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Abstract
In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and
visualization, statistical comparisons of anatomy, and surface-based registration and signal
processing. Here we introduce a parameterization method based on Riemann surface structure,
which uses a special curvilinear net structure (conformal net) to partition the surface into a set of
patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision
and the parameterizations of the components are intrinsic and stable (their solutions tend to be
smooth functions and the boundary conditions of the Dirichlet problem can be enforced).
Conformal parameterization also helps transform partial differential equations (PDEs) that may be
defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter
domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE

© 2007 IEEE
*Laboratory of Neuro Imaging, Department of Neurology, University of California—Los Angeles School of Medicine, Los Angeles,
CA 90095 USA and with the Department of Mathematics, University of California, Los Angeles, CA 90095 USA
(ylwang@math.ucla.edu). .
khayashi@loni.ucla.edu; toga@loni.ucla.edu; thompson@loni.ucla.edu

NIH Public Access
Author Manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 October 21.

Published in final edited form as:
IEEE Trans Med Imaging. 2007 June ; 26(6): 853–865. doi:10.1109/TMI.2007.895464.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



on the parameter domain is readily solved. To illustrate our techniques, we computed
parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging
scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces
that are topologically homeomorphic to each other and have similar geometrical structures, we
show that the parameterization results are consistent and the subdivided surfaces can be matched
to each other. Finally, we present an automatic sulcal landmark location algorithm by solving
PDEs on cortical surfaces. The landmark detection results are used as constraints for building
conformal maps between surfaces that also match explicitly defined landmarks.

Index Terms
Brain mapping; conformal parameterization; partial differential equation; Riemann surface
structure

I. Introduction
Surface-Based modeling is valuable in brain imaging to help analyze anatomical shape, to
statistically combine or compare 3-D anatomical models across subjects, and to map and
compare functional imaging parameters localized on anatomical surfaces. Parameterization
of these surface models involves computing a smooth (differentiable) one-to-one mapping of
regular 2-D coordinate grids onto the 3-D surfaces, so that numerical quantities can be
computed easily from the resulting models [1]–[3]. Mesh-based work on surface
parameterization contrasts with implicit methods, which often define a surface as the level
set of a higher dimensional function [4], [5]. Relative to level set methods, surface meshes
can allow regular 2-D grids to be imposed on complex structures, transforming a difficult 3-
D problem into a 2-D planar problem with simpler data structures, discretization schemes,
and rapid data access and navigation. Even so, it is often difficult to smoothly deform a
complex 3-D surface to a sphere or 2-D plane without substantial angular or areal distortion.
Here we present a new method to parameterize brain surfaces based on their Riemann
surface structure. By contrast with variational approaches based on surface inflation, our
method can parameterize surfaces with arbitrary complexity, while formally guaranteeing
minimal distortion, defined using an appropriate energy functional. This includes branching
surfaces not topologically homeomorphic to a sphere (higher genus objects), which can be
expressed using a graph structure of connected surface components. Based on our conformal
parameterization, a set of simple covariant differential operators are developed and applied
to assist in the problem of automatically detecting sulcal surface landmarks lying on the
cortex.

A. Previous Work
Brain surface parameterization has been studied intensively. Schwartz et al. [6] and Timsari
and Leahy [7] compute quasi-isometric flat maps of the cerebral cortex. Drury et al. [8]
present a multiresolution flattening method for mapping the cerebral cortex to a 2-D plane
[9]. Hurdal and Stephenson [10] report a discrete mapping approach that uses circle packing
[11] to produce “flattened” images of cortical surfaces on the sphere, the Euclidean plane,
and the hyperbolic plane. The obtained maps are quasi-conformal approximations of
classical conformal maps. Haker et al. [12] implement a finite-element approximation for
parameterizing brain surfaces via conformal mappings. They select a point on the cortex to
map to the north pole of the Riemann sphere and conformally map the rest of the cortical
surface to the complex plane by invoking the standard stereographic projection of the
Riemann sphere to the complex plane. Gu et al. [13] propose a method to find a unique
conformal mapping between any two genus zero manifolds by minimizing the harmonic
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energy of the map. They demonstrate this method by conformally mapping a cortical surface
to a sphere. Ju et al. [14] present a least squares conformal mapping method for cortical
surface flattening. Joshi et al. [15] propose a scheme to parameterize the surface of the
cerebral cortex by minimizing an energy functional in the th norm. Recently, Ju et al. [16]
report the results of a quantitative comparison of FreeSurfer [17], CirclePack [10], and least
squares conformal mapping (LSCM) [14] with respect to geometric distortion and
computational speed. Their research results indicate that FreeSurfer performs best with
respect to a global measurement of metric distortion, whereas LSCM performs best with
respect to minimizing angular distortion and best in all but one case with a local
measurement of metric distortion. Among the three approaches, FreeSurfer provides more
homogeneous distribution of metric distortion across the whole cortex than CirclePack and
LSCM. LSCM is the most computationally efficient algorithm for generating spherical
maps, while CirclePack is extremely fast for generating planar maps from patches.

Solving partial differential equations (PDEs) on surfaces has also been widely studied. Turk
[18] proposed a method to generate textures on arbitrary surfaces using reaction diffusion,
which requires the PDEs to be solved on a surface. Dorsey et al. [19] also solve PDEs on a
surface in a “virtual weathering” application. Both of them solve the PDE directly on the
triangulated surface, involving the discretization of equations on a general polygonal grid.
Stam et al. [20] proposed a method to simulate fluid flow on a surface via solving the
Navier–Stokes equation. They achieve this by combining the two-dimensional stable fluid
solver with an atlas of parametrizations of a Cat-mull–Clark surface. Clarenza et al. [21]
propose an algorithm for solving finite-element-based PDEs on surfaces defined by a set of
sampled points. They construct a number of local finite-element matrices to represent
surface properties over small point neighborhoods. These matrices are next assembled into a
single matrix that allows the PDE to be discretized and solved on the entire surface.
Bertalmio et al. [22] and Mémoli et al. [5] implement a framework for solving PDEs on the
surface via the level set method. They represent the surface implicitly by the zero-level set
of an embedding function and extend the data on the surface to the 3-D volume. This allows
them to perform all the computation on the fixed Cartesian grid. In related work using PDEs
to match parameterized models of the cortex, Thompson et al. [2] discretize the Navier
elasticity equation on a surface using a covariant PDE approach. The method uses
Christoffel symbols to adjust the differential operators for changes in the base vectors of the
parameterization. A related covariant approach has also been used for Laplace–Beltrami
smoothing of data defined on a surface [23] and registering and analyzing functional
neuroimaging data constrained to the cortical surface of the brain [24].

B. Theoretical Background and Definitions
A manifold of dimension n is a connected Hausdorff space for which every point has a
neighborhood U that is homeomorphic to an open subset V of Rn. Such a homeomorphism
ϕ : U → V is called a coordinate chart. An atlas is a family of charts {Uα, ϕα} for which Uα
constitutes an open covering of M.

As shown in Fig. 1, suppose {Uα, ϕα} and {Uβ, ϕβ} are two charts on a manifold S, Uα ⋂
Uβ ≠ ∅; then the chart transition function, ϕαβ is defined as

(1)

An atlas {Uα, ϕα} on a manifold is called differentiable if all chart transition functions are
differentiable of class C∞. A chart is called compatible with a differentiable atlas if adding
this chart to the atlas still yields a differentiable atlas. The set of all charts compatible with a
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given differentiable atlas yields a differentiable structure. A differentiable manifold of
dimension n is a manifold of dimension n together with a differentiable structure.

For a manifold M with an atlas , if all chart transition functions, defined by (1),
are holomorphic, then  is conformal atlas for M. A chart {Uα, ϕα} is compatible with an
atlas  if the union  is still a conformal atlas.

Two conformal atlases are compatible if their union is still a conformal atlas. Each
conformal compatible equivalence class is a conformal structure. A two-manifold with a
conformal structure is called a Riemann surface. It has been proven that all metric orientable
surfaces are Riemann surfaces and admit conformal structures [26].

Holomorphic and meromorphic functions and differential forms can be generalized to
Riemann surfaces by using the notion of conformal structure. For example, a holomorphic 1-
form ω is a complex differential form, such that in each local frame (uα, vα), zα = uα + iuα,
where , the parametric representation is ω = f(zα)dzα, where f(zα) is a holomorphic
function. On a different chart {Uβ, ϕβ}, with another local frame (uβ, vβ), zβ = uβ + iuβ,
where 

then fβ(dzβ/dzα) is still a holomorphic function. For a genus g closed surface, all
holomorphic 1-forms form a 2g real dimensional linear space.

At a zero point p ∈ M of a holomorphic 1-form ω, any local parametric representation has

According to the Riemann–Roch theorem, in general there are 2g−2 zero points for a
holomorphic 1-form defined on a closed surface of genus g, where g > 1.

A holomorphic 1-form induces a special system of curves on a surface, the so-called
conformal net. Horizontal trajectories are the curves that are mapped to iso-v lines in the
parameter domain. Similarly, vertical trajectories are the curves that are mapped to iso-u
lines in the parameter domain. The horizontal and vertical trajectories form a web on the
surface. The trajectories that connect zero points, or a zero point with the boundary, are
called critical trajectories. The critical horizontal trajectories form a graph, which is called
the critical graph. In general, the behavior of a trajectory may be very complicated, may
have infinite length, and may be dense on the surface. If the critical graph is finite, then all
the horizontal trajectories are finite.

The critical graph partitions the surface into a set of nonover-lapping patches that jointly
cover the surface, and each patch is either a topological disk or a topological cylinder [27].
Each patch Ω ⊂ M can be mapped to the complex plane by the integration of holomorphic 1-
form on it. The structure of the critical graph and the parameterizations of the patches are
determined by the conformal structure of the surface. If two surfaces are topologically
homeomorphic to each other and have similar geometrical structure,1 they can support
consistent critical graphs and segmentations (i.e., surface partitions), and their

1A possible metric to evaluate how similar two surfaces’ geometrical structures are is proposed as Edist in [28].
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parameterizations are consistent as well. Therefore, by matching their parameter domains,
the entire surfaces can be directly matched in 3-D. This generalizes prior work in medical
imaging that has matched surfaces by computing a smooth bijection to a single canonical
surface, such as a sphere or disk.

Fig. 2(A) and (B) shows the conformal net and critical graph on closed surface and open
boundary surface, respectively. The surface segmentation results are also shown. Fig. 2(C)
illustrates how a segment in (B) is conformally mapped to a rectangle. In (C), conformal
nets are labeled with different colors. In the parameter domain, we can also find the right
angles between the conformal net curves are well preserved. The zero point on the left is
mapped to two points on the opposite edges.

We call the process of finding the critical graph and segmentation as holomorphic flow
segmentation, a process that is completely determined by the geometry of the surface and
the choice of the holomorphic 1-form.2 Computing holomorphic 1-forms is equivalent to
solving elliptic differential equations on the surfaces, and in general, elliptic differential
operators are stable (their solutions tend to be smooth functions and the boundary conditions
of the Dirichlet problem can be fulfilled). Therefore, the resulting surface segmentations and
parameterizations are intrinsic and stable and are applicable for matching (potentially noisy)
surfaces that are derived from medical images and topologically homeomorphic to each
other [30] because the behavior of horizontal trajectory is solely determined by the
conformal structure and the cohomology class of the holomorphic 1-form. In surface
matching application, we guarantee that the cohomology classes are consistent on two
surfaces and the two surfaces are with similar conformal structures, therefore, the
corresponding trajectories will behave in the similar way.

This paper takes advantage of conformal structures of surfaces, consistently segments them,
and parameterizes the patches using a holomorphic 1-form. We then explore various
applications that use the resulting parameterization.

With the conformal parametrization, we can solve variational problems and PDEs on the
surface, which describe either physical phenomena on the manifold or signal processing
operations (regularization, surface matching) that can be formulated using PDEs. The basic
idea is to map the surface conformally to a 2-D rectangle and solve the corresponding PDE
on  instead of solving the PDE on the manifold. To do this, we have to use the manifold
version of differential operators (tensor calculus). Using the conformal parametrization,
these differential operators on the manifold can be described more easily on the parameter
domain  by simple formulas. This will be explained briefly as below.

Let M be a manifold and  be the global conformal parametrization of M. With the
conformal parametrization, we can do calculus on surfaces similar to what we do on .
Suppose  is a smooth map. We will first define partial derivative Dxif of f. On ,
we usually define the partial derivative (∂f/∂xi) by taking the limit. For example, (∂f/∂x) =
limΔ→0(f(x + Δx, y) − f(x, y)/Δx). With the conformal parametrization, we can define the
partial derivative on scalar functions in the same manner. Because of the stretching effect,
we define

2Note that this differs from the typical meaning of segmentation in medical imaging and is concerned with the segmentation, or
partitioning, of a general surface.
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where λ is the conformal factor. Dyf is defined similarly.

Now, the gradient of a function f, ▽Mf, is characterized by df(Y) = ⟨▽Mf, Y⟩. Simple
checking gives us ▽Mf = ∑i,jgij∂if∂j where (gij) is the inverse of the Riemannian metric (gij).
With the conformal parametrization, we can define the gradient of f similar to the definition
on . Namely

(2)

where

Suppose  is a smooth function. With this definition of gradient, we still have the
following useful fact as in :

where δ is the delta function and H is the Heaviside function.

Next, we give a definition of a differential operator on a vector field. It can be done by the
covariant differentiation ▽XY where X is called the direction of the differentiation. This
operation is based on the tensor calculus [31].

Given a Riemannian manifold (M, g), where g = (gij) is the Riemannian metric, suppose {∂i}
is the coordinate basis of the vector field. A simple verification will tell us the covariant
derivative can be calculated by the following formula:

Suppose now that the parametrization is conformal. The Riemannian metric (gij) is simply
(gij) = λI, where λ, I are the conformal factor and the identity matrix respectively. We then
have the following formula:
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With this formula, we can calculate ▽XY easily. More interesting formulas for the manifold
differential operators [32] on the parameter domain can be found in Table I.

II. Holomorphic Flow Segmentation
To compute the holomorphic flow segmentation of a surface, first we compute the
conformal structure of the surface; then we select a holomorphic differential form and locate
the zero points on it (details are given below). By tracing horizontal trajectories through the
zero points, the critical graph can be constructed and the surface is divided into several
patches. Each patch can then be conformally mapped to a planar parallelogram by
integrating the holomorphic differential form.

In this paper, surfaces are represented as triangular meshes, namely, piecewise polygonal
surfaces. The computations with differential forms are based on solving elliptic partial
differential equations on surfaces using finite-element method. Suppose K is a simplicial

complex, and a mapping  embeds ∣K∣ in ; then M = (K, f) is called a triangular
mesh. Kn, where n = 0, 1, 2 are the sets of n-simplices. We use [v0, v1, …, vn] to denote an
n-simplex, where vi ∈ K0.

A. Computing Conformal Structures
A method for computing the conformal structure of a surface was introduced in [33].
Suppose M is a closed genus g > 0 surface with a conformal atlas . The conformal
structure  induces holomorphic 1-forms; all holomorphic 1-forms form a linear space
Ω(M) of dimension 2g over real numbers that is isomorphic to the first cohomology group of

the surface . The set of holomorphic 1-forms determines the conformal structure.
Therefore, computing conformal structure of M is equivalent to finding a basis for Ω(M).

The holomorphic 1-form basis {ωi, i = 1, 2, …, 2g} is computed as follows: compute the
homology basis, find the dual cohomology basis, diffuse the cohomology basis to a
harmonic 1-form basis, and then convert the harmonic 1-form basis to holomorphic 1-form
basis by using the Hodge star operator. The details of the computation are given in [33].3 In
terms of data structure, a holomorphic 1-form is represented as a vector-valued function
defined on the edges of the mesh ωi:K1 → R2, i = 1, 2, …, 2g,.

B. Canonical Conformal Parameterization Computation
Given a Riemann surface M, there are infinitely many holomorphic 1-forms, but each of
them can be expressed as a linear combination of the basis elements. We define a canonical
conformal parameterization as any linear combination of the set of holomorphic basis

functions ωi, i = 1, …, 2g, where g > 0. They satisfy , where ζi, i = 1, ldots, 2g are

3For surfaces with boundaries, we apply the conventional double covering technique, which glues two copies of the same surface
along their corresponding boundaries to form a symmetric closed surface. Then we apply the above procedure to find the holomorphic
1-form basis.
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homology bases and  is the Kronecker symbol. Then we compute a canonical conformal

parameterization .

We select a specific parameterization that maximizes the uniformity of the induced grid over
the entire domain using the algorithms introduced in [34], for the purpose of locating zero
points in the next step.

C. Locating Zero Points
For a close surface with genus g, (g > 1), any holomorphic 1-form ω has 2g−2 zero points.
For an open boundary surface with genus g, (g > 1), any holomorphic 1-form ω has g−1
zero points. The horizontal trajectories through the zero points will partition the surface into
several discrete patches. Each patch is either a topological disk or a cylinder and can be
conformally parameterized by a parallelogram.

1) Estimating the Conformal Factor—Suppose we already have a global conformal
parameterization, induced by a holomorphic 1-form ω. Then we can estimate the conformal
factor at each vertex, using the following formulas:

(3)

where K0 and K1 are the set of 0-simplices and 1-simplices, respectively; n is the valence of
vertex v.

2) Locating Zero Points—We find the cluster of vertices with relatively small conformal
factors (the lowest 5–6%). These are candidates for zero points. We cluster all the
candidates using the metric on the surface. For each cluster, we pick the vertex that is on the
surface and closest to the center of gravity of the cluster, using the surface metric to define
geodesic distances.

Because the triangulation is finite and the computation is an approximation, the number of
zero points may not equal to the Euler number. In this case, we refine the triangulation of the
neighborhood of the zero point candidate and refine the holomorphic 1-form ω.4

According to the Riemann surface theory, zero points are isolated in general. In very rare
cases, zero points can be merged. However, the probability of those cases is zero. The
configuration of zero points is completely determined by the cohomology class of the
holomorphic 1-forms. By choosing cohomology class, we can control the distances among
zero points. In practice, with topological optimization method [34], we can adaptively
change the surface cohomology class of the holomorphic 1-form by changing the surface
topological structure, e.g., cutting open surfaces along some feature lines. As shown in Fig.
2(b), by choosing the canonical conformal parameterization result, the zero points are well
separated by the cutting curves.

D. Holomorphic Flow Segmentation
1) Tracing Horizontal Trajectories—Once the zero points are located, the horizontal
trajectories through them can be traced.

4It is worth noting that the same research group has proposed to use a new mathematical tool, the Ricci flow, to eliminate the
numerical errors in the zero point location computation [35]. The detailed development will be reported in our future work.
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First we choose a neighborhood Uv of vertex v, where v represents a zero point and Uv is a
set of neighboring faces of v. Then we map it to the parameter plane by integrating ω.
Suppose a vertex w ∈ Uv and a path composed by a sequence of edges on the mesh is γ;
then the parameter location of w is ϕ(w) = ∫γω.

The conformal parameterization ϕ(Uv) is a piecewise linear map. Then the horizontal
trajectory is mapped to the horizontal line y = constant in the parameter domain. We slice
ϕ(Uv) using the line y = constant by edge splitting operations. Suppose the boundary of
ϕ(Uv) intersects y = constant at a point v’; then we choose a neighborhood of v’ and repeat
the process.

Each time we extend the horizontal trajectory and encounter edges intersecting the
trajectory. We insert new vertices at the intersection points, until the trajectory reaches
another zero point (for a closed surface) or the boundary of the mesh (for an open boundary
surface). Each zero point connects to four horizontal trajectories, and the angles between
two adjacent trajectories are right angles. In practice, we just trace four trajectories starting
from each zero point to guarantee to have all the trajectories.

2) Critical Graph—Given a surface M and a holomorphic 1-form ω on M, we define the
graph G(M, ω) = {V, E, F} as on the critical graph of ω, where V is the set of zero points of
ω, E is the set of horizontal trajectories connecting zero points or the boundary segments of
M, and F is the set of surface patches segmented by E.

Given two surfaces that are topologically homeomorphic to each other and have similar
geometrical structures, by choosing the canonical holomorphic 1-forms, we can obtain
isomorphic critical graphs, which can be used for surface matching [30].

III. Automatic Landmark Tracking With Riemann Surface Structure
Finding important feature points or curves on anatomical surfaces, such as sulcal/gyral
curves on the cortical surface, is an important problem in medical imaging. These cortical
landmarks provide important features for the neuroscientific study of brain diseases, or they
can be used as geometrical constraints to help guide the matching of different cortical
surfaces [2], [36]–[38]. Although the sulci do not represent an absolute guide to functional
homology in the cortex, in the absence of additional histologic information they are often
used as constraints when spatially normalizing anatomy of different subjects to match a
common brain template. Using the Riemann surface structure, we propose a variational
method to identify and track landmark curves on cortical surfaces automatically based on the
principal directions, which were also used by other works [39], [40]. Suppose we are given
the conformal parameterization of a cortical surface; our method traces the landmark curves
iteratively on the spherical/rectangular parameter domain along the principal direction. The
principal directions are, by definition, the eigenvectors of the Weingarten (curvature) matrix.
Consequently, the landmark curves can be mapped onto the cortical surface. To speed up the
iterative scheme, we propose a method to get a good initialization by extracting high mean
curvature regions on the cortical surface using the Chan–Vese (CV) segmentation method,
which involves solving a PDE on the manifold using our conformal parametrization
technique.

A. Variational Method for Landmark Tracking

Consider the principal direction field  with smaller eigenvalues of the curvature matrix
on the cortical surface C. Fixing two anchor points (a b) on the sulci, we propose a
variational method to trace the sulcal landmark curve iteratively. Let ϕ:D → C be the
conformal parametrization of C, ⟨·, ·⟩ be its Riemannian metric, and λ be its conformal
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factor. We propose to locate a curve  with endpoints a and b, which minimizes
the following energy functional:

where  is the corresponding iterative curve on the parameter domain;

; ; and ∣·∣ is the (usual) length defined on D. By
minimizing the energy E, we minimize the difference between the tangent vector field along

the curve and the principal direction field . The resulting minimizing curve is the curve
that is closest to the curve traced along the principal direction.

Let ; ;

; ;

. We can locate the landmark curves iteratively using the
steepest descent algorithm

B. Landmark Hypothesis Generation by the Chan–Vese Segmentation
In order to speed up the iterative scheme, we obtain a good initialization by extracting the
high mean curvature regions on the cortical surface using the CV segmentation method [41].
Based on techniques of curve evolution, Mumford–Shah functional [42] for segmentation,
and level sets, the CV model is a widely used 2-D image segmentation method. With our
conformal parameterization, we extend the CV segmentation on  to any arbitrary Riemann
surface M such as the cortical surface.

Let  be the conformal parametrization of the surface M. We propose to minimize
the following energy functional:
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where  is the level set function and  and u0 is the mean curvature
function on the cortical surface.

With the conformal parametrization, we have

For simplicity, we let ζ = ψ ○ ϕ and w0 = u0 ○ ϕ. Fixing ζ, we must have

Fixing c1, c2, the Euler–Lagrange equation becomes

Locating sulcal landmark features using geometric properties of the anatomical features has
been widely studied [39], [40], [43]–[48]. In general, sulcal landmarks on the cortex lie in
regions with relatively high mean curvature [49], [50]. Using the CV segmentation, we can
consider the signal of interest, defined on the cortex, as the mean curvature. The sulci
position on the cortical surface can then be located by extracting out the high curvature
region. Inside each region, a good initialization of the landmark curve is considered as the
shortest path that connects two anchor points when the region is considered as a graph. We
select two umbilic points as the anchor points. By definition, an umbilic point on a manifold
is a location at which the two principal curvatures are the same. If there are multiple umbilic
points are found in one region, we select the two that are furthest apart.

IV. Optimization of Brain Conformal Mapping Using Sulcal Landmarks
In brain-mapping research, cortical surface data are often mapped conformally to a
parameter domain such as a sphere, providing a common coordinate system for data
integration [13], [17], [51]. As an application of our automatic landmark tracking algorithm,
we use the automatically labelled landmark curves to generate an optimized conformal
mapping on the surface. This matching of cortical patterns improves the alignment of data
across subjects. It is done by minimizing the compound energy functional

where Eharmonic(h) is the harmonic energy of the parameterization [13] and
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is the landmark mismatch energy [52], where the norm represents distance between
automatic traced landmark curves {pi} and {qi}, represented on the parameter domain S2.
Here, automatically traced landmark (continuous) curves are used and the correspondence is
obtained on the curves using the unit length and unit speed reparametrization. We can
minimize the energy by steepest descent method. The resulting brain conformal mapping
improves cortical surface registration significantly while preserving conformality to the
highest possible degree [52]. Note that we may also describe the landmark matching
problem on the sphere within the large deformation diffeomorphism framework [53].

V. Experimental Results
A. Hippocampal Surface Parameterization

Fig. 3(a)–(d) shows experimental results for a hippocampal surface, a structure in the medial
temporal lobe of the brain. The original surface is shown in (a). We leave two holes at the
front and back of the hippocampal surface, representing its anterior junction with the
amygdala and its posterior limit as it turns into the white matter of the fornix. The
hippocampus can be logically represented as an open boundary genus one surface, i.e., a
cylinder (note that spherical harmonic representations would also be possible if the ends
were closed [54]–[57]). The computed conformal net is shown in (b), where the red and blue
curves are the vertical trajectories and the horizontal trajectories of the net, respectively. A
horizontal trajectory curve is shown in (c). Cutting the surface along this curve, we can then
conformally map the hippocampus to a rectangle. The detailed surface information is well
preserved in (d). Compared with other spherical parameterization methods, which may have
high-valence nodes and dense tiles at the poles of the spherical coordinate system, our
parameterization can represent the surface with minimal distortion.5

B. Lateral Ventricular Surface Parameterization
Shape analysis of the lateral ventricles—a fluid-filled structure deep in the brain—is of great
interest in the study of psychiatric illnesses, including schizophrenia [58], [59], and in
degenerative diseases such as Alzheimer’s disease [60], [61]. These structures are often
enlarged in disease and can provide sensitive measures of disease progression. To model the
lateral ventricular surface in each brain hemisphere, we introduce five cuts. Although this
seems arbitrary, the cuts are motivated by examining the topology of the lateral ventricles, in
which several horns are joined together at the ventricular “atrium” or “trigone.” We call this
topological change topological optimization. The topological optimization helps to get a
uniform parameterization on some areas that otherwise are very difficult for usual
parameterization methods to capture. A systematic topological optimization method was
introduced in [34]. With this method, we automatically located initial points, which are
simply the extremal points of the anterior/posterior coordinate, for these cuts at a specific set
of extreme points. Specifically, they are at the ends of the frontal, occipital, and temporal
horns of the ventricles. Fig. 3(e) and (i) shows five cuts introduced on two subjects’
ventricular surfaces. After the cutting, the surfaces become open-boundary genus 4 surfaces.
The rest of Fig. 3 shows parameterizations of the lateral ventricles of the brain. Fig. 3(e)–(h)

5When matching two hippocampal surfaces with our conformal parameterization, we need to find a consistent trajectory to cut them
open. A possible way to do it is to use principal axis registration first, i.e., get the inertia matrix of one surface and apply its inverse to
the other one. After that, we can find a consistent trajectory that guarantees the cutting results have consistent boundaries.
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shows the results of parameterizing a ventricular surface for a 65-year-old patient with HIV/
AIDS (note the disease-related enlargement) and Fig.3 (i)–(l) shows the results for the
ventricular model of a 21-year-old control subject (surface data are from [60]). The
computed conformal structures are shown in Fig. 3(f) and (j) by texture mapping a
checkerboard image to the surface. There are a total of three zero points on each of the
ventricular surfaces. Two of them are located at the middle part of the two “arms” (where
the temporal and occipital horns join at the ventricular atrium), as shown by the large black
dots in (f) and (j). The third zero point is located in the middle of the model, where the
frontal horns are closest to each other. Based on the computed conformal structure, we can
partition the surface into six patches. Each patch can be conformally mapped to a rectangle.
Although the two brain ventricle shapes are very different, the segmentation results are
consistent in that the surfaces are partitioned into patches with the same relative arrangement
and connectivity. Thus our method provides a basis to perform direct surface matching
between any two ventricles. Note that this is somewhat a different approach to surface
matching than those typically adopted. Rather than use a single parameterization for the
entire surface, and match landmarks that lie within it, instead a topological decomposition of
the surface is used and the patches are piecewise matched and guaranteed to be conformal.
The advantage of this approach is that it can handle the matching of objects with
nonspherical (but consistent) topology, which would otherwise be extremely difficult to
parameterize and match.

C. Cerebral Cortical Surface Parameterization
For the surface of the cerebral cortex, our algorithm also provides a way to perform surface
matching while explicitly matching sulcal curves or other landmarks lying in the surface.
Note that typically two surfaces can be matched by using a landmark-driven flow in their
parameter spaces [2], [13], [17], [62], [63]. An alternative approach is to supplement the
critical graph with curved landmarks that can then be forced to lie on the boundaries of
rectangles in the parameter space. This has the advantage that conformal grids are still
available on both surfaces, as is a correspondence field between the two conformal grids.
Fig. 4 shows the results for the cortical surfaces of two left hemispheres. As shown in the
first row, we selected four major landmark curves, for the purpose of illustrating the
approach (thick lines show the precental and postcentral sulci, and the superior temporal
sulcus, and the perimeter of the corpus callosum at the midsagittal plane). By cutting the
surface along the landmark curves, we obtain a genus 3 open boundary surface. The
conformal structure is illustrated by texture mapping a checkerboard image to the cortical
surface (the first panel of the first row). There are therefore two zero points (observable as a
large white region and black region in the conformal grid). We show cortical surfaces from
two different subjects in Fig. 4 (these are extracted using a deformable surface approach but
are subsequently reparameterized using holomorphic 1-forms). The second and fourth rows
show the segmented patches for each cortical surface. The rectangles that these patches
conformally map to are shown on the third and fifth row, respectively. Since the landmark
curves lie on the boundaries of the surface patches, they can be forced to lie on an
isoparameter curve and can be constrained to map to rectangle boundaries in the parameter
domain. Although the two cortical surfaces are different, the selected sulcal curves are
mapped to the rectangle boundaries in the parameter domain. This method therefore
provides a way to warp between two anatomical surfaces while exactly matching an
arbitrary number of landmark curves lying in the surfaces. As in prior work, this is
applicable to tracking brain growth or degeneration in serial scans, and composite maps of
the cortex can be made by invoking the consistent parameterizations [64]–[66]. Thiron’s
extremal mesh [40] and the work of Lamecker et al. on the cortex [67] have a similar
motivation to ours, namely, to partition a surface into canonical patches and parameterize
the patches with minimal distortion. However, our partitioning method is based on intrinsic
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Riemann surface structure and theirs is based on shortest paths along lines of high curvature.
In our method, the segmentation and parameterizations are solely determined by the
conformal structure of the surface, which is determined by the Riemannian metric and
independent of the embedding. It is invariant under isometric transformation and conformal
transformation. Thus, our method is global and may be more stable.

D. Automatic Landmark Location With Riemann Surface Structure
As for our automatic landmark location algorithm, we tested the algorithm on a set of left
hemisphere cortical surfaces extracted from brain magnetic resonance imagin scans,
acquired from normal subjects at 1.5 T (on a GE Signa scanner) [68]. In our experiments,
ten landmarks were automatically located on cortical surfaces.

Fig. 5(A)–(D) shows how we can effectively locate the initial estimated landmark regions on
the cortical surface using the CV segmentation approach in the parameter domain. Notice
that the contour evolved to the deep sulcal region. In Fig. 5(E), we locate two umbilic points
in each sulcal region. When multiple umbilic points are located in a region, we select the
two that are farthest apart. The selected umbilic points are chosen as the anchor points for
variational landmark tracing step.

Our variational method to locate landmark curves is illustrated in Fig. 5(F)–(H). With the
initial guess given by the CV model (we choose the two extreme umbilic points in the
located area as the anchor points), we trace the landmark curves iteratively based on the
principal direction field. In Fig. 5(F), we trace the landmark curves on the parameter domain
along the edges whose directions are closest to the principal direction field. The
corresponding landmark curves on the cortical surface is shown. Fig. 5(G) shows how the
curve evolves to a deeper sulcal region with our iterative scheme. In Fig. 5(H), ten sulci
landmarks are located using our algorithm.

E. Optimization of Brain Conformal Parametrization
To visualize how well our optimized brain conformal parametrization algorithm can
improve the alignment of key sulci landmarks, we created an average 3-D surface based on
the 15 optimized conformal maps. Namely, we took the average geometric positions of
every corresponding vertex on 15 cortical surfaces. Fig. 6 shows average maps from
different angles. In (B) and (C), sulci landmarks are clearly preserved inside the green circle
where landmarks are manually labelled. In (D), the sulci landmarks are averaged out inside
the green circle where no landmarks are automatically detected. This suggests that our
algorithm can help by improving the alignment of major anatomical features in the cortex.
Further validation work, of course, would be necessary to assess whether this results in
greater detection sensitivity in computational anatomy studies of the cortex, but the greater
reinforcement of features suggests that landmark alignment error is substantially reduced,
and this is one major factor influencing signal detection in multisubject cortical studies.

VI. Conclusion and Future Work
In this paper, we presented a brain surface parameterization method that invokes the
Riemann surface structure to generate conformal grids on surfaces of arbitrary complexity
(including branching topologies). For high genus surfaces, a global conformal
parameterization induces a canonical segmentation, i.e., there is a discrete partition of the
surface into conformally parameterized patches. We tested our algorithm on hippocampal
and lateral ventricular surfaces and on surface models of the cerebral cortex. The grid
generation algorithm is intrinsic (i.e., it does not depend on any initial choice of surface
coordinates) and is stable, as shown by grids induced on ventricles of various shapes and
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sizes. With the conformal parameterization, we employed a set of formulas for the covariant
differential operators on the manifold based on tensor calculus. Because of this conformal
parameterization, the extension of well-known 2-D PDE solvers to general 3-D surfaces
becomes relatively simple. We illustrate the use of the conformal grid for hosting a surface-
based PDE by presenting a brain landmark detection algorithm. The landmark detection
results are examined by computing an average cortical surface after conformal
parameterizations are optimized using sulcal features as landmarks. Our future work will
focus on signal processing on brain surfaces, as well as brain surface registration with
surface metric proposed in [30], and shape and asymmetry analysis for subcortical
structures.
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Appendix A

Claim 1
Suppose  is a smooth function. Then

Proof
Recall that the Co-area formula reads

where  is the Hausdorff measure.

Let ϕ be the conformal parametrization of the surface M and ζ = u ○ ϕ.

Then
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where c(t) is the parametrization of ζ(x, y) = 0.

Q.E.D.

Appendix B

Case 2

Let . The geodesic curvature κ of .

Proof

Recall that the geodesic curvature of a curve  is

Let the parametrization of the zero level set of ϕ be . Then ϕ(X(t), Y(t)) = 0.

This implies

and

Now

Thus, for conformal parametrization, we have

(4)

and
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(5)

Combining these, we have

and

So
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Fig. 1.
Structure of a manifold. An atlas is a family of charts that jointly form an open covering of
the manifold [25].
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Fig. 2.
(A) Conformal net and critical graph of a closed three-hole torus surface. There are four zero
points. The critical horizontal trajectories partition the surface to four topological cylinders,
color encoded in the third frame. Each cylinder is conformally mapped to a planar rectangle.
(B) Conformal net and critical graph of a open boundary four-hole annulus on the plane.
There are three zero points; the critical horizontal trajectories partition the surface to six
topological disks. (C). Each segment is conformally mapped to a rectangle. The trajectories
and the boundaries are color encoded and the corners are labelled. (Pictures are adapted
from [29].)
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Fig. 3.
The holomorphic flow segmentation results of (a)–(d) a hippocampal surface and (e)–(l) two
lateral ventricular surfaces. (b) is the conformal net of the hippocampal surface in (a). (c) is
an isoparameter curve used to unfold the surface. (d) is the rectangle to which the surface is
conformally mapped. (e)–(h) show lateral ventricles parameterized using holomorphic 1-
forms for a 65-year-old subject with HIV/AIDS; (i)–(l) show the same maps computed for a
healthy 21-year-old control subject. (e) and (i) show that five cuts are automatically
introduced and convert the lateral ventricular surface into a genus 4 surface. Other pictures
show the (f) and (j) computed conformal net, (g) and (k) holomorphic flow segmentation,
and (h) and (l) their associated parameter domains (the texture mapped into the parameter
domain here simply corresponds to the intensity of the surface rendering, which is based on
the surface normals).
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Fig. 4.
Illustrates the parameterization of cortical surfaces using the holomorphic 1-form approach.
The thick lines are landmark curves, including several major sulci lying in the cortical
surface. These sulcal curves are always mapped to a boundary in the parameter space
images.
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Fig. 5.
(A)–(D) show sulcal curve extraction on the cortical surface by the CV segmentation. With a
suitable initial contour, major sulcal landmarks can be effectively extracted at the same time.
(E) shows how umbilic points are located within each candidate sulci region, and these are
then chosen as the end points of the landmark curves. When multiple candidates regions are
located, we select the two regions that are farthest apart. (F)–(H) illustrate automatic
landmark tracking using a variational approach. In (F), we track the landmark curves on the
parameter domain along the edges whose directions are closest to the principal direction
field. The corresponding landmark curves on the cortical surface are shown. This gives a
good initialization for our variational method to locate landmarks. (G) demonstrates that
landmarks curve is evolved to a deeper region using our variational approach. The blue and
green curves represents the initial and evolved curves, respectively. (H) shows ten sulci
landmarks that are detected and tracked using our algorithm.
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Fig. 6.
An average cortical surface of the brain derived by using optimized conformal
parametrization with the automatically traced landmarks. The major sulcal landmarks are
well preserved (see the areas inside green circles in (B) and (C). In (D), the sulci at the back
of the brain, in the occipital lobe surface, are averaged out because no landmark constraint
was added in that region, for purposes of illustration.
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TABLE I

List of Formulas for Some Standard Differential Operators on General Manifold

1 ∇Mf = ∑i,j gij∂if∂j, where (gij) is the inverse of the Riemannian metric (gij) . With the conformal parametrization ϕ, the conformal
factor λ,

∇M f = Dx f i + Dy f j

where (i, j) = ( ∂
∂ x

∕ <
∂

∂ x
,

∂
∂ x

> ,
∂

∂ y
∕ <

∂
∂ y

,
∂

∂ y
> ).

=
1
λ ( ∂

∂ x
,

∂
∂ y ).

2 Suppose h : M → R is a smooth function,

Length of h −1(0) = ∫M
δ(h ) < ∇M h , ∇M h > dS

= ∫M
< ∇M H (h ), ∇M H (h ) > dS

= ∫C
δ(h ∘ϕ) λ ∇h ∘ϕ dxdy

= ∫C
λ ∇H (h ∘ϕ) dxdy

where H is the Heaviside function.

3 For differential operator on vector field, the covariant derivative satisfies the following properties:

(P1)∇ f X1+g X2
Y = f ∇X1

Y + g∇x2
Y for f , g ∈ C ∞(M );

(P2)∇X (aY1 + bY2) = a∇X Y1 + b∇X Y2, a, b ∈ R;

(P3)∇X
( fY ) = f ∇X Y + (Xf )Y for f ∈ C ∞(M ).

Suppose {∂i} is the coordinate basis of the vector field, then

< ∇∂i
∂ j , ∂l > = 1 ∕ 2(∂i gim + ∂ j gmi − ∂m gij).

∇∂i
∂ j = Γij

m∂m ,

where Γij
m =

1
2λ (∂i gim + ∂ j gmi − ∂m gij).

4 For the divergence and Laplacian, we have

divM (Σi=1
2 Xi

∂
∂ xi

) = ∑
i=1

2 1
λ ∂i (Xiλ),

ΔM f = ∑
j=1

2
(1 ∕ λ)∂ j ∂ j f .
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5 Suppose C is a curve represented by the zero level set of ϕ : M → R,

Geodesic curvature of C = divM ( ∇M ϕ

∇M ϕ ).
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