 4 < k < 13

(3,2,k,5) 5 < k < 8 (4,2,3,k) 3 < k < 7 (4,2,k,3) 3 < k < 7

(k,2,3,3) 3 < k < 7 (2,4,4,k) 3 < k < 11 (2,4,5,k) 4 < k < 7

(2,4,6,5) (4,2,4,4) (3,3,3,k) 2 < k < 6

Table 22. Sporadic sequence of type X singularity

3.11 Type XI

The singularity is f = za0 + z0z
b
1 + z1z

c
2 + z2z

d
3 . We require a ≥ 2, b, c, d ≥ 1 so that there

is an isolated singularity at the origin. The singularity is reduced to previous type if

b

(a− 1)
∈ Z or

c(a− 1)

a(b− 1) + 1
∈ Z,

d(a(b− 1) + 1)

ab(c− 1) + (a− 1)
∈ Z. (3.26)

The inequality we want to solve is

1

a
+

a− 1

ab
+

a(b− 1) + 1

abc
+

ab(c− 1) + (a− 1)

abcd
> 1 (3.27)

The infinite sequence of solutions are listed in table. 23, and the sporadic sequence of

solutions are listed in table. 24.
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(r,1,s,t) (r,s,1,t) (r,s,t,1) (2,2,2,s) (2,2,3,s)

(2,2,s,2) (2,2,s,3) (2,2,s,4) (2,r,2,s) (3,2,2,s)

(r,2,s,2) (s,2,2,2) (s,2,2,3) (3,s,2,2) (4,s,2,2)

(s,3,2,2) (2,3,s,3) (3,2,s,3) (2,s,3,3) (2,s,3,4)

(2,s,4,3) (3,3,s,2) (3,4,s,2) (4,3,s,2) (3,s,2,3)

(3,s,3,2)

Table 23. Infinite sequence of type XI singularity.

(2,2,4,k) 3 < k < 13 (2,2,5,k) 4 < k < 9 (2,2,6,k) 5 < k < 7

(2,2,k,5) 5 < k < 12 (2,2,k,6) 6 < k < 8 (4,2,2,k) 3 < k < 11

(5,2,2,k) 4 < k < 7 (k,2,2,4) 4 < k < 11 (k,2,2,5) 5 < k < 7

(5,k,2,2) 4 < k < 12 (6,k,2,2) 5 < k < 8 (k,4,2,2) 4 < k < 13

(k,5,2,2) 5 < k < 9 (2,3,3,k) 2 < k < 13 (2,3,4,k) 3 < k < 7

(2,3,k,4) 4 < k < 8 (3,2,3,k) 2 < k < 7 (3,2,4,k) 3 < k < 5

(3,2,k,4) 4 < k < 6 (2,4,3,k) 3 < k < 9 (2,5,3,k) 4 < k < 7

(2,6,3,k) 5 < k < 7 (2,4,k,3) 3 < k < 13 (2,5,k,3) 4 < k < 9

(2,6,k,3) 5 < k < 8 (4,2,3,4) (5,2,5,3) (4,2,k,3) 3 < k < 10

(2,k,3,5) 5 < k < 11 (2,k,5,3) 5 < k < 13 (2,k,6,3) 6 < k < 8

(k,2,3,3) 3 < k < 11 (k,2,4,3) 4 < k < 7 (3,3,2,k) 2 < k < 11

(3,4,2,k) 3 < k < 7 (3,5,2,k) 4 < k < 6 (3,5,k,2) 4 < k < 13

(3,6,k,2) 5 < k < 8 (4,3,2,4) (6,3,6,2) (5,3,k,2) 4 < k < 11

(3,k,2,4) 4 < k < 10 (3,k,4,2) 4 < k < 14 (3,k,5,2) 5 < k < 9

(3,k,6,2) 6 < k < 8 (k,3,2,3) 3 < k < 7 (k,3,3,2) 3 < k < 13

(k,3,4,2) 4 < k < 9 (k,3,5,2) 5 < k < 7 (4,k,2,3) 3 < k < 6

(4,k,3,2) 3 < k < 8 (k,4,3,2) 4 < k < 7 (2,4,4,4) (2,4,5,4)

(2,k,4,4) 4 < k < 7 (4,4,k,2) 3 < k < 7 (4,5,4,2) (3,3,3,3)

(3,3,4,3) (3,4,3,3)

Table 24. Sporadic sequence of type XI singularity.

3.12 Type XII

Here f = za0 + z0z
b
1+ z0z

c
2+ z1z

d
3 + zp1z

q
2 with constraint p(a−1)

ab
+ q(a−1)

ac
= 1. The inequality

we want to solve is
1

a
+

a− 1

ab
+

a− 1

ac
+

a(b− 1) + 1

abd
> 1 (3.28)

The infinite sequence of solutions are listed in table. 25, while the sporadic solutions are

listed in table. 26.
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(r,1,s,t) (r,s,1,t) (r,s,t,1) (2,2,2,s) (2,2,s,2)

(2,2,s,2) (2,2,s,3) (2,r,s,2) (r,2,2,s) (3,2,s,2)

(2,s,2,2) (2,s,2,3) (2,s,2,4) (s,2,3,2) (s,2,4,2)

(r,s,2,2) (2,s,3,3) (s,2,3,3) (3,s,2,3) (3,s,3,2)

(3,s,4,2) (s,3,2,3) (s,3,2,4) (s,3,3,2) (4,s,3,2)

(s,3,3,2) (4,s,3,2) (s,4,2,3)

Table 25. Infinite sequence of type XII singularity

(2,2,3,k) 2 < k < 9 (2,2,4,k) 3 < k < 6 (2,2,k,4) 4 < k < 8

(2,3,2,k) 2 < k < 10 (2,4,2,k) 3 < k < 7 (2,5,2,k) 4 < k < 6

(4,2,k,2) 3 < k < 12 (5,2,k,2) 4 < k < 8 (6,2,k,2) 5 < k < 7

(2,k,2,5) 5 < k < 8 (k,2,5,2) 5 < k < 11 (2,3,3,k) 2 < k < 5

(2,3,k,3) 3 < k < 9 (3,2,3,k) 2 < k < 6 (3,2,k,3) 3 < k < 6

(2,4,k,3) 3 < k < 6 (2,k,3,3) 4 < k < 8 (k,2,3,4) 4 < k < 7

(3,3,2,k) 2 < k < 7 (3,4,2,k) 3 < k < 5 (3,3,k,2) 2 < k < 12

(3,4,k,2) 3 < k < 8 (3,5,k,2) 4 < k < 7 (4,3,2,k) 3 < k < 6

(5,3,2,k) 4 < k < 6 (4,3,k,2) 3 < k < 6 (3,k,2,4) 3 < k < 6

(3,k,5,2) 5 < k < 10 (k,3,2,5) 5 < k < 7 (k,3,4,2) 4 < k < 7

(4,k,2,3) 3 < k < 12 (5,k,2,3) 4 < k < 8 (6,k,2,3) 5 < k < 7

(5,k,3,2) 4 < k < 12 (6,k,3,2) 5 < k < 8 (k,5,2,3) 5 < k < 9

(4,4,2,4) (4,4,4,2) (4,5,4,2) (3,3,3,3)

Table 26. Sporadic sequence of type XII singularity

3.13 Type XIII

Here f = za0 + z0z
b
1 + z1z

c
2 + z1z

d
3 + zp2z

q
3 with constraint p(a(b−1)+1)

abc
+ q(a(b−1)+1)

abd
= 1. The

inequality we want to solve is

1

a
+

a− 1

ab
+

a− 1

ac
+

a(b− 1) + 1

abd
> 1. (3.29)

The infinite sequence of solutions are listed in table. 27, while the finite sequence of

solutions are listed in table. 28.

(r,1,s,t) (r,s,1,t) (r,s,t,1) (2,2,2,s) (2,2,3,s)

(2,r,2,s) (3,2,2,s) (s,2,2,2) (r,s,2,2) (2,s,3,3)

(2,s,3,4) (2,s,3,5) (2,s,3,6) (3,s,2,3) (3,s,2,4)

(3,s,2,5) (3,s,2,6) (4,s,2,3) (5,s,2,3) (6,s,2,3)

(2,s,4,4) (4,s,2,4) (3,s,3,3)

Table 27. Infinite sequence of type XIII singularity.
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(2,2,4,k) 3 < k < 12 (2,2,5,k) 4 < k < 8 (4,2,2,k) 3 < k < 10

(5,2,2,k) 4 < k < 8 (k,2,2,3) 3 < k < 11 (k,2,2,4) 4 < k < 7

(2,3,3,k) 2 < k < 15 (2,3,4,k) 3 < k < 7 (3,2,3,k) 2 < k < 6

(2,4,3,k) 3 < k < 11 (2,5,3,k) 4 < k < 9 (2,6,3,k) 5 < k < 9

(2,7,3,k) 6 < k < 8 (4,2,3,3) (2,5,4,5) (3,3,2,k) 2 < k < 14

(3,4,2,k) 3 < k < 10 (3,5,2,k) 4 < k < 9 (3,6,2,k) 5 < k < 8

(3,7,2,k) 6 < k < 8 (4,3,2,k) 3 < k < 6 (3,k,2,7) 7 < k < 10

(k,3,2,3) 3 < k < 9 (k,3,2,4) 4 < k < 6 (k,4,2,3) 4 < k < 8

(k,5,2,3) 5 < k < 8 (2,4,4,k) 3 < k < 6 (4,4,2,k) 3 < k < 6

(3,3,3,k) 2 < k < 5

Table 28. Sporadic sequence of type XIII singularity.

3.14 Type XIV

Here f = za0 + z0z
b
1 + z0z

c
2 + z0z

d
3 + zp1z

q
2 + zr2z

s
3 with constraint p(a−1)

ab
+ q(a−1)

ac
= 1 =

r(a−1)
ac

+ s(a−1)
ad

. The inequality we want to solve is

1

a
+

a− 1

ab
+

a− 1

ac
+

a− 1

ad
> 1. (3.30)

The infinite sequence of solutions are listed in table. 29, while the sporadic ones are listed

in table. 30.

(r,1,s,t) (r,s,1,t) (r,s,t,1) (2,2,2,s) (r,2,2,s)

(s,2,3,3) (s,2,3,4) (s,2,3,5)

Table 29. Infinite sequence of type XIV singularity.

(3,2,3,k) 2 < k < 6 (4,2,3,k) 3 < k < 6 (5,2,3,k) 4 < k < 6

Table 30. Sporadic sequence of type XIV singularity.

3.15 Type XV

Here f = za0z1 + z0z
b
1 + z0z

c
2 + z2z

d
3 + zp1z

q
2 with the constraint p(a−1)

ab−1 + qb(a−1)
c(ab−1) = 1. The

inequality we want to solve is

b− 1

ab− 1
+

a− 1

ab− 1
+

b(a− 1)

c(ab− 1)
+

c(ab− 1)− b(a− 1)

cd(ab− 1)
> 1. (3.31)

The infinite sequence of solutions are listed in table. 31, and the sporadic sequence of

solutions are listed in table. 32. There are following sporadic solutions
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(r,s,1,t) (r,s,t,1) (2,2,2,s) (2,2,s,2) (2,2,s,3)

(2,r,s,2) (r,2,2,s) (2,s,2,2) (2,s,2,3) (3,s,2,2)

(s,3,2,2) (s,3,2,2) (s,4,2,2) (s,2,3,3) (s,2,3,4)

(s,2,4,3) (3,3,s,2) (s,3,2,3) (s,3,3,2)

Table 31. Infinite sequence of type XV singularity.

(2,2,3,k) 2 < k < 7 (2,2,4,k) 3 < k < 5 (2,2,k,4) 4 < k < 6

(2,3,2,k) 2 < k < 7 (2,4,2,k) 3 < k < 5 (2,k,2,4) 4 < k < 6

(4,k,2,2) 3 < k < 10 (5,k,2,2) 4 < k < 7 (k,5,2,2) 5 < k < 9

(2,3,k,3) 3 < k < 6 (3,2,3,k) 2 < k < 6 (3,2,k,3) 3 < k < 8

(4,2,k,3) 3 < k < 6 (5,2,k,3) 4 < k < 6 (2,k,3,3) 3 < k < 6

(3,3,2,k) 2 < k < 5 (3,4,k,2) 3 < k < 8 (4,3,k,2) 3 < k < 9

(5,3,k,2) 4 < k < 6 (3,k,3,2) 3 < k < 9 (3,k,4,2) 4 < k < 6

(k,3,4,2) 4 < k < 9 (2,3,3,3) (4,2,3,4) (4,3,2,4) (3,4,2,3)

(4,4,3,2) (5,4,3,2)

Table 32. Sporadic sequence of type XV singularity.

3.16 Type XVI

Here f = za0z1 + z0z
b
1 + z0z

c
2 + z0z

d
3 + zp1z

q
2 + zr2z

s
3 with the constraint p(a−1)

ab−1 + qb(a−1)
c(ab−1) = 1 =

r(a−1)
ac

+ s(a−1)
ad

. The inequality we want to solve is

b− 1

ab− 1
+

a− 1

ab− 1
+

b(a− 1)

c(ab− 1)
+

b(a− 1)

d(ab− 1)
> 1; (3.32)

The infinite sequence of solutions are listed in table. 33, and the finite sequence of solutions

are listed in table. 34.

(r,s,1,t) (r,s,t,1) (2,2,2,s) (r,2,2,s) (2,s,2,2)

(r,s,2,2) (s,2,3,3) (s,2,3,4) (s,2,3,5) (s,3,2,3)

(s,3,2,4) (s,3,2,5) (s,4,2,3) (s,5,2,3)

Table 33. Infinite sequence of type XVI singularity.

(2,2,3,k) 2 < k < 6 (2,3,2,k) 2 < k < 6 (2,k,2,3) 3 < k < 6

(3,2,3,k) 3 < k < 6 (4,2,3,k) 3 < k < 6 (5,2,3,k) 4 < k < 6

(3,3,2,k) 2 < k < 6 (4,3,2,k) 3 < k < 6 (5,3,2,k) 4 < k < 6

(3,k,2,3) 3 < k < 6 (4,k,2,3) 3 < k < 6 (5,k,2,3) 4 < k < 6

Table 34. Sporadic sequence of type XVI singularity.
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3.17 Type XVII

Here f = za0z1 + z0z
b
1+ z1z

c
2 + z0z

d
3 + zp1z

q
2 + zr0z

s
2 with the constraint p(a−1)

ab−1 + qb(a−1)
d(ab−1) = 1 =

r(b−1)
ab−1 + sa(b−1)

c(ab−1) . The inequality we want to solve is

b− 1

ab− 1
+

a− 1

ab− 1
+

a(b− 1)

c(ab− 1)
+

b(a− 1)

d(ab− 1)
> 1; (3.33)

The infinite sequence of solutions are listed in table. 35, and the sporadic solutions are

listed in table. 36.

(r,s,1,t) (r,s,t,1) (2,2,2,s) (2,2,s,2) (2,r,2,s)

(r,2,s,2) (2,s,3,2) (2,s,4,2) (s,2,2,2) (s,2,2,3)

(s,2,2,4) (r,s,2,2) (2,s,3,3) (s,2,3,3) (3,s,2,3)

(3,s,2,4) (3,s,3,2) (s,3,2,3) (s,3,3,2) (s,3,4,2)

(4,s,2,3) (s,4,3,2)

Table 35. Infinite sequence of type XVII singularity.

(2,3,k,2) 2 < k < 8 (2,4,k,2) 3 < k < 6 (2,5,k,2) 4 < k < 6

(3,2,2,k) 2 < k < 8 (4,2,2,k) 3 < k < 6 (2,3,3,k) 2 < k < 5

(3,3,2,k) 2 < k < 6 (3,4,2,k) 3 < k < 6 (3,3,k,2) 2 < k < 6

(3,4,k,2) 3 < k < 5 (4,3,k,2) 3 < k < 6 (5,k,2,3) 4 < k < 9

(4,k,3,2) 3 < k < 10 (5,k,3,2) 4 < k < 7 (k,4,2,3) 4 < k < 10

(k,5,2,3) 5 < k < 7 (k,5,3,2) 5 < k < 9 (3,2,3,3) (3,2,4,3)

(4,3,2,4)

Table 36. Sporadic sequence of type XVII singularity.

3.18 Type XVIII

The singularity has the form f = za0z2 + z0z
b
1 + z1z

c
2 + z1z

d
3 + zp2z

q
3 with the constraint

p(a(b−1)+1)
abc+1 + qc[a(b−1)+1]

d(abc+1) = 1. The inequality we want to solve is

b(c− 1) + 1

abc+ 1
+

c(a− 1) + 1

abc+ 1
+

a(b− 1) + 1

c(abc+ 1)
+

c(a(b− 1) + 1)

d(abc+ 1)
> 1; (3.34)

The infinite sequence of solutions are listed in table. 37, while the sporadic sequence of

solutions are listed in table. 38.

3.19 Type XIX

The singularity is f = za0z2 + z0z
b
1 + zc2z1 + z2z

d
3 , and the inequality is

(
[b(d(c − 1) + 1)− 1

abcd− 1
,
[d(c(a − 1) + 1)− 1

abcd− 1
,
[a(b(d − 1) + 1)− 1

abcd− 1
,
[c(a(b − 1) + 1)− 1

abcd− 1
) > 1.

(3.35)
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(1,r,s,t) (r,1,s,t) (r,s,1,t) (r,s,t,1) (2,2,2,s)

(2,2,s,2) (2,2,s,3) (2,r,s,2) (3,2,s,2) (2,s,2,2)

(2,s,2,3) (2,s,2,4) (s,2,2,2) (r,s,2,2) (2,s,3,3)

(3,s,2,3) (3,s,3,2) (3,s,4,2) (4,s,3,2)

Table 37. Infinite sequence of type XVIII singularity.

(2,2,3,k) 2 < k < 9 (2,2,4,k) 3 < k < 6 (2,2,k,4) 4 < k < 8

(2,3,2,k) 2 < k < 10 (2,4,2,k) 3 < k < 7 (2,5,2,k) 4 < k < 6

(3,2,2,k) 2 < k < 8 (4,2,2,k) 3 < k < 5 (4,2,k,2) 3 < k < 8

(2,k,2,5) 5 < k < 8 (k,2,2,3) 3 < k < 8 (k,2,3,2) 3 < k < 9

(k,2,4,2) 4 < k < 6 (2,3,3,k) 2 < k < 5 (2,3,k,3) 3 < k < 9

(2,4,k,3) 3 < k < 6 (2,k,4,3) 4 < k < 8 (3,3,2,k) 2 < k < 5

(3,3,k,2) 2 < k < 10 (3,4,k,2) 3 < k < 7 (3,5,k,2) 4 < k < 6

(3,k,5,2) 5 < k < 8 (k,3,2,3) 3 < k < 6 (k,3,3,2) 3 < k < 7

(4,k,2,3) 3 < k < 6 (5,k,3,2) 4 < k < 6 (3,2,3,3) (3,2,4,3)

(2,4,3,4) (4,3,4,2) (5,4,3,2)

Table 38. Sporadic sequence of type XVIII singularity.

The infinite sequence of solutions are listed in table. 39, and the sporadic sequence of

solutions are listed in table. 40.

(1,r,s,t) (2,r,s,2) (2,2,s,3)

Table 39. Infinite sequence of type XIX singularity.

(2,2,k,4) 3 < k < 9 (2,3,k,3) 2 < k < 8 (2,3,3,k) 3 < k < 6

(2,2,5,5) (2,4,4,3)

Table 40. Sporadic sequence of type XIX singularity.

4 Beyond hypersurface singularity

After classifying the hypersurface singularity, we would like to generalize the story to other

type of singularities. We will discuss three other constructions: a): Isolated complete

intersection singularity (ICIS) with a C
∗ action. b): If there is a finite group action G

acting on ICIS and G is also required to preserve the canonical three form, we can form

the quotient and this seems to also define new theories; ; c): Instead of considering isolated

singularity, we could consider non-isolated singularity. Finally we conjecture that most
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general type of isolated singularity that would give us a N = 2 SCFT is rational graded

Gorenstein singularity.

After describing the structure of singularity, there are three quantities which are of

importance to us:

• N = 2 Geometry: The first object is the mini-versal deformation of the singularity,

and we would like to determine the dimension of the base and the scaling dimension

of the parameters parameterizing the base.

• The second important quantity is the dimension of the middle homology group of

Milnor fibration, and we would also like to determine the intersection form using

distinguished basis associated with the vanishing cycle.

• The third quantity is the number of co-dimension one singularities after the generic

deformations.

For Hypersurface singularity, the above three dimensions are the same and equal to the

Milnor number µ. For other more general singularities considered in this section, these

three quantities are usually not the same. The story for ICIS is almost the same as

the hypersurface case, and the quotient singularity has also been studied but less well

understood, finally the non-isolated singularity has least understanding.

We do not attempt here to provide full classification of all these constructions, we

simply discuss the major features and provide simple examples, and we hope to classify

them in the future work.

4.1 Complete intersection

The theory for isolated completed intersection singularity ( ICIS) can be found in [24, 25].

The singularity is defined as the map f : (Cn+3, 0) → (Cn, 0). Let’s take the coordinates

on C
n+3 as z1, . . . , zn+3, the singularity is defined as

f1(z1, . . . , zn+3) = f2(z1, . . . , zn+3) = . . . = fn(z1, . . . , zn+3) = 0 (4.1)

We require fi to satisfy the following conditions:

• Each polynomial fi is quasi-homogeneous with degree di, and the weights of the

coordinates zi are wi. We assume that di and wi are integers.

• The variety is required to be complete intersection, namely for the Jacobi matrix

∂fa
∂zi

, a = 1, . . . , n, i = 1, . . . , n + 3 (4.2)

has rank n everywhere except origin.

• There is an isolated singularity at the origin, namely, there is a unique solution zi = 0

for the equations

f1 = f2 = . . . = fn = 0

∂fa
∂zi

= 0, a = 1, . . . , n, i = 1, . . . , n+ 3. (4.3)
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• The weights have to satisfy the condition
∑

wi −
∑

di > 0, and a derivation of this

fact will be given later.

The deformations are again related to the Jacobi module of the defining equations.

J(f) = Cn(z0, z1, . . . zn+3)/(
∂fa
∂zj

). (4.4)

This vector space is finite dimensional if the singularity is isolated. Let’s use f to denote the

Column vector (f1, . . . fn), and ei to denote the basis of Jacobi module, then the mini-versal

deformation of the singularity is

F (z, λ) = f +

µ
∑

i=1

λiei, (4.5)

here again µ is the Milnor number which is equal to the dimension of the Jacobi module.

We would like to find the scaling dimension for the coefficient before each deformation.

As the U(1)R symmetry of N = 2 theory is proportional to the C
∗ action, we would like

to find the proportional constant. To do that, we again require that the canonical three

form has scaling dimension one. There is a canonical (3, 0) form which is defined as

Ω =
dz1 ∧ dz2 . . . ∧ dzn+3

df1 ∧ df2 . . . ∧ dfn
, (4.6)

The weights of Ω is
∑

iwi −
∑

di, and we require Ω to have scaling dimension one:

(
∑

i

wi −
∑

di)δ = 1, (4.7)

so δ = 1
(
∑

i wi−
∑

di)
. For a deformation λαeα, the scaling dimension would be

[λα] =
dα −Qα

(
∑

iwi −
∑

di)
, (4.8)

Here dα is the degree of the polynomial fα such that λα appears. We require Ω to have

positive scaling dimension, so
∑

iwi −
∑

i di > 0 which is a simple generalization of the

constraint on hypersurface singularity.

Other physical quantities such as the central charges, low energy effective actions and

the BPS quiver have the similar identifications as the geometric quantity, though the details

are often much more involved than the hypersurface case. We are not going to discuss any

details here, and we only make two comments: The first comment is that the number of

co-dimensional one singularities are not equal to the Milnor number, which is different from

the hypersurface case. The number is m = µ+ µ
′

with µ the Milnor number and µ
′

is the

Milnor number of ICIS defined by taking a polynomial out. This polynomial is chosen such

that the remaining equations still define an isolated complete intersection singularity. The

second comment is that the constraint
∑

wi −
∑

di is pretty strong, and we conjecture

that maximal number of defining polynomials are two.
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Example: Let’s consider a complete intersection of two quadratics I = (f1, f2) =

(z21 + z22 + z23 + z24 , a1z
2
1 + a2z

2
2 + a3z

2
3 + a4z

2
4 + a5z

2
5), and ai is required to be distinct

so that there is an isolated singularity at the origin. The miniversal deformations of this

singularity can be found using the software Singular [40]. The Milnor number is 9, and

the basis of the Jacobi module is
(

0

z25

)

,

(

0

z5

)

,

(

0

z24

)

,

(

0

z4

)

,

(

0

z3

)

,

(

0

z2

)

,

(

0

z1

)

,

(

0

1

)

,

(

1

0

)

. (4.9)

So the miniversal deformations are

(f1 + λ1, f2 + λ2z
2
5 + λ3z5 + λ4z

2
4 + λ5z4 + λ6z3 + λ7z2 + λ8z1 + λ9).

(4.10)

Using our formula for the scaling dimensions 4.8, we find that there are five mass parame-

ters, two operators with scaling dimension two and two operators with scaling dimension

zero. There is a theory with the same type of spectrum: in class S theory, one can engineer

a theory by putting 6d A1 theory on a sphere with five regular punctures, and this theory

has the same spectrum as the the above theory engineered using the ICIS. We compute the

central charges of these two theories and they are equal, and this is a strong evidence that

these two theories are the same. It would be interesting to find more evidence to check

whether these two theories are the same or not.

4.2 Quotient by finite group

If the ICIS has finite group symmetries G preserving the three form Ω, we can consider

new singularity formed by quotient of this group G. For simplicity, we only consider

hypersurface singularity, then the invariance under finite group G implies that

f(Tg(z)) = f(z). (4.11)

One can get a quotient space X/G which also has an isolated singularity at the origin.

Similarly one can define the Milnor fibration of the quotient space, and we would like to

determine the dimension µ̂ of the middle homology of the Milnor fibration. In the case of

hypersurface, this number is equal to the dimension of Jacobi algebra of the singularity.

In the quotient case, it is shown that the group action also acts on the homology, and the

invariant subspace is shown to be given by the following formula [41]:

µ̂ =
1

|G|

∑

g

(−1)dgµg; (4.12)

Here dg is the codimension of the space in C
4 which is fixed by the group element g, and

µg is the dimension of the following vector space

Vg/(
∂f

zi
)g; (4.13)
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Here Vg is the space invariant under the group element g and (∂f
zi
)g is the Jacobi ideal which

is invariant under g. This formula is the generalization of the formula of the hypersurface

singularity in which the Milnor number is equal to the dimension of the Jacobi algebra.

However, this is only part of middle homology groups of Milnor fibration, and we need to

add more elements which is an analog of twisted sector in the study of orbifold. We do

not have a complete story to discuss here, and in the following we give a simple example

to illustrate the major point.

Example I: Consider a case where there is a Z2 action acting on a single coordinates

z3, then there are two elements (1, g), and the space fixed by g is a three dimensional space

specified by the coordinates z0, z1, z2, so its codimension is one. Then the dimension of

invariant part of homology group is given by µ̂:

µ̂ =
1

2
(µ − µg);

µ = dim
C(z0, z1, z2, z3)

(∂f
z0
, ∂f
z1
, ∂f
z2
, ∂f
z3
)
;

µg = dim
C(z0, z1, z2)

( ∂f
∂z0

|z3=0,
∂f
∂z1

|z3=0,
∂f
∂z2

|z3=0,
∂f
∂z3

|z3=0)
. (4.14)

This gives the number of vanishing three cycle, there are also hemi-cycles whose number can

be determined by the fact that the dimension of middle homology of the Milnor vibration

is equal to the dimension of mini-versal deformation.

We can give an explicit description for the deformation if there is only a Z2 action

acting on one of the coordinates z3, then using the coordinates ẑ3 = z23 , the singularity is

represented by a polynomial f̂ . The basis for the mini-versal deformation is given by the

basis of the following Jacobi algebra

C(z0, z1, z2, ẑ3)/(
∂f̂

∂z0
,
∂f̂

∂z1
,
∂f̂

∂z2
, ẑ3

∂f̂

∂ẑ3
) (4.15)

Let’s use φi as the basis of this algebra, then the miniversal deformation is

F (z0, z1, z2, ẑ3, λ) = f(z0, z1, z2, z̃3) +

µ(f̂ )
∑

i=1

λiφi. (4.16)

Once we find out the number µ(f̂), and we know the number of vanishing homology group,

we can easily find out the number of hemispheres µhemi = µ(f̂)−µ̂. More general discussion

on the quotient appearing in the Landau-Ginzburg context can be found in [42].

Example II: Let’s consider the following ADE singularity

A2k−1 : f = z20 + z21 + z22 + z2k3 ,

Dk+1 : f = z20 + z21 + zk2 + z2z
2
3 ,

E6 : f = z20 + z21 + z32 + z43 . (4.17)
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There is a Z2 acting on above singularity whose action is simply Z2 : z3 → −z3 (One can

impose z0 → −z0 to ensure the invariance for the three form.). The new singularity and

the miniversal deformations are

Bk : f̂ = z20 + z21 + z22 + ẑk3 ,

F (z, λ) = f̂ + λ1ẑ
k−1
3 + . . . + λk−1ẑ3 + λk,

Ck : f̂ = z20 + z21 + zk2 + z2ẑ3,

F (z, λ) = f̂ + λ1z
k−1
2 + . . . + λk−1z2 + λk,

F4 : f̂ = z20 + z21 + z32 + ẑ23 .

F (z, λ) = f̂ + λ1z2 + λ2ẑ3 + λ3z2ẑ3 + λ4.

(4.18)

The scaling dimension of the coefficients can be found from the original theory, i.e. the

spectrum is a truncation of the original theory. We conjecture that those theories are the

maximal AD points at the Coulomb branch of the corresponding pure G gauge theory.

The name is reflected in the fact that the intersection form of them have the same form

as the corresponding Dynkin diagram. The remaining G2 theory could be derived from

taking a Z3 quotient of D4 singularity. We actually find several new rank one examples

associated with B2, B3, C2, C3, G2 Dynkin diagrams. Notice that Bk and Ck theory have

the same spectrum from the SW curve, but their BPS quivers are different. We have seen

before that for the hypersurface singularity, the spectrum of SW solution seem to complete

characterize a theory, here we found theories which share the same N = 2 geometry, but

with different massive spectrum. It is interesting to further clarify what this means for the

classification of N = 2 theory.

4.3 General isolated singularity

One might ask what is the most general type of isolated singularity that would give us a

four dimensional N = 2 SCFT? As we described earlier, the necessary conditions are

• The singularity should have a C
∗ action to reflect the existence of U(1)R symmetry

of the SCFT.

• The SW geometry is described by the certain minimal deformation of the singularity,

and the spectrum from the singularity should satisfy the pairing condition [m]+[u] =

2.

• One need to have a SW differential defined on SW geometry to describe the mass

of BPS particles, and we expect that this differential is also well defined on the

singularity.

Let’s now assume that the singularity is defined by an affine ring R = C[x1, x2, . . . , xn]/I,

and the first condition means that the ring is graded, i.e. there is a C
∗ action on the ring.

The third condition means that the ring is Gorenstein 4 so that there is a canonical form

4See [43] for the definition of Gorenstein ring.
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Ω, and since there is a C
∗ action on the ring, Ω is graded and has weight t. We require

that this grading to be positive

t > 0; (4.19)

mathematically this defines a rational singularity [27]. The integration of Ω over three

cycles in the deformed geometry should give the mass of BPS particle, so we require the

scaling dimension of it to be one. Using the above condition, we can find the proportional

constant between the scaling dimension and the C
∗ charge:

tδ = 1 → δ =
1

t
. (4.20)

The deformation is now described by the Jacobi algebra, which is also graded. The scaling

dimension of a coefficient before a basis vector φi in Jacobi algebra is

[λi] =
Qi

t
; (4.21)

An extremely interesting property of this Jacobi algebra is that there is a perfect paring

between the charges of the deformations [44]

Q(m) +Q(u) = 2t → [m] + [u] = 2. (4.22)

So a rational Gorenstein graded isolated three-fold singularity seems to define a N = 2

SCFT.

For the hypersurface isolated singularity with a C
∗ action f(λq

i zi) = f(zi), the rational

condition is simply
∑

qi > 1 as we discussed in section II. One must be careful that usually

there is a stabilization of singularity f(zi) + w2
1, and the base of deformation space is not

affected, namely the Jacobi algebra is the same, however, the property of rationally is not

invariant under the stabilization. For example, a three dimensional singularity z20 + z31 + z72
is not a two dimensional rational singularity, but its stabilization z20 + z31 + z72 + z23 is a

three dimensional rational singularity.

The specially about the rational singularity is that the dual graph is homotopy to a

point [45], and this might be the indication that we can get a local SCFT. From string

theory point of view, this condition is equivalent to that the string theory on it is stable

[30]. We are not aware of any other obstruction to the existence of SCFT. It would be

interesting to further classify all possible N = 2 theory which can be engineered using

three fold singularity. Among the interesting rational graded Gorenstein singularities are

the toric singularities, quotient singularity C
3/G where G is a finite subgroup of SU(3),

and we hope to come to study these singularities and its relation to N = 2 SCFT in the

future.

4.4 Non-isolated singularity and class S theory

One could also consider the non-isolated singularity, and the interesting case is that there

is a one-dimensional singular locus Σ. These type of singularities are less understood, see
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[46] for some preliminary discussions. We would like to rephrase the class S construction

in the form of singularity theory. Consider the following singularity

x2 + y2 + vN (tn +
n∑

i=1

cit
n−1 + 1) = 0 (4.23)

here t is a C
∗ variable and parameterizes a sphere with several punctures. If f(t) =

(tn +
∑n

i=1 cit
n−i + 1) 6= 0, we get a AN−1 singularity, so the singular locus is not a point

but a one dimensional manifold. When f(t)|t∗ = 0 the singularity behavior needs further

study. This singularity has a C
∗ action if we assign charge 0 to the t variable, and the

scaling dimension of v would be simply 1. This singularity describes the following quiver:

N − SU(N)− SU(N)
︸ ︷︷ ︸

n−1

−N (4.24)

The deformation of this singularity is described in [4], and it takes the following form

x2 + y2 +

N∏

i=1

(v −mLi)t
n +

n−1∑

i=1

fi(v)t
n−i +

N∏

i=1

(v −mRi) = 0 (4.25)

with fv(i) = civ
N +miv

N−1+u2iv
N−2+ . . .+uNi. The deformation theory of non-isolated

singularity is quite complicated, and we hope that the above example could help us to

understand better the non-isolated singularity.

5 Conclusion

Our philosophy of classifying 4d SCFT is similar to what is discussed in [31] in which

they first define an isolated singularity with a good C
∗ action, and then constrain the

possible deformations. In our case, we only specify the singularity, and the deformations

are taken as the mini-versal deformations, namely the minimal deformations such that all

the other deformations are induced from it. It would be interesting to explore whether we

can find new theories by allowing different deformation pattern. Alternatively, it might be

the case that different deformation pattern actually gives us different singularities, and the

deformation pattern is automatically encoded in the deformation theory of the singularities.

For the hypersurface singularities, we have listed all possible solutions which can define

a SCFT. It would be very interesting to completely classify other construction such as

complete intersection, quotient by discrete group, etc. The non-isolated singularity is much

less understood in mathematical literature, and it is definitely interesting to understand

better this situation as it would teach us about the structure of class S theory.

In this paper, our main approach is to use geometric singularity and its deformation

to study 4d SCFT. Alternatively, it seems that we can define a 4d SCFT by using any two

dimensional (2, 2) SCFT with central charge ĉ < 2, and the deformation of the field theory

is related to the (c, c) chiral ring of 2d theory. It would be definitely interesting to try to

classify 4d SCFT from this perspective.
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The major point of this paper is to try to classify the singularities that lead to SCFT.

There are many interesting physical questions such as structure of conformal manifold,

RG flow, BPS spectrum, etc, and as we have shown here, the singularity theory plays an

amazing role in understanding those physical quantities. The detailed study will be left for

the other papers of this series. Other aspects such the calculation of superconformal index

[47–51] and associated chiral algebra [52] are also interesting to study from singularity

theory point of view.
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