A REMARK ON OUR PAPER "NEGATIVE HOLOMORPHIC CURVATURE AND POSITIVE CANONICAL BUNDLE"

DAMIN WU AND SHING-TUNG YAU

This is a continuation of our first paper in [WY16]. There are two purposes of this paper: One is to give a proof of the main result in [WY16] without going through the argument depending on numerical effectiveness. The other one is to provide a proof of our conjecture, mentioned in [TY], where the assumption of negative holomorphic sectional curvature is dropped to quasi-negative. We should note that a solution to our conjecture is also provided by Diverio-Trapani [DT]. Both proofs depend on our argument in [WY16]. But our argument here makes use of the argument given by the second author and Cheng in [CY75].

The proof of Theorem 1 below is obtained by us in 2015, and has been distributed in the community; e.g. it was presented by the second author in the birthday conference of Richard Schoen on June 21, 2015. We have also settled the complete noncompact case, which, together with applications, will appear soon.

1. Negative holomorphic sectional curvature

By using the argument in [WY16], we can directly derive the following result in the Kähler setting, without using the notion of nefness.

Theorem 1. Let (X, ω) be a compact Kähler manifold with negative holomorphic sectional curvature. Then X admits a Kähler-Einstein metric of negative Ricci curvature. In particular, the canonical bundle of X is ample.

Proof. For $t>0$, consider the Monge-Ampère type equation

$$
\begin{equation*}
\left(t \omega+d d^{c} \log \omega^{n}+d d^{c} u_{t}\right)^{n}=e^{u_{t}} \omega^{n} . \tag{MA}
\end{equation*}
$$

Since $\omega>0$ and X is compact, there exists a sufficiently large constant $t_{1}>1$ such that $t_{1} \omega+d d^{c} \log \omega^{n}>0$ on X. Fix an nonnegative integer k and $0<\alpha<1$. Denote by $C^{k, \alpha}(X)$ the Hölder space with respect to fixed metric ω. Define

$$
\begin{gather*}
I=\left\{t \in\left[0, t_{1}\right] \mid \text { there is a } u_{t} \in C^{k+2, \alpha}(X) \text { satisfying }(\mathrm{MA})_{t}\right. \text { and } \tag{1}\\
\left.t \omega+d d^{c} \log \omega^{n}+d d^{c} u_{t}>0\right\} .
\end{gather*}
$$

First, note that $I \neq \emptyset$, since $t_{1} \in I$. Indeed, (MA) $t_{t_{1}}$ can be written as

$$
\left(t_{1} \omega+d d^{c} \log \omega^{n}+d d^{c} u_{t_{1}}\right)^{n}=e^{u_{t_{1}}+f_{1}}\left(t_{1} \omega+d d^{c} \log \omega^{n}\right)^{n}
$$

[^0]where
$$
f_{1}=\log \frac{\omega^{n}}{\left(t_{1} \omega+d d^{c} \log \omega^{n}\right)^{n}} \in C^{\infty}(X)
$$

Applying [Yau78] obtains a solution $u_{t_{1}} \in C^{\infty}(X)$.
That I is open in $\left[0, t_{1}\right]$ follows from the implicit function theorem. Indeed, let $t_{0} \in I$ with corresponding function $u_{t_{0}} \in C^{k+2, \alpha}(X)$. Then, there exists a small neighborhood J of t_{0} in $\left[0, t_{1}\right]$ and a small neighborhood U of $u_{t_{0}}$ in $C^{k+2, \alpha}(X)$ such that

$$
t \omega+d d^{c} \log \omega^{n}+d d^{c} v>0 \quad \text { for all } t \in J \text { and } v \in U
$$

Define a map $\Phi: J \times U \rightarrow C^{k, \alpha}(X)$ by

$$
\Phi(t, v)=\log \frac{\left(t \omega+d d^{c} \log \omega^{n}+d d^{c} v\right)^{n}}{\omega^{n}}-v .
$$

Then, the linearization is given by

$$
\Phi_{u_{t_{0}}}\left(t_{0}, u_{t_{0}}\right) h=\left.\frac{d}{d s} \Phi\left(t_{0}, u_{t_{0}}+s h\right)\right|_{s=0}=\left(\Delta_{t_{0}}-1\right) h
$$

which is invertible from $C^{k+2, \alpha}(X)$ to $C^{k, \alpha}(X)$, where $\Delta_{t_{0}}$ stands for the Laplacian of metric $t_{0} \omega+d d^{c} \log \omega^{n}+d d^{c} u_{t_{0}}$. Thus, we can apply the implicit function to obtain the openness of I.

The closedness is contained in the proof of Theorem 7 in [WY16]. More precisely, for $t \in I$ we denote

$$
\omega_{t}=t \omega+d d^{c} \log \omega^{n}+d d^{c} u_{t}, \quad \text { and } \quad S=\frac{n \omega_{t}^{n-1} \wedge \omega}{\omega_{t}^{n}}
$$

Then (MA) $)_{t}$ becomes $\omega_{t}^{n}=e^{u_{t}} \omega^{n}$. It follows that

$$
d d^{c} \log \omega_{t}^{n}=d d^{c} \log \omega^{n}+d d^{c} u_{t}=\omega_{t}-t \omega
$$

It follows from [WY16, Proposition 9] that

$$
\begin{equation*}
\Delta^{\prime} \log S \geq\left[\frac{t}{n}+\frac{(n+1) \kappa}{2 n}\right] S-1, \tag{2}
\end{equation*}
$$

where Δ^{\prime} is the Laplacian of ω_{t} and $\kappa>0$ is a constant such that $-\kappa$ is the upper bound of the holomorphic sectional curvature $H(\omega)$ of ω. Thus,

$$
S \leq \frac{2 n}{\kappa(n+1)}
$$

On the other hand, applying the maximum principle to $(\mathrm{MA})_{t}$ yields

$$
\max _{X} u_{t} \leq C
$$

where $C>0$ is a generic constant independent of t. It follows from the same process in [WY16] that

$$
\left\|u_{t}\right\|_{C^{k+2, \alpha}} \leq C
$$

This shows the closedness of I. In particular, $0 \in I$ with corresponding $u_{0} \in C^{\infty}(X)$. This gives us the desired Kähler-Einstein metric $d d^{c} \log \omega^{n}+d d^{c} u_{0}$.

2. Quasi-negative holomorphic sectional curvature

In this section we seek to extend Theorem 1 to the case (X, ω) has quasi-negative holomorphic sectional curvature, i.e., the holomorphic sectional curvature of ω is less than or equal to zero everywhere on X and is strictly negative at one point of X. We can prove the following result (compare [DT]):

Theorem 2. Let (X, ω) be a compact Kähler manifold with quasi-negative holomorphic sectional curvature. Then

$$
\begin{equation*}
\int_{X} c_{1}\left(K_{X}\right)^{n}>0 . \tag{3}
\end{equation*}
$$

The proof uses the following two lemmas.
Lemma 3. Let Θ be a $(1,1)$ form on a compact Kähler manifold (X, ω) which admits a smooth potential on every coordinate chart U, i.e., $\Theta=d d^{c} h_{U}$ for some $h_{U} \in$ $C^{\infty}(U)$. Then for any smooth function u on X satisfying $\Theta+d d^{c} u \geq 0$ on X,

$$
\int_{X} e^{-\beta\left(u-\max _{X} u\right)} \omega^{n}<C,
$$

where β and C are positive constants depending only on Θ and ω.
The proof of Lemma 3 is essentially a globalization of the local estimate in [Hör90, p. 97, Theorem 4.4.5] via the Green's formula on a compact manifold, which becomes standard by now. In fact, Lemma 3 has been known to the second author since the late 1970s.

The next lemma can be viewed as a special case of the second author with Cheng [CY75, p. 335, Theorem 1].

Lemma 4. Let v be a negative C^{2} function on a compact Kähler manifold (X, ω). Suppose $\Delta_{\omega} v \geq-\varphi$ for some continuous function $\varphi \geq 0$ on X. Then,

$$
\int_{X}|\nabla \log (-v)|^{2} \omega^{n} \leq \frac{1}{\min _{X}(-v)} \int_{X} \varphi \omega^{n} .
$$

Proof of Lemma 4. Note that

$$
\Delta \log (-v)=\frac{\Delta v}{v}-|\nabla \log (-v)|^{2}
$$

Integrating both sides against ω^{n} over X yields

$$
\int_{X}|\nabla \log (-v)|^{2}=\int_{X} \frac{-\Delta v}{-v} \leq \int_{X} \frac{\varphi}{\min (-v)},
$$

which is the desired estimate.
Corollary 5. Let Θ and u satisfy the condition of Lemma 3. That is, let Θ be a $(1,1)$ form on a compact Kähler manifold (X, ω) admitting a smooth potential on
every coordinate chart U, and let $u \in C^{\infty}(X)$ satisfy $\Theta+d d^{c} u \geq 0$ on X. Then $v \equiv u-\max _{X} u-1$ satisfies

$$
\begin{equation*}
\int_{X}|\log (-v)|^{2} \omega^{n}+\int_{X}|\nabla \log (-v)|^{2} \omega^{n} \leq C \tag{4}
\end{equation*}
$$

where $C>0$ is a constant depending only on Θ and ω. Consequently, for any sequence $\left\{u_{l}\right\}_{l=1}^{\infty}$ of smooth functions on X satisfying $\Theta+d d^{c} u_{l} \geq 0$, the sequence

$$
\left\{\log \left(1+\max _{X} u_{l}-u_{l}\right)\right\}_{l=1}^{\infty}
$$

is relatively compact in $L^{2}(X)$.
Proof of Corollary 5. By the hypothesis $\Theta+d d^{c} u \geq 0$ we have

$$
\Delta_{\omega} u \geq-\operatorname{tr}_{\omega} \Theta
$$

Applying Lemma 4 to $v=u-\max _{X} u-1$ yields

$$
\int_{X}|\nabla \log (-v)|^{2} \omega^{n} \leq \int_{X} \operatorname{tr}_{\omega} \Theta \omega^{n}
$$

since $\min _{X}(-v)=1$. To bound the L^{2}-norm of $\log (-v)$, recall Lemma 3 that

$$
\int_{X} e^{-\beta\left(u-\max _{X} u-1\right)} \omega^{n} \leq C \int_{X} e^{\beta} \omega^{n}
$$

where the constants $C>0$ and $\beta>0$ depend only on Θ and ω. Observe that

$$
t \geq \log t, \quad \text { for all } t \geq 1
$$

Then,

$$
e^{t} \geq \frac{t^{N}}{N!} \geq \frac{(\log t)^{N}}{N!} \quad \text { for all } N \geq 0, t \geq 1
$$

Hence,

$$
e^{\beta(-v)} \geq \frac{[\log (-v)]^{N \beta}}{(N!)^{\beta}}
$$

Choose a large integer N such that $N \beta \geq 2$. Since β depends only on Θ and ω, so is N. Applying Hölder's inequality, if needed, yields

$$
\int_{X}[\log (-v)]^{2} \omega^{n} \leq C_{1}
$$

where $C_{1}>0$ is a constant depending only on Θ and ω. Therefore, we have established inequality (4), which implies the second statement, in view of the standard Rellich Lemma (see [Heb99, p. 37, Theorem 2.9] for example).

Let us now proceed to show Theorem 2.
Proof of Theorem 2. We shall use the continuity method, as in the proof of Theorem 1. Let $u_{t} \in C^{\infty}(X), t>0$, be the solution of

$$
\omega_{t}^{n}=\left(t \omega+d d^{c} \log \omega^{n}+d d^{c} u_{t}\right)^{n}=e^{u_{t}} \omega^{n}
$$

with $\omega_{t} \equiv t \omega+d d^{c} \log \omega^{n}+d d^{c} u_{t}>0$ on X. Let I be the interval defined by (1) in the previous proof. Then, I contains a large number t_{1} and I is open, by the same argument in the proof of Theorem 1.

We claim that I contains every t in the interval $\left(0, t_{1}\right]$ provided that the holomorphic sectional curvature $H(\omega) \leq 0$ (which, in particular, implies that K_{X} is nef if $H(\omega) \leq 0$; compare [TY]). Fix an arbitrary $t_{2} \in\left(0, t_{1}\right)$. For any $t_{2} \leq t \leq t_{1}$, by (2) we have

$$
\Delta^{\prime} \log S \geq\left[\frac{t}{n}+\frac{(n+1) \kappa}{2 n}\right] S-1 \geq \frac{t}{n} S-1
$$

since $H(\omega) \leq-\kappa$ with $\kappa \geq 0$ on X. By the standard maximum principle,

$$
\max _{X} S \leq \frac{n}{t} \leq \frac{n}{t_{2}}, \quad \text { for all } t \geq t_{2}
$$

On the other hand, applying the maximum principle to the Monge-Ampère equation yields

$$
\begin{equation*}
\max _{X} u_{t} \leq C \quad \text { for all } t>0 . \tag{5}
\end{equation*}
$$

Here and below, we denote by $C>0$ a constant depending only on n and ω, unless otherwise indicated. Processing as [WY16] yields

$$
C t_{2} \omega \leq \omega_{t} \leq \frac{C}{t_{2}^{n-1}} \omega .
$$

and

$$
\inf _{X} u_{t} \geq C \log t_{2} .
$$

This implies the estimate for u_{t} up to the second order. The estimate constants may depend on t_{2}, which is fixed. One can then apply, either the local Hölder estimate of the second order, or the third order estimate, to obtain a bound for the $C^{2, \alpha}(X)$-norm of u_{t}; and hence a bound for $C^{k, \alpha}(X)$-norm of u_{t}. The bound may depend on t_{2}. This show the closedness of I up to the subinterval $\left[t_{2}, t_{1}\right]$. In particular, $t_{2} \in I$. Since t_{2} is arbitrary, we have proven the claim.

Using the claim, to prove (3) it is equivalent to show

$$
\begin{equation*}
\limsup _{t \rightarrow 0} \int_{X} \omega_{t}^{n}>0 \tag{6}
\end{equation*}
$$

since

$$
\int_{X} \omega_{t}^{n}=\int_{X} c_{1}\left(K_{X}\right)^{n}+n t \int_{X} c_{1}\left(K_{X}\right)^{n-1} \wedge \omega+O\left(t^{2}\right)
$$

as $t \rightarrow 0$. Using inequality (2) again we have

$$
\Delta^{\prime} \log S \geq \frac{(n+1) \kappa}{2 n} S-1 \geq \frac{(n+1) \kappa}{2} \exp \left(-\frac{\max _{X} u_{t}}{n}\right)-1,
$$

where we apply the Netwon-Maclaurin's inequality

$$
S=\frac{\sigma_{n-1}}{\sigma_{n}} \geq n \sigma_{n}^{-1 / n}=n e^{-u_{t} / n}, \quad t>0 .
$$

Integrating against ω_{t}^{n} over X yields

$$
\begin{align*}
\exp \left(-\frac{\max _{X} u_{t}}{n}\right) & \leq \frac{\int_{X} \omega_{t}^{n}}{\frac{n+1}{2} \int_{X} \kappa \omega_{t}^{n}} \\
& =\frac{\int_{X} \exp \left(u_{t}-\max _{X} u_{t}-1\right) \omega^{n}}{\frac{n+1}{2} \int_{X} \kappa \exp \left(u_{t}-\max _{X} u_{t}-1\right) \omega^{n}} . \tag{7}
\end{align*}
$$

Since $t_{1} \omega+d d^{c} \log \omega^{n}+d d^{c} u_{t} \geq \omega_{t}>0$ for each $0<t \leq t_{1}$, applying Corollary 5 with $\Theta=t_{1} \omega+d d^{c} \log \omega^{n}$ yields that the set

$$
\left\{\log \left(1+\max _{X} u_{t}-u_{t}\right) ; 0<t \leq t_{1}\right\}
$$

is relatively compact in $L^{2}(X)$. Then, a sequence $\left\{\log \left(1+\max _{X} u_{t_{l}}-u_{t_{l}}\right)\right\}_{l=1}^{\infty}$ converges in $L^{2}(X)$ to a function $w \in L^{2}(X)$. The standard L^{p} theory (cf. [AF03, p. 30, Corollary 2.7] for example) implies that a subsequence, still denoted by $\left\{\log \left(1+\max _{X} u_{t_{l}}-u_{t_{l}}\right)\right\}$, converges to w almost everywhere on X. It follows that

$$
\exp \left(u_{t_{l}}-\max _{X} u_{t_{l}}-1\right) \longrightarrow \exp \left(-e^{w}\right)
$$

almost everywhere on X, as $l \rightarrow+\infty$. Since $\exp \left(u_{t_{l}}-\max _{X} u_{t_{l}}-1\right) \leq 1$ for each l, it follows from the Lebesgue dominated convergence theorem that $\exp \left(-e^{w}\right) \in L^{1}(X)$ and

$$
\int_{X} \exp \left(u_{t_{l}}-\max _{X} u_{t_{l}}-1\right) \omega^{n} \longrightarrow \int_{X} \exp \left(-e^{w}\right) \omega^{n}>0
$$

Moreover, since $\kappa \geq 0$ on X and $\kappa>0$ in a neighborhood of X, we have

$$
\int_{X} \kappa \exp \left(u_{t_{l}}-\max _{X} u_{t_{l}}-1\right) \omega^{n} \longrightarrow \int_{X} \kappa \exp \left(-e^{w}\right) \omega^{n}>0
$$

Plugging these back to (7) yields

$$
\begin{equation*}
\lim _{l \rightarrow+\infty}\left(\max _{X} u_{t_{l}}\right) \geq-C \tag{8}
\end{equation*}
$$

where the constant $C>0$ depends only on n and ω.
From (8) we have two slightly different ways to conclude (6). For the first way, note that combining (8) and the previous upper bound (5) we know the constant sequence $\left\{\max _{X} u_{t_{l}}\right\}_{l=1}^{\infty}$ is bounded. Thus, by further passing to a subsequence we can assume $u_{t_{l}}$ converges to $\left(-e^{w}+c\right)$ almost everywhere on X, where c is a constant. By the upper bound (5) we can apply the Lebesgue dominated convergence theorem to conclude

$$
\int_{X} \omega_{t_{l}}^{n}=\int_{X} e^{u_{t_{l}}} \omega^{n} \longrightarrow \int_{X} \exp \left(-e^{w}+c\right) \omega^{n}>0
$$

as $l \rightarrow+\infty$. This proves the desired (6).
A second way to see (6) is to plug (8) back to the integral inequality in Lemma 3 (with $\Theta=t_{1} \omega+d d^{c} \log \omega^{n}$). This gives

$$
\int_{X} e^{-\beta u t_{l}} \omega^{n} \leq C \quad \text { for all } l \geq 1
$$

where $\beta>0$ is a constant depending only on ω. It follows that

$$
\begin{aligned}
\int_{X} \omega^{n} & =\int_{X} e^{-\frac{\beta}{\beta+1} u_{t_{l}}} e^{\frac{\beta}{\beta+1} u_{t_{l}}} \omega^{n} \\
& \leq\left(\int_{X} e^{-\beta u_{t_{l}}}\right)^{\frac{1}{\beta+1}}\left(\int_{X} e^{u t_{l}} \omega^{n}\right)^{\frac{\beta}{\beta+1}} \quad \text { (by Hölder's inequality) } \\
& =C^{\frac{1}{\beta+1}}\left(\int_{X} \omega_{t_{l}}^{n}\right)^{\frac{\beta}{\beta+1}} .
\end{aligned}
$$

Hence,

$$
\int_{X} \omega_{t_{l}}^{n} \geq C^{-1 / \beta}\left(\int_{X} \omega^{n}\right)^{\frac{\beta+1}{\beta}}>0, \quad \text { for all } l \geq 1
$$

This again confirms (6). The proof of Theorem 2 is therefore completed.
Remark 6. If X is projective then by [WY16, Lemma 5] we know K_{X} is ample. When X is Kähler, Diverio-Trapani [DT] points out that (3) implies X is Moishezon, by using a result of [DP04]. Then a theorem of Moishezon tells us that X is projective (see [Har77, p. 442, Theorem 2] for example); hence, K_{X} is ample by reducing to the projective case.

References

[AF03] Robert A. Adams and John J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003.
[CY75] Shiu-Yuen Cheng and Shing-Tung Yau. Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math., 28(3):333-354, 1975.
[DP04] Jean-Pierre Demailly and Mihai Paun. Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. of Math. (2), 159(3):1247-1274, 2004.
[DT] Simone Diverio and Stefano Trapani. Quasi-negative holomorphic sectional curvature and positivity of the canonical bundle. arXiv:1606.01381.
[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
[Heb99] Emmanuel Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities, volume 5 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999.
[Hör90] Lars Hörmander. An introduction to complex analysis in several variables, volume 7 of NorthHolland Mathematical Library. North-Holland Publishing Co., Amsterdam, third edition, 1990.
[TY] Valentino Tosatti and Xiaokui Yang. An extension of a theorem of Wu-Yau. arXiv:1506.01145, to appear in J. Differential Geom.
[WY16] Damin Wu and Shing-Tung Yau. Negative holomorphic curvature and positive canonical bundle. Invent. Math., 204(2):595-604, 2016.
[Yau78] Shing Tung Yau. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math., 31(3):339-411, 1978.

Department of Mathematics, University of Connecticut, 196 Auditorium Road, Storrs, CT 06269-3009, USA

E-mail address: damin.wu@uconn.edu

Department of Mathematics, Harvard University, One Oxford Street, Cambridge MA 02138

E-mail address: yau@math.harvard.edu

[^0]: The first author was partially supported by the NSF grants DMS-1308837 and DMS-1611745. The second author was partially supported by the NSF grant DMS-0804454.

