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Rigidity question have attracted much interest in the past. In the compact case, we 
have the famous work of Calabi and Vesentini [3] and Mostow [17]. Whereas 
Calabi and Vesentini proved a local version, namely that compact quotients of 
bounded symmetric domains admit no nontrivial deformations in case the domain 
is irreducible and of complex dimension at least 2, Mostow proved a global rigidity 
result, at the expense, however, of working only within the class of quotients of 
symmetric domains. Mostow's work is based on quasiconformal mappings. A 
different analytic approach was recently undertaken by Siu [22]. If M is a compact 
K~ihler manifold diffeomorphic (or, more generally, homotopically equivalent) to a 
quotient N of an irreducible bounded symmetric domain, he studied a harmonic 
homotopy equivalence the existence of  which is assured by the theorem of EeUs and 
Sampson, and demonstrated that this map has to be a biholomorphic 
diffeomorphism itself, thus in particular obtaining the global rigidity of N within 
the class of K~ihler manifolds and thereby generalizing the results of Calabi- 
Vesentini as well as of  Mostow for quotients of bounded symmetric domains. A 
corresponding result for irreducible compact quotients of  products of  upper half 
planes, a case not covered by Siu's arguments, was then obtained through the work 
ofJost andYau [11, 12], and Mok [15], thereby completting Siu's approach. On the 
other hand, Mostow's results were extended to noncompact locally symmetric 
spaces of finite volume by Prasad [19] and Margulis [14]. 

In the present work, we start an extension of Siu's results to the noncompact 
case. We study locally symmetric varieties of rank one, thereby generalizing some of 
Prasad's results, as well as irreducible quotients of products of upper half planes. 

We shall prove: 
Theorem 1. Let D be an irreducible bounded symmetric domain in ~", n > 2, of rank 
1, i.e. the unit ball in complex space of dimension at least 2. Let N be a quotient of 
finite volume by a discrete torsion free subgroup F of Aut(D). 

Suppose M is a compact Kiihler manifold, S a subvariety of  ft, with normal 
crossings ( i. e. S has possibly self intersections that locally look like the intersection of 
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coordinate hyperplanes in fly and is otherwise regular) and suppose there exists a 
proper homotopy equivalence between M :=M \ S and N. 

Then M is +_ biholomorphically equivalent to N. 

Note. A special case was obtained in [24]. 

Remark. The assumptions of  the theorem are in particular satisfied if M is a 
quasiprojective manifold, properly homotopically equivalent to N. Here, "quasi- 
projective" means that M is a Zariski dense open subset of  a projective algebraic 
variety. By Hironaka's  theorem [8], the possible singularities of  this projective 
algebraic variety can be resolved, i.e. replaced by complex hyposurfaces with 
normal crossings without changing the variety away from the singularities. The 
same remark applies to our next result. 

Theorem 2. Let H := {x + iy ~ C: y > 0} denote the upper half plane. Let N = H"/F, 
where F is a discrete irreducible torsionfree subgroup of  Aut (H"), n > 2. 

Let M again be properly homotopically equivalent to N and admit a Kiihler 
compactification M as in Theorem 1. 

Then, there exists a diffeomorphism f: M --* N with the property that for its lifting 
F =  (F 1 . . . . .  F,):  l f f l~  H" to universal coverings, each F i is +__ holomorphie. 

As Siu did, we shall make strong use of harmonic maps and their properties. As 
a general reference for harmonic maps, one can use [10]. Because of the 
noncommpactness of  the manifolds considered, we have to overcome several new 
technical difficulties compared to the compact case. 

We first have to construct a proper homotopy equivalence of finite energy. In 
order to achieve this, we have to use the existence of suitable compactifieations of M 
and N, in particular, the existence of a smooth eompactification 3r of  M with )~ \ M  
consisting of  a union of  smooth divisors with normal crossings. This special 
structure will also be important  for showing that a harmonic map of  finite energy 
(into which we deform the original map of  finite energy) has maximal rank. On the 
other hand, we do not really need the locally symmetric structure of  N but only a 
suitable decay of  its metric towards the ends or cusps. 

In the rank one case, this follows from Lemma 8 of [23]. The result of this 
Lemma already holds i fNis  a complete K/ihler manifold whose sectional curvature 
is bounded between two negative constants. In addition, we shall also need strong 
negativity of the curvature of  N in the sense of  [22]. In our arguments, we need the 
more special assumption that N is locally symmetric of  rank one only in the case 
where Nhas  only one end. In this situation, we appeal to a result of  Selberg that the 
fundamental group of  N is residually finite, allowing us to reduce this case to the 
case where the image has more than one end by passing to a suitable finite cover. 
Apparently, a generalization of  Selberg's result to negatively curved manifolds of 
finite volume is not known. 

In the ease o f  Theorem 2, we note that by a result of  Selberg (of. [9, p. 277]), F is 
commensurable with the Hilbert modular group/~ of  some totally real field K with 
[K: ~]  = n (hence in particular arithmetic). Therefore, for our purposes, it is 
sufficient to know the behavior of the metric of  H"]F near the cusps. 

We also note that, concerning Theorem 2, our contribution lies in the 
construction of  a proper harmonic homotopy equivalence of  finite energy and 
maximal rank. The remaining arguments needed to prove this theorem are due to 
Mok [16]. 



Locally Symmetric Complex Manifolds 293 

1. The Metrics on Domain and Image 

a) The Domain M 

By assumption, M admits a compactification as a smooth K~ihler manifold 114, with 
the property that .M \ M consists of a union of  complex hypersurfaces with normal 
crossings. The K/ihler metric of  M restricts to a K/ihler metric ~o on M. 

Terminology. We call these hypersurface compactifying divisors, or short, cd's. 
Also, we call the boundary of  a neighborhood of a compactifying divisor a bn. 

We let si = s[ |  | s~, be local sections of  the normal bundles of  the cd's. In 
particular, si vanishes on the corresponding cd. We then take 

g := ~ O0(q~ (]s~[) log (llog[s~ 121 �9 ..." [log[~,l  21) + co~, 
i 

where q~ is a suitable cut-off functions so that ~0 (Is~l) is identical one near the 
corresponding cd and vanishes outside a neighborhood of the cd, in particular for, 
say, Is~l > 3/4, and where c > 0  is chosen sufficiently large to make g positive 
definite, g then is a K/ihler metric with the following properties. 

(K 1) g is complete 
(K2) (M, g) has finite volume 
(K 3) If  D is a disk normal to a cd, i.e. a local complex curve in M intersecting the 
cd. at 0 cD, then the restriction of  g to D behaves asymptotically (i.e. when 
approaching 0) like the Poincar6 metric on the punctured disk 

1 
O(71og(lloglz[ 2 I) --- [z12 (log [zl2) 2 ]dz[2 

(K4) A cd metrically looks like a complex hypersurface in the following sense: ifcg 
is the collection of disks normal to the cd, then ff has finite nonzero ( 2 n -  2) 
dimensional Hausdorff  measure, where n = dimeM. (This is due to the part c~  in 
the definition of  g.) 

b) The Metric of Complete Negatively Curved Kiihler Manifolds of Finite Volume 

Let N be a complete K~ihler manifold of finite volume with curvature bounded 
between two negative constants. Given an end of  N, we choose a geodesic ray ? 
going into that end, an arbitrary initial point t = 0 on ? and a parametrization ?(t) 
by arclength. 

I f? '  is another ray going into the same end, then we can choose ?'(0) in such a 
way that for the parametrization ?'(t) by geodesic distance 

lim d(?(t), 7'(t)) = 0. 
t - *00  

We do this for every geodesic ray extending into the given cusp and put 

O := exp ( -  exp t). (1.1) 

We put N~o := {x e N: Q (x) < Qo}. As Nis negatively curved and of  finite topological 
type (this follows, e.g., from [23]), though each each point of  NQo there is precisely 
one geodesic ray going into the given cusp, provided Qo > 0 is sufficiently small. 
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Hence, the level sets Q = const ~ Q0 are smooth and diffeomorphic to each other, 
and the diffeomorphism is explicitly obtained by moving along the geodesic rays. 

Hence, in N~0, we can choose local coordinates in such a way that the 
coordinates on the level sets Q = const are independent of  ~, i.e. invariant under 
moving along geodesic rays. 

It then follows from Lemma 8 of  [23] that the corresponding metric tensor of the 
l 

hypersurfaces Q = const is bounded by Ilog Q I" In other words, if this hypersurface 

is described by the coordinates u~(i= 1 , . . . , 2 n - i ,  n = d i m c N  ) and the metric 
tensor is denoted by g,,,uj, then 

C 

Igu, uj (ul . . . .  , u2~- 1, ~)1 < llog Q I" (1.2) 

Here c is a fixed constant, depending only on the geometry of  N. 
In the case of  locally symmetric varieties of  rank one, we can also give a more 

explicit description of  the metric as follows (cf. [1 ]): 
The complex unit ball 

{zc~":~ llzil2<l} 
can be represented as a Siegel domain of  genus 2, namely 

(w, ut,...,un_l)ClUn: I m w - -  ~ luiL2>O , 
i = l  

via the transformation 

w - i  ui- 1/~ 
Zl -w+i ,  zj+l= w + i ( J = l ' " " n - l ) "  

In this representation, the metric becomes 

O~ - l o g ( I m w -  ~ (luil 2) . (1.3) 
i = !  

If  we consider a quotient of the unit ball by a discrete arithmetic group ofisometries 
which has finite volume then near the so called cusps, i.e. the points where the 
fundamental domain reaches the boundary of  the unit ball, this quotient is obtained 
by just putting 

z ~ e 2nia'v, a E ] R ,  

and then making the appropriate identifications in the u~-directions. If  we represent 
z in polar coordinates (Q, r then in particular 

- 1  
Im w = ~ log 0 

Q = 0 corresponds to the cusp. 
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In the unit ball, we can look at the disk 

{Izal< 1, z2 . . . . .  z ,--0}.  

Subject to the operation of S ( U ( n -  1) x U(1)), this disk sweeps out the whole unit 
ball. In the Siegel domain representation, this disk becomes the half plane 

{Imw >0, ul . . . . .  u,_l =0}. 

Since, as mentioned, the whole space can be recovered from the images of this half 
plane under isometries, it suffices to evaluate the metric on this half plane. In the 
quotient, we therefore have to consider 

only where 

Now 

n - 1  

Z lull 2=0"  (1.4) 
i = 1  

\ ~ \ (log ~)2 

and 

because of (1.4). 

r The Metric of  Hilbert Modular Varieties 

These are irreducible noncompact quotients of finite volume of H", where 
H = {x + iy ~ IE: y > 0} is the upper half plane. Apart from quotient singularities 
which disappear by passing to a finite covering and hence can be neglected for 
our purpose, these varieties again have cusp singularities. The kernel function 
now is 

- log  (Ira w l . . .  Im w.)  

for (w I ..., w,)~H", and near the cusp, one passes to the quotient by putting 

i 
ajk log Z k ~wJ=k= 1 

Where the ajk are positive integers. 
Putting zk = Qke'k with Qk > 0, the kernel function becomes 

- j~l l~ C~1 ( -  2aik l~ Ok)) �9 
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In order to compute the metric, we have to take 0t~ o f  the kernel function, hence 
evaluate 

( ~ ( ~  ) ) _  ~ 4 a  2 1 
1 a O i ~  ~ log (-- 2ajk log Qk) - -  2 "  

~ , ~ &  - ,=1 0~ (~'k=l(--2ajklOg0k)) 

Thus, if e.g. Qe tends to zero, in the ze-direction, the metric again behaves like the 
Poincar6 metric on the punctured disk, whereas in the orthogonal directions, we get 
a decay of  order 

1 
(log Q d )  2 " 

For more details on the preceding construction, we refer to Hirzebruch [9; 
particularly p. 193f., and p. 204ff.] as well as Ash et al. [1]. 

2. Construction of a Finite Energy Map 

On the domain, we let (r, 0) be polar coordinates on a disk transversal to the cd so 
that r = 0 lies on the cd. We denote the coordinates in the other directions by x. The 
volume form then behaves like 

1 
r (log r) 2 dr dO dx. (2.1) 

On the image, we take the same coordinates r u(= (ul . . . . .  u2,_1) locally) as 
in I b. (Similarly, in the case of  1 c.) We then choose a fixed differentiable homo- 
topy equivalence from the CR-hypersurface r = const onto the CR-hypersurface 
Q = const, and we let r and Q = 0(r) correspond via 

log e(r) = - (log 0 2. (2.2) 

We denote the map constructed in this way by h. We can control the components of 
the inverse metric tensor of the domain by 1 a) in the following way * 

?,, .., r2 (log r)2, ?00 .,~ (log r)2 by (K3) (2.3) 

and 
? xx ,... const by (K4). (2.4) 

Likewise, by 1 b), for the metric tensor of  the image 

1 
gQQ -- 0 2 (log 0) 2 by (1.1) (2.5) 

and 

< Co (2.6) 
gu, u~ = l log Q I 

(c o = const) by (1.2) 

Thus, the energy of  h is controlled via 

. laQ  [,auj 1 
E ( h ) < q  j? ge,~Tr ) + ?~176 -ff-~ [&p +?XXc 2 j r ( l o g r )  2 drdtpdx, 

x Super- and subscripts denote the corresponding coordinate directions 
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where cl and c 2 again are finite constants. 
From (2.2), we derive 

and then from (2.3)-(2.7) 

10Q 2 
= - - log r, (2.7) 

Q Or r 

E(h)  < c 3 < oo . 

We apply the same construction near each cusp, and we then extend these maps to 
the bounded parts of  domain and image to get a proper homotopy equivalence, 
again called h, of  finite energy. In a similar way, we can construct a proper 
homotopy equivalence of  finite energy if the image is a Hilbert modular variety with 
a metric as in 1 c). 

3. The Harmonic Map and Its Properties 

a) Existence 

Since the image has nonpositive curvature, we can use the argument of  [20] 2, to 
deform the map h of  finite energy, constructed in the preceding section, into a 
harmonic m a p f o f  finite energy, f t h e n  is a smooth map. We want to verify that f i s  
also a proper homotopy equivalence. 

b) f is Pluriharmonic 

We again make use of  the domain metric of  1 a). Near each cusp, we choose a family 
~0~ of cut-off functions depending only on [sil where sl is again the section of  the 
normal bundle of  the corresponding cal. We let ~o~ - I outside a neighborhood of  the 
cd, ~p, ~ 1 as e ~ 0. tp~ (Isil) - 0 for I si[ log I sll < e, 0 < tp~ (Is/I) < 1 everywhere, and 
finally, we let t 2 (log t) 2 r be bounded independently of  e as e ~ 0. Thus, 

IA~0~l ~ [ Is, lZ(logls, I)2 ~p~' I < c, (3.1) 

where c is independent of  e. 
We then use the well-known formula (cf. e.g. [10, 1.6]) for the energy density 

e ( f ) = l d f l  2 

d e ( f )  = [d d f[  2 + ( d f "  Ric M (el), d f "  el)  - ( R N ( d f "  ei, d f .  e~) d f .  ei, d f '  e j ) ,  

(3.2) 

where (e i) is an orthonormal frame on M, Ric u is the Ricci tensor of  M, and R N the 
curvature tensor of  N. On the other hand, by (3.1) and s i n c e f h a s  finite energy, 

~ A e ( f )  = ~ dq~ . e ( f )  (3.3) 
M M 

is bounded independently of  e, and hence 

A e OF) < ~ .  (3.4) 
M 

2 The noncompactness of the image presents no obstacle, since Hamilton's theorem [7] still holds 
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Since our domain metric has bounded Ricci curvature (cf. [4, Proposition (3.5)]), 

~ ( d f  " RicU(ei), df  . ei) < cE( f ) .  (3.5) 

Since the sectional curvature of N is nonpositive, we obtain from (3.2), (3.4), (3.5) 

I Vdf[ 2 < oo.  (3.6) 
u 

For a smooth compact subset K of M, we then obtain 

I ! A e ( f ) [ =  o ~ - - ~ e ( f ) <  JKe(f)"  JKIVdfl2 I. (3.7) 

Letting K run through a suitable exhaustion of M, (3.6), (3.7), and E ( f )  < oo, 
imply 

I A e( f )  = 0. (3.8) 

As in [22], we put ( f =  ( f l  .. . .  , f " )  in local coordinates) 

Jf~ = 8f--~-~ dr', 

D J f  ~ = a J f  ~ + r ~ S f P  ^ ~f~, etc. 

employing in addition, however, a summation convention. Of course, F~r are the 
Christoffel symbols of the image N, and we denote the metric tensor by (g~p). 

If co is the K~ihler form of M, then the argument leading to (3.8) also gives 

~8~7(g~BJf~ A c~f ~) A ~o "-z = 0. (3.9) 

On the other hand, we have Siu's Bochner type identity [22, Sect. 3] (in 
integrated form) 

O~ (g~BSf ~' A c? f a) ^ o )  n -  2 = ~ { R~rsO-f ~' ̂  c3 fa ^ cgJV ̂  ~'~ ^ co "-2 
M M 

- -g ,aDgf 'ADafa  A~o"-z}. (3.10) 

As in [22, Sect. 4], sincefis harmonic and the metric of the unit ball is strongly 
negative, both terms in the integral on the right hand side are pointwise nonpositive, 
hence 

D j f ' - D a f ~ - - O  (3.11) 

and 

R ~ s a - f  ~ ̂  a l p  ^ af~ ^ , V  ~ -- o.  (3.12) 

Lemma 1. f is pluriharmonic, i.e. the restriction o f f  to any local complex curve in M 
is harmonic. 

c) Global Behavior 
A neighborhood of a cd can be locally fibered by local holomorphic curves of 
the type of  the unit disk that are transversal to the cd and that have the property 
that their intersection with a bn is a homotopically nontrivial curve in the bn. 
This follows from the assumption that M and N are homotopically equivalent 
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and from Lemma 3 below. On each subdisk, we let again its center O correspond to 
the intersection point with the cd. Because of  (K4) and E ( f )  < ~ ,  the restriction of 
f t o  almost every such disk has finite energy (and is harmonic as established in b). 
We now need 

Lemma 2. Let M be a manifold with (smooth) boundary and o f  finite volume, and 
let N be complete with nonpositive sectional curvature. Let g: ~ M ~ N be a smooth 
map. Let f: M ~ N be a harmonic map of  finite energy with f l O M = g. Then there 
is no other harmonic map with finite energy and the same boundary values homotopic 
to f. 

Proof. We can take over the arguments of  [21, Sect. 2], if we note that the function 
~p = (Qz + 1)t/2 defined on p. 369 of [21] satisfies Fq~ = 0 on 8 M  in our case, so that 
we can still perform the integration by part used in the proofs of  Lemmas 1 and 2 of 
[21]. Q.E.D. 

In particular, under the assumptions of Lemma 1, any such harmonic map is 
necessarily energy minimizing. This will be essential for our subsequent reasoning. 

Lemma 3. Let X be a complete (noncompact) manifold of  nonpositive curvature. Let 
U be a neighborhood of  an end of)( .  Let ~ be a curve in U which is homotopically 
nontrivial in U but which can be homotoped in U into arbitrarily short curves. Then ~ is 
homotopically nontrivial in X. 

Proof We take some 3-neighborhood V~ of 0 U. There exists e > 0 with 

length (z) > e (3.13) 

for any homotopically nontrivial curve z in V0. Let us assume also 

6 > e. (3.14) 

Let U' be the component of X \  V~ with 

U'c~U:~O. 

By assumption, we can move ~ into U' and achieve 

length (y) < e. (3.15) 

Let ~(t) denote the images of~ = ~(0) under the heat flow (t > 0). I f  the initial curve 
was parametrized proportional to arclength, 

length (7(0) < length(y) for all t > 0. (3.16) 

For background information on the heat flow, see [10, Chap. 3]. 
By (3.13)-(3.16), and since ~ and hence 7 (t) is homotopically nontrivial in U, no 

(t) can be contained in V0, and hence 

y ( t )= U 

for all t > 0. 
Since on the other hand, y can be homotoped to arbitrarily short curves by 

moving towards the end, ~ (t) cannot converge to a closed geodesic (such a geodesic 
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would have to realize the minimal length in its homotopy  class) and hence has to 
move towards the end as well. 

I f  y would be homotopic  to a point p, then 

p (t) ---p 

would be another  homotopic  solution of  the heat flow, and by the stability lemma 
of  Har tman (of. [10, 3.4]) 

dist (p(t),  V(t)) 

had to be nonincreasing contradicting that V(t) moves towards the end. Q.E.D. 

A similar argument yields 

L e m m a  4. Let X be a complete, nonpositively curved manifold with at least two ends. 
Let U be a neighborhood of one end, and let ~ be a homotopically nontrivial curve in U 
that can be homotoped into arbitrarily small curves by moving towards the 
corresponding end. Then it is not possible to shrink 7 by moving towards a different end 
as well. 

Let D be a disk, i. e. a local holomorphic curve, transversal to a cd and having the 
property that its intersection with a bn is homotopically nontrivial in this bn. By 
Lemma 1, f JD  is harmonic. Since the energy of  f I D  and the fact that f I D  is 
harmonic do not  depend on the metric of  D but only on the conformal structure (cf. 
[10, 1.3]), we can use the standard flat metric on each such D. Again, we let O ~D be 
the intersection of  D with the cd. 

L e m m a  5. I f  the energy of f l D  &finite, then f l D  is proper, i.e. for any compact 
K ~  N there is a neighborhood U x of 0 ~D with 

f - ' (K)r~Dr~Ux = O. 

Proof. We write u :=flD. Let D o := {(r, q~) eD:  0 _< r < e}, where we use standard 
polar coordinates on D. 

Since E(u) < 0% for the energy of  u on D o we have 

Eo ( u )=  ~ I u2,+-/su rdq~dr--.Oasl--*O. (3.17) 
r = O  ~ = 0  

For  0 _<- r 1 < r2, we can find tp o e [0, 2re] with 

r 2 2~  

d(u(rl,q)o),u(r2,(Po)) <= f I [u, ldrd~o 
r m r  I ~ = 0  

/ ~ \ 1 / 2  
< ( log ' 2J .E,2(u) 1/2 . 

\ r l /  
(3.~8) 
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Likewise, given 0 < ~1 < 02, we can find r 0 ~ [01,02] with the property that for 
all ~01, (t0 2 E [0, 2zt] 

d(u(ro,q)l),u(ro, q)2))< ~ lu~ld~o<2rc Lu~12d~o 
qJ=O 

= < 2~ (E~, (u)) 1/2 �9 dr 

= 2 rc (log ~a ) -  l/2 EQ~ (u)a/2. (3.19) 

Let now an end of  M be given. This end is mapped under the map h constructed 
in Sect. 2 to an end of  N. Let U be a neighborhood of  this end of  N, and let D 
intersect the given end of  M. As h is a homotopy equivalence, h (0D) is (homotopic 
to) a curve satisfying the assumption of  Lemma 3. 

Using Lemmas 3 and 4 and (3.17)-(3.19) given e >0 ,  we can find some 

sufficientlysmallRo>O, someRl~[~- ,Rol ,R2~[~-,~-l ,andq%~[O,2n]so 

that u (aDR,), u (0DRy), and u ([R2, R 1 ] • {r are all contained in U and of  length 
at most e/4. 

We then look at the c u r v e :  in D obtained in the following way: first, keep r = R1 
fixed and let q~ run from q% to q~o + 2•. Then, keep ~o = ~o o (identified with q% + 2n) 
fixed and let r run from R 1 and R2. Then keep r = R2 fixed and let q~ again run from 
q% to q~o + 2r~. Finally, keep again q~ = q% fixed and let r run from R 2 to R~. : then is 
a homotopically trivial curve in D \  {0} c M with u ( : ) =  U and 

length (u(:)) < e. (3.20) 

We then look at the lifts 

a:D\{0}--, 
to universal covers. The lift ~ o f :  is a closed curve and bounds a region B. We then 
look at the harmonic extension 

t T : B ~  

al7=,717. 

(3.20) implies that there is a ball B(p, e)c /V of  radius e with 

Since ~ is simply connected and nonpositively curved, it follows from the 
maximum principle [applied to a72 (p, tT(- )), where aT(., �9 ) is the distance function 
on .~] that 

~(B) r B(p, e). (3.21) 

On the other hand, by uniqueness (Lemma 2), 
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This, together with (3.21), shows that u maps the whole annulus R 2 ~ r < Rt into an 
e-neighborhood of  U. 

In this way, we can cover D by smaller and smaller annuli that are mapped under 
u further and further towards the end, and we deduce that u is proper  as 
claimed. Q.E.D.  

We now let ~ be the collection of  all disks of  a local fibration of  a neighborhood 
o fa  cd. by transversal disks with the above homotopy  property. We want to control 
the energy of  f on all disks in ~ .  We start with a disk D e ~ on which the energy o f f  
is finite. (3.17) and the chain o f  inequalities in (3.19) imply that we can always find 
some sufficiently small r o > 0 for which 

2n 

l (ro, 12 := 6 (to, D)  
r 

becomes arbitrarily small. (Again, we put  u :__-flD.) Sincefis  smooth, we can find a 
neighborhood q / o f  D in ~ such that for all D' e q/ 

6 (r o, D')  < 26 (ro, D). 

On D~o, we then construct a comparison map v = vo, as follows: for r = to, we 

v (r o, ~o) = f l D ' ( r o ,  ~o), and for r = ~ ,  v = u (r o, ~0). For  ro/2 < r < put r0, 

we let v be the harmonic extension of  its boundary values, and for r < ro/2 , we define 

v (r, ~p) = u (2 r, ~0). 

We see that there is a fixed constant K, independent o f D '  ~q/, that bounds the 
energy ofv D, on D~0. We note that v D, has the same boundary values a s f ] D '  on OD'~o. 

Since harmonic maps with finite energy are unique by Lemma 2, the restriction 
f lD'o for D ' ~  q / h a s  to coincide with the energy minimizing map with the same 
boundary values. First, this follows for those D' where we already know that the 
energy of  f is finite. Since these disks are dense in q/, and since we now have uniform 
bounds for the energy on these disks, and since f i s  smooth, the result follows for all 
disks in ~ .  On the other  hand, ~ is compact  (since the cd.'s are compact) and hence 
is covered by a finite number o f  such neighborhoods. Therefore, we can apply the 
argument o f  the p roo f  of  Lemma 5 uniformly to all D ~ ~ and deduce 

Lemma 6. Let (~,) b_e a sequence o f  ( in M)  homotopically nontrivial curves shrinking 
to a point in a cd o f  M. Then the sequence f (~,) o f  image curves is not contained in any 
compact subset o f  N. Moreover, this establishes a well-defined correspondence 
between the ends o f  M and N. 

d) f has Maximal  Rank at Some Point 
a) We first treat the case where M (and N) have at least two ends. 

F rom Lemma 6 we see that we can control the mapping o f  the ends. Namely, f 
maps a given end in the domain to the same end in the image as the original proper 
homotopy  equivalence h of  Sect. 2 does. 

On the other hand, since we have more than one end, a bn. o f  an end defines a 
nontrivial homology class of  real dimension 2n - 1, and the image under f again is a 
nontrivial homology class. 

This together with Lemma 6 implies that the functional determinant o f f  cannot 
vanish identically. 
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fl) The case where M and N have only one end can be reduced to the preceding 
one as follows: 

After a suitable conjugation, we can assume that the given cusp in N 
corresponds to the point at infinity in the universal cover ~7 (i. e. to Im w = ~ resp. 
Im w 1 . . . .  Im w n = oo in the representations of 1 b) resp. 1 c)). The isotropy group 
of the cusp then has a subgroup of finite index leaving the level sets of the Bergmann 
kernel function invariant. The quotient of N by this subgroup and hence also by the 
isotropy group has infinite volume, because geodesic rays running into the cusp are 
permuted and the distance between these rays increases when moving away from 
the cusp because of the nonpositivity of the sectional curvature. Hence rc 1 (N) must 
contain an element 7 not fixing the cusp. Since n 1 (N) is residually finite by a result of  
Setberg (cf. [2, p. 39]), it contains a normal subgroup F of finite index not 
containing 7. Then N/F has more than one end. Therefore, by the argument of  a), 
the lift o f f  to some finite coverings and hence also f has maximal rank somewhere. 

For more details on the isotropy group of a cusp, cf. Eberlein [5] and 
Hirzebruch [9] (for the Hilbert modular varieties). 

4. Proof of  the Theorems 

Theorem 2 follows from the argument of Mok [16] in conjunction with the 
preceding construction of a harmonic homotopy equivalence which has maximal 
rank somewhere, as established in 3d). 

For Theorem 1, it first follows from Siu's arguments [22], using (3.12) and that 
the harmonic map f has maximal rank at some point, that f is + holomorphic. N 
can be compactified as an algebraic variety by adding a simple point to each cusp. 
Note that this does not depend on the locally symmetric structure of N, but only on 
the fact that the sectional curvature of N is bounded between two negative 
constants, cf. [23]. The Schwarz lemma of [25] then implies in conjunction with 
Lemma 6 that f is proper. 

If M is Hironaka's nonsingular compactification of M, then f can be extended 
as a holomorphic map f :  ~ r ~  ~, cf. e.g. [13, Corollary 3.7, p. 100]. Also, the 
extension f is a map of degree + 1. This is seen as follows: First, since 
+ holomorphic of maximal rank, it cannot have degree 0. Let g: N ~ M  be a 
homotopy equivalence so that h = f o  g is homotopic to the identity of N. Let v N be 
the volume form of N. We use our preceding construction (modifying h into a finite 
energy map and then use harmonic replacement on an increasing set of domains) to 
convert h into a proper harmonic self-map h' of  N. It is clear from the construction 
that deg h = S h * vN) (vol N)-  1 remains unchanged, since integer valued. Namely, 

one just choses a domain D, with S h* v N > ( d e g h - � 8 9  N, observes that 
I D  I 

harmonic replacement on D, does not c~ange this number and then concludes that 
the degree can no longer jump to a smaller integer as the domain increases. 

As above h' is + holomorphic of maximal rank. The Schwarz lemma [25] then 
implies 

Idegf" degg[ = [degh'[ < 1 

so that f is of  degree + I. 
In order to show that f is bijective on M, we can now proceed as in [22, p. 110 f. ], 

namely show that the set V of those points in M, where f is not locally 
horneomorphic, is empty, since otherwise V would be a complex hypersurface in M, 
extending into M, whereas f (V )  would have codimension at least 2. The preimage 
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of  a generic  po in t  in f ( l O  is a non t r iv ia l  compac t  ana ly t ic  subvar ie ty  o f  M (since f is 
p roper ) .  This  con t rad ic t s  the fact t ha t  f is a h o m o t o p y  equivalence.  
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