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§0 Introduction

A theorem of A. Huber in [H] asserts that if M is a complete noncompact 2-dimensional
Riemannian manifold with the negative part of its Gaussian curvature being integrable,
then M is parabolic in the sense that it does not admit any nonconstant bounded harmonic
functions. Our goal of this project is to find an appropriate generalization or anolog of
Huber’s theorem in higher dimension. Realizing that Huber’s theorem failed completely for
real manifolds in dimension greater than 2 (see [L-T 1]), we turned our attention to the com-
plex category. In particular, we will prove that if a complete Kähler manifold satisfies some
integral curvature conditions then it does not admit any nonconstant positive pluriharmonic
functions. This can be viewed as a generalization of Huber’s theorem because in dimen-
sion 2, all real manifolds are Kähler manifolds and harmonic functions are pluriharmonic
functions.

This paper is organized in the manner that §1 and §2 are discussions on Riemannian
manifolds in general. The Kähler assumption will not be imposed on the manifold until

1



2 PETER LI AND SHING-TUNG YAU

§3. In §1, we consider geomtric consequences when the Ricci curvature of M is assumed to
satisfy an integrablity condition. In particular, we will show that the volume growth of M
can be controlled by the growth of an Lp integral of the negative part of the pointwise lower
bound of the Ricci curvature. In the original version of the paper we proved this fact when
p ≥ n− 1, where n is the real dimension of M. However recently we found out that Gallot
has studied a similar assumption on the Ricci curvature in [G] with a substantial overlap
with our argument. In fact, his argument is more refined in the way that one only needs to
assume that p > n

2 . The proof presented in §1 will incorporate his argument and ours for
the purpose of applying to our situation.

In §2, we study a certain class of differential inequalities which often arise in geometry. In
particular, integrability conditions of nonnegative functions satisfying one of these differen-
tial inequalities will be derived. In the last section, we will apply the theory developed in §1
and §2 to holomorphic mappings from a complete Kähler manifold to a Hermitian manifold.
We conclude by observing that all the computations, in fact, are valid for pluriharmonic
mappings which is defined in [L].

The first author would like to thank S. Y. Cheng and A. Treibergs for many helpful
discussions and their interest in this work. We would also like to express our gratitude to
L. F. Tam for proof-reading our original manuscript and providing a simplier and slightly
more general argument for Corollary 3.2 by way of Corollary 2.2.

§1 Curvature and Volume Growth

A higher dimensional anolog of the integral of the negative part of the Gaussian curvature
on surfaces is the integral of some power of the negative part of the pointwise lower bound of
the Ricci curvature. The following lemma obtained by a modification of Gallot’s Theorem
in [G] enables us to control the volume growth of the complete manifold in terms of the
growth of such an integral.

Theorem 1.1. Let M be a complete noncompact Riemannian manifold without boundary
of dimension n. Let us denote R(x) to be the pointwise lower bound of the Ricci curvature,

Ricij(x) ≥ R(x) gij ,

and R−(x) = max{0,−R(x)} to be the negative part of R(x). If the geodesic ball of radius
r centered at y ∈ M is denoted by By(r), its volume is denoted by Vy(r), and the area of
its boundary is denoted by Ay(r), then for any p ≥ n − 1 there exists constants C1, C2 > 0
depending only on n such that for any r > 0,

Ay(r) ≤ C1 r
n−1 + C2 r

2n−4 V
p−n+1

p
y (r)

∫ r

0

(∫
By(t)

Rp
− dV

)n−1
p

dt.

Also if n > 2 then for any n
2 < p < n − 1, there exists constants C3, C4, C5 > 0 depending

only on n such that

Ay(r) ≤C3Ay(r0) + C4 (r − r0)2p−1

∫
∂By(r0)

H2p−1
+ dA

+ C5 (r − r0)2p−2

∫ r2

r0

∫
By(r1)\By(r0)

Rp
− dV dr1
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for any r > r0 > 0, where H+ = max{0,H} is the positive part of the mean curvature
function on ∂By(r0).

Proof. In terms of normal polar coordinates centered at the point y, the volume element of
M can be written as dV = a(θ, r) dr dθ. The first variational formula gives

(1.1)
∂a

∂r
(θ, r) = a(θ, r)H(θ, r),

where H(θ, r) denotes the mean curvature of the geodesic sphere of radius r at the point
(θ, r). The second variational formula yields

(1.2)
∂2a

∂r2
(θ, r) = H2(θ, r) a(θ, r)−Ric(

∂

∂r
,
∂

∂r
) a(θ, r)− h2

ij(θ, r) a(θ, r),

with hij being the second fundamental form of the geodesic sphere. However the inequality

h2
ij ≥

(∑n−1
i=1 hii

)2

n− 1

=
H2

n− 1
,

and the definition of R(θ, r) implies that (1.2) can be estimated by

∂2a

∂r2
≤ n− 2
n− 1

H2 a−Ra

=
n− 2
n− 1

a−1

(
∂a

∂r

)2

−Ra.

(1.3)

If we set
f(θ, r) = a

1
n−1 (θ, r),

then by differentiating and applying (1.1) and (1.3), we have

(1.4)
∂f

∂r
=

1
n− 1

H f,

and

(1.5)
∂2f

∂r2
≤ −1
n− 1

Rf.

Moreover, f satisfies the initial conditions

(1.6) f(θ, 0) = 0 and
∂f

∂r
(θ, 0) = 1,
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because a ∼ rn−1 and H ∼ (n− 1) r−1, as r → 0. Integrating inequality (1.5) from 0 to r0
and using (1.6), we obtain the inequality

(1.7)
∂f

∂r
(θ, r0) ≤

−1
n− 1

∫ r0

0

R(θ, r) f(θ, r) dr + 1.

Let us now first consider the case when p = n − 1. Integrating (1.7) from 0 to r1 and
using (1.6), we have

f(θ, r1) ≤
1

n− 1

∫ r1

0

∫ r0

0

R−(θ, r) f(θ, r) dr dr0 + r1.

Using the definition of f , and the inequality (a + b)n−1 ≤ 2n−2(an−1 + bn−1), for a, b ≥ 0,
we obtain

(1.8) a(θ, r1) ≤ 2n−2rn−1
1 +

2n−2

(n− 1)n−1

(∫ r1

0

∫ r0

0

R−(θ, r) f(θ, r) dr dr0

)n−1

.

We shall point out that this inequality is only valid for those values of r1 such that the point
(θ, r1) is within the cut locus of of y. If we denote the sets

Sy(r) = {θ ∈ Sn−1
y | (θ, r) is within cut locus of y},

we see that they satisfy the monotonicity property, Sy(r2) ⊆ Sy(r1), if r1 ≤ r2. Integrating
inequality (1.8) over the set Sy(r1) yields

Ay(r1)

≤ 2n−2 rn−1
1

∫
Sy(r1)

dθ +
2n−2

(n− 1)n−1

∫
Sy(r1)

(∫ r1

0

∫ r0

0

R−(θ, r) f(θ, r) dr dr0

)n−1

dθ

≤ 2n−2 rn−1
1 ωn−1

+
2n−2

(n− 1)n−1

∫
Sy(r1)

(∫ r1

0

∫ r0

0

Rn−1
− (θ, r) fn−1(θ, r) dr dr0

) (∫ r1

0

∫ r0

0

dr dr0

)n−2

dθ

= 2n−2 rn−1
1 ωn−1 +

1
(n− 1)n−1

r2n−4
1

∫
Sy(r1)

∫ r1

0

∫ r0

0

Rn−1
− (θ, r) fn−1(θ, r) dr dr0 dθ

≤ 2n−2 rn−1
1 ωn−1 +

1
(n− 1)n−1

r2n−4
1

∫ r1

0

∫ r0

0

∫
Sy(r)

Rn−1
− (θ, r) fn−1(θ, r) dθ dr dr0

= 2n−2 rn−1
1 ωn−1 +

1
(n− 1)n−1

r2n−4
1

∫ r1

0

∫
By(r0)

Rn−1
− dV dr0,

(1.9)

where ωn−1 denotes the area of the Euclidean unit (n-1)-sphere. This proves the case when
p = n− 1 with C1 = 2n−2ωn−1 and C2 = 1

(n−1)n−1 .
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For the values p = s(n − 1) > n − 1, we simply apply Hölder inequality to the second
term on the right hand side of (1.9) and use the fact that the volume of the geodesic ball of
radius r is an increasing function of r, and conclude that

Ay(r1) ≤ C1 r
n−1
1 + C2 r

2n−4
1

∫ r1

0

V
s−1

s
y (r0)

(∫
By(r0)

R
s(n−1)
− dV

) 1
s

dr0

≤ C1 r
n−1
1 + C2 r

2n−4
1 V

s−1
s

y (r1)
∫ r1

0

(∫
By(r0)

R
s(n−1)
− dV

) 1
s

dr0

We will now consider the case when n
2 < p < n − 1. Note that n must be at least 3 for

this situation to occur. Following an argument of Gallot in [G], by setting δ = 2p−n
2p−1 one

can rewrite inequality (1.5) in the form

(1.10)
∂

∂r

(
f−δ ∂f

∂r

)
+ δ f−(1+δ)

(
∂f

∂r

)2

≤ R−
n− 1

f1−δ.

We claim that there is a constant C6 > 0 depending only on n such that∣∣∣∣f−δ ∂f

∂r

∣∣∣∣2p−2
∂

∂r

(
f−δ ∂f

∂r

)
≤ C6R

p
− f

n−1.

This inequality is obvious if the left hand side is nonpositive. Otherwise, applying the
algebraic inequality (a + b)p ≥ pp

(p−1)p−1 a b
p−1 to the left hand side of inequaltiy (1.10),

using the assumption on p and the definition of δ, and integrating this inequality from r0
to r1 over those values where f−δ ∂f

∂r is nonnegative, we conclude that its nonnegative part
ρ(θ, r) = max{0, f−δ ∂f

∂r (θ, r)} satisfies the estimate

ρ2p−1(θ, r1) ≤ ρ2p−1(θ, r0) + C6(2p− 1)
∫ r1

r0

Rp
−(θ, r) a(θ, r) dr.

Using the definition of δ, f, and (1.1), we rewrite this inequality as

H2p−1
+ (θ, r1) a(θ, r1) ≤ H2p−1

+ (θ, r0) a(θ, r0) +C6(2p− 1)(n− 1)2p−1

∫ r1

r0

Rp
−(θ, r) a(θ, r) dr,

where H+ = max{0,H}. Integrating over the set Sy(r1) and using the monotonicity prop-
erty, this implies that

∫
∂By(r1)

H2p−1
+ dA ≤

∫
∂By(r0)

H2p−1
+ dA

+ C6(2p− 1)(n− 1)2p−1

∫
By(r1)\By(r0)

Rp
− dV.

(1.11)
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Applying the Cauchy-Schwarz inequality to the left hand side yields∫
∂By(r1)

H2p−1
+ dA ≥ A−2(p−1)

y (r1)

(∫
∂By(r1)

H+ dA

)2p−1

.

On the other hand, we have

∂Ay

∂r
(r1) =

∫
∂By(r1)

H dA

≤
∫

∂By(r1)

H+ dA

Therefore (1.11) implies

(1.12) A
−2(p−1)

2p−1
y (r1)

∂Ay

∂r
(r1) ≤

(∫
∂By(r0)

H2p−1
+ dA+ C7

∫
By(r1)\By(r0)

Rp
− dV

) 1
2p−1

,

where C7 = C6(2p−1)(n−1)2p−1. Integrating with respect to r1 from r0 to r2, we conclude
that

A
1

2p−1
y (r2)−A

1
2p−1
y (r0)

≤ (2p− 1)
∫ r2

r0

(∫
∂By(r0)

H2p−1
+ dA+ C7

∫
By(r1)\By(r0)

Rp
− dV

) 1
2p−1

dr1.

Hence

Ay(r2) ≤C3Ay(r0) + C4 (r2 − r0)2p−2

∫ r2

r0

∫
∂By(r0)

H2p−1
+ dAdr1

+ C5 (r2 − r0)2p−2

∫
By(r1)\By(r0)

Rp
− dV dr1,

which proves the theorem.

By integrating these estimates and using the fact that Ay(r) = ∂Vy

∂r (r), we deduced the
following:

Corollary 1.2. Let M be a complete Riemannian manifold without boundary. With the
notation of Theorem 1.1, if for any p > n

2 the growth of the Lp-norm of R− satisfies∫
By(r)

Rp
− dV = o(rk)

as r →∞, then
Vy(r) = o(r2p+k)

as r →∞.

Another corollary of Theorem 1.1 is the following generalization of Huber’s theorem in
[H].
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Corollary 1.3. Let M be a complete open surface whose negative part of its Gaussian
curvature defined by K−(x) = max{0,−K(x)} satisfies∫

By(r)

K− dA ≤ α1 log(r + 1)

for some constant α1 > 0 and for all r > 0. Then M is parabolic.

Proof. By Theorem 1.1 and the curvature assumption, the length of the boundary of the
geodesic ball of radius r centered at y satisfies

Ly(r) ≤ C1 r + C2 α1

∫ r

0

log(t+ 1) dt

≤ C1 r + C2 α1 {(r + 1) log(r + 1)− r − 2}
≤ 2C2 α1 (r + 1) log(r + 1),

for r sufficiently large. Now we invoke the criterion (see [L-T 1]) for the parabolicity of M
by checking the condition ∫ ∞

1

1
Ly(r)

dr = ∞.

§2 Differential Inequalities and Integrabilities

In this section we will focus our attention to positive functions defined on a complete
manifold which satisfy a certain class of differential inequalities.

Theorem 2.1. Let M be a complete noncompact Riemannian manifold without boundary.
Assume u is a nonnegative function on M satisfying the differential inequality

∆u− |∇u|2

u
≥ k uq+1 + g u,

for some constants q ≥ 0, and for some functions k ≥ 0 and g on M. Let us assume that
the negative part of g define by g− = max{0,−g} is integrable, and also that there exists a
positive constant p and a point y ∈ M, such that for all r sufficiently large, the function u
satisfies ∫

By(r)

up dV = o(r2).

Then
0 ≥

∫
M

k uq dV +
∫

M+
g dV,

where M+ = {x ∈M |u(x) > 0}.

Proof. Without loss of generality we may assume that
∫

M
g dV < ∞. Otherwise, we can

replace g by the function

gr(x) =

{
min{g(x), r}, if x ∈ By(r)

− g−(x), if x /∈ By(r),
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and let r → ∞ after the theorem is proved for gr. In fact, a consequence of the theorem is
that the integral of g will be finite if u ∈ Lq(M).

Let ε > 0 be an arbitrary contant and φ(x) to be the cut-off function depending only on
the distance from x to the point y which is defined by

φ(x) =

{
1 on By(r)

0 on M \By(2r)

with the properties that φ ≥ 0 and |∇φ|2 ≤ 3 r2. Multiplying the differential inequality on
both sides by the factor φ2 up−1

up+ε and integrating over M yields

(2.1)
∫

M

φ2 up−1 ∆u
up + ε

−
∫

M

φ2 up−1|∇u|2

u (up + ε
≥
∫

M

φ2 k up+q

up + ε
+
∫

M

φ2 g up

up + ε
.

Integrating the first term on the left hand side by parts gives∫
M

φ2 up−1 ∆u
up + ε

= −2
∫

M

φup−1 〈∇φ,∇u〉
up + ε

− (p− 1)
∫

M

φ2 up−2 |∇u|2

up + ε

+ p

∫
M

φ2 u2p−2 |∇u|2

(up + ε)2

= −2
∫

M

φup−1 〈∇φ,∇u〉
up + ε

+
∫

M

φ2 up−1 |∇u|2

u (up + ε)
− ε p

∫
M

φ2 up−2 |∇u|2

(up + ε)2

≤ 1
ε p

∫
M

|∇φ|2 up +
∫

M

φ2 up−1 |∇u|2

u (up + ε)
.

Substituting this into inequality (2.1) yields

1
ε p

∫
M

|∇φ|2 up ≥
∫

M

φ2 k up+q

up + ε
+
∫

M

φ2 g up

up + ε
.

Using the estimate on |∇φ|2 and the assumption on u, the left hand side can be estimated
by

1
ε p

∫
M

|∇φ|2 up ≤ 3
ε p r2

∫
By(2r)

up,

which tends to 0 as r →∞. Hence we arrive at the inequality

0 ≥
∫

M

k up+q

up + ε
+
∫

M

g up

up + ε
.

Now letting ε→ 0 and observing that the second integral converges by Lebesgue convergence
theorem and the first integral converges by the monotone convergence theorem to the desired
inequality.

We would like to point out that if k ≡ 0 and u > 0, then the theorem implies that∫
M
g dV ≤ 0. This is a slight generalization of a theorem of the second author in [Y], where

he assumed in addition that g is bounded from below. On the other hand if k > 0 and∫
M+ g dV ≥ 0, then we can conclude that u must be identically 0.
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Corollary 2.2. Let M, u, g, and k satisfy the assumption of Theorem 2.1. In addition, let
us also assume that M admits a positive Green’s function. Then u must be identically 0.

Proof. Assume that there is a point z ∈ M such that u(z) > 0. Let Gz(x) be the positive
Green’s function on M with a pole at z. Pick a sequence Gi(x) of nonnegative smooth
superharmonic functions on m which has the properties that Gi → Gz weekly in L2. This
can be achieved by simply capping-off Gz near the pole. Now consider the function w = u ev,
where v = −αGi for some constant α > 0. Observe that∫

By(r)

wp =
∫

By(r)

up epv

≤
∫

By(r)

up

= o(r2),

by the assumption on u.
On the other hand, w satisfies the differential inequality

∆w − |∇w|2

w
≥ k up w + g w + w∆v

≥ w (g + ∆v).

Applying Theorem 2.1 to the function w and using the fact that ∆v ≥ 0, we have

−
∫

M

g ≥
∫

w>0

∆v

≥
∫

u>0

φ∆v,

for all compactly supported function φ such that φ(z) = 1 and φ ≤ 1. Integrating by parts
and letting i→∞, we conclude that∫

u>0

φ∆v = −
∫

u>0

αGi ∆φ

→ −
∫

u>0

αGz ∆φ

= αφ(z)
= α,

which gives a contradiction since α is arbitrary.

The next theorem allows us to deduce integrability conditions on nonnegative functions
which satisfy a similar class of differential inequalities.
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Theorem 2.3. Let M be a complete noncompact Riemannian manifold without boundary.
Assume that u is a nonnegative function on M satisfying the differential inequality

∆u− |∇u|2

u
≥ k0 u

q+1 + g u,

for some constants q, k0 > 0, and for some function g on M . Then for any constant p > 1
and any fixed point y ∈M, there eixsts constants C8, C9 > 0 depending only on k0 such that
the function u must satisfy∫

By(r)

up+q−1 ≤ C8 r
− 2(p+q−1)

q Vy(2r) + C9

∫
By(2r)

g
p+q−1

q

−

for any r > 0. In particular, if ∫
By(r)

g
p+q−1

q

− = o(r2)

and
Vy(r) = o(r

2(p+2q−1)
q )

as r →∞, then ∫
By(r)

up = o(r2)

as r →∞.

Proof. Let φ be the cut-off function defined in the proof of Theorem 2.1. Multiplying both
sides of the differential inequality by φ2 up−2 and integrate by parts yields

k0

∫
M

φ2 up+q−1 −
∫

M

φ2 g− u
p−1 ≤

∫
M

φ2 up−2 ∆u−
∫

M

φ2 up−3 |∇u|2

= −2
∫

M

φup−2 〈∇φ,∇u〉 − (p− 1)
∫

M

φ2 up−3 |∇u|2

≤ 1
p− 1

∫
M

|∇φ|2 up−1.

(2.2)

However the right hand side can be estimated by

(2.3)
∫

M

|∇φ|2 up−1 ≤
(∫

M

φ2 up+q−1

) p−1
p+q−1

(∫
M

φ−
2(p−1)

q |∇φ|
2(p+q−1)

q

) q
p+q−1

.

It is also clear that we can choose φ to satisfy the inequality

φ−
2(p−1)

q |∇φ|
2(p+q−1)

q ≤ C10 r
− 2(p+q−1)

q ,
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hence (2.3) becomes

(2.4)
∫

M

|∇φ|2 up−1 ≤
(
C10 r

− 2(p+q−1)
q Vy(2r)

) q
p+q−1

(∫
M

φ2 up+q−1

) p−1
p+q−1

.

The second term on the left hand side of inequality (2.2) can be estimated by

∫
M

φ2 g− u
p−1 ≤

(∫
M

φ2 up+q−1

) p−1
p+q−1

(∫
M

φ2 g
p+q−1

q

−

) q
p+q−1

≤
(∫

M

φ2 up+q−1

) p−1
p+q−1

(∫
By(2r)

g
p+q−1

q

−

) q
p+q−1

.

The theorem follows by combining this and inequalities (2.2) and (2.4).

§3 Holomorphic Mappings and Holomorphic Functions

We are now ready to study holomorphic mappings from a Kähler manifold whose Ricci
tensor satisfies certain integrability conditions.

Theorem 3.1. Let M be a complete noncompact Kähler manifold without boundary of
complex dimension m. Let R(x) denote the pointwise lower bound of the Ricci curvature of
M and R−(x) its negative part as defined in Theorem 1.1. Assume that R−(x) satisfies∫

M

R− dV <∞,

and ∫
By(r)

Rp
− dV = o(rβ (p−1))

for some p > m, and some β < 2
m−1 . Let ψ be a nonconstant holomorphic mapping from M

into a complex Hermitian manifold N which has holomorphic bisectional curvature bounded
from above by K(z) for all z ∈ N. Suppose that the curvature of the image of M under ψ
satisfies K(ψ(x)) ≤ −B for all x ∈M and for some constant B > 0. If we denote the trace
of the pulled-back metric tensor of N on M by

u = trψ∗(ds2N ).

Then it must satisfy the inequality

−
∫

M

RdV ≥ −
∫

M

K(ψ(x))u(x) dV.

In particular, if either ∫
M

RdV ≥ 0,
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or M admits a positive Green’s function, then ψ has to be identically constant.

Proof. A direct computation (see [Lu], [C-C-L], and [L]) verifies that u satisfies the Bochner
type differential inequality

∆u− |∇u|2

u
≥ −2K u2 + 2Ru.

Holomorphicity of ψ and the assumption that u is nonconstant implies that the zero set of
u must be of measure zero on M. We claim that there is a constant p′ > m such that∫

By(r)

Rp′

− dV = o(r2).

Indeed, the Cauchy-Schwarz inequality implies that

∫
By(r)

Rp′

− dV ≤

(∫
By(r)

R− dV

) p−p′
p−1

(∫
By(r)

Rp
− dV

) p′−1
p−1

= o(rβ (p′−1)).

The assumption on β allows us to choose p′ = 2
β + 1 > m.

Applying Corollary 1.2 and Theorem 2.3 by setting p = p′ and q = 1, we conclude that∫
By(r)

up′ dV = o(r2).

The theorem now follows from Theorem 2.1 and Corollary 2.2.

We would like to point out that the assumption that M possesses a positive Green’s
function is necessary even in dimension 2. In fact, let us consider a complete surface M
with constant -1 curvature which has finite volume. By Huber’s theorem, M is conformally
equivalent, hence holomorphically equivalent to a compact surface with finite punctures.
One can conformally change the metric to a complete metric which is flat in a neighborhood
of each puncture. This new metric satisfies the hypothesis of Theorem 3.1 except the
existence of a positive Green’s function. However, it is holomorphically equivalent to a
surface with constant -1 curvature, which gives a counter-example.

In the case if a Kähler manifold admits a nonconstant bounded holomorphic function,
by scaling the holomorphic function, one can interpret it as a holomorphic mapping to the
unit ball in C. On the other hand, the unit ball is biholomorphic to the Poincaré disk
with the complete metric with -1 curvature. By taking the composition map, we obtain
a holomorphic mapping from the Kähler manifold into the hyperbolic space form. Hence
applying Theorem 3.1 to this setting we have the following:

Corollary 3.2. Let M be a complete noncompact Kähler manifold without boundary of
complex dimension m. Let R(x) denote the pointwise lower bound of the Ricci curvature of
M and R−(x) its negative part as defined in Theorem 1.1. Assume that R−(x) satisfies∫

M

R− dV <∞,
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and ∫
By(r)

Rp
− dV = o(rβ (p−1))

for some p > m, and some β < 2
m−1 . Then M does not admit any nonconstant bounded

holomorphic functions.

The argument in the proof of Theorem 3.1 relies on the Bochner differential inequality
for the energy of holomorphic mappings. In fact, a larger class of mappings from a Kähler
manifold also enjoy this differential inequality which was defined as pluriharmonic mappings
in [L]. We will refer the reader to [L] for the computation and the proof of the following
theorem.

Theorem 3.3. Let M be a complete noncompact Kähler manifold without boundary of
complex dimension m. Let R(x) denote the pointwise lower bound of the Ricci curvature of
M and R−(x) its negative part as defined in Theorem 1.1. Assume that R−(x) satisfies∫

M

R− dV <∞,

and ∫
By(r)

Rp
− dV = o(rβ (p−1))

for some p > m, and some β < 2
m−1 . Let ψ be a nonconstant pluriharmonic mapping from

M into a Riemannian manifold N which has Hermitian bisectional curvature bounded from
above by K(z) for all z ∈ N. Suppose that the curvature of the image of M under ψ satisfies
K(ψ(x)) ≤ −B for all x ∈ M and for some constant B > 0. If we denote the trace of the
pulled-back metric tensor of N on M by

u = trψ∗(ds2N ).

Then it must satisfy the inequality

−
∫

M

RdV ≥ −
∫

M

K(ψ(x))u(x) dV.

In particular, if either ∫
M

RdV ≥ 0,

or M admits a positive Green’s function, then ψ has to be identically constant.

By using the fact that the upper half plane is biholomorphic to the hyperbolic space
form, we conclude the following:

Corollary 3.4. Let M satisfies the same assumption as in Theorem 3.3. Then M does not
admit any nonconstant positive pluriharmonic functions.
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Theorem 3.5. Let M be a complete noncompact Kähler manifold without boundary of
complex dimension m. let S(x) denote the scalar curvature on M and S−(x) its negative
part defined by S−(x) = max{0,−S(x)}. Assume that S−(x) satisfies∫

M

S− dV <∞,

and that there exists a constant p > 1 and a point y ∈M such that∫
By(r)

Sp
− dV = o(r2).

Suppose that the volume of the geodesic balls of radius r centered at y satisfy

Vy(r) = o(r2p+2),

as r →∞. Let ψ be a nonconstant holomorphic mapping from M into a complex Hermitian
manifold N which has the same dimension and with Ricci curvature bounded from above
by RN (z) for all z ∈ N. Suppose that the curvature of the image of M under ψ satisfies
RN (ψ(x)) ≤ −B for all x ∈M and for some constant B > 0. If we denote the fourth power
of the Jacobian of the map ψ by

v =
(
ψ∗(dVN )
dVM

)4

,

and the trace of the pulled-back metric tensor of N on M by

u = trψ∗(ds2N ).

Then either ψ is totally degenerate, ie. v is identically 0, or u must satisfy

−
∫

M

S dV ≥ −
∫

M

RN (ψ(x))u(x) dV

≥ B

∫
M

u dV.

In particular, if either ∫
M

S dV ≥ 0,

or M admits a positive Green’s function, then ψ has to be totally degenerate.

Proof. It was derived in [C] that the function v satisfies the differential inequality

∆v − |∇v|2

v
≥ −2RN u v + 2S v.
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Arithmetic-geometric means implies that

u ≥ m

2
v

1
4m .

Letting w = v
1

4m , we can rewrite the differential inequality as

∆w − |∇w|2

w
≥ −1

2
RN w2 +

1
2m

S w.

Now we can apply Theorem 2.3 to conclude that∫
By(r)

v
p
m dV =

∫
By(r)

wp dV

= o(r2).

The theorem now follows from Theorem 2.1.

Corollary 3.5. Let M be a complete noncompact Kähler manifold without boundary of
complex dimension m. Let S(x) and R(x) denote the scalar curvature and the pointwise lower
bound of the Ricci curvature on M, and S−(x) and R−(x) their negative parts respectively.
Assume that S−(x) satisfies ∫

M

S− dV <∞,

and that there exists a constant p > m such that∫
By(r)

Rp
− dV = o(r2).

Let ψ be a nonconstant holomorphic mapping from M into a complex Hermitian manifold
N which has the same dimension and with Ricci curvature bounded from above by RN (z) for
all z ∈ N. Suppose that the curvature of the image of M under ψ satisfies RN (ψ(x)) ≤ −B
for all x ∈ M and for some constant B > 0. If we denote the fourth power of the Jacobian
of the map ψ by

v =
(
ψ∗(dVN )
dVM

)4

,

and the trace of the pulled-back metric tensor of N on M by

u = trψ∗(ds2N ).

Then either ψ is totally degenerate, ie. v is identically 0, or u must satisfy

−
∫

M

S dV ≥ −
∫

M

RN (ψ(x))u(x) dV

≥ B

∫
M

u dV.

In particular, if either ∫
M

S dV ≥ 0,

or M admits a positive Green’s function, then ψ has to be totally degenerate.

Proof. The assumption on R− and Corollary 1.2 implies the desired volume growth condition
to apply Theorem 3.5. Now we observe that S(x) ≥ mR(x), and the corollary follows.
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