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In the present note, we shall prove 

Theorem 1. Let D be an irreducible bounded symmetric domain in C', n >= 2. Let F be a 
(nonuniform) lattice in Aut(D), i.e. a discrete subgroup of Aut(D) for which 
N : = D/F (is noncompact and) has .finite volume (w.r.t. the locally symmetric metric 
induced from D ). Suppose that a group F isomorphic to F (as an abstract group) acts 
as a discrete automorphism group on a contractible K(ihler manifold tVI. Assume that 
lQ/ f  has a finite singularity free cover M (i.e. M is a manifold) which is 
quasiprojective i.e. admits a compactification as a projective variety IVI and that 
~ I \ M  is of codimension at least three in ~l. Then ]Q is biholomorphically equivalent 
to D, and f is conjugate to F in Aut(D). 

Theorem 2. Let Tg be the Teichmiiller space of Riemann surfaces of genus g, F o the 
modular group and N the moduli space, g ~ 2. Let f be isomorphic to F o and act on a 
contractible Kdhler manifold M with a quotient lkI/F satisfying the same assumptions 
as in Theorem 1. Then ~l is biholomorphically equivalent to To, and I? acts as the 
modular group. 

The assumption that M can be compactified in such a way that the 
compactifying divisor is algebraic seems to be (at least in principle) necessary. 
Namely, a locally Hermitian symmetric variety of finite volume admits nonsin- 
gular compactifications, and the compactifying divisor then of course admits 
topological deformations as a submanifold of the compactified space, and cutting 
out the deformed submanifold we get a space with a different complex structure 
homotopically equivalent to the original one. 

It is not clear to us whether the restriction is necessary that the compactifying 
divisor can be blown down to a variety of codimension three. 

Our  proof uses harmonic maps (cf. [9] as a general reference). We shall first 
construct a homotopy  equivalence of finite energy between )U/F and N, then 
deform it into a harmonic map. We then justify an application of Siu's local 
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analysis [17] to conclude that the harmonic map actually is + holomorphic. We 
show that it is also proper whence it is not difficult to conclude the statement of the 
theorem. 

The restriction on the codimension o f / ~ \ M  is needed in the first step, namely 
the construction of a finite energy homotopy equivalence. This construction 
depends on a detailed study of complete K/ihler metrics on quasiprojective 
varieties. We expect that our investigation of such metrics (in Sect. l) will also be 
useful for other purposes. 

The corresponding rigidity theorem in the compact case is due to Siu whose 
paper [16] pioneered the application of harmonic maps to rigidity questions in 
algebraic geometry. 

Theorem 1 also includes (and generalizes) the celebrated rigidity theorem of 
Margulis [12] except for one case, namely quotients of the Siegel upper half plane 
of degree two. This bounded symmetric domain is of complex dimension 3, and its 
finite volume quotients require a compactifying variety of dimension 1, i.e. of 
codimension 2. (Note that since SO(3,2) is locally isomorphic to Sp(2,1R), 
quotients of the bounded symmetric domain of type IV and dimension 3 are 
isomorphic to quotients of the Siegel upper half plane.) In all other cases of 
Margulis' theorem it follows from the study of the boundary components of 
bounded symmetric domains that the compactifying divisors for finite volume 
quotients can be blown down to codimension (at least) 3. 

Let us also remark that we make use of Margulis' theorem on the arithmeticity 
of F in case rank D > 2, because we shall need the Baily-Borel compactification of 
D/F the construction of which depends on the arithmeticity of F. 

Since the basic idea of our method, however, has nothing to do with the 
arithmeticity of N, it would be interesting to have an approach to the 
compactification of finite volume Hermitian symmetric varieties which yields the 
Baily-Borel result without using arithmeticity. This was carried out for the rank 
one case in [18], but the higher rank case seems more difficult. 

The case rank D = 1 was already treated in our previous paper [10], and in this 
case one does not need any assumption on the codimension of the compactifying 
variety MI/M, due to the fact that in this case the geometric structure of the cusps of 
D/F is much simpler. Therefore, in the present note we shall only deal with the case 
rank D >__ 2 although the case rank D = 1 could rather easily be incorporated into 
our present arguments as well. Also, combining the present note and [10], one can 
also deal with irreducible group actions on products of bounded symmetric 
domains. 

Concerning Theorem 2, the assumption on the codimension 3 compactific- 
ation is not vacuous as Baily's compactification of the moduli space of Riemann 
surfaces of genus g > 3 obtained as a subvariety of the Satake compactification of 
the moduli space of principally polarized Abelian varieties of dimension g via the 
Jacobian map and Torelli's theorem (cf. [1]) satisfies this requirement (after 
blowing down a ~IP 1 factor in the Humbert variety). Namely it contains in its 
boundary the moduli spaces of surfaces of genus smaller than g, and if the genus 
drops by 1, the dimension of the moduli space drops by 3. This compactification 
is dominated by Mumford's compactification of the moduli space of stable curves 
of genus g where one has a compactifying variety of codimension 1, and both 
these compactifications lift to finite covers in an explicit way. 
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In our proof of Theorem 2, we shall make use of some recent results of Tromba 
and Wolpert on the Weil-Petersson metric of T 0, namely the negativity of the 
sectional curvature, the negative upper bound for the holomorphic sectional 
curvature, the strong negativity of the curvature in the sense of Siu as observed by 
Schumacher, and the convexity of geodesic length functions (cf. [19 21, 15]). 

Let us also remark that a rigidity theorem for the moduli space of Riemann 
surfaces was announced by Schumacher in [15J. Judging from the contents of his 
paper, it seems that his rigidity theorem should be rather different in spirit from 
OURS. 

1. The Construction of the Domain Metric 

By assumption, we can consider 4 as an algebraic subvariety of some ~[~N, and 

S: = M \ M  

is of (complex) codimension at least three in M. 
Applying Hironaka's theorem [8] and performing repeated blow-ups of the 

ambient (12~ ,N, we obtain as proper transform M' of M a compact algebraic 
manifold and a holomorphic map ?z: 4 ' ~ 4  with the following properties: 

z : 4 ' \ z - l ( S ) - - + M  is bijective for each z e S ,  7: l(z) is of 
dimension at least 2. S': = 7t ~(S) is a union of smooth hypersur- 
faces of M' with (at worst) normal crossings. 

Also, we have a map 7t : IITI~'N-+(ISIP N, where (12~ N is our blow-up of (121P N, which 
extends 7t: )~r'--+4. 

Let S 1 . . . .  , Z: be the components of S' and let a4 be a section of C(M', [2;4] ) with 
length I~r41 < 1 and S4={(r4=0} (2= 1 .. . . .  1). We note that a4 has a simple zero 
along Sx, as X~ has multiplicity one. We put 

i.e. 
l 

I<= 11 IG41. (1) 
2--1 

We let (5 be the Kfihler form of (EIP s. We let (z ~) be local coordinates on M', let 
((o~#dz ~ A d z  ~) represent rt*G-)lM, in these coordinates and look at the Hermit ian 
matrix given by 

2 g,/flz A d z  ~ -- - -~  ., ~ log log 10.12 dz ~'/x dz  ~ + cw,~dz ~/,, dz ~ (2) 
2 r cz ~ 

i 1 (3 log dz ~'/x 
=2  ( l ogv~  21 ) 2 ~ z  ~ &al~  

i 1 (92 log I dz~,Adz  ~ (3) 
2 1 cgzh?z ~ 

l o g  io.[ 2 

+ c~o~dz =/x dz  ~ , 

where c > 0 is a constant.  



484 J. Jost and S. T. Yau 

If G is a finite group acting biholomorphical ly on M then we can average 
g,~dz~Adz ~ under G in order to obtain a Kfihler metric (from the conside- 
rations below) invariant under the action of G. All our subsequent assertions 
(Lemmata  1-3) will pertain to this invariant metric, and the action of G will be 
isometric w.r.t, this metric 

Lemma 1. I f  c > 0 is chosen large enough, then 

g,~dz ~ Adz  ~ 

represents a complete K6hler metric on M. 

Proof The K/ihler property  is clear. Let us first show that  g~  represents a 
positive definite matrix. Since the first term in (3) is clearly positive 
semidefinite, it suffices to show that  the sum of the other two terms is 
positive definite. Actually, both these terms are smooth on 1~'. This is obvious 
for the third term in (3), and the second term extends smoothly because 

- ~38-1~ is the curvature f~ ~  the line bundle [ + X~] ' ~=1 

We first investigate a neighborhood of Xa. Let w ~ X, z e n-l(w), i.e. z e s for 
some 2 ~ { 1 . . . . .  1}. 

M' sits in ~IP N, the blow-up of 11~ 'u along smooth submanifolds, and a~ is a 

restriction of a section defining a hypersurface in ~]~N. If~_~ and c3 are tangent to 
8z 8z p 

rt- l(w), then they are tangent to a fiber in this hypersurface corresponding to a 
projective space of suitable dimension. Then 

- O z  ~ ~ l o g  ~ dz ~Adz  ~ 
/ 

is the curvature of this projective space, hence a positive definite form. (We note 
\ 

that since we work in the K/ihler context, we do not get a contribution from the 
second fundamental form of M' in (EI~ N, since for the Levi-Civita connection V, 

Ve =0  
,~=~ 8z ~ 

8 
If on the other hand 8z ~ and ~z ~ are normal to n ~(w) (e.g.w.r.t. the K/ihler 

1 (-)2 1 
metric on M'), then ~o~r is a positive definite form, while 1 8z~Sz~ log ]O.] 2 

log ]~]-~ 

tends to zero when approaching X~. Finally, cross terms can be handled by the 
Schwarz inequality and we conclude that (provided c > 0 is chosen large enough) 

i 1 8 2 1 
2 1 8z~Sz~ log [0.12 -]- C(.Dct B 

log 10-] 2 

is positive semidefinite in a neighborhood of Xa. Away from X~, co,~ has eigenvalues 
bounded from below by a positive constant, and hence, if c > 0 is large enough, our 
matrix is positive definite everywhere. 
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In order to show completeness, we shall use the first term in g~9. We let 7(t) be a 
(piecewise smooth) arc running from a level hypersurface laB2= c > 0 into la12= 0. 
We calculate 

,~[2 () 1 ~ - ' ' )  U2 
i~l 2=c[ ,/ 1 8 log ~ l o g ~ _ , ~ d z  Adz~(7,7) dt 

\t,'~ M ) 
I '~lz-< 1 l 

= J" 1 I~-I ~ d l ~ 1 7 6 1 7 6  (4) 
I,~12 =o l og  io_1 ~ 

Since, as shown above, the other terms in the definition of gad are positive 
semidefinite, it follows that 7 has infinite length w.r.t, the metric G~, and 
completeness follows. 

Lemma 2. g~p defines a metric of .finite volume on M. 

Proof This follows since the second and third term in the definition of g,~ are 
bounded, whereas the first one behaves like the Poincar6 metric 

i 0 2 ]~[2 
2 c9z~s l~ log dz/x d~ 

on the punctured unit disk { z e C : 0 < [ z [ < l }  which has finite volume in a 
neighborhood of the origin. 

Remark. One can also check that (g~t~) has bounded Ricci curvature, cf. e.g. [6]�9 

Lemma 3. The diameter of {la[ 2 =c} stays bounded as c--*O. 

Proof Since the second and third term in the definition of g~ are bounded, we 
again have to look only at the first term in (3), namely 

1 \2 (') 1 1 (9 1 ~ 
�9 log laB2 dz/,, dz 

1 I / ~z ~< ~ Oz ~ ~ / 
We first note that its restriction to the holomorphic tangent directions of {[o'] 2 = C} 
vanishes. In the remaining real tangent direction, it behaves like the Poincar6 
metric on the punctured unit disk (cf. the proof of Lemma 2), so that this direction 
is actually shrinking in diameter. 

The claim follows easily. 

2. The Construction of  a Homotopy Equivalence of Finite Energy 

Lemma 4. Let M be equipped with the metric (g~[~) of Lemma 1. Assume that the 
codimension of Z(: = ~I \M)  in ~l is at least 3. 

Let N be a Riemannian manifold homotopically equivalent to M. Then there 
exists a homotopy equivalence 

h : M ~ N  
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of finite energy: 

E(h) =1 ~ idhlZd vol(g~) < o0. 
M 

I f  a finite group G acts isometrically on M and N and if M and N are equivariantly 
(w.r.t. the action of G) homotopically equivalent, then h can also be chosen to be 
equivariant. 

Proof. Let 
K 

k = l  

be the disjoint union of its connected components. We split M as 

K 

M = M b U  [J Mk, 
k = l  

where M b is bounded and M k is of the form 

B k • IR + (topologically, but not necessarily metrically), 

where B k is the boundary of a neighborhood of r k. Since N is homotopically 
equivalent to M, we get an induced splitting 

K 

N = N b U  ~ (Ck• 
k = l  

where C k is homotopically equivalent to B k. 
We can actually assume that the given homotopy equivalence between M and 

N induces homotopy equivalences 

gk" Bk ~ Ck, 

and, applying a standard smoothing process, we can assume that each gk is 
differentiable and hence in particular has finite energy. 

Since M b is bounded, it now suffices to extend each gk to a finite energy map gk 
between Bk • N + and Ck • R+.  

Of course, it then is sufficient to exhibit the procedure for one end. Hence we 
drop the index k, and we use the constructions of Sect. 1. The boundary 
neighborhood B can then be assumed to be of the form {[crl2=c} (c>0). 

We then construct a map ~ as follows. 
We first take the map p that projects B • IR + onto B along the gradient flow 

curves of ral 2. Here, we take grad [o-[2 w.r.t, the K/ihler metric of M'. Furthermore, 
let g be the given homotopy between B and C. We put 

~: = g o p .  

If G acts isometrically on M and N, we obtain decompositions as above for the 
quotients M/G and N/G, and lifting these decompositions to M and N, resp. we see 
that we can construct g and g equivariantly. 

Since g is a Cl-map between compact manifolds, in order to show that ~ has 
finite energy, it suffices to show that p has finite energy. 
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The energy density of p is 

f . . . .  8p i 8p J c3p ~ 8pJ '~ ,  . , 
g~(z) ~ gi3tptz)) Oz ~ ~ + g~/-(p(z)) 8z ~ 8 3 )  aetg az A dzi  A ... A dz" A d z " .  (5) 

Here, detgdz ~ A d z ~ A . . . A d z "  is a volume form of the Kfihler metric of M' 
(choosing suitable coordinates). Moreover, 

g " -  g'~ (6) 
detg ' 

where ~ is the corresponding minor of (g~). Hence the terms with detg cancel 
each other. 

Also, the terms gij(p(z)) and gg/~p(z)) are bounded and can hence be disregarded 
in our estimates. 

Let, after relabeling, to 

Zo~ 0 X~ (1o>1). 
.~=1 

We want to control the energy of p in a neighborhood of z o. After performing a 
C~-diffeomorphism of this neighborhood, we can assume that (in local 
coordinates) 

Zo=0~(l~" , 

I0-12 = Izl . . . . .  zlOl2 

and that the flow lines for gradla[ 2 are given by the flow lines for gradlz ~ -.. . .  z~~ 
grad Io-I 2 determines a holomorphic tangent plane at each z e M. Let this plane 

be spanned by unit vectors e ~ and e ~. Then 

goe I (ff)ei(pj) + g i~ el(p~)e ~(p~) < const 
: i~rl 2 (7) 

In the directions normal to this plane, the derivatives ofp  are uniformly bounded, 
i.e. if the corresponding unit vectors are denoted by e 2 .. . . .  e" 

goe"(ff)e~(p)) + g~TeU(p~)e"(p j) < const (/~ = 2 . . . . .  n). (8) 

Let us now estimate the corresponding minors ~ .  
Let ~ ~ be the minor corresponding to the direction determined by the vectors 

e ~ and e ~. We have 
const 

This is seen as follows: 
If w ~ X ,  then 7z-~(w) has complex dimension at least 2, since 2," is of 

codimension 3 in M. 
When approaching 7t-l(w), then in a direction tangent to 7z-l(w), the term 

] (~2 Io | 
- - -  - i  ~3z~0z l' glat 2 

log [a[2 
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dominates the term 
COJcq~ 

in the definition of g,~, as the latter tends to zero quadratically, as can be easily seen 
from the formulae for blow-ups. Since there are always at least two such directions, 

( we get the factor log in the estimate for ~l~. 

Likewise, let ~ "  be the minor corresponding to the e", e ~ direction. Then for 

# > 2 ,  1 1 
~ u , < (  l o g ~ |  ) 2 i~  c ~  (10) 

This estimate comes from the behavior of the first term in the definition of g#. 
From (5)~10) we deduce (in local coordinates near zo) 

1 1 
E(p) < const ]" )~5-~/-i---i- q~ dz ~ A dz  ~ A . . . Adz" Adz" .  

The volume form dz I A dz  1 A ... Adz" Adz" behaves like 

I<dlo-ld vol({lal = c}) 

and we conclude that E(p) is finite, q.e.d. 

Remark. The homotopy equivalence constructed in Lemma 4 is not proper. Under 
suitable assumptions on the behavior of the metric of N near the ends (which are 
satisfied in our applications), one could also construct a proper homotopy 
equivalence of finite energy. 

3. The Harmonic Map and its Properties 

a) Existence o f  a Harmonic Map o f  Finite Energy 

Lemma 5. Let  h be the homotopy equivalence constructed in Lemma 4. Assume that 
N has nonpositive sectional curvature, that 

a) there exists a closed loop in N that cannot be homotoped into an end and that 
b) the universal cover ~[ o f  N has a convex exhaustion f imction f � 9  C 2. 
Then h is homotopic to a harmonic homotopy equivalence u o f  f in i te  energy. I f  h 

is equivariant w.r.t, to an isometric action o f  a f ini te  group G on M and N, then so is u. 
( In  this case we need only a loop on N / G  that cannot be homotoped into an end). 

Proof. We refer to [9] as a reference for harmonic maps and the associated 
parabolic problems. We exhaust M by an increasing sequence of bounded smooth 
domains ~2 i, and look at the parabolic problems 

ui(x , t): (2 i • [0, oo)-~N, 

X -~(u,)=0, 
(11) 

ui(x, O) = h(x) for x �9 l?i, 

ui(x, t) = h(x) for x �9 c?12 i and t �9 [0, oo). 
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Here, z(u) is the tension field of u, i.e. the Euler-Lagrange operator for the energy 
functional E(u) = [. IdulZd~2. 

(2 
We lift u, to universal covers, obtaining a map 

where ~i is the lift of (2 i in the universal cover ~ of M. Since f is convex, 

c~t(fo fi/)-A(f,> ui) ~ 0. (12) 

We shall show that the set of t  e [0, ~ )  for which a solution of(l  1) exists is open and 
closed. Since it contains 0 it will then follow that a solution of(11) exists for all time 
t~[0 ,  ~) .  If a solution exists for t, and t ,~ to  then a standard normal family 
argument based on (12) implies that, as t ,~to,  either f<~ fi~ converges uniformly 
on compact subsets of M to ~ or to a real-valued limit function f o ~i(', to). The 
first case in impossible since u~ has fixed boundary values on 8(2. This, together 
with a-priori estimates for solutions of (11) shows closeness. 

Since (2 i is bounded and hence f o ~( . ,  t) is bounded for given t when restricting 
to the intersection of Oi with a fundamental region for M in M, openness follows 
from the implicit function theorem. 

As t--*~, ui(., t) then converges to a harmonic map 

We now let i ~ o .  
Since f is convex, again 

Vi : Oi--+ N .  

A ( f  o ~,)>=0, (13) 

where ~5i: ~i---+/~ is the lift to universal covers as before. A normal family argument, 
based on (13) now shows that either f o  ~i tends to infinity uniformly on compact 
subsets or to a real-valued subharmonic function as i ~ .  The first case is 
impossible because of assumption a). 

A-priori estimates then imply that v~ converges together with its derivatives 
uniformly on compact subsets of M to a harmonic map u: M--*N. Since M and 
hence also N is topologically finite, u is homotopic  to h, in particular a homotopy  
equivalence. Also, by construction 

E(u) <= E(h) 

and the latter is finite by assumption. 
Finally, as in the proof of Lemma 4, the construction can be made equivariant 

w.r.t, the action of a finite group G of isometrics, q.e.d. 

The assumptions of Lemma 5 are satisfied in the two cases that interest us here, 
namely 

Corollary I. Let M be as before, in particular (equivariantly) homotopically 
equivalent to N and equipped with the metric of Lemma 1. Then there exists an 
( equivariant ) harmonic homotopy equivalence of finite energy if 

a) N is a quotient of finite volume of a bounded Hermitian symmetric domain D. 
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b) N is a finite cover of the moduti space of Riemann surfaces of genus g > 2 
equipped with the Weil-Petersson metric, and G= Fo/nl(N ) where Fg is the modular 
group. 

Proof In case a), each end of N arises from the action of tel(N) on a boundary 
component  F of D, and since N has finite volume, rc1(N ) contains elements not 
leaving F fixed. Such an element represents a closed loop on N that cannot be 
homotoped into the corresponding end. Taking a product of one such element for 
each end produces a loop satisfying the requirement of Lemma 5. 

Since D is complete of nonpositive sectional curvature, the squared distance 
function from any point of D yields a strictly convex exhaustion function. 

In case b), Wolpert [,-21] showed that geodesic length functions (i.e. one fixes a 
homotopy class of closed loops on the underlying surface of genus g and assigns to 
each point in Teichmfiller space the length of the closed geodesic in this class w.r.t. 
the hyperbolic metric on the Riemann surface represented by this point) are strictly 
convex w.r.t, the Weil-Petersson metric, Moreover, a suitable sum of geodesic 
length functions (for example taking all the generators of the fundamental group of 
the corresponding surface) provides an exhaustion function. Furthermore,  
Tromba [,-19] and also Wolpert [20] showed that the Weil-Petersson metric has 
negative sectional curvature. 

Finally, a closed loop on N/G that cannot be homotoped into an end of N/G is 
constructed as follows: Let a l, a 2 . . . .  , a2g be a set of generators of the fundamental 
group of our surface of genus g, ordered in such a way that the intersection number 
between a2i_ 1 and azi is 1 and the other intersection numbers vanish (i = 1 . . . .  , g). 
We then let 1' ~ F0 be the element that interchanges each azi ~ with a2i. It is an easy 
consequence of the collar lemma for hyperbolic Riemann surfaces that the loop 
represented by 7 cannot be homotoped into the end of N/G. 

b) Some Properties of the Harmonic Map 

We choose a family (qS~),> 0 of cut-off functions with the following properties: 
Near each component  S of M/M, qS~ is a function of s: = Io-I 2 (defined as in 

Sect. 1), i.e. gradqS~ is proportional  to gradl~rl 2 

O ~ ( s ) ~ l ,  

4~-~1 as e~O,  

1 
~(s )=O for s . l o g - ~ e ,  

s 

e2qS; ' is bounded independently of r, as e--*0. 

Since gradlo-[ 2 is orthogonal to the hypersurfaces [o-12=const, these properties 
entail 

IAq~l ~ log < c .  (14) 
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We introduce local coordinates u ~ on the image N, denote by (~'0) the correspond- 
ing metric tensor, by R~jki the curvature tensor, by Fj~ the Christoffel symbols, put 

and 

0u i 
O u = ~ & ~ d z  ~ etc. 

D{ui= c~ui + Z F~ auj A aU k . 
j ,k 

Let o) denote the K/ihler form of M, n = dim M = dim N. Siu's Bochner type identity 
[16, Sect. 3] then is 

2. (?~(Y0/yui A ~?u )) A o"  - 2 
l,J 

= ~ Ri~ld~U i A aU j A aU 1~ A aU t A r n - 2 
i,j ,k,l 

.~.yiTiDUu i/x Dc~u 3 A o)" 2. (15)  
!, .! 

Now 

<= ~ e(u)IA~M vol(M) 
M 

is bounded independently of r,, since the energy of u is finite and because of (14). 
Letting e,--+0, we obtain 

5i~j(~,(),iTiOUiA(gUj)A(On 2 < O 0 .  (16) 

On the other hand, in the cases of interest to us (cf. Corollary 1) both terms on the 
right hand side of(15) are nonpositive. The second term is nonpositive because u is 
harmonic (cf. [16]). If N is a quotient of a bounded Hermitian symmetric domain, 
the first term is nonpositive by Siu's analysis of the curvature tensors of such 
domains, cf. [16]. If N is a quotient of Teichmfiller space equipped with the Weil- 
Petersson metric, then the curvature term is nonpositive by the computation of 
[15]. 

(16) then implies that both terms have a finite integral over M. 
Moreover, since u is harmonic, the second term of the right hand side of (15) 

actually controls the complex Hessian of u. Namely, cf. [16], suppose we have 
normal coordinates at z ~ M and u(z) ~ N (to facilitate the notation), and that 

2/b and #~ (b = 1, ..., n) 

are the eigenvalues of Rec~gu i and Im#gu i, resp. Then 

- 1  k 2 ~)i~D(~fui A OouJ A (,O n-  2 -  E (2,2c + k k , 
l , j  n 2 - - H  ~k b#c 

1 

- n + " f l ~ 1 7 6  
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since y~ 262c= (y~ 2b) 2 -  ~ 22, and y 2b=0, as uis harmonic, and similarly for the 
b + c  \ b  J b b 

IJb' S. 
Thus 

1 
ZToD~ui ADt~uJ AOO " - 2 -  IDUuI2~" (17) 
i , j  n 2 - n ' 

where [DJu] denotes the norm of the complex Hessian of u. In particular, 

(. [DJu[2dvol(m)< oo. (18) 
M 

Therefore, we can find an exhaustion of M by an increasing sequence (M~) of 
smooth subsets for which 

(0~j e(u)) 1/2" \aM; ( ~ [D(~u[2) 1/2j 

-~0 as .j--*c~. 

Hence 

E ~3(Vij ~ui A C~U J) A ~0" - 2 = O, 
M i , j  

hence, since both terms on the right hand side of (15) are nonposltive, 

R i ] k i f f U  i A 8 U  j A ~ U  k A (gU l ~ 0  
i , j , k , l  

and 

(19) 

(20) 

Dffui-O-Dt~u J for i , j = l , . . . , n .  (21) 

Remark. Alternatively, we can use the fact that the Ricci curvature of M is 
bounded, cf. the remark after Lemma 2, and argue as in [10] to deduce (20) and 
(21). 

c) The Harmonic Map is +_ Holomorphic 

We first observe that we can assume w.l.o.g, that N (and consequently also M) has 
at least two ends. If N =  D/F, each end of N arises from the action of F on a 
boundary component F of D, and since N = D/F has finite volume, F contains 
elements not leaving F fixed. Let 7 be such an element. As F is residually finite (cf. 
[4, p. 39]), it contains a normal subgroup F' of finite index not containing y. Then 
N'= D/U has more then one end. Hence, by lifting the harmonic map to a map 
u': M ' ~ N '  between the corresponding finite coverings of M and N, we can assume 
that domain and image have at least two ends. 

Remark. Actually for N = D/F, F' can be explicitly constructed as a congruence 
subgroup since F is arithmetic by Margulis' theorem [11]. 

l fN  is a quotient of Teichmfiller space there are several ways to see that N has a 
cover with at least two ends. For  example, it can be reduced to the first case by 
embedding the moduli space of Riemann surfaces of genus g into the moduli space 
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of Abelian varieties of dimension g via the Jacobian and Torelli's theorem, and this 
latter space is a quotient of the Siegel upper half plane of degree g, i.e. a domain D as 
above. Cf. [1] for details. 

Therefore, we let 

with K _> 2. 

K 

~ I \ M =  U Zk 
k = l  

The boundary of a neighborhood of any Z k then represents a nontrivial 
(2n- l ) -d imens ional  real homology class in M, and since u is a homotopy 
equivalence, it induces an isomorphism on (2n l)-dimensional homology. Since 
HZn_ I(M) is nontrivial by the preceding observation, the real rank of u has to be 
( 2 n - 1 )  at some point. 

This implies, taking (20) into account, by Siu's analysis of the curvature tensor 
of locally symmetric varieties, cf. [17, Theorem 6.7], and by Schumacher's 
computation [15], resp. 

Lemma 6. u is holomorphic or antiholomorphic. 

d) Global Behaviour of the Harmonic Map and Properness 

By Hironaka's theorem [8], we can find a nonsingular compactification 
dominating the original compactification M. If N = D/F, we let N be the Baily- 
Borel compactification of N, cf. [2]. The result of Baily-Borel applies since F is 
arithmetic by Margulis' result [l I]. 

If N is the moduli space of Riemann surfaces of genus g, we choose Baily's 
compactification b7 of N that can be embedded into the above compactification of 
D/Sp(Z,g) where D is the Siegel upper half plane of degree g, cf. I l l .  Using 
Lemma 6, we can therefore consider u in any case as a _+ holomorphic map 

u : M ~ D / F  

and by Borel's result [5], u can then be extended as a + holomorphic map 

(~ : M ~ D / F .  

In particular, fi is continuous. 
For  the rest of this section, we can continue to treat both cases simultaneously, 

namely assume that the image N is of the form D/F and use its Baily-Borel 
compactification. 

We shall now obtain some information about  the behavior of ~ at the ends of 

Let S be a component  of N \N ,  let /_7 be a neighborhood of S in N, with the 
property that 

U: = ~7\S 

is of the form 

U = ~ g U  x ] R  + . 
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In this parametrization, we put 

u,=cgF • {t} 

J. Jost and S. T. Yau 

v(O)e 2: = M \ M ,  v(B\{O})c~2 = O, 

u(v(~B))=7o. 

It then follows from the continuity of ~i that 

~(v(0)) ~ s .  

This determines a correspondence between the components of ]~ \M and of /~\N,  
although at this moment we cannot yet conclude that all o f / ~ \ M  is mapped into 
N \ N  (we know 8(q) e N \ N  only for those points qE M \ M  for which there exists a 
continuous map v : B ~  191 with v(B)n(lfl\M) = v(0)). In particular, the preimage of 
any component of N \ N  is nonempty. 

Lemma 7. u is a proper map and induces a well defined correspondence between the 
components of ]kl\m and I~\N. 

Proof We use again the nonsingular compactification M of M. M \ M  then consists 
of a union of smooth hypersurfaces with normal crossings. In this case, the 
corresponding complete K/ihler metric constructed in Sect. 1 has bounded Ricci 
curvature (cf. the remark after Lemma 2). 

with 

(i.e. Uo=aU x {0} =aU). 
For each point p e S, there exists a continuous mapping 

w:B: ={z~:lzl__<l}-~ 
with the property that 

v , :  = w ( { l ~ l  = t})c u ,  

is a homotopically nontrivial (in U 0 curve, and 

w(O) = p .  

It can, e.g., be deduced from Borel's study of the metric behavior of N near the 
cusps, that we can also assume 

length(7,)-~0 as t-~oo (cf.[5]). 

7t then also is homotopically nontrivial in N (cf. Lemma 3 of [10]); also, the 
homotopy class defined by the curves 7t uniquely determines a component of N \ N  
towards which it shrinks, i.e. if there is a continuous map 

#: B--*N with #(~?B) homotopic to 7o, 

then ~v(B)c~Sr where S is our given component of N \ N  (cf. [10, Lemma 4]). 
Since u is a homotopy equivalence, there exists a continuous map 

v: B~f / I  
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Also, the locally symmetric K/ihler metric on N has holomorphic sectional 
curvature bounded from above by a negative constant. 

Therefore, we can apply Royden's Schwarz lemma [13] to conclude the 
properness ofu. Namely, let Pl e M \ M  be a point which is mapped to N \ N  under 
u. Such a point exists in each component  of M \ M  by the preceding argument. Let 
P2 e M \ M  lie in the same component of M \ M  as p 1. Let ~ 1(0 and 72(t) be curves in 
M with endpoints pl and Pz, resp., and with 

dist (Yl (t), yz(t)) < K 

where K is a constant independent of t e N + (Lemma 3). The Schwarz lemma then 
implies that also 

dist(u(71(t)), U(Tz(t)) 

is bounded independently of t. 
Consequently, P2 is mapped to N \N ,  actually to the same component  as 

pl. q.e.d. 

e) Proof of the Theorem 

Lemma 7, together with the fact that the restriction of u to the boundary of a 
neighborhood of the singular set has real rank 2 n -  1, implies that u actually has 
rank 2n. (This could also have been deduced from the fact that u is + holomorphic 
of real rank at least 2n-  1.) 

Since u extends to the compactification, it has a well defined degree, and since it 
is + holomorphic of maximal rank, its degree is nonzero. Let us now show that the 
absolute value of the degree is at most 1. Namely, let g:N--*M be a proper 
homotopy equivalence so that u o g is homotopic to the identity of N. Passing to a 
suitable finite cover as above, if necessary, we restrict u o g to the boundary B of a 
neighborhood of an end of N and conclude that u o g induces a map of degree + 1 
between B and its image. We then deform u o g as above by harmonic replacement 
on a sequence of open sets exhausting N into a proper  harmonic homotopy 
equivalence h. It is seen from the construction that h also induces a map of degree 1 
between B and its image, and hence also that d e g h = d e g u  o g. As before, h is • 
holomorphic of maximal rank and the Schwarz lemma [13] implies 

Idegu �9 deggl = Ideghl < 1. 

We conclude 

Idegul = 1 . 

(IfN is a quotient of Teichm/iller space, in the preceding argument we equip N with 
the Weil-Petersson metric and use the fact that this metric has a negative upper 
bound for its holomorphic sectional curvature, cf. [19] and also [20].) 

In order to show that u is bijective, i.e. _+ biholomorphic, we can basically 
proceed as in [16, p. 110t".]. Let V be the set of points in M, where u is not locally 
homeomorphic.  Since V is defined by the vanishing of the functional determinant 
of u, it is a complex subvariety of complex codimension 1, unless empty. Since u is 
of degree 1, u(V) has complex codimension at least 2. In case V is nonempty, 
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the p r e i m a g e  of  a gene r i c  p o i n t  o f  u(V) is a n o n t r i v i a l  c o m p a c t  (since u is 

p r o p e r )  ana ly t i c  s u b v a r i e t y  of  M,  in c o n t r a d i c t i o n  to u be ing  a h o m o t o p y  

equ iva l ence .  H e n c e  V is e m p t y ,  p r o v i n g  the  t h e o r e m .  
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