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Abstract

We consider the scalar wave equation in the Kerr geometry for Cauchy data which
is smooth and compactly supported outside the event horizon. We derive an integral
representation which expresses the solution as a superposition of solutions of the radial
and angular ODEs which arise in the separation of variables. In particular, we prove
completeness of the solutions of the separated ODEs.

This integral representation is a suitable starting point for a detailed analysis of
the long-time dynamics of scalar waves in the Kerr geometry.
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1 Introduction

In a recent paper [8], the long-term behavior of Dirac spinor fields in the Kerr-Newman
geometry, which describes a charged rotating black hole in equilibrium, was investigated.
It was shown that solutions of the Dirac equation for Cauchy data in L2 outside the event
horizon and bounded near the event horizon, decay in L∞

loc as t → ∞. In this paper, we
turn our attention to the scalar wave equation in the Kerr geometry. Our main result is
to derive an integral representation for the propagator, similar to the one obtained for the
Dirac equation in [8]. In our next paper [9], we will use this integral representation to
analyze the long-time dynamics and the decay of solutions in L∞

loc.
The analysis of the wave equation is quite different from that for the Dirac equation.

The main difficulty is that, in contrast to the Dirac equation, there is no conserved density
for the scalar wave equation which is positive everywhere outside the event horizon. This
is due to the fact that the charge density, which was positive for the Dirac equation,
is not positive for the wave equation. The other conserved density, the energy density,
is non-positive either: it is in general negative inside the ergosphere, a region outside
the event horizon in which the Killing vector corresponding to time translations becomes
space-like. For these reasons, it is not possible to introduce a positive scalar product which
is conserved in time. In more technical terms, we are faced with the difficulty that it is
impossible to represent the Hamiltonian (i.e. the operator generating time translations)
as a selfadjoint operator on a Hilbert space.

We remark that the existence of the ergosphere is a direct consequence of the fact
that the Kerr black hole has angular momentum [4]. Thus the ergosphere vanishes in the
spherically symmetric limit. This simplifies the analysis considerably.

A number of important contributions have been made to the rigorous study of the
scalar wave equation in black hole geometries. The current last word on the stability of
spherical black holes under scalar wave perturbations is the paper by Kay and Wald [14],
who proved using energy estimates together with a reflection argument that all solutions
of the wave equation in the Schwarzschild geometry are bounded in L∞. More recently,
Klainerman, Machedon, and Stalker [15] proved decay in L∞

loc of spherically symmetric
solutions. These papers use the spherical symmetry of the Schwarzschild metric in an
essential way. Whiting [21] proved the absence of exponentially growing modes for the
Teukolsky equation with general spin s = 0, 12 , 1, . . . (the case s = 0 gives the scalar wave
equation). Whiting’s approach is based on interesting differential and integral transforms,
which for a fixed angular momentum mode and fixed energy, convert the reduced ODEs
into an equation admitting a positive conserved energy. Beyer [2] studied the wave and
Klein-Gordon equations in the Kerr metric, using an approach based on C0 semigroup
theory. He proved that for each angular momentum mode, the Cauchy problem is well-
posed, and he also obtained a stability result for the Klein-Gordon equation, provided that
the mass parameter in this equation is sufficiently large. Finally, Nicolas [18] constructs a
global solution for a non-linear Klein-Gordon equation in Kerr.

Since the Hamiltonian cannot be represented as a selfadjoint operator on a Hilbert
space, we are forced to employ methods which are quite different from those which we
used in [8]. More precisely, the conserved energy gives rise to an indefinite scalar product,
with respect to which the Hamiltonian is selfadjoint. By considering the system in finite
volume with Dirichlet boundary conditions, we can arrange that the scalar product is
positive on the complement of a finite-dimensional subspace. This allows us to use the
general theory of Pontrjagin spaces [3, 16]. In particular, the Hamiltonian is essentially
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selfadjoint, and has a spectral decomposition involving a finite set of complex spectral
points, which appear in complex conjugate pairs, together with a discrete spectrum of real
eigenvalues. We write the projectors onto the invariant subspaces as contour integrals of
the resolvent. In order to obtain estimates for the resolvent, it is useful to consider the
Hamiltonian as a non-selfadjoint operator on a Hilbert space. This procedure also works
in the original infinite volume setting, and we derive operator estimates which compare
the resolvent in finite volume to that in infinite volume. Using these estimates, we can
represent the spectral projector corresponding to the non-real spectrum as integrals over
contours which are not closed and lie inside a region of of the form |Imω| < c(1+ |Reω|)−1

around the real axis. At this point, we make use of the fact that the scalar wave equation
in the Kerr geometry is separable into ordinary differential equations for the radial and
angular parts [4]. For the angular equation, we rely on the results of [10], where a spectral
representation is obtained for the angular operator, and estimates for the eigenvalues and
spectral projectors are derived. For the radial equation, we here derive rigorous estimates
which are based on the semi-classical WKB approximation. Using these estimates, we
can express the resolvent in terms of solutions of the ODEs. Using furthermore Whiting’s
result that the ODEs admit no normalizable solutions for complex ω, we can deform the
contours onto the real line. This finally gives an integral representation for the propagator
in terms of the solutions of the ODEs with ω real.

To be more precise, recall that in Boyer-Lindquist coordinates (t, r, ϑ, ϕ) with r > 0,
0 ≤ ϑ ≤ π, 0 ≤ ϕ < 2π, the Kerr metric takes the form [4, 12]

ds2 = gjk dx
jxk

=
∆

U
(dt − a sin2 ϑ dϕ)2 − U

(

dr2

∆
+ dϑ2

)

− sin2 ϑ

U
(a dt − (r2 + a2) dϕ)2 (1.1)

with
U(r, ϑ) = r2 + a2 cos2 ϑ , ∆(r) = r2 − 2Mr + a2 ,

where M and aM denote the mass and the angular momentum of the black hole, respec-
tively. We shall restrict attention to the case M2 ≥ a2, because otherwise there is a naked
singularity. In the non-extreme case M2 > a2, the function ∆ has two distinct zeros,

r0 = M −
√

M2 − a2 and r1 = M +
√

M2 − a2 ,

corresponding to the Cauchy and the event horizon, respectively. In the extreme case
M2 = a2, the Cauchy and event horizons coincide,

r0 = r1 = M .

We shall consider only the region r > r1 outside the event horizon, and thus ∆ > 0.
In order to determine the ergosphere, we consider the norm of the Killing vector ξ = ∂

∂t ,

gij ξ
iξj = gtt =

∆− a2 sin2 ϑ

U
=

r2 − 2Mr + a2 cos2 ϑ

U
. (1.2)

This shows that ξ is space-like in the open region of space-time where

r2 − 2Mr + a2 cos2 ϑ < 0 , (1.3)

the so-called ergosphere. It is a bounded region of space outside the event horizon, and
intersects the event horizon at the poles ϑ = 0, π.
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The scalar wave equation in the Kerr geometry is

�Φ := gij∇i∇j Φ =
1√−g

∂

∂xi

(√−g gij
∂

∂xj

)

Φ = 0 , (1.4)

where g denotes the determinant of the metric gij . In Boyer-Lindquist coordinates this
becomes

[

− ∂

∂r
∆

∂

∂r
+

1

∆

(

(r2 + a2)
∂

∂t
+ a

∂

∂ϕ

)2

− ∂

∂ cos ϑ
sin2 ϑ

∂

∂ cos ϑ

− 1

sin2 ϑ

(

a sin2 ϑ
∂

∂t
+

∂

∂ϕ

)2
]

Φ = 0 . (1.5)

In what follows, we denote the square bracket in this equation by � (although strictly
speaking, it is a scalar function times the wave operator in (1.4)).

A key property of the wave equation in the Kerr metric is that can be separated into
ordinary differential equations by making the usual multiplicative ansatz

Φ(t, r, ϑ, ϕ) = e−iωt−ikϕ R(r) Θ(ϑ), (1.6)

where ω is a quantum number which could be real or complex and which corresponds
to the “energy”, and k is an integer quantum number corresponding to the projection
of angular momentum onto the axis of symmetry of the black hole. Substituting (1.6)
into (1.5), we see that

�Φ = (Rω,k +Aω,k)Φ, (1.7)

where Rω,k and Aω,k are the radial and angular operators

Rω,k = − ∂

∂r
∆

∂

∂r
− 1

∆
((r2 + a2)ω + ak)2 (1.8)

Aω,k = − ∂

∂ cos ϑ
sin2 ϑ

∂

∂ cos ϑ
+

1

sin2 ϑ
(aω sin2 ϑ+ k)2. (1.9)

We can therefore separate the variables r and ϑ to obtain for fixed ω and k the system of
ODEs

Rω,k Rλ = −λRλ, Aω,k Θλ = λΘλ , (1.10)

where the separation constant λ is an eigenvalue of the angular operator Aω,k and can thus
be regarded as an angular quantum number. In the spherically symmetric case (i.e. a = 0),
λ goes over to the usual eigenvalues λ = l(l + 1) of total angular momentum. Since the
k-modes are obtained simply by expanding the ϕ-dependence in a Fourier series, we can
in what follows restrict attention to one fixed k-mode and omit the index k. We point out
that for the λ-modes the situation is more difficult because λ as well as the corresponding
angular eigenfunction Θλ(ϑ) will in general depend on ω. As a consequence, it is at this
point not clear how to decompose the initial data into λ-modes.

We now reformulate the wave equation in first-order Hamiltonian form. The resolvent
of this Hamiltonian will be one of the main ingredients in the statement of our main
theorem. Letting

Ψ =

(

Φ
i∂tΦ

)

, (1.11)
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the wave equation (1.5) takes the form

i ∂tΨ = H Ψ, (1.12)

where H is the Hamiltonian

H =

(

0 1
α β

)

. (1.13)

Here α and β are the differential operators

α =

(

(r2 + a2)2

∆
− a2 sin2 ϑ

)−1 [

−∂r∆ ∂r − ∂cosϑ sin
2 ϑ∂cos θ +

(

a2

∆
− 1

sin2 ϑ

)

∂2
ϕ

]

β = −2a

(

(r2 + a2)2

∆
− a2 sin2 ϑ

)−1(
r2 + a2

∆
− 1

)

i∂ϕ .

We now state our main result.

Theorem 1.1 Consider the Cauchy problem

�Φ = 0 , (Φ, i∂tΦ)(0, x) = Ψ0(x) (1.14)

for initial data Ψ0 ∈ C∞
0 ((r1,∞)× S2)2 which is smooth and compactly supported outside

the event horizon, in the slicing associated to the Boyer Lindquist coordinates. Then there
exists a unique global solution Ψ(t) = (Φ(t), i∂tΦ(t)) which can be represented as follows,

Ψ(t, r, ϑ, ϕ)

= − 1

2πi

∑

k∈Z

e−ikϕ
∑

n∈IN

lim
εց0

(
∫

Cε

−
∫

Cε

)

dω e−iωt (Qk,n(ω) S∞(ω) Ψk
0)(r, ϑ) . (1.15)

Here the sums and integrals converge in L2
loc
.

In the statement of this theorem we use the following notation. The function Ψk
0 is the

kth angular Fourier component of Ψ0, i.e.

Ψk
0(r, ϑ) =

1

2π

∫ 2π

0
eikϕ Ψ0(r, ϑ, ϕ) dϕ .

We consider ω in the lower complex half plane {Imω < 0}, and Cε is a contour which
joins the points ω = −∞ with ω = ∞ and stays in an ε-neighborhood of the real line. A
typical example is

Cε = {x− iε e−x2

: x ∈ R}.
Cε is the complex conjugated contour. Thus the integrals in (1.15) can be thought of as
a “contour integral around the real axis” (see Figure 1), in analogy to the well-known
Cauchy integral formula for matrices

e−iAt = − 1

2πi

∮

C
e−iωt (A− ω)−1 dω ,

where A is a finite-dimensional matrix and C a contour which encloses the whole spectrum
of A. For given ω and k, the wave operator is a sum of a radial operator Rω,k and an
angular operator Aω,k. As shown in [10], the angular operator has for ω near the real line a
purely discrete spectrum consisting of eigenvalues (λn)n∈IN (see Lemma 2.1). The spectral
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Cε

Imω = −ε

ω

Imω = ε

Cε

Figure 1: Integration contours

projectors onto the corresponding eigenspaces, which are one-dimensional, are denoted
by Qk,n(ω). Furthermore, we write the wave equation in the Hamiltonian form (1.12,
1.13) and let S∞(ω) = (H − ω)−1 be the resolvent (in a suitable Sobolev space). The
operator product Qk,n S∞ can be expressed in terms of solutions of the reduced ordinary
differential equations (see Proposition 5.4 with g = s and s as in Lemma 5.1). Relying
on Whiting’s mode stability [21], we shall see below that the integrand in (1.15) is well-
defined and holomorphic in the lower half plane, and thus the value of the integrals is
indeed independent of the choice of Cε. If the integrand were continuous up to the real
axis, we could in (1.15) take the limit ε ց 0 to obtain an integral along the real line.
However, we do not know whether the integrand in (1.15) is continuous on the real axis.
Thus the integral in (1.15) can be regarded as an integral over the real axis, with an
“iε-regularization procedure” of possible singularities (if for instance the integrand had a
simple pole at ω0 ∈ R, this would give rise to a δ-contribution at ω0).

We point out that the global existence and uniqueness of solutions of the Cauchy
problem can be obtained more generally in globally hyperbolic space-times (see e.g. [17]).
The main point of Theorem 1.1 is that we give an explicit decomposition of the propagator
as a superposition of solutions of the ODEs which arise in the separation of variables. In
particular, Theorem 1.1 shows completeness in the sense that the solutions of the coupled
ODEs for real ω form a basis of the solution space. The explicit form of (1.15) is useful
for the study of the dynamics, because the time-dependence of Ψ is related by a simple
Fourier transform to the ω-dependence of the integrand in (1.15), which can in turn be
analyzed by getting suitable ODE estimates [9].

We finally remark that the case of the wave equation for a scalar field minimally
coupled to an electromagnetic field,

gjk(∇j − ieAj)(∇k − ieAk)Φ = 0, (1.16)

could be treated by similar methods in the non-extreme Kerr-Newman geometry, where
now the metric is given by (1.1) with

U(r, ϑ) = r2 + a2 cos2 ϑ , ∆(r) = r2 − 2Mr + a2 + q2 , (1.17)

and the electromagnetic potential is

Aj dx
j = −q r

U
(dt − a sin2 ϑ dϕ) , (1.18)

where q denotes the charge of the black hole, and the parameters M,a, q satisfy the
inequality M2 > a2 + q2.
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2 Preliminaries

In this section we briefly recall the variational formulation of the wave equation and the
separation of variables. Furthermore, we bring the equation into a first-order Hamilto-
nian form. Finally, we introduce and discuss scalar products which are needed for the
construction of the propagator.

The wave equation (1.5) is the Euler-Lagrange equation corresponding to the action

S =

∫ ∞

−∞
dt

∫ ∞

r1

dr

∫ 1

−1
d(cos ϑ)

∫ π

0
dϕL(Φ,∇Φ) , (2.1)

where the Lagrangian L is given by

L = −∆|∂rΦ|2 +
1

∆

∣

∣((r2 + a2)∂t + a∂ϕ)Φ
∣

∣

2

− sin2 ϑ |∂cos ϑϕ|2 −
1

sin2 ϑ

∣

∣(a sin2 ϑ∂t + ∂ϕ)Φ
∣

∣

2
. (2.2)

According to Noether’s theorem, symmetries of the Lagrangian give rise to conserved
quantities. The symmetry under local gauge transformations yields that the vector field

Jk = −Im (Φ∇kΦ) , (2.3)

called the (electromagnetic) current, is divergence free, and integrating the normal compo-
nent of this current over the hypersurface t = const yields the conserved charge Q. More
precisely,

Q[Φ] =

∫ ∞

r1

dr

∫ 1

−1
d(cos ϑ)

∫ 2π

0

dϕ

2π
Q ,

where Q is the charge density

Q = i
∂L
∂Φt

Φ

= Re

{

(r2 + a2)2

∆
Φ

(

i∂tΦ+
a i∂ϕΦ

r2 + a2

)

− a2 sin2 ϑ Φ

(

i∂tΦ+
i∂ϕΦ

a sin2 ϑ

)}

.

Moreover, since the Kerr metric is stationary, the Lagrangian is invariant under time
translations. The corresponding conserved quantity is the energy E,

E[Φ] =

∫ ∞

r1

dr

∫ 1

−1
d(cos ϑ)

∫ 2π

0

dϕ

2π
E , (2.4)

where E is the energy density

E =
∂L
∂Φt

Φt − L =

(

(r2 + a2)2

∆
− a2 sin2 ϑ

)

|∂tΦ|2 +∆ |∂rΦ|2

+sin2 ϑ |∂cos ϑΦ|2 +
(

1

sin2 ϑ
− a2

∆

)

|∂ϕΦ|2 . (2.5)

One sees that all the terms in the energy density are positive, except for the coefficient of
|∂ϕΦ|2, which is positive if and only if r2−2Mr+a2 cos2 ϑ > 0, i.e. outside the ergosphere.
As a consequence, E is in general not positive.
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Our analysis is based on a few properties of the angular operator Aω, which we now
state. For real ω, the angular operator Aω clearly is formally selfadjoint on L2(S2).
However, this is not sufficient for our purpose, because we need to consider the case that
ω is complex. In this case, Aω is a non-selfadjoint operator. Nevertheless, we have the
following spectral decomposition, which is proved in [10].

Lemma 2.1 (angular spectral decomposition) For any given c > 0, we define the
open set U ⊂ C by the condition

|Imω| <
c

1 + |Reω| . (2.6)

Then there is an integer N and a family of operators Qn(ω) defined for n ∈ N ∪ {0} and
ω ∈ U with the following properties:

(i) The Qn are holomorphic in ω.

(ii) Q0 is a projector onto an N -dimensional invariant subspace of Aω. For n > 0,
the Qn are projectors onto one-dimensional eigenspaces of Aω with corresponding
eigenvalues λn(ω). These eigenvalues satisfy a bound of the form

|λn(ω)| ≤ C(n) (1 + |ω|) (2.7)

for suitable constants C(n). Furthermore, there is a parameter ε > 0 such that for
all n ∈ N and ω ∈ U ,

|λn(ω)| ≥ n ε . (2.8)

(iii) The Qn are complete, i.e.
∞
∑

n=0

Qn = 11

with strong convergence of the series in L2(S2).

(iv) The Qn are uniformly bounded in L2(S2), i.e. for all n ∈ N0,

‖Qn‖ ≤ c1 (2.9)

with c1 independent of ω and n.

If c is sufficiently small, c < ε, or the real part of ω is sufficiently large, |Reω| > C(c),
one can choose N = 1, i.e. Aω is diagonalizable with non-degenerate eigenvalues.

The proof of this lemma is outlined as follows. If |Imω| is sufficiently small, the imaginary
part of the potential can be treated as a slightly non-selfadjoint perturbation (see [13,
Chapter 5, § 4.5]), giving a spectral decomposition into one-dimensional eigenspaces. On
the other hand, for any fixed ω ∈ C, an asymptotic analysis of the resolvent (Aω−λ)−1 for
large λ (see e.g. [6, Chapter 12]) yields a spectral decomposition into invariant subspaces
which for large |λ| are one-dimensional eigenspaces. Thus the difficult point in the above
lemma is to show that N and the constant c1 can be chosen uniformly in ω ∈ U . To this
end, one must show that for real ω, the eigenvalue gaps of the selfadjoint operator Aω

become large as |ω| → ∞. These gap estimates are worked out in [10] by analyzing the
solutions of the corresponding complex Riccati equation.
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After separation (1.6), the reduced wave equation takes the form

[

− ∂

∂r
∆

∂

∂r
− 1

∆

(

(r2 + a2)ω + ak
)2

− ∂

∂ cos ϑ
sin2 ϑ

∂

∂ cosϑ
+

1

sin2 ϑ
(aω sin2 ϑ+ k)2

]

Φ = 0. (2.10)

Under the separation, the above expressions for the charge and energy densities become

Q = |Φ|2
{

(r2 + a2)2

∆

(

Reω +
ak

r2 + a2

)

− a2 sin2 ϑ

(

Reω +
k

a sin2 ϑ

)}

(2.11)

E = |Φ|2
{

(r2 + a2)2

∆

(

|ω|2 − a2k2

(r2 + a2)2

)

− a2 sin2 ϑ

(

|ω|2 − k2

a2 sin4 ϑ

)}

+∆ |∂rΦ|2 + sin2 ϑ |∂cos ϑΦ|2 . (2.12)

It is a subtle point to find a scalar product <., .> which is well-suited to the analysis of
the wave equation. It is desirable to choose the scalar product such that the Hamiltonian
H is Hermitian (i.e. formally selfadjoint) with respect to it. Since H is the infinitesimal
generator of time translations, H is Hermitian w.r. to <., .> if and only if the inner product
<Ψ,Ψ> is time independent for all solutions Ψ = (Φ, i∂tΦ) of the wave equation. This
can for example be achieved by imposing that <Ψ,Ψ> should be equal to the energy E
corresponding to Ψ. This leads us to introduce a scalar product by polarizing the formula
for the energy, (2.4, 2.5). We thus obtain the so-called energy scalar product

<Ψ,Ψ′> =

∫ ∞

r1

dr

∫ 1

−1
d(cos ϑ)

{(

(r2 + a2)2

∆
− a2 sin2 ϑ

)

∂tΦ∂tΦ
′

+∆ ∂rΦ ∂rΦ
′ + sin2 ϑ∂cosϑΦ ∂cos ϑΦ

′ +

(

1

sin2 ϑ
− a2

∆

)

∂ϕΦ ∂ϕΦ
′

}

, (2.13)

where again Ψ = (Φ, i∂tΦ) and Ψ′ = (Φ′, i∂tΦ
′). If Ψ′ is a solution of the reduced system

of ODEs (1.10), Ψ′ can be written as Ψ′ = (Φω,λ, ωΦω,λ) with Φω,λ(r, ϑ) = Rλ(r)Θλ(ϑ).
Integrating by parts and dropping the boundary terms (which is certainly admissible when
we consider the system in finite volume or when Ψ has compact support), we can substitute
the radial and angular equations into (2.13) to obtain

<Ψ,Ψω,λ> = ω

∫ ∞

r1

dr

∫ 1

−1
d(cosϑ)

×
[(

(r2 + a2)2

∆
− a2 sin2 ϑ

)

(i∂t + ω)Φ Φω,λ + 2ak

(

r2 + a2

∆
− 1

)

Φ Φω,λ

]

. (2.14)

In the special case Ψ = Ψ′, this reduces to

<Ψω,λ,Ψω,λ> = 2ω

∫ ∞

r1

dr

∫ 1

−1
d(cosϑ) |Φω,λ|2

×
[(

(r2 + a2)2

∆
− a2 sin2 ϑ

)

Reω + ak

(

r2 + a2

∆
− 1

)]

. (2.15)

By construction, the Hamiltonian is Hermitian with respect to the energy scalar product.
However, the energy scalar product is in general not positive definite. This is obvious
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in (2.13) because the factor (sin−2 ϑ − a2/∆) is negative inside the ergosphere. Likewise,
the integrand in (2.15) can be negative because the factor ak in the second term in the
brackets can have any sign.

Apart from the energy, also the charge Q gives rise to a conserved scalar product. It
is a natural idea to try to obtain a positive scalar product by taking a suitable linear
combination of these two scalar products. Unfortunately, comparing (2.12) and (2.11)
one sees that it is impossible to form a non-trivial linear combination of Q and E which
is manifestly positive everywhere. One might argue that a suitable linear combination
might nevertheless be positive because the positive term ∆|∂rΦ|2 + sin2 ϑ|∂cosϑΦ|2 might
compensate the negative terms. However, comparing (2.15) with (2.11), one sees that
there is a simple relation between the energy scalar product and the charge,

<Ψω,λ,Ψω,λ> = 2ω Q[Ψω,λ] ,

making it again impossible to form a linear combination such that the integrand of the
corresponding scalar product is everywhere positive. Stephen Anco showed that it is
indeed impossible to introduce a conserved density for the wave equation which gives rise
to a positive definite scalar product [1]. We conclude that if we want to consider H as a
selfadjoint operator, the underlying scalar product will necessarily be indefinite.

But we can clearly consider H as a non-selfadjoint operator on a Hilbert space, and
this point of view will indeed be useful for the estimates of Section 4. Our method
for constructing a positive scalar product is to simply replace the negative term −a2/∆
in (2.13) by a positive term. More precisely, we introduce the scalar product (., .) by

(Ψ,Ψ′) =

∫ ∞

r1

dr

∫ 1

−1
d(cos ϑ)

{(

(r2 + a2)2

∆
− a2 sin2 ϑ

)

∂tΦ ∂tΦ
′

+∆ ∂rΦ ∂rΦ
′ + sin2 ϑ∂cos ϑΦ ∂cosϑΦ

′ +
1

sin2 ϑ
∂ϕΦ ∂ϕΦ

′ +
(r2 + a2)2

∆
ΦΦ′

}

. (2.16)

We denote the corresponding Hilbert space by H and the norm by ‖.‖. This norm dom-
inates the energy scalar product in the sense that there is a constant c1 > 0 depending
only on the geometry such that the “Schwarz-type” inequality

| <Ψ,Ψ′> | ≤ c1 ‖Ψ‖ ‖Ψ′‖ (2.17)

holds for all Ψ,Ψ′ ∈ H.
We finally bring the Hamiltonian and the above inner products into a more convenient

form. First, we introduce the Regge-Wheeler variable u by

du

dr
=

r2 + a2

∆
,

∂

∂r
=

r2 + a2

∆

∂

∂u
. (2.18)

The variable u ranges over (−∞,∞) as r ranges over (r1,∞). Furthermore, we introduce
the functions

ρ = r2 + a2 − a2 sin2 ϑ
∆

r2 + a2
(2.19)

β = −2ak

ρ

(

1− ∆

r2 + a2

)

(2.20)

δ =
1

ρ

(

r2 + a2 +
a2k2

r2 + a2

)

(2.21)
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as well as the operator

A =
1

ρ

[

− ∂

∂u
(r2 + a2)

∂

∂u
− ∆

r2 + a2
∆S2 − a2k2

r2 + a2

]

, (2.22)

where ∆S2 denotes the Laplacian on the 2-sphere (recall that the parameter k is fixed
throughout). Then, after integrating by parts, our inner products can on C2(R× S2)2 be
written as

<Ψ1,Ψ2> =

∫ ∞

−∞
du

∫ 1

−1
d cos ϑ ρ 〈Ψ1,

(

A 0
0 1

)

Ψ2〉C2 (2.23)

(Ψ1,Ψ2) =

∫ ∞

−∞
du

∫ 1

−1
d cos ϑ ρ 〈Ψ1,

(

A+ δ 0
0 1

)

Ψ2〉C2 , (2.24)

and the Hamiltonian takes the form

H =

(

0 1
A β

)

. (2.25)

The functions ρ, β, and δ satisfy for a suitable constant c > 0 the bounds

1

c
≤ ρ

r2 + a2
≤ c , |β|, |δ| ≤ c .

We abbreviate the integration measure in (2.23) and (2.24) by

dµ := ρ du d cos ϑ . (2.26)

3 Spectral Properties of the Hamiltonian in a Finite Box

We saw in the preceding section that the energy inner product (2.13), with respect to
which the Hamiltonian is formally selfadjoint, is in general indefinite. This fact remains
true even when as in [8] we consider the system in a “finite box,” i.e. when the range of the
radial variable r is restricted to a bounded interval r ∈ [rL, rR] with r1 < rL < rR < ∞.
Accordingly, in order to derive a spectral representation for the propagator corresponding
to the wave equation (1.5), we will need to consider the spectral theory of operators on
indefinite inner product spaces. Since there is an extensive literature on this topic, we
here only recall the basic facts needed for our analysis, referring the reader to [3, 16] for
details.

A Krein space is a complex vector space K endowed with a non-degenerate inner
product <. , .> and an orthogonal direct sum decomposition

K = K+ ⊕K−, (3.1)

such that (K+, <., .>) and (K−,− <., .>) are both Hilbert spaces. A selfadjoint operator A
on a Krein space K is said to be definitizable if there exists a non-constant real polynomial
p of degree k such that

<p (A)x , x> ≥ 0 (3.2)

for all x ∈ D(Ak). Definitizable operators have a spectral decomposition, which is similar
to the spectral theorem in Hilbert spaces, except that there is in general an additional finite
point spectrum in the complex plane (see [3, p. 180], [16, Thm 3.2, p. 34] and Lemma 3.3
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below). An important special case of a Krein space is when K is positive except on a
finite-dimensional subspace, i.e.

κ := dimK− < ∞. (3.3)

In this case the Krein space is called a Pontrjagin space of index κ. Classical results of
Pontrjagin (see [3, Thms 7.2 and 7.3, p. 200] and [16, p. 11-12]) yield that any selfadjoint
operator A on a Pontrjagin space is definitizable, and that it has a κ-dimensional negative
subspace which is A-invariant.

We now explain how the abstract theory applies to the wave equation in the Kerr ge-
ometry. In order to have a spectral theorem, the Hamiltonian must be definitizable. There
is no reason why H should be definitizable on the whole space (r1,∞)×S2, and this leads
us to consider the wave equation in “finite volume” [rL, rR]× S2 with Dirichlet boundary
conditions. Thus setting Ψ = (Φ, iΦt) and regarding the two components (Ψ1,Ψ2) of Ψ as
independent functions, we consider the vector space PrL,rR = (H1,2 ⊕ L2)([rL, rR] × S2)
with Dirichlet boundary conditions

Ψ1(rL) = 0 = Ψ1(rR) . (3.4)

Our definition of H1,2([rL, rR] × S2) coincides with that of the space W 1,2((rL, rR) ×
S2) in [11, Section 7.5]. Note that we only impose boundary conditions on the first
component Ψ1 of Ψ, which lies in H1,2. According to the trace theorem [7, Part II,
Section 5.5, Theorem 1], the boundary values of a function in H1,2([rL, rR] × S2) are in
L2(S2), and therefore we can impose Dirichlet boundary conditions. We endow this vector
space with the inner product associated to the energy; i.e. in analogy to (2.13),

<Ψ,Ψ′> =

∫ rR

rL

dr

∫ 1

−1
d(cos ϑ)

{(

(r2 + a2)2

∆
− a2 sin2 ϑ

)

Ψ2Ψ
′
2

+∆ ∂rΨ1 ∂rΨ
′
1 + sin2 ϑ∂cosϑΨ1 ∂cosϑΨ

′
1 +

(

1

sin2 ϑ
− a2

∆

)

∂ϕΨ1 ∂ϕΨ
′
1

}

. (3.5)

Lemma 3.1 For every rR > r1 there is a countable set E ⊂ (r1, rR) such that for all
rL ∈ (r1, rR) \ E, the inner product space PrL,rR is a Pontrjagin space. The topology
on PrL,rR is the same as that on (H1,2 ⊕ L2)([rL, rR]× S2).

Proof. Since (3.5) involves no terms which mix the first component of Ψ with the second
component, PrL,rR clearly has an orthogonal direct sum decomposition PrL,rR = V1 ⊕ V2

with V1/2 = {Ψ ∈ PrL,rR : Ψ2/1 ≡ 0}. Furthermore, it is obvious that the space (V2, <., .> )
has a positive scalar product and that the corresponding norm is equivalent to the L2-
norm. Hence it remains to consider V1, i.e. the space H1,2([rL, rR] × S2) with Dirichlet
boundary conditions and the inner product

<Φ,Φ′> =

∫ rR

rL

dr

∫ 1

−1
d(cos ϑ)

×
{

∆ ∂rΦ ∂rΦ
′ + sin2 ϑ∂cosϑΦ ∂cosϑΦ

′ +

(

1

sin2 ϑ
− a2

∆

)

k2 ΦΦ′

}

.(3.6)

Transforming to the variable u, (2.18), and using the representation (2.23), one sees that
on the subspace C2([uL, uR]× S2) the inner product (3.6) can be written as

<Φ , Φ′> = (Φ, AΦ′)L2([uL,uR]×S2,dµ) (3.7)
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with A according to (2.22). Here we set uL = u(rL), uR = u(rR), and dµ is the mea-
sure (2.26). A is a Schrödinger operator with smooth potential on a compact domain.
Standard elliptic results [20, Proposition 2.1 and the remark before Proposition 2.7] yield
that H is essentially selfadjoint in the Hilbert space H = L2([uL, uR] × S2, dµ). It has
a purely discrete spectrum which is bounded from below and has no limit points. The
corresponding eigenspaces are finite-dimensional, and the eigenfunctions are smooth.

Let us analyze the kernel of A. Separating and using that the Laplacian on S2 has
eigenvalues −l(l+1), l ∈ N0, A has a non-trivial kernel if and only if for some l ∈ N0, the
solution of the ODE

[

− ∂

∂u
(r2 + a2)

∂

∂u
+

∆

r2 + a2
l(l + 1)− a2k2

r2 + a2

]

φ(u) = 0 (3.8)

with boundary conditions φ(uR) = 0 and φ′(uR) = 1 vanishes at u = uL. Since this φ has
at most a countable number of zeros on (−∞, uR] (note that φ(u) = 0 implies φ′(u) 6= 0
because otherwise φ would be trivial), φ vanishes at uL only if uL ∈ El with El countable.
We conclude that there is a countable set E = ∪lEl such that the kernel of A is trivial
unless uL ∈ E.

Assume that uL /∈ E. Then A has no kernel, and so we can decompose H into the
positive and negative spectral subspaces, H = H+⊕H−. Clearly, H− is finite-dimensional.
Since its vectors are smooth functions, we can consider H− as a subspace of PrL,rR ,
and according to (3.7) it is a negative subspace. Its orthogonal complement in PrL,rR

is contained in H+ and is therefore positive. We conclude that PrL,rR is positive except
on a finite-dimensional subspace.

It remains to show that the topology induced by <. , .> is equivalent to the H1,2-
topology. Since on finite-dimensional spaces all norms are equivalent, it suffices to consider
for any λ0 > 0 the spectral subspace for λ ≥ λ0, denoted by Hλ0

. We choose λ0 such that

1− λ0 ≤ V0 := min
[rL,rR]

(

− a2k2

r2 + a2

)

< 0 .

Then for every Ψ ∈ C2 ∩Hλ0
,

<Ψ,Ψ> = 〈Ψ, AΨ〉L2(dµ)

(∗)

≤ c ‖Ψ‖2H1,2

<Ψ,Ψ> ≥ 1

2
〈Ψ, AΨ〉L2(dµ) +

λ0

2
‖Ψ‖2L2(dµ)

(∗)

≥ 1

2c
‖Ψ‖2H1,2 +

V0 − 1

2
‖Ψ‖2L2(dµ) +

λ0

2
‖Ψ‖2L2(dµ) ≥ 1

2c
‖Ψ‖2H1,2 ,

where in (∗) we used that the coefficients of the ODE (3.8) are bounded from above and
below and that the zero order term is bounded from below by V0.

We always choose rL and rR such that PrL,rR is a Pontrjagin space and that our initial
data is supported in [rL, rR]× S2.

We now consider the Hamiltonian (1.13) on the Pontrjagin space PrL,rR with domain
C∞([rL, rR]× S2)2 ⊂ PrL,rR . For clarity, we shall often denote this operator by HrL,rR .

Lemma 3.2 HrL,rR has a selfadjoint extension in PrL,rR.
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Proof. On the domain of H, the scalar product can be written in analogy to (2.23) as

<Ψ,Ψ′> = (Ψ, SΨ′)L2([uL,uR]×S2,dµ) ,

where the operator S acts on the two components of Ψ as the matrix

S =

(

A 0
0 1

)

, (3.9)

where A is again given by (2.22) and dµ is the measure (2.26). As shown in Lemma 3.1,
S has a selfadjoint extension and is invertible. We introduce on C∞

0 ((uL, uR) × S2)2 the

operator B by B = |S|− 1

2SH|S|− 1

2 . The fact that H is symmetric in PrL,rR implies that B
is symmetric in L2([uL, uR]× S2, dµ). A short calculation shows that

B2 =

(

|A| |A|− 1

2Aβ

β|A|− 1

2A |A|+ β2

)

.

Treating the terms involving β as a relatively compact perturbation, we readily find
that B2 is selfadjoint on L2([uL, uR]× S2, dµ) with domain D(B2) = D(A)⊕D(A). Con-
sequently, the spectral calculus gives us a selfadjoint extension of B with domain D(B) =

D(A
1

2 )⊕D(A
1

2 ). We extend H to the domain D(H) := |S|− 1

2 D(B).
We now show that with this new domain, H is selfadjoint on PrL,rR . Suppose that for

some vectors Ψ,Φ ∈ PrL,rR ,

<Ψ,HΨ′> = <Φ,Ψ′> for all Ψ′ ∈ D(H) .

It then follows that

(|S| 12Ψ, B |S| 12Ψ′)L2(dµ) = (S |S|− 1

2Φ, |S| 12Ψ′)L2(dµ) for all Ψ′ ∈ D(H)

(note that the vectors Ψ,Φ ∈ PrL,rR lie in H1,2 ⊕ L2 and thus both |S| 12Ψ, S|S|− 1

2Φ ∈
L2(dµ)). By definition of the domain of H, this is equivalent to

(|S| 12Ψ, B Ψ̃)L2(dµ) = (S |S|− 1

2Φ, Ψ̃)L2(dµ) for all Ψ̃ ∈ D(B) .

Since B is selfadjoint, it follows that the vector |S| 12Ψ lies in the domain of B and that

B |S| 12Ψ = S |S|− 1

2Φ. This implies that Ψ ∈ D(H) and that HΨ = Φ.

We now prove a basic lemma on the structure of the spectrum of the Hamiltonian
HrL,rR.

Lemma 3.3 The spectrum of HrL,rR is purely discrete. It consists of finitely many com-
plex spectral points appearing as complex conjugate pairs, and of an infinite sequence of
real eigenvalues with no accumulation points.

Proof. Since the operator HrL,rR is essentially selfadjoint, there exists a negative definite
subspace L− of PrL,rR of dimension κ which is HrL,rR-invariant (see [16, p. 11]). Let p0
denote the minimal polynomial of HrL,rR on L−, i.e.

p0(HrL,rR)L− = 0
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with deg p0 ≤ κ minimal. Furthermore, we let p be the real polynomial of degree ≤ 2κ
defined by p = p0 p0. We claim that im p (HrL,rR) is a positive semi-definite subspace.
Indeed, we have for all x ∈ PrL,rR ,

<p0 (HrL,rR)x,L−> = <x, p0 (HrL,rR)L−> = 0, (3.10)

so that
im p (HrL,rR) ⊂ im p0 (HrL,rR) ⊂ (L−)

⊥ ⊂ (PrL,rR)+, (3.11)

as claimed.
Next, since the square of the operator HrL,rR is elliptic, it follows that

dimker (p (HrL,rR) < ∞, (3.12)

and from [16, Prp. 2.1], we know that for each eigenvalue ξ of HrL,rR , the corresponding
Jordan chain has finite length bounded by 2κ + 1. It follows that p2κ+1(HrL,rR) has a
finite-dimensional kernel and no Jordan chains. This implies that

im p2κ+1 (HrL,rR) ∩ ker p2κ+1 (HrL,rR) = {0} . (3.13)

Furthermore, since the operator p2k+1(HrL,rR) is selfadjoint, its image and kernel are
clearly orthogonal.

The image of p2k+1(HrL,rR) is contained in im p (HrL,rR) and is therefore positive semi-
definite. We shall now show that the space im p2κ+1 (HrL,rR) is actually positive definite.
To this end, we let N be its null space,

N := {x ∈ im p2κ+1 (HrL,rR), <x , x>= 0}. (3.14)

For all x ∈ N and y ∈ D(HrL,rR), we have

<x , p2κ+1 (HrL,rR) y>= 0, (3.15)

which is equivalent to
<p2κ+1 (HrL,rR)x , y>= 0, (3.16)

because p is real. Since the scalar product is non-degenerate, this implies that

p2κ+1 (HrL,rR)x = 0 . (3.17)

But we have just shown that ker p2κ+1 (HrL,rR) and im p2κ+1 (HrL,rR) have trivial inter-
section. It follows that x = 0 and therefore that im p2κ+1 (HrL,rR) is positive definite, as
claimed.

Restricting HrL,rR to im p2κ+1 (HrL,rR), we have a selfadjoint operator on a Hilbert
space. Thus the spectral theorem in Hilbert space applies, and the ellipticity of H2

rL,rR
yields that the spectrum is purely discrete. On the finite-dimensional orthogonal comple-
ment ker (p2κ+1 (Hua,ub

)) we bring HrL,rR into the Jordan canonical form.
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4 Resolvent Estimates

In this section we consider the Hamiltonian H as a non-selfadjoint operator on the Hilbert
spaceH with the scalar product (., .) according to (2.16). We work either in infinite volume
with domain of definition D(H) = C∞

0 ((r1,∞) × S2)2 or in the finite box r ∈ [rL, rR]
with domain of definition given by the functions in C∞((rL, rR)× S2)2 which satisfy the
boundary conditions (3.4). Some estimates will hold in the same way in finite and infinite
volume. Whenever this is not the case, we distinguish between finite and infinite volume
with the subscripts rL,rR and ∞, respectively. We always consider a fixed k-mode.

The next lemma shows that the operator H − ω is invertible if either |Imω| is large
or |Imω| 6= 0 and |Reω| is large. The second case is more subtle, and we prove it using
a spectral decomposition of the elliptic operator A which generates the energy scalar
product. This lemma will be very useful in Section 7, because it will make it possible to
move the contour integrals so close to the real axis that the angular estimates of Lemma 2.1
apply. By a slight abuse of notation we use the same notation for H and its closed
extension.

Lemma 4.1 There are constants c,K > 0 such that for all Ψ ∈ D(H) and ω ∈ C,

‖(H − ω)Ψ‖ ≥ 1

c

(

|Imω| − K

1 + |Reω|

)

‖Ψ‖ .

Proof. For every unit vector Ψ ∈ D(H),

‖(H − ω)Ψ‖ ≥ |(Ψ, (H − ω)Ψ)| ≥ |Im (Ψ, (H − ω)Ψ)|
≥ |Imω| − 1

2
|(Ψ, (H −H∗)Ψ)| . (4.1)

It is useful to work again in the variable u and the representation (2.24) of the scalar
product (., .) on C2

0 (R× S2)2. We introduce on C2
0 (R× S2)2 the operator H+ by

H+ =

(

0 1
A+ δ β

)

.

Comparing with (2.24) one sees that H+ is formally selfadjoint w.r. to the scalar product
(., .). Furthermore, one sees from (2.25) that H+ differs from H only by a bounded
operator,

‖H −H+‖ =

∥

∥

∥

∥

(

0 0
−δ 0

)∥

∥

∥

∥

≤ c .

Thus on C2(R × S2)2,

‖H −H∗‖ = ‖(H −H+)− (H −H+)
∗‖

≤ ‖H −H+‖+ ‖(H −H+)
∗‖ = 2 ‖H −H+‖ ≤ 2c ,

and substituting this bound into (4.1), we conclude that

‖(H − ω)Ψ‖ ≥ (|Imω| − c) ‖Ψ‖ .

In view of this inequality it remains to consider the case where |Reω| is large.
Using standard elliptic theory (see again [20, p. 86, Proposition 2.7] and [5])), the

operator A with domain D(A) = C∞
0 (R × S2) is essentially selfadjoint on the Hilbert
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space L2(dµ) := L2(R × S2, dµ), with dµ according to (2.26). Clearly, A is bounded
from below, A ≥ −c, and thus σ(A) ⊂ [−c,∞). For given Λ ≫ 1 we let P0 and PΛ be
the spectral projectors corresponding to the sets [−c,Λ2) and [Λ2,∞), respectively. We
decompose a vector Ψ ∈ H in the form Ψ = Ψ0 +ΨΛ with

Ψ0 =

(

P0 0
0 P0

)

Ψ , ΨΛ =

(

PΛ 0
0 PΛ

)

Ψ .

This decomposition is orthogonal w.r. to the energy scalar product,

<ΨΛ,Ψ0> = 〈ΨΛ,

(

A 0
0 1

)

Ψ0〉L2(dµ) = 0 .

However, our decomposition is not orthogonal w.r. to the scalar product (., .), because

(ΨΛ,Ψ0) = 〈ΨΛ,

(

A+ δ 0
0 1

)

Ψ0〉L2(dµ) = 〈ΨΛ,

(

δ 0
0 0

)

Ψ0〉L2(dµ) .

But at least we obtain the following inequality,

|(ΨΛ,Ψ0)| ≤ c ‖Ψ0‖ ‖Ψ1
Λ‖L2(dµ) , (4.2)

where Ψ1
Λ denotes the first component of ΨΛ. Using that

‖Ψ1
Λ‖2L2(dµ) = <Ψ1

Λ, A
−1Ψ1

Λ> ≤ 1

Λ2
‖ΨΛ‖2 ,

we can also write (4.2) in the more convenient form

|(ΨΛ,Ψ0)| ≤ c

Λ
‖Ψ0‖ ‖ΨΛ‖ .

Choosing Λ sufficiently large, we obtain

‖Ψ‖2 = ‖ΨΛ‖2 + 2 Re (ΨΛ,Ψ0) + ‖Ψ0‖2 ≤ 4 (‖ΨΛ‖+ ‖Ψ0‖)2

and thus
‖Ψ‖ ≤ 2 (‖ΨΛ‖+ ‖Ψ0‖) . (4.3)

Furthermore, we can arrange by choosing Λ sufficiently large that

<ΨΛ,ΨΛ> = 〈ΨΛ,

(

A 0
0 1

)

ΨΛ〉L2(dµ) ≥ 1

2
〈ΨΛ,

(

A+ δ 0
0 1

)

ΨΛ〉L2(dµ) =
1

2
‖ΨΛ‖2.

Next we estimate the inner products <ΨΛ,HΨ0>, (Ψ0,HΨΛ) and (Ψ0,HΨ0). The
calculations

<ΨΛ,HΨ0> = 〈ΨΛ,

(

0 A
A β

)

Ψ0〉L2(dµ) = 〈ΨΛ,

(

0 0
0 β

)

Ψ0〉L2(dµ)

(Ψ0,HΨΛ) = 〈Ψ0,

(

0 A+ δ
A β

)

ΨΛ〉L2(dµ) = 〈Ψ0,

(

0 δ
0 β

)

ΨΛ〉L2(dµ)

|(Ψ0,HΨ0)| =

∣

∣

∣

∣

〈Ψ0,

(

0 A+ δ
A β

)

Ψ0〉L2(dµ)

∣

∣

∣

∣

≤ c ‖Ψ0‖L2(dµ) + 2 ‖AΨ1
0‖L2(dµ) ‖Ψ2

0‖L2(dµ)

‖AΨ1
0‖2L2(dµ) = 〈Ψ0,

(

A2 0
0 0

)

Ψ0〉L2(dµ)

≤ Λ2 〈Ψ0,

(

A 0
0 1

)

Ψ0〉L2(dµ) = Λ2 ‖Ψ0‖2
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give us the bounds

| <ΨΛ,HΨ0> | ≤ c ‖ΨΛ‖ ‖Ψ0‖
|(Ψ0,HΨΛ)| ≤ c ‖Ψ0‖ ‖ΨΛ‖
|(Ψ0,HΨ0)| ≤ (c+ 2Λ) ‖Ψ0‖2 .

Using the above inequalities, we can estimate the inner product <ΨΛ, (H − ω)Ψ> by

| <ΨΛ, (H − ω)Ψ> | ≥ | <ΨΛ, (H − ω)ΨΛ> | − | <ΨΛ, (H − ω)Ψ0> |

≥ |Imω|
2

‖ΨΛ‖2 − c ‖Ψ0‖ ‖ΨΛ‖ .

Applying the Cauchy-Schwarz inequality | <ΨΛ, (H − ω)Ψ> | ≤ c1 ‖ΨΛ‖ ‖(H − ω)Ψ‖ and
dividing by ‖ΨΛ‖, we obtain (possibly after increasing c) that

‖(H − ω)Ψ‖ ≥ |Imω|
c

‖ΨΛ‖ − ‖Ψ0‖ . (4.4)

Next we estimate the inner product (Ψ0, (H − ω)Ψ),

|(Ψ0, (H − ω)Ψ)| ≥ |(Ψ0, (H − ω)Ψ0)| − |(Ψ0, (H − ω)ΨΛ)|

≥ (|ω| − c− 2Λ) ‖Ψ0‖2 − c

(

1 +
|ω|
Λ

)

‖Ψ0‖ ‖ΨΛ‖ .

We apply the Cauchy-Schwarz inequality (Ψ0, (H − ω)Ψ) ≤ ‖Ψ0‖ ‖(H − ω)Ψ‖ and divide
by ‖Ψ0‖,

‖(H − ω)Ψ‖ ≥ (|ω| − c− 2Λ) ‖Ψ0‖ − c

(

1 +
|ω|
Λ

)

‖ΨΛ‖ . (4.5)

Choosing Λ = (|ω| − c)/4 and increasing c, the inequalities (4.4) and (4.5) give for suffi-
ciently large |ω| the bounds

‖(H − ω)Ψ‖ ≥ |Imω|
c

‖ΨΛ‖ − ‖Ψ0‖

‖(H − ω)Ψ‖ ≥ |ω|
2

‖Ψ0‖ − c ‖ΨΛ‖ .

Multiplying the second inequality by 4/|ω| and adding the first inequality, we conclude
that

2 ‖(H − ω)Ψ‖ ≥
( |Imω|

c
− 4c

|ω|

)

‖ΨΛ‖+ ‖Ψ0‖ .

The result now follows from (4.3).

With the last lemma at hand, we are ready to introduce the resolvent. Namely, we let

Ω =

{

ω ∈ C : |Imω| ≥ 2K

1 + |Reω|

}

(4.6)

with K as in Lemma 4.1.
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Corollary 4.2 If ω ∈ Ω, the operator H − ω is invertible. The corresponding resolvent

S(ω) := (H − ω)−1

satisfies the bound

‖S(ω)‖ ≤ c

|Imω| (4.7)

with c independent of ω ∈ Ω.

Proof. In view of the preceding lemma, it suffices to show that the image of H − ω is
dense in H for any ω ∈ Ω. Otherwise, there would exist a non-zero Ψ̂ ∈ H such that

<(H − ω)Ψ, Ψ̂> = 0 for all Ψ ∈ D(H) , (4.8)

that is a weak solution of the equation (H − ω)Ψ = 0. By the regularity theorem for
elliptic operators on manifolds with boundary (cf. [19, Chapter5, Theorem 1.3]), every
weak solution of this equation is a solution in the strong sense. These have been ruled out
by the preceding Lemma.

Using (4.6) in (4.7), we immediately get the bound

‖S(ω)‖ ≤ c (1 + |Reω|) . (4.9)

Since S(ω) is a bounded operator, its domain of definition can clearly be chosen to be the
whole Hilbert space. We shall assume until the end of this section that ω ∈ Ω.

The next lemma gives detailed estimates for the difference of the resolvents SrL,rR and
S∞ in finite and infinite volume, respectively. By Qλ(ω) we denote a given projector onto
an invariant subspace of the angular operator Aω corresponding to the spectral parameter
λ of dimension at most N (see Lemma 2.1 for details).

Lemma 4.3 For every Ψ ∈ C∞
0 ((rL, rR) × S2)2 and every p ∈ N, there is a constant

C = C(Ψ, p) (independent of ω) such that

|<Ψ, [SrL,rR(ω)− S∞(ω)] Ψ>| ≤ C

1 + |ω|p
1

|Imω| . (4.10)

Furthermore, for every Ψ ∈ C∞
0 ((rL, rR) × S2)2 and every p ∈ N and q ≥ N , there is a

constant C = C(Ψ, p, q) (independent of ω and λ) such that

|<Ψ, Qλ [SrL,rR(ω)− S∞(ω)] Ψ>| ≤ C

(1 + |ω|p)(1 + |λ|q)
1

|Imω| ‖Qλ‖ . (4.11)

Proof. By definition of the resolvent, (H − ω) S(ω)Ψ = Ψ. This relation holds both in
finite and in infinite volume, and thus

((H − ω) [SrL,rR(ω)− S∞(ω)] Ψ) (r, ϑ) = 0 if rL ≤ r ≤ rR.

Iterating this identity and using the fact that H and S commute, we see that on [rL, rR]×
S2,

ωp+1 [SrL,rR(ω)− S∞(ω)] Ψ = [SrL,rR(ω)− S∞(ω)]Hp+1 Ψ . (4.12)
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Combining this identity with the Schwarz-type inequality (2.17), we obtain

|<Ψ, [SrL,rR(ω)− S∞(ω)] Ψ>| ≤ c1 ‖SrL,rR(ω)− S∞(ω)‖ ‖Ψ‖2
|ωp+1| |<Ψ, [SrL,rR(ω)− S∞(ω)] Ψ>| ≤

∣

∣<Ψ, [SrL,rR(ω)− S∞(ω)]Hp+1Ψ>
∣

∣

≤ c1 ‖SrL,rR(ω)− S∞(ω)‖ ‖Ψ‖ ‖Hp+1Ψ‖ .
Since Ψ is smooth and has compact support, Hp+1Ψ also has these properties. The
estimate (4.9) gives (4.10).

In order to prove (4.11), we first combine (4.12) with (2.17) to obtain

(1 + |ω|p+1) |<Ψ, Qλ(SrL,rR − S∞)Ψ>|
≤ c1 ‖Qλ‖ ‖SrL,rR − S∞‖ ‖Ψ‖

(

‖Ψ‖+ ‖Hp+1Ψ‖
)

. (4.13)

Since q is at least as large as the dimension of the invariant subspace corresponding to λ,
(Aω − λ)qQλ = 0. Therefore, for every Ψ′ ∈ C∞

0 ((rL, rR)× S2)2,

0 = <Ψ, (Aω − λ)qQλΨ
′> = <(A∗

ω − λ)qΨ, QλΨ
′> .

Expanding the power (A∗
ω − λ)q and using (2.17), we obtain

|λ|q
∣

∣<Ψ, QλΨ
′>
∣

∣ ≤
q
∑

l=1

cl |λ|q−l
∥

∥

∥
(A∗

ω)
lΨ
∥

∥

∥

∥

∥χ[rL,rR] QλΨ
′
∥

∥

with combinatorial factors cl (here χ[rL,rR] is the operator of multiplication by the char-
acteristic function). Since the angular operator A∗

ω is according to (1.9) a polynomial in
ω of degree two, the function (A∗

ω)
lΨ is also polynomial in ω, i.e.

(A∗
ω)

lΨ =
2l
∑

p=0

ωp Ψp ,

where the functions Ψp are composed of Ψ and its angular derivatives, as well as the
coefficient functions of A∗

ω. This gives the estimate

‖(A∗
ω)

lΨ‖ ≤
2l
∑

p=0

|ω|p ‖Ψp‖ ≤ c (1 + |ω|2l)

with a constant c which depends only on Ψ and l. We thus obtain

|λ|q
∣

∣<Ψ, QλΨ
′>
∣

∣ ≤
q
∑

l=1

cl(Ψ) |λ|q−l (1 + |ω|2l)
∥

∥χ[rL,rR] QλΨ
′
∥

∥ .

Young’s inequality allows us to compensate the lower powers of λ,

|λ|q
∣

∣<Ψ, QλΨ
′>
∣

∣ ≤ c(q,Ψ) (1 + |ω|2q)
∥

∥χ[rL,rR] QλΨ
′
∥

∥ .

We now choose Ψ′ equal to the left side of (4.12) with p = 0 and p = r and take the sum
of the resulting inequalities. Applying again the Schwarz inequality, we obtain

|λ|q(1+|ω|r) |<Ψ, Qλ(SrL,rR − S∞)Ψ>| ≤ c(1+|ω|2q)‖Qλ‖‖SrL,rR−S∞‖ (‖Ψ‖+ ‖HrΨ‖) .
By choosing r sufficiently large, we can compensate the factor (1 + |ω|2q) on the right.
More precisely,

|λ|q (1+|ω|p+1) |<Ψ, Qλ(SrL,rR − S∞)Ψ>| ≤ c′‖Qλ‖‖SrL,rR−S∞‖
(

‖Ψ‖+ ‖Hp+2q+1Ψ‖
)

.

Adding this inequality to (4.13) and substituting the estimate (4.9) gives (4.11).
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5 Separation of the Resolvent

In this section we fix ω 6∈ σ(H), so that the resolvent S = (H − ω)−1 exists. As in the
previous section, we assume that Qλ is a given projector onto a finite-dimensional invariant
subspace of the angular operator Aω corresponding to the spectral parameter λ. Our goal
is to represent the operator product QλS in terms of the solutions of the radial ODE.

According to (1.10) and (1.8), the radial ODE is

[

− ∂

∂r
∆

∂

∂r
− (r2 + a2)2

∆

(

ω +
ak

r2 + a2

)2

+ λ

]

R(r) = 0 , (5.1)

where λ is the separation constant. We can assume that k ≥ 0 because otherwise we
reverse the sign of ω. We again work in the “tortoise variable” u, (2.18), and set

φ(r) =
√

r2 + a2 R(r) . (5.2)

Then equation (5.1) can be written as

[

1

r2 + a2
∂

∂u
(r2 + a2)

∂

∂u
+

(

ω +
ak

r2 + a2

)2

− λ∆

(r2 + a2)2

]

φ√
r2 + a2

= 0 . (5.3)

Using that

(r2 + a2)
∂

∂u
(r2 + a2)−

1

2 = −1

2
(r2 + a2)−

1

2
∂

∂u
(r2 + a2) = − ∂

∂u
(r2 + a2)

1

2 ,

(5.3) simplifies to the Schrödinger-type equation

(

− ∂2

∂u2
+ V (u)

)

φ(u) = 0 (5.4)

with the potential

V (u) = −
(

ω +
ak

r2 + a2

)2

+
λ∆

(r2 + a2)2
+

1√
r2 + a2

∂2
u

√

r2 + a2 . (5.5)

We let φ1 and φ2 be two solutions of (5.4) which are compatible with the boundary
conditions. More precisely, in finite volume we satisfy the Dirichlet boundary conditions
φ1(uL) = 0 and φ2(uR) = 0 (again with uL = u(rL) and uR = u(rR)). Likewise, in infinite
volume we only consider the case Imω < 0 and let φ1 and φ2 be the fundamental solutions
which decay exponentially at u = −∞ and u = +∞, respectively (the existence of these
fundamental solution will be established in Corollary 6.4). If the solutions φ1 and φ2 were
linearly dependent, they would give rise to a vector in the kernel of H−ω, in contradiction
to our assumption ω 6∈ σ(H). Thus the Wronskian

w(φ1, φ2) := φ′
1(u) φ2(u)− φ1(u) φ

′
2(u) (5.6)

is non-zero (note that w is by definition independent of u).
We begin by constructing the “Green’s function” corresponding to (5.4).
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Lemma 5.1 The function

s(u, u′) :=
1

w(φ1, φ2)
×
{

φ1(u) φ2(u
′) if u ≤ u′

φ2(u) φ1(u
′) if u > u′

(5.7)

satisfies the distributional equation
(

− ∂2

∂u2
+ V (u)

)

s(u, u′) = δ(u− u′) .

Proof. By definition of the distributional derivative,
∫ ∞

−∞
η(u) (−∂2

u + V )s(u, u′) du =

∫ ∞

−∞

(

(−∂2
u + V )η(u)

)

s(u, u′) du

for every test function η ∈ C∞
0 (R). It is obvious from its definition that the function

s(., u′) is smooth except at the point u = u′, where its first derivative has a discontinuity.
Thus after splitting up the integral, we can integrate by parts twice to obtain

∫ ∞

−∞

(

(−∂2
u + V )η(u)

)

s(u, u′) du

=

∫ u′

−∞
η(u) (−∂2

u + V )s(u, u′) du + lim
uրu′

η(u) ∂us(u, u
′)

+

∫ ∞

u′

η(u) (−∂2
u + V )s(u, u′) du − lim

uցu′
η(u) ∂us(u, u

′) .

Since for u 6= u′, s is a solution of (5.4), the obtained integrals vanish. Computing the
limits with (5.7), we get

∫ ∞

−∞

(

(−∂2
u + V )η(u)

)

s(u, u′) du =

(

lim
uրu′

− lim
uցu′

)

η(u) ∂us(u, u
′)

=
1

w(φ1, φ2)
η(u′)

(

φ′
1(u

′) φ2(u
′)− φ′

2(u
′) φ1(u

′)
)

= η(u′) ,

where in the last step we used the definition of the Wronskian (5.6).

In what follows we also regard s(u, u′) as the integral kernel of a corresponding operator
s, i.e.

(sφ)(u) :=

∫

du′ s(u, u′) φ(u′) du′ .

If Qλ projects onto an eigenspace of Aω, we see from (1.10), (1.7), and (5.2) that

�

(

(r2 + a2)−
1

2 Qλ(ϑ, ϑ
′) s(u, u′)

)

= (r2 + a2)−
1

2 Qλ(ϑ, ϑ
′) δ(u− u′) . (5.8)

Loosely speaking, this relation means that the operator product Qλ s is an angular mode
of the Green’s function of the wave equation. Unfortunately, Qλ might project onto an
invariant subspace of Aω which is not an eigenspace. In this case, the angular operator
has on the invariant subspace the “Jordan decomposition”

Aω Qλ = (λ+N )Qλ (5.9)

with N = N (ω, λ) a nilpotent operator. Lemma 5.3 extends (5.8) to this more general
case. In preparation, we need to consider powers of the operator s.
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Lemma 5.2 For every l ∈ N0, the operator sl is well-defined. Its kernel (sl)(u, u′) has
regularity C2l−2.

Proof. Writing out the operator products with the integral kernel, one sees that the
operator sl is obtained from s by iterated convolutions,

sp+1(u, u′) =

∫

s(u, u′′) sp(u′′, u′) du′′ . (5.10)

In the finite box, these convolution integrals are all finite because s(u, u′) is continuous
and the integration range is compact. In infinite volume, the function s(u, u′) decays
exponentially as u, u′ → ±∞ (see Corollary 6.4), and so the integrals in (5.10) are again
finite. Hence sl is well-defined.

Let us analyze the regularity of the integral kernel of sl. By definition, s(u, u′) is
continuous, and (5.10) immediately shows that the same is true for sp(u, u′). Differen-
tiating through (5.10) and applying Lemma 5.1, one sees that sp satisfies for p > 1 the
distributional equation

(

− ∂2

∂u2
+ V (u)

)

(sp)(u, u′) = (sp−1)(u− u′) .

This shows that incrementing p indeed increases the order of differentiability by two.

Lemma 5.3 For given λ ∈ σ(Aω) we let g be the operator

g =
∞
∑

l=0

(−N )l sl+1, (5.11)

where N is the nilpotent matrix in the Jordan decomposition (5.9). Then

�

(

(r2 + a2)−
1

2 Qλ(ϑ, ϑ
′) g(u, u′)

)

= (r2 + a2)−
1

2 Qλ(ϑ, ϑ
′) δ(u− u′) . (5.12)

Note that if Qλ projects onto an eigenspace, N vanishes and thus g = s. Furthermore,
sinceN is nilpotent, the series in (5.11) is actually a finite sum. Thus in view of Lemma 5.2,
(5.11) is indeed well-defined.

Proof of Lemma 5.3. Denoting the radial operator with integral kernel δ(u − u′) by 11u,
we can write the result of Lemma 5.1 in the compact form (−∂2

u + V )s = 11u. Hence on
the invariant subspace, we can do a Neumann series calculation,

(−∂2
u + V ) g =

∞
∑

l=0

(−N )l (−∂2
u + V )sl+1 =

∞
∑

k=0

(−N )l sl = 11u −N g ,

to obtain that (−∂2
u + V +N ) g = 11u. According to (1.10), (1.7), and (5.2), this is equiv-

alent to (5.12).

We come to the separation of the resolvent. In order to explain the difficulty, we point
out that H and Qλ do not in general commute, and thus

(H − ω)Qλ 6= Qλ (H − ω) and Qλ S 6= S Qλ .
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Therefore, one must be very careful with the orders of multiplication; in particular, it
is not possible to simplify the operator product (H − ω)QλS. However, we know from
the separation of variables that for every solution Ψ of the equation (H − ω)Ψ = 0, its
projection Qλ(ω)Ψ is again a solution. In other words, H and Qλ do commute on the
kernel of (H − ω). This fact will be exploited in the proof of the following proposition.

Proposition 5.4 For ω 6∈ σ(H) we let Qλ be a spectral projector of the angular operator
Aω. Then the resolvent of H has the representation

Qλ S(ω) = Qλ T (ω, λ) ,

where T is the operator with integral kernel

T (u, ϑ;u′, ϑ′) = δ(cos ϑ− cos ϑ′) δ(u− u′)

(

0 0
1 0

)

+δ(cos ϑ− cosϑ′) (r2 + a2)−
1

2 g(u, u′)

(

τ(u′, ϑ′) σ(u′, ϑ′)
ω τ(u′, ϑ′) ω σ(u′, ϑ′)

)

. (5.13)

Here g is the Green’s function (5.11) (which depends on ω and λ), and τ, σ are the functions

σ = (r2 + a2)−
3

2

(

(r2 + a2)2 −∆ a2 sin2 ϑ
)

τ = 2ak (r2 + a2)−
3

2

(

(r2 + a2)−∆
)

+ ωσ .

Proof. Let us compute the operator product (H−ω)QλT . We first consider the first sum-
mand in (5.13), which we denote by T1. In this case, the operator product is particularly
simple because the second column in the matrix (1.13) involves no u- or ϑ-derivatives. We
obtain

((H − ω)Qλ T1)(u, ϑ;u
′, ϑ′) = Qλ(ϑ, ϑ

′) δ(u, u′)

(

1 0
β(u, ϑ)− ω 0

)

. (5.14)

Next we consider the second summand in (5.13), which we denote by T2. Fixing u′, ϑ′

and considering T2 as a function of u, ϑ, we see from Lemma 5.3 that each column of
QλT2 is for u < u′ a vector of the form Ψ = (Φ, ωΦ) with Φ a solution of the separated
wave equation (1.7). The same is true for u > u′. Hence for u 6= u′, QλT2 is composed of
eigenfunctions of the Hamiltonian,

((H − ω)Qλ T2)(u, ϑ;u
′, ϑ′) = 0 if u 6= u′.

It remains to compute the distributional contribution to (H − ω)QλT2 at u = u′. Since
T2 is continuous at u = u′, we only get a contribution when both radial derivatives act on
the factor g. According to Lemma 5.2, the higher powers of s are in C2, and thus we may
replace g by s. Applying (1.13), (2.18), and Lemma 5.1, we obtain

((H − ω)Qλ T2)(u, ϑ;u
′, ϑ′) =

1

σ(u, ϑ)
Qλ(ϑ, ϑ

′)δ(u−u′)

(

0 0
τ(u′, ϑ′) σ(u′, ϑ′)

)

. (5.15)

We add (5.14) to (5.15) and carry out the sum over λ ∈ σ(Aω). Since the spectral
projectors Qλ are complete (see Lemma 2.1 (iii)),

∑

λQλ(ϑ, ϑ
′) gives a contribution only

for ϑ = ϑ′. We thus obtain a multiplication operator,

∑

λ∈σ(Aω)

(H − ω)Qλ T (λ) = 11 +
(

(β − ω) +
τ

σ

)

(

0 0
1 0

)

.
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Using the explicit form of the functions τ , σ, and β, one sees that the second term vanishes.
Thus

∑

λ∈σ(Aω)

(H − ω)Qλ T (λ) = 11 .

Multiplying from the left by Qλ′S and using the orthogonality of the angular spectral
projectors gives the result.

6 WKB Estimates

In this section we shall derive estimates for the radial ODE (5.4) in the regime

|Reω| ≫ 1 and |Imω| ≤ c . (6.1)

In this “high-energy regime”, the semi-classical WKB-solution should be a good approx-
imation. In order to quantify this statement rigorously, we shall make an ansatz for φ
which involves the WKB wave function and estimate the error.

Our first lemma gives control of the sign of Re
√
V .

Lemma 6.1 There is a constant C such that for all ω with

Imω 6= 0 , |Reω| > C

and all λ ∈ σ(Aω), the function Re
√
V has no zeros.

Proof. At a zero of Re
√
V , the function V is real and non-positive. Thus it suffices to

show that the imaginary part of V has no zeros.
We first estimate the imaginary part of the angular spectrum. For any λ ∈ σ(Aω) we

let Φλ be a corresponding eigenvector. Then

Im (λ) 〈Φ,Φ〉L2 =
1

2i
(〈Φ,AωΦ〉L2 − 〈AωΦ,Φ〉L2) =

1

2i
〈Φ, (Aω −A∗

ω)Φ〉L2 ,

where 〈., .〉L2 is the L2-scalar product on S2. Hence, according to (1.9),

|Imλ| ≤ 1

2
‖Aω −A∗

ω‖ = sup
S2

∣

∣

∣

∣

Im

(

1

sin2 ϑ
(aω sin2 ϑ+ k)2

)∣

∣

∣

∣

≤ 2a2 |Reω| |Imω| + |2ak Imω| . (6.2)

The imaginary part of (5.5) is computed to be

ImV = −2

(

Reω +
ak

r2 + a2

)

Imω +
∆

(r2 + a2)2
Imλ (6.3)

Using (6.2), the second summand is estimated by

∣

∣

∣

∣

∆

(r2 + a2)2
Imλ

∣

∣

∣

∣

≤ 2
a2∆

(r2 + a2)2

(

|Reω|+ |k|
a

)

|Imω| .

The factor a2∆(r2 + a2)−2 vanishes on the event horizon and at infinity and is always
smaller than one. Thus there is a constant c with a2∆(r2 + a2)−2 ≤ c < 1. This shows
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that after choosing |Reω| sufficiently large, the first summand in (6.3) dominates the
second, and so ImV has no zeros.

In what follows, we assume that the assumptions of the above lemma are satisfied. We
choose the sign convention for the square root such that

Re
√

V (u), ReV (u)
1

4 ≥ 0 for all u ∈ R. (6.4)

Furthermore, we shall restrict attention to ω in the range

− c < Imω < 0 , |Reω| > C , (6.5)

where c is any fixed constant and C will be chosen depending on the particular application.
The next lemma, which we will need in Section 7, estimates

√
V inside the “finite box”

[uL, uR] uniformly in ω for large Reω.

Lemma 6.2 For every angular momentum mode n and every c, ε > 0, there are constants
C and c′ such that for all u ∈ [uL, uR] and all ω in the range (6.5),

|Re
√
V | ≤ c′ (6.6)

|Im
√

V (ω)− Im
√

V (Reω)| ≤ ε . (6.7)

Proof. We set ω0 = Reω, λ = λ(ω0) and introduce for a parameter τ ∈ [0, 1] the potential

Vτ = V (ω0) + τW with

W = −2i Imω

(

Reω +
ak

r2 + a2

)

+ (Imω)2 + (λ− λ0)
∆

(r2 + a2)2
.

Then V0 = V (ω0) and V1 = V (ω). The mean value theorem yields that

∣

∣

∣
Re
√

V (ω)− Re
√

V (ω0)
∣

∣

∣
≤ sup

τ∈[0.1]
Re

(

W

2
√
Vτ

)

(6.8)

∣

∣

∣
Im
√

V (ω)− Im
√

V (ω0)
∣

∣

∣
≤ sup

τ∈[0.1]
Im

(

W

2
√
Vτ

)

. (6.9)

By choosing C sufficiently large, we can clearly arrange that V (ω0) < 0, and thus
Re
√

V (ω0) = 0. Furthermore, one sees immediately from the explicit formulas for V ,
W together with the estimate for the angular eigenvalue (2.7) that

ReW = O(|Reω|0) , ImW = O(|Reω|1)
√

Vτ − iReω = O(|Reω|0) .

Using this in (6.8) and (6.9) gives the claim.

We introduce the WKB solutions ά and ὰ by

ά(u) = ć V − 1

4 exp

(
∫ u

0

√
V

)

, ὰ(u) = c̀ V − 1

4 exp

(

−
∫ u

0

√
V

)

, (6.10)
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where ć and c̀ are some normalization constants. A straightforward calculation shows that
these functions satisfy the Schrödinger equation

α′′ = Ṽ α with Ṽ = V − 1

4

V ′′

V
+

5

16

(

V ′

V

)2

. (6.11)

We can hope that ά and ὰ are approximate solutions of the radial equation (5.4). In order
to estimate the error, we first write (5.4) as a first order system,

Ψ′ =

(

0 1
V 0

)

Ψ with Ψ =

(

φ
φ′

)

. (6.12)

Next we make for Ψ the ansatz

Ψ = AΦ with A =

(

ά ὰ
ά′ ὰ′

)

(6.13)

and Φ a 2-component complex function. A is the fundamental matrix of the ODE (6.11)
and thus

A′ =

(

0 1

Ṽ 0

)

A . (6.14)

Differentiating through the ansatz for (6.13) and using (6.12, 6.14), we obtain that

A Φ′ =

(

0 0

V − Ṽ 0

)

A Φ . (6.15)

The determinant of A is a Wronskian and thus constant. A short computation using (6.10)
shows that detA = −2ćc̀. Hence we can easily compute the inverse of A by Cramer’s rule,

A−1 = − 1

2ćc̀

(

ὰ′ −ὰ
−ά′ ά

)

,

and multiplying (6.15) by A−1 gives

Φ′ = − 1

2ćc̀
(V − Ṽ )

(

−ὰά −ὰ2

ά2 άὰ

)

Φ .

Finally, we put in the explicit formulas (6.11) and (6.10) to obtain the equation

Φ′ = W

(

−1 −f−1

f 1

)

Φ , (6.16)

where W and f are the functions

W =
1

8ćc̀

(

V ′′

V
3

2

− 5

4

V ′2

V
5

2

)

, f = exp

(

2

∫ u

0

√
V

)

. (6.17)

We shall now derive an estimate for the solutions of the ODE (6.16). The main
difficulty is that when the function f is very large or close to zero, the matrix in (6.16)
has large norm, making it impossible to use simple Gronwall estimates. Instead, we can
use that according to (6.4), the function

|f | = exp

(

2

∫ u

0
Re

√
V

)

is monotone.
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Theorem 6.3 Assume that the potential V in the Schrödinger equation (5.4) satisfies the
conditions (6.4) and that the function W defined by (6.17) is in L1(R). Then there is a
solution Φ of the system of ODEs (6.16) with boundary conditions

lim
u→−∞

Φ(u) =

(

1
0

)

.

This solution satisfies for all u ∈ R the bounds
∣

∣

∣

∣

Φ1(u)− exp

(

−
∫ u

−∞
W

)
∣

∣

∣

∣

≤ e4‖W‖1 ‖W‖1

|Φ2(u)| ≤ e4‖W‖1 ‖W‖1 |f(u)| .

Proof. We set ρ = |f | and introduce new functions a and b by

a = Φ1 and b =
Φ2

ρ
. (6.18)

According to (6.16), they satisfy the following ODEs,

a′ = −Wa−W
ρ

f
b

b′ +
ρ′

ρ
b = W

f

ρ
a+Wb .

This gives rise to the following differential inequalities,

|a|′ =
d

du

√
aa =

1

|a| Re
(

a a′
)

≤ −|a|ReW + |b|
∣

∣

∣

∣

W
ρ

f

∣

∣

∣

∣

|b|′ =
1

|b| Re
(

b b′
)

≤ −|b| ρ
′

ρ
+ |a|

∣

∣

∣

∣

W
f

ρ

∣

∣

∣

∣

+ |b| ReW .

Using that ρ is monotone and that |f | = ρ, we obtain the simple inequality

(|a|+ |b|)′ ≤ 2|W | (|a|+ |b|) .

Integrating this inequality from v to u, −∞ < v < u < ∞, gives the “Gronwall estimate”

(|a|+ |b|)(u) ≤ (|a|+ |b|)(v) exp

(

2

∫ u

v
|W |

)

≤ (|a|+ |b|)(v) e2‖W‖1 . (6.19)

We now let Φ(v) be the solution of (6.16) with boundary conditions Φ(v)(v) = (1, 0).
In order to estimate Φ(v), we rewrite (6.16) as

(

e
R u

v
W Φ

(v)
1 (u)

)′
= −W e

R u

v
W Φ

(v)
2

f
(

e−
R u

v
W Φ

(v)
2 (u)

)′
= W e−

R u

v
W f Φ

(v)
1 .

We integrate and use (6.19) to obtain the inequalities

∣

∣

∣
e

R u

v
W Φ

(v)
1 (u)− 1

∣

∣

∣
≤ e3‖W‖1

∫ u

v
|W | (6.20)

∣

∣

∣
e−

R u

v
W Φ

(v)
2 (u)

∣

∣

∣
≤ e3‖W‖1

∫ u

v
ρ W ≤ e3‖W‖1 ρ(u)

∫ u

v
|W | , (6.21)

28



where in the last step we used the monotonicity of ρ.
The inequalities (6.20) and (6.21) yield that for every ε > 0, there is a ũ such that for

all v, v′ < ũ, the exponential on the left side of (6.20) and (6.21) are arbitrarily close to one,
and the integrals on the right can be made arbitrarily small. Thus |(Φ(v) −Φ(v′))(ũ)| < ε.
Due to the factor ρ(u) on the right of (6.21), we even know that |(b(v)−b(v

′))(ũ)| < ε (with
b according to (6.18)). Since (6.16) is linear, Φ(v)−Φ(v′) is also a solution. Applying (6.19)
for this solution and choosing v = ũ, we obtain that for all u > ũ, |(Φ(v) − Φ(v′))(u)| < cε
with a constant c being independent of ũ. This shows that Φ(v)(u) converges as v → −∞,
and that the above estimates are still true for v = −∞.

The theorem now follows from (6.20) and (6.21) if we set v = −∞ and pull out a factor

of e
R u

−∞
W and e−

R u

−∞
W , respectively.

The above theorem has two immediate consequences: First, it yields the existence
of solutions φ́ and φ̀ which decay exponentially at minus and plus infinity, respectively.
Second, it gives very good control of the global behavior of these solutions if |Reω| is
large.

Corollary 6.4 For every angular momentum mode n and every ω with Imω < 0, there are
solutions φ́ and φ̀ of the Schrödinger equation (5.4) which satisfy the boundary conditions

lim
u→−∞

∣

∣

∣
e−iωu φ́(u)

∣

∣

∣
= 1 = lim

u→∞

∣

∣

∣
eiωu φ̀(u)

∣

∣

∣
.

Proof. It suffices to construct φ́, because φ̀ is obtained in exactly the same way if one
considers the ODEs backwards in u (i.e. after transforming the radial variable according
to u → −u). We choose Φ as in Theorem 6.3 and let φ́ = φ be the corresponding solution
of the Schrödinger equation given by (6.13) and (6.12). Note that the corollary only makes
a statement on the asymptotic behavior of φ́ as u → −∞, and thus the behavior of φ́ on
any interval [u0,∞), u0 < 0 is irrelevant. Thus we may freely modify the potential V on
any such interval. In particular, we can change the potential V on [u0,∞) such that it is
constant for large u. For any ε > 0, we choose u0 so small and modify V|[u0,∞) such that

Re
√
V ≥ 0 and ‖W‖1 < ε/3 (this is possible because V ′′ decays for large |u| at least at

the rate ∼ |u|−3). Then Theorem 6.3 applies, and we obtain that

|Φ1 − 1| ≤ ε , |Φ2| ≤ ε |f | .
Using these bounds in (6.13), one sees that |φ/ά − 1| < ε and thus, after choosing the
normalization constants ć and c̀ in (6.10) appropriately,

lim sup
u→−∞

|e−iωu φ́| ≤ 1 + ε and lim inf
u→−∞

|e−iωu φ́| ≥ 1− ε .

Since ε is arbitrary, the result follows.

Proposition 6.5 For every n and c, ε > 0, there is a constant C > 0 such that for all
ω in the range (6.5), the solutions φ́ and φ̀ of Corollary 6.4 are close to the (suitably
normalized) WKB wave functions ά and ὰ, (6.10), in the sense that for all u ∈ R,

∣

∣

∣

∣

∣

φ́

ά
− 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

φ́′

ά′
− 1

∣

∣

∣

∣

∣

≤ ε and

∣

∣

∣

∣

∣

φ̀

ὰ
− 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

φ̀′

ὰ′
− 1

∣

∣

∣

∣

∣

≤ ε .
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The reason why we need to choose C large is that the functions V ′/|V |3/2 and W must
be sufficiently small. More specifically, one can choose C such that

‖W‖1 ≤ ε

3
and

|V ′|
|V | 32

≤ 1

3
.

Proof of Proposition 6.5. Using (2.7) in (5.5), one sees that in the strip −2c < Imω < 0,
the potential V satisfies the bound

|V (u) + ω2| ≤ c1(1 + |ω|) .

On the other hand, differentiating (5.5) and using (2.18) and (2.7), one sees that in this
strip,

|V ′(u)|+ |V ′′(u)| ≤ (1 + |ω|) g(u) ,
where g is a function which decays for large |u| at least at the rate ∼ u−2. Putting these
estimates for V and V ′′ into (6.17), one sees that by choosing C sufficiently large, we can
arrange that for all ω in the range (6.5), ‖W‖1 ≤ ε/3. Theorem 6.3 yields that

|Φ1 − 1| ≤ ε , |Φ2| ≤ ε |f | . (6.22)

Dividing the first row in (6.13) by ά, we obtain the identity

φ́

ά
= Φ1 +

ὰ

ά
Φ2 ,

and using (6.22) gives
∣

∣

∣

∣

∣

φ́

ά
− 1

∣

∣

∣

∣

∣

≤ ε

(

1 + |f |
∣

∣

∣

∣

ὰ

ά

∣

∣

∣

∣

)

.

¿From the second row in (6.13) we obtain similarly,

∣

∣

∣

∣

∣

φ́′

ά′
− 1

∣

∣

∣

∣

∣

≤ ε

(

1 + |f |
∣

∣

∣

∣

ὰ′

ά′

∣

∣

∣

∣

)

.

Finally, we apply the elementary estimates for the WKB wave functions

∣

∣

∣

∣

ὰ

ά

∣

∣

∣

∣

=
1

|f | ,
∣

∣

∣

∣

ὰ′

ά′

∣

∣

∣

∣

=
1

|f |

∣

∣

∣

∣

∣

V ′ V − 5

4 + V
1

4

V ′ V − 5

4 − V
1

4

∣

∣

∣

∣

∣

≤ 2

|f | ,

where in the last step we applied the above bounds for V ′ and V and possibly increased
C.

The solution φ̀ is obtained similarly if one considers the Schrödinger equation (5.4)
backwards in u and repeats the above arguments.

The next two propositions give estimates for composite expressions.

Proposition 6.6 Under the assumptions of Proposition 6.5,
∣

∣

∣

∣

∣

w(φ́, φ̀)

w(ά, ὰ)
− 1

∣

∣

∣

∣

∣

≤ 4ε .
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Proof. Rewriting the Wronskian as

w(φ́, φ̀) = φ́′ φ̀− φ́ φ̀′ = ά′ ὰ
φ́′

ά′

φ̀

ὰ
− ά ὰ′ φ́

ά

φ̀′

ὰ′
,

we can put in the estimate of Proposition 6.5 to obtain
∣

∣

∣
w(φ́, φ̀)− w(ά, ὰ)

∣

∣

∣
≤ 4ε

(

|ά′ ὰ|+ |ά ὰ′|
)

. (6.23)

Furthermore, a short explicit calculation using (6.10) shows that

w(ά, ὰ) = 2
√
V άὰ (6.24)

(ά ὰ)′ = −1

2

V ′

V
άὰ = −1

4
V ′ V − 3

2 w(ά, ὰ) (6.25)

and thus

ά′ ὰ =
1

2

(

w(ά, ὰ) + (ά ὰ)′
)

=
1

2
w(ά, ὰ)

(

1− 1

4
V ′ V − 3

2

)

ά ὰ′ = −1

2

(

w(ά, ὰ)− (ά ὰ)′
)

= −1

2
w(ά, ὰ)

(

1 +
1

4
V ′ V − 3

2

)

.

Substituting these relations into (6.23) gives
∣

∣

∣

∣

∣

w(φ́, φ̀)

w(ά, ὰ)
− 1

∣

∣

∣

∣

∣

≤ 4ε

(

1 +
1

4

∣

∣

∣
V ′ V − 3

2

∣

∣

∣

)

.

Here the left side only involves Wronskians and is thus independent of u. Hence we may
on the right side take the limit u → ∞. This gives the result.

For uL < uR we set

φ[uL,uR] = φ́(uL) φ̀(uR)− φ́(uR) φ̀(uL)

α[uL,uR] = ά(uL) ὰ(uR)− ά(uR) ὰ(uL) .

}

(6.26)

Proposition 6.7 Under the assumptions of Proposition 6.5,

∣

∣

∣

∣

φ[uL,uR]

α[uL,uR]
− 1

∣

∣

∣

∣

≤ 8ε exp

(

2

∫ uR

uL

Re
√
V

)
∣

∣

∣

∣

sin

(

2

∫ uR

uL

Im
√
V

)
∣

∣

∣

∣

−1

.

Proof. Rewriting φ[uL,uR] as

φ[uL,uR] = ά(uL) ὰ(uR)
φ́(uL)

ά(uL)

φ̀(uR)

ὰ(uR)
− ά(uR) ὰ(uL)

φ́(uR)

ά(uR)

φ̀(uL)

ὰ(uL)
,

Proposition 6.5 yields that
∣

∣φ[uL,uR] − α[uL,uR]

∣

∣ ≤ 4ε (|ά(uL) ὰ(uR)|+ |ά(uR) ὰ(uL)|) (6.27)

Furthermore, it is obvious from (6.10) that

ά(uL) ὰ(uR) = ά(uR) ὰ(uL) exp

(

−2

∫ uR

uL

√
V

)
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and thus from (6.26),

α[uL,uR] = ά(uR) ὰ(uL)

(

exp

(

−2

∫ uR

uL

√
V

)

− 1

)

= ά(uL) ὰ(uR)

(

1− exp

(

2

∫ uR

uL

√
V

))

. (6.28)

Dividing (6.27) by α[uL,uR] and putting in the last identities, we obtain

∣

∣

∣

∣

φ[uL,uR]

α[uL,uR]
− 1

∣

∣

∣

∣

≤ 4ε
1 +

∣

∣

∣
exp

(

−2
∫ uR

uL

√
V
)
∣

∣

∣

∣

∣

∣
exp

(

−2
∫ uR

uL

√
V
)

− 1
∣

∣

∣

≤ 8ε
∣

∣

∣
exp

(

−2
∫ uR

uL

√
V
)

− 1
∣

∣

∣

,

where in the last step we used that Re
√
V ≥ 0. We finally estimate the obtained denom-

inator from above,

∣

∣

∣

∣

exp

(

−2

∫ uR

uL

√
V

)

− 1

∣

∣

∣

∣

≥
∣

∣

∣

∣

Im exp

(

−2

∫ uR

uL

√
V

)
∣

∣

∣

∣

= exp

(

−2

∫ uR

uL

Re
√
V

) ∣

∣

∣

∣

sin

(

2

∫ uR

uL

Im
√
V

)∣

∣

∣

∣

.

7 Contour Deformations

In this section we shall use contour integral methods to prove the main theorem. Recall
that in Section 3, we showed that the Hamiltonian HuL,uR

in finite volume is a selfadjoint
operator on the Pontrjagin space PuL,uR

. It has a purely discrete spectrum, and for
each ω ∈ σ(HuL,uR

), the projector Eω onto the corresponding invariant subspace can be
expressed as the contour integral

Eω = − 1

2πi

∮

|ω′−ω|<ε
SuL,uR

(ω′) dω′ ,

where ε is to be chosen so small that Bε(ω) contains no other points of the spectrum.
The theory of Pontrjagin spaces also yields that σ(HuL,uR

) will in general involve a finite
number of non-real spectral points, which lie symmetrically around the real axis. We let
EC be the projector onto the invariant subspace corresponding to all non-real spectral
points,

EC :=
∑

ω∈σ(HuL,uR
)\R

Eω . (7.1)

Our first lemma represents EC as a Cauchy integral over an unbounded contour. More
precisely, we choose a contour CuL,uR

in the lower half plane which joins the points +∞
with −∞ and encloses the spectrum in the lower half plane from above. Furthermore, if
Reω is outside the finite interval [ω−, ω+], ω should be in the open set Ω (see (4.6)) and
should approach the real axis as |Imω| ∼ −|Reω|−1 (see Figure 2).
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C∞

ω− ω+ σ(HuL,uR
)

CuL,uR

∂Ω

Figure 2: Unbounded contour representation of EC

C

C

σ(HuL,uR
)

∂Ω

∂Ω

Figure 3: Closed contour representation of EC

Lemma 7.1 The spectral projector corresponding to the non-real spectrum (7.1) has the
representation

EC =
1

π
lim
L→∞

Im

∫

CuL,uR

L3

(L+ iω)3
SuL,uR

(ω) dω . (7.2)

Proof. The Cauchy integral formula yields that

EC = − 1

2πi

∮

C
SuL,uR

(ω) dω +
1

2πi

∮

C
SuL,uR

(ω) dω =
1

π
Im

∮

C
SuL,uR

(ω) dω ,

where C is a closed contour which encloses the spectrum in the lower half plane (see
Figure 3). The dominated convergence theorem allows us to insert a factor L3/(L+ iω)3,

EC =
1

π
lim
L→∞

Im

∮

C

L3

(L+ iω)3
SuL,uR

(ω) dω .

The function L3/(L + iω)3 has no poles in the lower half plane and decays cubically for
large |ω|. Furthermore, according to (4.9), the resolvent grows at most linearly for large
|ω|. This allows us to deform the contour in such a way that C is closed in the lower half
plane on larger and larger circles |ω| = R. In the limit R → ∞ the contribution along the
circle tends to zero. Thus we end up with the integral along the contour CuL,uR

.

Our next goal is to get rid of the “convergence generating factor” L3/(L+iω)3 in (7.2).
We shall use the fact that when we take the difference SuL,uR

− S∞ and evaluate it with
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a test function, the resulting expression has much better decay properties at infinity (see
Lemma 4.3). We choose a contour C∞ which coincides with CuL,uR

if Reω 6∈ [ω−, ω+] and
always stays inside Ω (see Figure 2).

Lemma 7.2 For every Ψ ∈ C∞
0 ((uL, uR)× S2)2,

<Ψ, ECΨ> =
1

π
Im

(

∫

CuL,uR

<Ψ, SuL,uR
Ψ> dω −

∫

C∞

<Ψ, S∞Ψ> dω

)

. (7.3)

Furthermore,

<Ψ, ECΨ> =
∑

n∈IN

In with (7.4)

In = − 1

2πi

(

∫

CuL,uR

<Ψ, Qn SuL,uR
Ψ> dω −

∫

C∞

<Ψ, QnS∞Ψ> dω

)

+
1

2πi

(

∫

CuL,uR

<Ψ, Qn SuL,uR
Ψ> dω −

∫

C∞

<Ψ, QnS∞Ψ> dω

)

.(7.5)

The series in (7.4) converges absolutely.

We point out that the above integrals are merely a convenient notation and are to be given
a rigorous meaning as follows. We formally rewrite the integrals in (7.3) (and similarly
in (7.5)) as

∫

C∞

<Ψ, (SuL,uR
− S∞)Ψ> dω +

(

∫

CuL,uR

−
∫

C∞

)

<Ψ, SuL,uR
Ψ> dω . (7.6)

Now the first summand is well-defined according to Lemma 4.3. In the second summand,
the integrals combine to an integral over a bounded contour, and this is clearly well-defined
because the contour does not intersect the spectrum of HuL,uR

.
Note that in (7.5) we cannot combine the integrals over CuL,uR

and CuL,uR
(and sim-

ilarly over C∞ and C∞) to the imaginary part of one contour integral because Qn in
general does not commute with SuL,uR

, and so the integrands in (7.5) need not be real.
For notational convenience, we abbreviate the second line in (7.5) by “−ccc” (for “complex
conjugated contours”).

Proof of Lemma 7.2. According to Corollary 4.2, the resolvent S∞(ω) is holomorphic for
ωinΩ and grows at most linearly in |ω|. Thus for all L > 0,

∫

C∞

L3

(L+ iω)3
S∞(ω) dω = 0 .

Combining this identity with (7.2), we obtain the representation

<Ψ, ECΨ> =
1

π
lim
L→∞

× Im

(

∫

CuL,uR

L3

(L+ iω)3
<Ψ, SuL,uR

Ψ> dω −
∫

C∞

L3

(L+ iω)3
<Ψ, S∞Ψ> dω

)

.
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We now rewrite the integrals according to (7.6). If replace the contour CuL,uR
by C∞, the

integrands combine, and we obtain the expression

1

π
lim
L→∞

Im

∫

C∞

L3

(L+ iω)3
<Ψ, (SuL,uR

− S∞)Ψ> dω .

The estimate (4.10) allows us to apply Lebesgue’s dominated converge theorem and to
take the limit L → ∞ inside the integrand. The error we made when replacing CuL,uR

by
C∞ is

1

π
lim
L→∞

Im

{(

∫

CuL,uR

−
∫

C∞

)

L3

(L+ iω)3
<Ψ, SuL,uR

Ψ> dω

}

.

Now the contour is bounded, and since the factor <Ψ, SuL,uR
Ψ> is bounded, we can again

apply Lebesgue’s dominated convergence theorem to take the limit L → ∞ inside the
integrand. This gives (7.3).

Note that our contours were chosen such that the condition (2.6) is satisfied for a
suitable constant c > 0, and so Lemma 2.1 applies. Using completeness of the (Qn)n∈IN
(see Lemma 2.1 (iii)), it immediately follows from (7.3) that

<Ψ, ECΨ>

= − 1

2πi

(

∫

CuL,uR

∑

n∈IN

<Ψ, QnSuL,uR
Ψ> dω −

∫

C∞

∑

n∈IN

<Ψ, QnS∞Ψ> dω

)

− ccc .

Again replacing the contour CuL,uR
by C∞, we obtain the expression

− 1

2πi

∫

C∞

∑

n∈IN

<Ψ, Qn (SuL,uR
− S∞)Ψ> dω − ccc .

According to (4.11), the summands decay faster than any polynomial in λn. Applying the
angular estimates (2.8) and (2.9), we conclude that the sum over n converges absolutely,
uniformly in ω ∈ C∞. Thus the dominated convergence theorem allows us to commute
summation and integration, and the series converges absolutely. It remains to consider
the expression

− 1

2πi

(

∫

CuL,uR

−
∫

C∞

)

∑

n∈IN

<Ψ, QnSuL,uR
Ψ> dω − ccc .

Now the contours are compact, and thus the absolute convergence of the n-series is uniform
on the contour. Hence we can again apply Lebesgue’s dominated convergence theorem to
interchange the summation with the integration.

We shall now deform the contours CuL,uR
and C∞ and analyze the resulting integrals.

Our aim is to move the contours onto the real axis such that they reduce to an ω-integral
over the real line. It is a major advantage of (7.4) that the series stands in front of the
integrals, because this allows us to deform the contours in each summand In separately.
Moreover, since our contour deformations will keep the values of the integrals unchanged,
Lemma 7.2 guarantees that the series over n will converge absolutely. Thus we may in
what follows restrict attention to fixed n.

35



For given n, we know from Section 3 that the function <Ψ, QnSuL,uR
Ψ> is meromor-

phic, and all poles are points of σ(HuL,uR
). For the integrals over C∞ in (7.5), we cannot

use abstract arguments because we have hardly any information on the spectrum of H∞

(we only know from Lemma 4.1 that the spectrum lies outside the set Ω, (4.6), but it may
be continuous and complex). But from the separation of the resolvent we know that the
operator QλS∞ is well-defined and bounded unless the Wronskian w(φ́, φ̀) vanishes (see
Proposition 5.4 and (5.7)). If this Wronskian were zero and Imω < 0, this would give
rise to a solution φ of the reduced wave equation which decays exponentially as u → ±∞.
Such “unstable modes” were ruled out by Whiting [21]. We conclude that <Ψ, QnS∞Ψ>
is analytic in the whole lower half plane {Imω < 0}.

Using the above analyticity properties of <Ψ, QnSuL,uR
Ψ> and <Ψ, QnS∞Ψ>, we are

free to deform the contours CuL,uR
and C∞ in any compact set, provided that CuL,uR

never
intersects σn(HuL,uR

). In particular, choosing ω− and ω+ real and outside of σ(HuL,uR
),

we may deform the contours as shown in Figure 4. We let E[ω−,ω+] be the projector on all

C∞

CuL,uR

σ(HuL,uR
)ω+ω− III

I

∂Ω

IV

II

IV

II

Figure 4: Contour deformation onto the real axis

invariant subspaces of HuL,uR
corresponding to real ω in the range ω− ≤ ω ≤ ω+,

QnE[ω−,ω+] =
∑

ω∈[ω−,ω+]

Qn(ω)Eω .

The next lemma shows that the integral over CIII ∪ CIII equals QnE[ω−,ω+], whereas
the integrals over the contours II and IV can be made arbitrarily small by choosing |ω±|
sufficiently large.

Lemma 7.3 For every Ψ ∈ C∞
0 ((uL, uR) × S2)2, n ∈ N, and ε > 0 there are ω−, ω+ ∈

R \ σ(HuL,uR
) such that

∣

∣

∣

∣

In+ <Ψ, QnE[ω−,ω+]Ψ> − 1

2πi

(
∫

CI

−
∫

CI

)

<Ψ, QnS∞Ψ>

∣

∣

∣

∣

≤ ε ,

where In are the integrals (7.5) and CI is any contour in the lower half plane which joins
ω− with ω+ (see Figure 4).

Proof. Lemma 4.3 yields that by choosing ω+ and −ω− sufficiently large, we can make
the contribution of the contour IV arbitrarily small. The integrals over CIII and CIII

combine to contour integrals around the spectral points on the real axis,

− 1

2πi

(
∫

CIII

−
∫

CIII

)

<Ψ, Qn SuL,uR
Ψ> dω = − 1

2πi

∑

ω′

∮

|ω−ω′|=δ
<Ψ, Qn SuL,uR

Ψ> dω ,
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where the sum runs over all ω′ ∈ σ(HuL,uR
) ∩ [ω−, ω+], and δ must be chosen so small

that each contour contains only one point of the spectrum. If we let δ → 0 and use
that Qn depends smoothly on ω, one sees that the integrals over the circles converge to
−2πi <Ψ, Qn Eω′Ψ>. We conclude that

− 1

2πi

(
∫

CIII

−
∫

CIII

)

<Ψ, Qn SuL,uR
Ψ> dω = − <Ψ, Qn E[ω−,ω+]Ψ> .

It remains to show that by choosing |ω±| sufficiently large, we can make the integral
over the contour II arbitrarily small. According to Lemma 2.1, for sufficiently large |ω±|
the angular operator Aω is diagonalizable for all ω on the contour II. Thus we can assume
that the nilpotent matrices N in the Jordan decomposition (5.9) all vanish. Hence we can
separate the resolvents according to Proposition 5.4 to obtain

<Ψ, Qn (SuL,uR
− S∞)Ψ> =

∑

λ∈Λn

<Ψ, Qλ ∆TλΨ> ,

where ∆Tλ is the operator with integral kernel

∆Tλ(u;u
′, ϑ′) = (r2 + a2)−

1

2 (suL,uR
− s∞)(u, u′)

(

ρ(u′, ϑ′) σ(u′, ϑ′)
ω ρ(u′, ϑ′) ω σ(u′, ϑ′)

)

.

Since the functions ρ and σ are smooth and the angular operators Qλ are bounded (2.9),
it suffices to show that for every ε > 0 and g ∈ C∞

0 ((uL, uR)), we can choose ω± such that
for all ω on the contour II,

∫ ∞

−∞
du

∫ ∞

−∞
du′ g(u) g(u′) (s[uL,uR] − s∞)(u, u′) ≤ ε .

Let us derive a convenient formula for s[uL,uR] − s∞. We let φ1 and φ2 be the two
fundamental solutions which satisfy the Dirichlet boundary conditions φ1(uL) = 0 =
φ2(uR). Likewise, we let φ́ and φ̀ be the two fundamental solutions in infinite volume
as constructed in Corollary 6.4. Furthermore, assume that uL < u < u′ < uR. Then,
according to (5.7),

suL,uR
(u, u′) =

1

w(φ1, φ2)
φ1(u) φ2(u

′) , s∞(u, u′) =
1

w(φ́, φ̀)
φ́(u) φ̀(u′) .

Expressing φ1 as a linear combination of φ́ and φ2,

φ1(u) = φ́(u) φ2(uL)− φ́(uL) φ2(u) ,

and substituting into the above formula for suL,uR
, we obtain

suL,uR
(u, u′) =

1

φ2(uL) w(φ́, φ2)

(

φ́(u) φ2(uL)− φ́(uL) φ2(u)
)

φ2(u
′)

=
1

w(φ́, φ2)
φ́(u) φ2(u

′) − φ́(uL)

φ2(uL)

φ2(u) φ2(u
′)

w(φ́, φ2)
.

In the first summand, we can express φ2 in terms of φ́ and φ̀,

φ2(u) = φ́(u) φ̀(uR)− φ́(uR) φ̀(u) . (7.7)
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This gives

1

w(φ́, φ2)
φ́(u) φ2(u

′) =
1

−φ́(uR) w(φ́, φ̀)
φ́(u)

(

φ́(u′) φ̀(uR)− φ́(uR) φ̀(u
′)
)

= − φ̀(uR)

φ́(uR)

φ́(u) φ́(u′)

w(φ́, φ̀)
+ s∞(u, u′) .

We conclude that

(suL,uR
− s∞)(u, u′) = − φ́(uL)

φ2(uL)

φ2(u) φ2(u
′)

w(φ́, φ2)
− φ̀(uR)

φ́(uR)

φ́(u) φ́(u′)

w(φ́, φ̀)
,

and because of its symmetry in u and u′, this identity is also valid in the case u′ < u.
Using (7.7) and the notation (6.26), we get

(suL,uR
− s∞)(u, u′) =

φ́(uL) φ2(u) φ2(u
′)

φ[uL,uR] φ́(uR) w(φ́, φ̀)
− φ̀(uR) φ́(u) φ́(u

′)

φ́(uR) w(φ́, φ̀)
. (7.8)

We choose |ω±| such that

∫ uR

uL

Im
√

V (ω±) ∈ 2Z + 1

4
π .

According to the estimate (6.7) in Lemma 6.2, we can arrange that the function
∫ uR

uL
Im

√
V

is nearly constant on the contour II, and thus

∣

∣

∣

∣

sin

(

2

∫ uR

uL

Im
√
V

)
∣

∣

∣

∣

≥ 1

2
. (7.9)

Propositions 6.5, 6.6, and 6.7 allow us to estimate each term in (7.8) by the corresponding
term in the WKB approximation. According to (7.9), the factor | sin(. . .)|−1 which appears
in Proposition 6.7 is bounded. Choosing ε sufficiently small, We thus obtain the estimate

∣

∣(suL,uR
− s∞)(u, u′)

∣

∣

≤ 2

∣

∣

∣

∣

ά(uL) α2(u) α2(u
′)

α[uL,uR] ά(uR) w(ά, ὰ)

∣

∣

∣

∣

exp

(

2

∫ uR

uL

Re
√
V

)

+ 2

∣

∣

∣

∣

ὰ(uR) ά(u) ά(u
′)

ά(uR) w(ά, ὰ)

∣

∣

∣

∣

, (7.10)

where we introduced the function

α2(u) = |ά(u) ὰ(uR)|+ |ά(uR) ὰ(u)| .

Using the explicit formulas (6.24, 6.28) together with (7.9), we get

|w(ά, ὰ)| ≥ |
√

V (u)| |ά(u) ὰ(u)| , |α[uL,uR]| ≥ 1

2
|ά(uR) ὰ(uR)| . (7.11)

Substituting these bounds into (7.10), we get an estimate for |suL,uR
− s∞| in terms of

expressions of the form

1
√

|V (u)|
exp

(

2

∫ uR

uL

Re
√
V

)
∣

∣

∣

∣

ά(u1)

ά(v1)

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

ὰ(uk)

ὰ(vk)

∣

∣

∣

∣

· · · (7.12)
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with ui, vi ∈ [uL, uR]. The quotients of the WKB wave functions have according to (6.10)
the explicit form

∣

∣

∣

∣

ά(u)

ά(v)

∣

∣

∣

∣

=

∣

∣

∣

∣

V (u)

V (v)

∣

∣

∣

∣

− 1

4

exp

(

2

∫ uR

uL

Re
√
V

)

, (7.13)

and similarly for ὰ. The inequality (6.6) shows that the exponentials in (7.12) and (7.13)
are bounded uniformly in ω. Furthermore, it is obvious from (5.5) that V (u)/V (v) is close
to one if |ω| is large. We conclude that on the contour II,

|(suL,uR
− s∞)(u, u′)| ≤ c

√

|V (u)|
,

and this can be made arbitrarily small by choosing |ω±| sufficiently large.

We are now in the position to prove our main theorem.

Proof of Theorem 1.1. According to Lemma 7.3,

− 1

2πi
lim

ω±→±∞

(
∫

CI

−
∫

CI

)

<Ψ, QnS∞Ψ> dω = In+ <Ψ, QnERΨ> ,

where ER denotes the projector onto the invariant subspace corresponding to the real
spectrum of HuL,uR

. Here the ω± are to be chosen as in Lemma 7.3 and CI is again any
contour which joins ω− with ω+ in the lower half plane. Suppose that the contour Cε

intersects the lines Reω = ω± in the points ω+− iδ+ and ω−− iδ−, respectively. Then we
choose the contour CI as follows,

CI = (ω− − i[0, δ−]) ∪ (Cε ∩ (ω−, ω+) + iR) ∪ (ω+ − i[0, δ+]) .

The first and last parts of the contour have lengths δ− and δ+, respectively, and these
lengths clearly tend to zero as ω± → ±∞. Furthermore, it is obvious from Propositions 6.5
and 6.6 as well as (7.11) and (7.13) that the integrand is uniformly bounded on these parts
of the contour. Hence the contribution of these contours tends to zero as ω± → ±∞. Thus

− 1

2πi

(
∫

Cε

−
∫

Cε

)

<Ψ, QnS∞Ψ> dω = In+ <Ψ, QnERΨ> .

According to Lemma 7.2 and Lemma 2.1, the right side of this equation is absolutely
summable in n and

∑

n

(In+ <Ψ, QnERΨ>) = <Ψ, (EC + ER) Ψ> .

Since the spectral projectors in the Pontrjagin space HuL,uR
are complete, EC + ER = 11.

We conclude that

− 1

2πi

∑

n

(
∫

Cε

−
∫

Cε

)

<Ψ, QnS∞Ψ> dω = <Ψ,Ψ> .

Polarizing, we obtain for every Ψ ∈ C∞
0 ((r1,∞)× S2)2 the simple identity

Ψ = − 1

2πi

∑

n

(
∫

Cε

−
∫

Cε

)

QnS∞Ψ dω . (7.14)
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The integral and sum converge in L2
loc.

If we apply the Hamiltonian to the integrand in the above formula, we obtain according
to Proposition 5.4

H QnS∞Ψ = (H − ω)QnS∞Ψ + ω QnS∞Ψ = (holomorphic terms) + ω QnS∞Ψ .

The holomorphic terms are holomorphic in the whole neighborhood of the real axis en-
closed by Cε and Cε (see Lemma 2.1 (i)), and therefore the contour integral over them
drops out. We conclude that applying H reduces to multiplying the integrand by a factor
ω. Iteration shows that the dynamics of Ψ is taken into account by a factor e−iωt,

Ψ(t) = − 1

2πi

∑

n

(
∫

Cε

−
∫

Cε

)

e−iωt QnS∞Ψ0 dω .

Comparing this expansion with (7.14), one sees that the integrand in the last expansion
is equal to the integrand in (7.14) if Ψ is replaced by Ψ(t). Since Ψ(t) is smooth and by
causality has compact support, we conclude that the integral and sum again converge in
L2
loc. Finally, using that the contour integrals in this formula are all independent of ε, we

may take the limit ε ց 0 of each of them.
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