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Abstract
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1. Introduction

Heterotic string compactifications play a prominent role in string theory model build-

ing as the standard model gauge group can be easily incorporated in this approach. Some

recent progress in heterotic model building was made in [1], where a heterotic M-theory

model was constructed that reproduces the charged particle content of the MSSM without

additional exotics.1 Interestingly, F-theory models that incorporate GUT gauge groups

have also recently been constructed in the literature [5,6] Common to these recent devel-

opments is that moduli fields coming either from metric deformations and/or deformations

describing brane positions are not stabilized, so that making predictions for physical ob-

servables becomes challenging.

Now more than ever it is important to develop techniques to construct heterotic flux

compactifications in which moduli stabilization can be addressed. Having a heterotic three

generation model with stabilized moduli allows us to remove this (uncharged) “exotic”

matter and in principle predict the masses of quarks and leptons, an important step towards

connecting string theory to the real world.

Heterotic flux compactifications have been known for quite some time, starting with

the seminal works of [7,8,9] in the mid-1980’s. All the more, it is surprising that the

number of torsional geometries that can serve as backgrounds for heterotic string com-

pactifications seems rather limited. The most studied class of smooth heterotic torsional

compactifications is the FSY geometry [10,11]. The manifold is a T 2 bundle over a K3

surface [12,13] similar to the well-known non-Kähler torus bundle construction of Calabi

and Eckman [14]. The solution was first identified as the heterotic dual of M-theory on

K3×K3 with non-zero G-flux [15,16]. It was proven in [10] to satisfy both the requirements

of supersymmetry and the anomaly condition of the heterotic theory. A conformal field

theory description in the language of a gauged linear sigma model has also been developed

in [17].

As was discussed in [13,18], this model has a vanishing Euler characteristic as well as

a vanishing number of generations. When the spin connection is embedded into the gauge

1 Other standard model motivated heterotic constructions are given in [2,3]. A CFT model

with no exotics has also been presented in [4].
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connection, the net number of generations is given by the Euler characteristic of the internal

Calabi-Yau geometry [19]. However, for the more general heterotic flux compactifications

that we are interested in, where the spin connection cannot be embedded into the gauge

connection, the net number of generations is given by one-half of the third Chern number

of the gauge bundle [18].

Our goal here is to expand the set of consistent heterotic torsional geometries by

constructing orbifolds of the FSY geometry. Orbifolding techniques [20] were already used

in the early days of string model building to construct models with a small number of

generations. Modding out some heterotic string compactifications with an unrealistically

large number of generations by a discrete symmetry, led to more realistic models (see e.g.

[21,22]). In fact, the first heterotic three generation model was constructed by quotienting

a complete intersection Calabi-Yau three-fold [21].

To construct orbifolds of a T 2 bundle over K3 surface, we use special classes of K3

base surfaces. One set of models arises from Kummer K3 surfaces which have a T 4/ZZ2

orbifold limit. A second set of models uses algebraic K3 surfaces with finite discrete

group actions. The simplest ones are those with a branched covering description. The

orbifold actions described in this approach are either freely acting or have fixed curves

and/or fixed points. The freely-acting orbifold actions give smooth geometries which may

preserve N = 0, 1, 2 supersymmetry in four dimensions. For the non-freely acting discrete

symmetries, the resulting orbifolds will contain singularities which geometrically need to be

resolved. Physically, if the resolution can involve turning on non-vanishing gauge bundles,

this may lead to models with a non-zero third Chern class. Unfortunately, unlike the

Calabi-Yau case where orbifold singularities can be straightforwardly resolved by means of

toric resolution (see reviews in [23,24,25]), singularity resolution in the non-Kähler context

seems much more involved and has not been studied previously. The required analysis

is delicate and rather technical, and hence, we will leave the discussion of non-Kähler

resolution for a subsequent work.

The organization of this paper is as follows. In Section 2, we review the properties of

torsional manifolds that we need in the later sections and describe the FSY geometry in

some detail. In Section 3, we discuss properties of the orbifolds of the FSY geometry, i.e.
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Y = X/Γ where Γ is a discrete symmetry group of X , a torus bundle over K3 geometry.

The discrete symmetries can act on the torus fiber either as a shift or a rotation. In

the former case the orbifold actions are always freely acting and lead to smooth models

with vanishing Euler characteristic and third Chern class. In the latter, the orbifold

action may have fixed points and fixed curves singularities. In Section 4, we construct

models that realize these different possibilities starting from the FSY geometry with the

K3 base in the ZZ2 orbifold limit T 4/ZZ2. In Section 5, we take as the base K3 those

with a branched covering description to build a second set of orbifold torsional geometries.

Section 6 discusses constructions based on more general algebraic K3 base with a discrete

symmetry group action. In particular, we give a supersymmetric orbifold model with only

fixed point singularities. Orbifold models with only fixed points should be easier to resolve

than those containing fixed curves. In Section 7, we present our conclusions and raise some

open questions.

2. Review of Torsional Geometry

The internal six-dimensional complex geometries of supersymmetric flux compactifica-

tions of the heterotic string are characterized by a hermitian (1, 1)-form J , a holomorphic

(3, 0)-form Ω, and a non-abelian gauge field strength F that are constrained by supersym-

metry and anomaly cancellation conditions [7]

d(‖Ω‖J J ∧ J) = 0 , (2.1)

F (2,0) = F (0,2) = 0 , FmnJ
mn = 0 , (2.2)

2i ∂∂̄J =
α′

4
[tr(R ∧R)− tr(F ∧ F )] . (2.3)

These equations (sometimes termed the “Strominger system” in the mathematics litera-

ture) provide the necessary and sufficient conditions for space-time supersymmetry in four

dimensions and imply the equations of motion to one-loop order in α′. Given a solution,

the physical fields (g,H3, φ) are expressed in terms of (J,Ω) as

gab̄ = −iJab̄ , (2.4)
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Habc̄ = −i(∂aJbc̄ − ∂bJac̄) , (2.5)

e−4φ =
i

3!
ΩabcΩ̄āb̄c̄J

aāJbb̄Jcc̄ , (2.6)

where we have set the integrable complex structure to take the diagonal form Ja
b = i δa

b.

The most well-known solution to these equations consists of the complex T 2 bundle

over a K3 surface which we denote by X .2 The explicit form of the holomorphic (3, 0)-form

for this manifold is

Ω = ΩK3 ∧ θ , (2.7)

where ΩK3 is the holomorphic (2, 0)-form on the K3 base and θ = (dz + α) (with z the

fiber coordinate and α a connection one-form on K3 3) is defined to be a global (1, 0)-form.

The hermitian (1, 1)-form J comes from the Kähler form of the K3 and the metric on the

torus bundle

J = e2φJK3 +
i

2

A

τ2
(dz + α) ∧ (dz̄ + ᾱ) , (2.8)

where the moduli of the torus are parametrized by the area A and the complex structure

τ = τ1 + i τ2. The dilaton φ is non-constant and depends on the base coordinates only.

Supersymmetry demands that the curvature of the torus bundle is of type (2, 0)⊕ (1, 1)

ω = ω1 + τω2 = dθ = dα ∈ H(2,0) ⊕H(1,1)(K3) with ω1, ω2 ∈ H2(K3,ZZ) . (2.9)

Additionally, ω is required to be primitive with respect to the base

ω ∧ JK3 = 0 . (2.10)

Turning on a (2, 0) component for ω reduces the N = 2 four-dimensional supersymmetry

to N = 1, while a (0, 2) component breaks supersymmetry completely.4

The solution also includes a gauge bundle with a gauge field strength that satisfies

the hermitian-Yang-Mills conditions (2.2). The field strength is related to the metric and

2 A T 4 base geometry can satisfy the necessary SU(3) intrinsic torsion conditions of conformally

balanced (2.1) and the existence of a holomorphic three-form [26]. It would however not be

consistent with the anomaly condition [27,11].
3 To be rigorous, α should be the pull-back of the connection one-form on K3 to X.
4 A derivation of these supersymmetry constraints can be found in the appendix of [28].
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curvature two-form by the anomaly equation (2.3). Integrating the anomaly equation over

the base K3 leads to the topological condition

−
1

16π2

∫

K3

trF ∧ F −
A

τ2

∫

K3

ω ∧ ω̄ = 24 , (2.11)

where ω̄ = ω1 + τ̄ω2 is the complex conjugate of ω. This is the main sufficiency condition

to ensure that the anomaly equation, which for these geometries can be interpreted as a

non-linear second order partial differential equation for φ, can be solved [10,11].

As for ordinary Calabi-Yau manifolds (see [19]), it was shown in [18] that the net

number of generations is determined by an index which (for bundles with c1(F ) = 0, such

as the SU(N) bundles we are considering) is related to the third Chern number of the

bundle

Ngen =
1

2
c3(F ) . (2.12)

More concretely, the third Chern class of the bundle is

c3(F ) = −
i

48π3
[2 tr (F ∧ F ∧ F )− 3 tr (F ∧ F ) ∧ trF + trF ∧ trF ∧ trF ] , (2.13)

where the trace is taken over the generators of the Lie-algebra. The generators are traceless

for SU(N) gauge groups, so that trivially the first Chern class, c1(F ) = 0. Thus for SU(N)

bundles, the last two contributions to the above formula vanish and integrating the first

term gives the index of the Dirac operator [29,30]. If the spin connection is embedded into

the gauge connection (which is not the case of interest here) this formula reduces to the

more familiar expression Ngen = χ/2, where χ is the Euler characteristic of the internal

manifold. It was shown in [11] that all stable gauge bundles on X that can satisfy the

anomaly condition (2.3) are those obtained by lifting stable bundles on K3 to X . From

(2.13), it then becomes evident that the net number of generations vanishes. Moreover,

the existence of a non-vanishing vector field along the torus fiber implies that the Euler

characteristic χ(X) = 0 [12,13].

Some of the new torsional manifolds we construct in the next sections will have a

non-vanishing Euler characteristic. Though not given here, a more detailed understanding

of the resolution of orbifold singularities of non-K”ahler geometries may reveal whether

the resolution may allow gauge bundles with non-vanishing third Chern class.
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3. Orbifolding T 2-Bundles over K3

New solutions can be constructed by orbifolding the T 2 bundle over K3 geometry X

by a discrete symmetry group Γ to obtain Y = X/Γ . We will discuss the characteristic

features of such orbifolds in this section and give explicit models in the following sections.

When constructing orbifold models, we will in general only require that the physical

fields (g,H3, φ, F ) remain invariant under the orbifold action Γ. FSY geometries are su-

persymmetric and thus solve the supergravity equations of motion which are written in

terms of the physical fields. Thus, as long as the physical fields are invariant under Γ, the

orbifold solution will also be a solution of the equations of motion.

However, the resulting orbifold solution will in general not be supersymmetric. Pre-

serving supersymmetry will require additionally that the pair (J,Ω) is also invariant under

Γ. As J and Ω are bilinears of the spinor η that generates N = 1 supersymmetry, e.g.

Jmn = iη†γmnη and Ωmnp = η̄†γmnpη , a nowhere vanishing η implies (J,Ω) must be

globally well-defined on Y and hence must be invariant on X under the action of Γ.

The relations between the physical fields and (J,Ω) are given in (2.4)-(2.6). From

there, we see that J must be invariant under Γ, since it is directly related to the physical

metric. A central component of J is JK3 which by uniqueness of the Calabi-Yau metric

remains unchanged under Γ as long as the discrete symmetry action leaves invariant the

Kähler class and the complex structure of the base K3. Ω however need not be invariant;

the holomorphic (3, 0)-form can transform by a phase, Γ : Ω → ζ Ω for |ζ| = 1 , and still

leave φ invariant in (2.6) and the complex structure of X unchanged. Thus, if ζ 6= 1 then

the resulting orbifold solution breaks all supersymmetry.

An element of the discrete symmetry group acting on X can be thought of as being

composed of two components: ρ = (ρ1, ρ2), where ρ1 acts on the K3 base while ρ2 acts

on the torus fiber. It is useful to consider each action, ρ1 and ρ2, separately. On the

K3, finite group actions are standardly categorized by their actions on the holomorphic

(2,0)-form. If an action leaves invariant Ω2,0, i.e. ρ1 : Ω2,0 → Ω2,0 , then it is called

a symplectic automorphism. If instead ρ1 : Ω2,0 → ζΩ for ζ 6= 1, it is a called a non-

symplectic automorphism. In general, the action ρ1 on K3 will have a non-empty fixed

locus set which may consist of points and/or curves. On the other hand, the symmetry
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group action on the torus is much more limited. For a group of order N , we can have

either a shift ρ2 : z → z + c for some complex constant c such that Nc ∼ z + n1 + n2τ , or

a rotation, ρ2 : z → ζ z with ζN = 1.

Because the torus bundle is generically non-trivial and does not have a zero section, not

any combination of (ρ1, ρ2) will give a consistent symmetry action onX . Of importance, X

has a globally defined (1, 0)-form θ = dz+α which must have a well-defined transformation

rule under Γ. We require for any ρ ∈ Γ

ρ[θ] = ρ2[dz] + ρ1[α] = ζ θ . (3.1)

We see for instance that a rotation on the torus fiber by itself can not be well-defined

on X . Consider the overlap region between two coordinate charts labelled by A and B.

The corresponding coordinates zA and zB and the local connection 1-form αA and αB are

related as follows

zA = zB + ϕAB mod 1 , τ , αA = αB − dϕAB , (3.2)

where ϕAB is the transition function with dependence on the local base K3 coordinates.

Thus, a rotation acting on z (compatible with the torus lattice structure τ) ρ2 : z →

ζ z , only makes sense if there is a complementary action on the base K3 such that the

transition function transforms as ρ1 : ϕAB → ζ ϕAB . By (3.2), we see that the connection

α must then transform similarly with the phase ζ which thus results in a well-defined

transformation phase for θ . Condition (3.1) thus imposes a restriction on the allowable

combination of (ρ1, ρ2); and moreover, this restriction depends on the curvature ω = dα.

Let us now consider the distinguishing features of the orbifold solution for different

types of symmetry group actions. We shall order them by the action on the torus fiber.

For ρ2 that involves only a torus shift, the action is freely acting, i.e. without fixed

points, and hence, the resulting orbifold geometry is always smooth. The amount of

supersymmetry that is preserved depends on the action on Ω3,0 = Ω2,0 ∧ θ. But since

θ = dz+α must be invariant under the torus shift (with α invariant under ρ1 so that (3.1)

is satisfied), the ρ1 action on Ω2,0 determines whether supersymmetry is preserved. Thus,

for symplectic K3 automorphisms, Y = X/Γ will preserve the supersymmetry of X while

7



the non-symplectic automorphism action will break all supersymmetry. The base action

will in general have fixed points and/or fixed curves. From the fiber bundle description, the

complex structure of the torus will jump along the fixed point locus of the base. Thus the

torus bundle becomes a torus fibration. Clearly, Y is topologically distinct from X as the

first fundamental group of Y now contains Γ. Moreover, we note that the Betti numbers

of Y will generally differ from those of X as the orbifolding by Γ (with a non-trivial ρ1)

will project out non-invariant harmonic forms. Nevertheless, the Euler characteristic and

c3(F ) will remain zero as the orbifold is freely acting.

For the case where the torus fiber action involves a rotation, there should be an

associated symmetry action on the base K3 by (3.1). Moreover, the discrete symmetry

group Γ will in general have a fixed locus set which is invariant under (ρ1, ρ2) . The

resulting orbifold geometry Y will then be singular along the fixed points and/or fixed

curves. These singularities will need to be resolved to obtain again a smooth solution.5

Here, the task of resolving singularities consists of two parts: resolving the manifold and

smoothing out the physical fields such that the supersymmetry conditions (2.1)-(2.3) (or

the supergravity equations of the motion) remain satisfied.

Resolving singular orbifolds Y which are supersymmetric should follow the standard

local toric resolutions of singular Calabi-Yau manifolds (see e.g. [25]) by the requirement

of a non-vanishing holomorphic (3, 0)-form. However, unlike the Calabi-Yau case, where

the vanishing of the first Chern class is the sole obstruction to the existence of a Calabi-

Yau metric on a Kähler manifold, we do not presently know what are the obstructions

or sufficient conditions for the existence of a solution to the heterotic supersymmetry

differential constraints of (2.1)-(2.3). Without this, we must explicitly demonstrate the

existence of solutions on a manifold on a case by case basis. Thus, the resolution of

singularities in the non-Kähler scenario is a challenging mathematical problem. It requires

constructing local models (such as [31]) that smooth out the singularities and carefully

gluing the local geometries into Y .

Nevertheless, having orbifold singularities may lead to new non-Kähler solutions that

5 Singularity resolution can be thought of as the geometrical analog of adding twisted sector

states when constructing an orbifold conformal field theory.
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might be phenomenologically appealing. For instance, in resolving the singularities, it

may be possible to introduce local gauge bundles which have non-trivial c3(F ) , and hence

non-zero number of generations. In essence, one may try to satisfy the requirements of low-

energy phenomenology by inserting appropriate local models into the compact geometry.

We shall however leave the subtleties of non-Kähler singularity resolutions for future work.

In the following sections, we will give concrete constructions of new heterotic solutions

from orbifolding X by discrete symmetries. This requires identifying those K3 surfaces

with a discrete symmetry group action. We will consider three types of K3 surfaces that

naturally contain discrete symmetries: K3 surfaces of Kummer type, K3 surfaces with a

branched covering description, and more general algebraic (i.e. projective) K3 surfaces

with finite group actions.

4. Orbifold Limit of Kummer K3 base

In this section, we construct new orbifold geometries starting from those FSY ge-

ometries with a Kummer K3 base. A Kummer K3 has a T 4/ZZ2 orbifold limit with the

involution (i.e. ZZ2 action) given by

σ : (z1, z2) → (−z1,−z2) , (4.1)

where (z1, z2) are the complex coordinates of T 4. The smooth Kummer surface is obtained

by blowing-up each of the 16 singular fixed points of the involution σ with a IP1. Away

from the singularities, the hermitian metric and holomorphic (3, 0)-form take the simple

form

J =
i

2
e2φ(dz1 ∧ dz̄1 + dz2 ∧ dz̄2) + i

A

2
θ ∧ θ̄,

Ω = dz1 ∧ dz2 ∧ θ,

(4.2)

where φ is the dilaton field and θ = dz+α denotes the one-form associated to the twisted

torus fiber. For simplicity, we have set the complex structure of the three covering-space

tori to be τ = i. Thus for the base coordinates (z1, z2) and fiber coordinate z, we identify

zi ∼ zi + 1 ∼ zi + i , for i = 1, 2, and z ∼ z + 1 ∼ z + i. Given a torus twist curvature ω,

we can then set the torus fiber area A to satisfy the topological condition (2.11).
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We shall work mainly in the T 4/ZZ2 orbifold limit of the Kummer K3.6 This sim-

plification will allow us to write down explicitly the discrete symmetry group Γ acting

on X and demonstrate clearly some of the characteristics of the new orbifold geometries

discussed in section 3. The discrete symmetry groups Γ which we consider are all cyclic

and thus are generated by a single element which we will denote by ρ.

4.1. N = 1, 2 Supersymmetric Orbifolds

Different types of orbifold actions will leave unbroken different amounts of supersym-

metry in four dimensions. We consider first those orbifold actions that leave invariant the

holomorphic (3,0)-form and preserve the supersymmetry of the covering FSY geometry.

We will give four examples below and will point out the distinctive features of each.

Example 1: Freely acting with a shift action on the torus fiber

We start with a simple model that has no fixed points, and therefore has a vanish-

ing Euler characteristic and a vanishing number of generations. Consider the ZZ2 action

generated by

ρ : (z1, z2, z) → (iz1,−iz2, z +
1

2
) , (4.3)

which rotates the base in an SU(2) invariant manner and shifts the torus fiber. For the

above discrete identifications, it is easy to see that on the four-dimensional base, the ZZ2

action has four fixed points located at

(z1, z2) = {(0, 0), (0,
1 + i

2
), (

1 + i

2
, 0), (

1 + i

2
,
1 + i

2
)} . (4.4)

But since the torus fiber is concurrently shifted by z → z + 1/2 , the six-dimensional

quotient manifold does not have any singularities and is thus smooth.

The above background is supersymmetric because, as follows from (4.2), the pair

(J,Ω) is invariant under ρ as long as θ = dz + α is invariant. This can be easily satisfied

by choosing a curvature twist ω = dθ ∈ H(2,0) ⊕H(1,1)(T 4/ZZ2,ZZ) that is primitive with

respect to the base and invariant under ρ. For example, ω can be any linear combination of

6 Some earlier discussion on torsional orbifolds obtained via duality from Borcea fourfolds in

M-theory appeared in [18].
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dz1∧dz2 and dz1∧dz̄1−dz2∧dz̄2. As shown in [28], theories with a twist of type (1, 1) have

N = 2 supersymmetry while a more general twist of type (2, 0) + (1, 1) leads to a theory

with N = 1 supersymmetry. Similarly, for the gauge field, we can choose U(1) gauge

field strengths F = F (1,1) which are invariant under ρ. This then ensures that the three

supersymmetry constraint equations (2.1)-(2.3) are invariant under ρ. This background

also naturally satisfies the equations of motion since the physical fields (gab̄, H, φ, Fab̄) are

invariant under the orbifold action.

As a fiber space, this smooth quotient geometry should be considered as a T 2 fibration

rather than a T 2 bundle as the complex structure of the T 2 fiber jumps at the four singular

points (4.4) of the base identified by the involution action ρ. At the fixed points, the

complex structure jumps to τ = 2i with z ∼ z + 1
2 ∼ z + i .

Finally, we note also that the ZZ2 action (4.3) preserves not only the holomorphic

(3, 0)-form but also the holomorphic (2, 0)-form of the base K3. Its action on the base

K3 is thus an example of a symplectic automorphism, a discrete symmetry group that

preserve Ω2,0.

Example 2: Freely acting with a reflection on the torus fiber

It is also possible to consider a freely acting involution which involves a non-symplectic

automorphism, one that acts non-trivially on the holomorphic (2, 0)-form on the base K3.

One such involution is generated by

ρ : (z1, z2, z) → (−z1 +
1

2
, z2 +

1

2
,−z) . (4.5)

ρ here acts freely on the base coordinates (z1, z2), and has been called an Enriques invo-

lution [32] since the base holomorphic (2, 0)-form is mapped to the minus of itself

ρ : ΩK3 → −ΩK3. (4.6)

The holomorphic (3, 0)-form however remains invariant when we take into account the

compensating reflection action, z → −z, on the fiber coordinate.

Precisely the involution in (4.5) acting on the product space K3× T 2, was analyzed

in [33,34] in the context of type IIA/heterotic string duality. That such a quotient can
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also be applied to the FSY geometry with a non-trivial principal T 2 = S1 × S1 bundle

with no zero section may at first seem surprising. But as explained earlier, as long as we

carefully choose a torus twist that gets reflected along with the fiber coordinate such that

the one-form θ = dz + α has a well-defined action, then the ZZ2 action (4.5) consisting of

a fiber reflection coupled with an involution on the base is well-defined. Let us verify this

explicitly for this example.

First, a consistent torus twist for the ZZ2 action (4.5) is

θ = dz +A1(z1 − z̄1)dz2 + A2(z2 − z̄2)dz1 , (4.7)

where A1 and A2, are Gaussian integers (complex numbers with integral real and imaginary

parts). Note that with this one-form, the torus twist curvature ω = dθ contains both a

(1, 1) and a (2, 0) part so the covering FSY geometry and also the orbifold geometry

preserve only N = 1 supersymmetry.

With the one-form (4.7), let us demonstrate explicitly the consistency of the quotient

action. We will work in the covering space which is a T 2 bundle over a T 4 base. The

metric on this space (neglecting the warp factor and the torus area A which do not a play

a role here) takes the form

ds2 = |dz1|
2 + |dz2|

2 + |dz + A1(z2 − z̄2)dz1 + A2(z1 − z̄1)dz2|
2 . (4.8)

In order for the metric to be well-defined, the local complex coordinates must have the

periodicity
z1 ∼ z1 + a ,

z2 ∼ z2 + b ,

z ∼ z + c−A1(b− b̄)z1 −A2(a− ā)z2 ,

(4.9)

where a, b, c are arbitrary Gaussian numbers. These periodic boundary conditions define

the transition functions on the manifold. The quotient action (4.5) acts on the periodicity

(4.9) and results in

−z1 ∼ −z1 + a = −(z1 + a′) ,

z2 ∼ z2 + b = z2 + b′ ,

−z ∼ −z + c+ A1(b− b̄)(z1 −
1

2
)− A2(a− ā)(z2 +

1

2
)

= −(z + c′ − A1(b
′ − b̄′)z1 − A2(a

′ − ā′)z2)

(4.10)
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where we have defined

(a′, b′, c′) = (−a, b,−c+ iA1Im(b) + iA2Im(a)) . (4.11)

Since the constants a, b, c are arbitrary Gaussian numbers, the redefinition of (4.11) is

inconsequential. Therefore, from (4.10), we see that the quotient action preserves the

periodicity (4.9) of the covering space. This implies that the quotient is well-defined.

Example 3: An involution with fixed curves

From the previous example, we have seen how a discrete symmetry action can involve

a reflection, a simple example of a rotation action on the fiber. Coupled with the discrete

symmetry action on the base, the discrete group action with fiber rotation action will

generally have fixed points and/or fixed curves.

Consider the ZZ2 action generated by

ρ : (z1, z2, z) → (iz1, iz2,−z) . (4.12)

This is an involution since (ρ)2 is equivalent to σ, the ZZ2 action appearing in (4.1). This

involution again involves a reflection on the T 2 bundle. As above we need to require that

the curvature twist transforms ω → −ω under ρ. For this we must have ω = dθ ∼ dz1∧dz2

and this will ensure that the one-form θ is well-defined under the involution.

The quotient manifold however will have fixed curves. On the T 6 covering space, the σ

and ρ actions result in 16 fixed points - four fixed points on the base times four fixed points

on the fiber. The four base fixed points (those of (4.4)) coincide with the singularities of

the T 4/ZZ2 orbifold and are resolved by IP1’s when the base K3 orbifold is resolved. These

IP1’s however are invariant under ρ and result in 16 fixed curves.

We can explicitly see this for instance in the resolution of the point (z1, z2, z) =

(0, 0, 0). Locally, this is equivalent to resolving the origin of C3/(ZZ2 × ZZ2) with the

quotient generated by σ and ρ. This local orbifold can be minimally resolved following

the toric resolution methods of [35,36]. We resolve the singularity in two steps. We first

resolve the singularity at the origin of C2/{1, σ} × C and then proceed to quotient by ρ

and resolve again.

13



For C2/{1, σ} × C, the origin is resolved by a IP1. Following e.g. [35], the resolution

is covered by two coordinate charts:

U1 : (
z2
z1

, z21 , z) ,

U2 : (
z1
z2

, z22 , z) .
(4.13)

Here, the first entry is the coordinate of the IP1 : ξ = z2
z1

in U1 and ξ′ = 1/ξ in U2. We can

proceed to apply the ρ action (4.12) on the two coordinate charts:

U1 : ρ :

(
z2
z1

, z21 , z

)
→

(
z2
z1

,−z21 ,−z

)
,

U2 : ρ :

(
z1
z2

, z22 , z

)
→

(
z1
z2

,−z22 ,−z

)
.

(4.14)

We see that ρ leaves the IP1 coordinate ξ (and ξ′) invariant and acts only on the two

transverse coordinates. This shows that the IP1 curve is invariant under the ρ action.

To resolve the two transverse coordinates, which is another C2/{1, σ} singularity, we can

repeat the resolution of (4.13) on U1 and U2 charts separately. The total resolution is

therefore described by four coordinate charts: U11, U12, U21, U22.

U11 :

(
z2
z1

,
z

z21
, z41

)
U21 :

(
z1
z2

,
z

z22
, z42

)

U12 :

(
z2
z1

,
z21
z
, z2

)
U22 :

(
z1
z2

,
z22
z
, z2

) (4.15)

On every point of the IP1 curve, we have added another IP1. Thus the divisor is a ruled

surface, and by the fibration structure, it is a Hirzebruch F2 surface which has Euler

characteristic χ(F2) = 4. After resolving all 16 IP1’s , the Euler characteristic of the

resolved orbifold Ŷ is

χ(Ŷ ) = [χ(X)− 16χ(IP1)]/2 + 16χ(F2) = −16 + 64 = 48 . (4.16)

We have thus described how to resolve the singular orbifold into a smooth manifold

with non-zero Euler characteristic. If we are only interested in Calabi-Yau solutions, then

this is sufficient to describe the solution as Yau’s theorem implies the existence of a Ricci-

flat metric. However, without a corresponding theorem for the existence of non-Kähler
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heterotic solutions, we have to demonstrate explicitly that a non-Kähler balanced metric

exists for this resolved manifold. This may be done by constructing non-compact solutions

that locally resolved the singularities. One would then need to cut out the singularities

and carefully glue in these local solutions into the manifold.

Example 4: A ZZ4 quotient with fixed points and fixed curves singularities

In general, the generic orbifold model will have both fixed points and fixed curves

singularities which will need to be resolved. Let us give an example.

Consider the ZZ4 action generated by

ρ : (z1, z2, z) → (iz1,−z2, iz) . (4.17)

Though very similar to the previous example, this action does not square to the ZZ2 iden-

tification (4.1) of the K3. Thus it is a ZZ4 action. In order for θ to be well-defined, we are

constrained to require that the torus curvature twist transforms as ω → i ω, which implies

that ω ∼ dz̄1 ∧ dz2.

The action (4.17) has eight fixed points on the base given by

(z1, z2) = {(0, 0), (0,
1

2
), (0,

i

2
), (0,

1 + i

2
)(
1 + i

2
, 0), (

1 + i

2
,
1

2
), (

1 + i

2
,
i

2
), (

1 + i

2
,
1 + i

2
)},

(4.18)

and two fixed points on the fiber at z = {0, 1+i
2 }. The base fixed points again coincide

with those of the orbifold T 4/ZZ2 and are resolved by IP1’s. However, these IP1’s are not

invariant under ρ as defined in (4.17). We can see this from the resolution of the point

(0, 0, 0). The action of ρ on the two charts of IP1 is

U1 : ρ :

(
z2
z1

, z21 , z

)
→

(
i
z2
z1

,−z21 , iz

)
,

U2 : ρ :

(
z1
z2

, z22 , z

)
→

(
−i

z1
z2

, z22 , iz

)
.

(4.19)

We see that ρ acts differently on the two charts. But in each case, the resolved IP1, denoted

by the first coordinate, is also rotated by the ρ action. So considering the base and fiber

together, we have here 16 true fixed points.
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There are also fixed curves in this model. They arise from points which are fixed

under ρ2 but not ρ. The ρ2 action, ρ2 : (z1, z2, z) → (−z1, z2,−z), has fixed curves at

(z1, z) =
{
(0,

1

2
), (

1 + i

2
,
1

2
), (

1

2
, 0), (

1

2
,
1

2
), (

1

2
,
i

2
), (

1

2
,
1 + i

2
),

(0,
i

2
), (

1 + i

2
,
i

2
), (

i

2
, 0), (

i

2
,
i

2
), (

i

2
,
1

2
), (

i

2
,
1 + i

2
)
}

.

(4.20)

These curves are not invariant under ρ; in fact, the curves on the first line of (4.20) are

identified with those on the second line in the local coordinates (z1, z). For z2 6= 0, 1
2
, i
2
, 1+i

2

which are the fixed points of z2 under ρ, the 12 curves persist. At the z2 fixed points, the

identification reduces to 6 distinct curves.

4.2. Non-Supersymmetric Orbifolds

Non-supersymmetric models can easily be constructed similar to the examples given

above. The orbifold action now is required to act on the holomorphic three-form non-

trivially. Consider the ZZ2 action generated by

ρ : (z1, z2, z) → (iz1, iz2, z + 1/2) . (4.21)

Here, ρ differs from the action in (4.3) by a minus sign in the action on z2. As a result, the

base holomorphic two-form ΩT 4/ZZ2
= dz1∧dz2 picks up a minus sign and the holomorphic

three-form transforms non-trivially, i.e. Ω → −Ω and is thus projected out. Therefore,

this type of solution is not supersymmetric.

The torus curvature ω = dθ and U(1) field strength F are required to be primitive and

invariant under ρ. A basis of such (1, 1) forms is {dz1∧dz̄2, dz2∧dz̄1, dz1∧dz̄1−dz2∧dz̄2}.

All the physical fields (g,H3, φ, F ) of the model can remain invariant under ρ. Thus, this

gives a smooth non-supersymmetric solution of the supergravity equations of motion.

5. Orbifolds from Branched Covered K3 Base

We are interested in complex manifolds whose first Chern class c1(M) is zero. When

the canonical bundle is non-trivial, i.e. c1(M) 6= 0, it is sometimes possible to eliminate

the first Chern class by taking n copies (aka covers) of the manifold M and glue them
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together at a divisor, a codimension one hypersurface. More precisely, this new manifold

M ′, which is described as an n-fold cover of M branched over a divisor D, can have trivial

canonical bundle.7 The new Chern class is given by

c1(M
′) = n[c1(M)− c1(D)] + c1(D) = n c1(M)− (n− 1)c1(D). (5.1)

A Calabi-Yau manifold with an n-fold branched covering description clearly has a manifest

ZZn discrete symmetry acting on the N identical covers. In this section, we construct

orbifold solutions starting from FSY geometries containing a K3 base with a branched

covering description. Below, we will make use of two examples of branched covered K3

surfaces: a triple cover of IP1 × IP1 branched over a genus four curve and a double cover

of IP2 branched over a genus ten curve.

Before jumping into the details of branched covered K3 surfaces, let us first illustrate

the basic idea of using branched covering for the simpler complex dimension one case

where the first Chern number agrees with the Euler characteristic C1(M) = χ(M). Let

M = IP1 = S2. Being in two real dimensions, χ1(M
′) = 0 means M ′ = T 2 for compact

manifolds. Since χ1(M) = 2 and χ1(D) equals the number of branched points, we see from

(5.1) that one can construct a torus as a two-fold cover of IP1 branched over four points

or as a three-fold cover of IP1 branched over three points. Reversing the construction, we

can start with the double covered torus M ′ = T 2 and quotient by an involution to obtain

a IP1 with four fixed points, or with the triple covered torus and quotient by a ZZ3 action

to obtain a IP1 with three fixed points. Such natural quotienting can be applied similarly

to branched covered K3 surfaces.

5.1. IP1 × IP1 Base Solution

We take the base K3 surface to be a triple cover of IP1 × IP1 branched over a sextic

curve. As described below, this K3 is a complete intersection of a quadric and a cubic

equation in IP4. Using this K3 to construct a FSY geometry, we can quotient by the

natural ZZ3 action and obtain an orbifold non-Kähler heterotic solution that is an elliptic

fibration over a IP1 × IP1 base.

7 For examples of Calabi-Yau three-fold with a branched covering description, see [21,22,23].
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To describe the K3, let {z0, z1, z2, z3, z4} be the homogeneous coordinates of IP4. The

K3 hypersurface in IP4 is defined by the following two equations

f1 = z0z3 − z1z2 = 0 , (5.2)

f2 = g(z0, z1, z2, z3) + z34 = 0 , (5.3)

where g is a degree three homogeneous polynomial in zi. The first equation enforces the

standard embedding of IP1 × IP1 → IP3 ⊂ IP4 by the mapping

IP1 × IP1 → IP3

{x0, x1} × {y0, y1} {z0, z1, z2, z3} = {x0y0, x1y0, x0y1, x1y1}.
(5.4)

The second equation exhibits the three-fold covering. For each generic point on IP1 × IP1,

there are three different values of z4 that satisfy (5.2). Alternatively, the equations above

are invariant under the ZZ3 action generated by

ρ : z4 → ζz4 , where ζ = e2πi/3 . (5.5)

In particular the special point z4 = 0 is invariant under this action and here we have the

branched curve specified by

g(z0, z1, z2, z3) = 0 . (5.6)

This is a cubic equation in terms of the zi variables and a sextic equation in terms of the

natural homogeneous variables xi, yi on IP1 × IP1. To ensure the hypersurface is smooth,

it is sufficient to require that the normal bundle to the hypersurface does not vanish. That

is

df1 ∧ df2 = (z3dz0 − z2dz1 − z1dz2 + z0dz3) ∧ (
3∑

i=0

∂ig dzi + 3z24dz4) 6= 0 , (5.7)

for any points on the hypersurface. This is a constraint for g. For instance, it can be

checked that a hypersurface defined by g = z30 + z31 + z32 + z33 is singular for example at

(z0, z1, z2, z3) = (1,−1,−1, 1) while g = z30 + z31 + z32 + 2 z33 , the example we shall consider

below, is everywhere smooth.

We can write down explicitly the holomorphic two-form for the K3 hypersurface. (For

reference, see e.g. [37] Section 15.4.) In the local chart where z0 6= 0, we define the affine
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coordinates Zi = zi/z0 for i = 0, . . . , 3. In these coordinates the constraint polynomials

become

f1 = Z3 − Z1Z2 = 0 , (5.8)

f2 = g(1, Z1, Z2, Z3) + Z3
4 = 0 . (5.9)

The holomorphic two-form in terms of dZ1 ∧ dZ2 is then

Ω2,0 = dZ1 ∧ dZ2/(detM) =
dZ1 ∧ dZ2

3Z2
4

, (5.10)

where the 2 × 2 matrix Mij = ∂f i/∂Z2+j consists of the partial derivatives of the two

other coordinates (Z3, Z4). The choice of the (Z1, Z2) of course is arbitrary and we could

have used any other two coordinates. For instance, in terms of dZ3 ∧ dZ4, we have

Ω2,0 =
dZ3 ∧ dZ4

Z1 ∂1g − Z2 ∂2g
. (5.11)

When (5.7) is satisfied for a smooth K3 hypersurface, the different detM for different

choices of coordinates never simultaneously vanish. This must be the case since Ω2,0 is

no-where vanishing. Moreover, of importance for our construction, under the ZZ3 action,

ρ : Z4 → ζZ4, the holomorphic two-form is not invariant and in fact transforms as Ω2,0 →

ζ Ω2,0. This is clearly evident in (5.10) and (5.11). In contrast, the Calabi-Yau metric or

the hermitian form JK3 is invariant under ZZ3.

We now consider the non-singular example with the K3 hypersurface defined by

f1 = g(z0, z1, z2, z3) + z44 = z30 + z31 + z32 + 2z33 + z34 ,

= (x3
0 + x3

1)(y
3
0 + y31) + x3

1y
3
1 + z34 = 0 ,

(5.12)

where we have substituted in the coordinates of the two IP1’s, xi and yi. The branched

curve C is located at g = z4 = 0. Assuming z0 = x0y0 6= 0, the equation of the branched

curve can be written as

(1 +X3)(1 + Y 3) +X3Y 3 = −Z3
4 = 0 , (5.13)

where X = x1/x0 and Y = y1/y0. (Note from the relation χ(K3) = 3[χ(IP1 × IP1) −

χ(C)] + χ(C), we see that branched curve has genus g = 4.) Two distinguished curves in
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this model are obviously the curves on each of the IP1. These follow from (5.13) by taking

either X or Y to be fixed

CX′ : − Z3
4 = 1 + Y 3 +X ′3(1 + 2Y 3) ,

CY ′ : − Z3
4 = 1 +X3 + Y ′3(1 + 2X3) ,

(5.14)

where X ′, Y ′ ∈ C are complex constants. Note that the CX′ and CY ′ curves are holomor-

phically embedded into theK3 surface. The two classes are also homologously inequivalent.

The class of CX′ curves do not self-intersect while they intersect three times with the CY ′

curves.

Given the above K3 surface, we can build a FSY geometry. We twist the T 2 by a

curvature ω = ω1−ω2, where ω1 and ω2 are the two forms dual to the curves CX′ and CY ′ .

The explicit expressions for these forms can be obtained by Poincaré duality though we

will not need them. Notice that ω = ω1 − ω2 is primitive with respect to the Kähler form

on IP1 × IP1 and also JK3. Moreover, since the curves CX′ and CY ′ are holomorphically

embedded, ω ∈ H1,1(K3) ∩ H2(K3,ZZ). ω can also be the curvature form of any U(1)

gauge bundles that one wish to turn on.

This construction provides an explicit algebraic description of the covering FSY ge-

ometry. We can now orbifold by a ZZ3 action to obtain a new solution. Again, we can take

the fiber torus to have square periodicities z ∼ z+1 ∼ z+ i. The ZZ3 action acting on the

six-dimensional geometry is generated by

ρ : {z0, z1.z2, z3, z4, z} → {ζ0, z1, z2, z3, ζz4, z + 1/3} (5.15)

where ζ is a third root of unity, i.e. ζ3 = 1. ρ acting on the base reduces the triple cover

to just a single copy of IP1 × IP1. Without the T 2 bundle, we have a singular branched

curve that is invariant under ρ. The shift action on T 2 removes the singular identification,

however, it also increases the complex structure τ of the T 2 fiber along the branched curve.

The torus complex structure thus jumps along the branched curve. But nevertheless, the

resulting geometry is smooth since there are no fixed points.

One might worry about the ZZ3 action on the curvature ω. But since ω is dual to the

curves, C1 and C2, which are invariant under ρ, ω must also be invariant under ρ.
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The FSY geometry with the three-fold cover K3 surface is thus invariant under ρ.

Since the holomorphic three-form Ω = Ω2,0 ∧ θ transforms non-trivially ρ : Ω → ζ Ω, the

smooth orbifold solution with an elliptic fibration over IP1 × IP1 is non-supersymmetric.

5.2. IP2 Base Solution

We can take the K3 surface to be a double cover over a IP2 base branched over a

sextic curve. The K3 surface is defined as a degree six hypersurface in W IP3
1113. With

weighted homogeneous coordinates (z0, z1, z2, z3), we can take the hypersurface to be

z60 + z61 + z62 + z23 = 0 . (5.16)

Notice that (z0, z1, z2) defines a IP2. And for each point on IP2, there are two values of z3

that satisfy (5.16), except on the degree six (genus ten) branched curve

g(z0, z1, z2) = z60 + z61 + z62 = 0 . (5.17)

Similar to the IP1 × IP1 case, the Ω2,0 form on the base is not invariant under the ZZ2

action z3 → −z3. However, we can preserve the holomorphic three-form by considering

the ZZ2 quotient generated by

ρ : (z3, z) → (−z3,−z). (5.18)

Taking the twist curvature ω ∼ Ω2,0, ensures that θ → −θ under ρ. Ω = Ω2,0∧θ is therefore

invariant under the ZZ2 action. The degree six branched curve defined by (5.17) is however

singular. Thus, this construction gives a singular N = 1 supersymmetric orbifold solution.

As before, we leave the resolution of these singular curves for future work.

6. Algebraic K3 Surfaces with Finite Group Action

In the previous section, we have seen two examples of K3 surfaces with a branched

covering description and with it a natural discrete symmetry group action. In both cases,

the discrete symmetries are non-symplectic automorphisms which by definition act non-

trivially on the holomorphic two-form Ω2,0 of the K3. More generally, K3 surfaces with
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non-symplectic symmetries are algebraic and have been classified in [38] for the ZZ2 case

and [39,40] for the ZZ3 case. These K3 surfaces can all be used to construct orbifold FSY

geometries. The general construction is similar to the constructions given in the previous

sections. The main difference being the determination of the torus curvature 2-form ω

with the desired transformation property under the K3 discrete group action.

Below we shall show how to go about explicitly writing down the torus twist for

algebraic K3 surfaces, and in so doing, construct non-supersymmetric and singular su-

persymmetric orbifold geometries. With algebraic K3 surfaces, our description becomes

effectively purely algebraic. We explain this in the context of a special class of algebraic

K3 with a ZZ3 discrete symmetry group that has only three fixed points and no fixed curves

[39,40].8 This unique class of K3 is of particular interest since the singular orbifolds that

are constructed from them will only have fixed points and therefore should be easier to

resolve. Though we focus on this special class of K3 surfaces, the orbifold construction

we give below should be applicable to other algebraic K3 surfaces with a non-symplectic

automorphism.

The class of algebraic K3 surfaces that we are interested in can be described, similar

to the three-fold branched cover over IP1 × IP1, as an intersection of a quadric and a cubic

hypersurface in IP4. Again, let {z0, z1, z2, z3, z4} be the homogeneous coordinates of IP4.

The class of K3 hypersurface S in IP4 is given by the following two equations [39]

f1 = f2(z0, z1) + b1z2z3 + b2z2z4 = 0 , (6.1)

f2 = f3(z0, z1) + b3z
3
2 + g3(z3, z4) + z2f1(z0, z1)g1(z3, z4) = 0 , (6.2)

where fn, gn are homogeneous polynomials of degree n and bi are non-zero complex con-

stants. Notice that the quadric and cubic equations are invariant under the following

discrete action9 ρ acting on S

ρ : (z0, z1, z2, z3, z4) → (ζ2z0, ζ
2z1, ζz2, z3, z4) . (6.3)

8 It follows from the holomorphic Lefschetz formula that any K3 surface that has a ZZ3 discrete

symmetry with no fixed curves must have precisely three fixed points.
9 To simplify notation, we will in this section use ρ to denote the generator of the discrete

symmetry action acting either only on the K3 base, only on the torus fiber, or on the entire

six-dimensional geometry X. The object of the ρ action should be clear from the context.
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The solutions of the two hypersurface equations with (z0, z1, z2) = (0, 0, 0) give the three

fixed points which solve g3(z3, z4) = 0 .

For instance, we can consider the K3 hypersurface defined by the homogeneous equa-

tions
f1 = z20 + z21 + z2(z3 + z4)

f2 = z31 + z32 + z33 − z34

. (6.4)

It can be checked that this K3 hypersurface is smooth with df1 ∧ df2 6= 0 on the

hypersurface of (6.4). In the coordinate chart z3 6= 0, we can use the affine coordi-

nates Zi = zi/z3 for i = 0, . . . , 4. Then the three fixed points of (6.3) are located at

(Z3, Z4) = {(1, 1), (1, ζ), (1, ζ2)}. Similar to (5.10), the holomorphic two-form can be writ-

ten locally for example as

Ω2,0 =
dZ0 ∧ dZ1

−3(Z3
2 + Z2

4)
, (6.5)

which shows explicitly that the holomorphic two-form transforms non-trivially under the

ZZ3 action as

ρ : Ω2,0 → ζΩ2,0 , (6.6)

as expected for an non-symplectic automorphism.

To construct orbifold FSY geometries, we need to define the torus curvature twist

ω = ω1+τω2. The conditions on ω, (2.9) and (2.10), are that it is an element of H2,0(S)⊕

H1,1(S) with ω1, ω2 ∈ H2(S,ZZ) and that it is primitive.

For the non-supersymmetric orbifold group action that contains a shift on the torus

fiber,

ρ : (z0, z1, z2, z3, z4, z) → (ζ2z0, ζ
2z1, ζz2, z3, z4, z + 1/3) . (6.7)

the torus curvature ω must be invariant under ρ. Since Ω2,0 is not invariant, we have

ω1, ω2 can only be (1, 1) and are elements of the Picard lattice N = H1,1(S) ∩H2(S,ZZ).

In particular, they must be elements of the sublattice N(ρ) ⊂ N that is invariant under ρ.

We now show that the N(ρ) is a non-empty lattice and in fact has rank rkN(ρ) = 8. This

can be derived using the Lefschetz fixed point formula which relates the Euler characteristic

of the fixed point set Sρ with the transformation properties of the de Rham cohomology

under ρ. We denote the complement lattice N(ρ)⊥ of N(ρ) in H2(S,ZZ). N(ρ)⊥ is not
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invariant under ρ and let us assume it has rank rkN(ρ)⊥ = 2m. Since the second Betti

number b2 = 22, we have rkN(ρ) = 22−2m. The Lefschetz fixed point formula then gives

3 = χ(Sρ) =

4∑

k=0

Tr(ρ|Hk(S,ZZ))

= 1 + rkN(ρ) +m(ζ + ζ2) + 1

= 24− 3m

(6.8)

where we have used the fact that 1 + ζ + ζ2 = 0. This implies that m = 7 and thus

rkN(ρ) = 8 and rkN(ρ)⊥ = 14. Thus, we need to choose primitive ω1, ω2 ∈ N(ρ) for the

torus curvature twist. (The explicit lattice N(ρ) is given in Eq. (6.11) below.)

For constructing supersymmetric orbifolds, the orbifold action must act on the torus

fiber by a rotation

ρ :
θ → ζ2θ
ω → ζ2ω

(6.9)

so that the holomorphic three-form remains invariant. In order for the torus lattice struc-

ture to be compatible with this Z3 rotation, we must set the torus complex structure τ = ζ.

The torus curvature two-form ω = ω1 + ζω2 is now required to have the transformation

property ρ : ω → ζ2ω. Thus, ω1, ω2 ∈ N(ρ)⊥ and because Ω2,0 transforms as in (6.6),

we must again have ω ∈ H1,1(S). Note that elements in N(ρ)⊥ are real and generally, in

addition to (1, 1) components, also have (2, 0) and (0, 2) components. Thus to ensure that

ω is purely (1, 1), we need to determine explicitly the complex structure of S. To do so

will require some knowledge of the lattice L of the second integral cohomology, H2(S,ZZ),

which we now explain. (For more details on L, see for example [41].)

L is a self-dual unimodular lattice. For elements xi ∈ L, there is a natural bilinear

form on L given by the integral

dij = (xi, xj) =

∫

S

xi ∧ xj . (6.10)

The bilinear form on L is that of the lattice U3⊕(E8)⊕(E8). Here, U denotes the hyperbolic

lattice defined by

(
0 1
1 0

)
and An, Dn, En denote the “negative” definite lattice of the

corresponding Lie algebra root system. The form is thus given by the negative of the

Cartan matrix.
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Of course, N(ρ) and N(ρ)⊥ are both sublattices of L. For K3 surfaces with a ZZ3

action having only fixed points, they take the form [39,40]

N(ρ) = U(3)⊕ E∗
6(3) , N(ρ)⊥ = A2(−1)⊕ A6

2 , (6.11)

where for example U(3) denotes the lattice with 3 times the bilinear form of U and E∗
6

denotes the lattice dual to the E6 lattice. Each sublattice in N(ρ)⊥ contains an order

three discrete symmetry action ρ. For the lattice A2 associated with the negative Cartan

matrix

(
−2 1
1 −2

)
, let {e, f} = {

(
1
0

)
,

(
0
1

)
} be the basis vectors which have the inner

product (e, e) = (f, f) = −2 and (e, f) = 1. The ZZ3 symmetry action on the lattice can

be described by

ρ :
e → f
f → −e− f

. (6.12)

Under this action, the linear combinations (e− ζf) and (f − ζe) transform as

ρ :
e− ζf → ζ(e− ζf)
f − ζe → ζ2(f − ζe)

(6.13)

and span an eigen-basis of two-forms with eigenvalues ζ and ζ2, respectively.

We can now explicitly write down the complex structure S, or equivalently, the as-

sociated holomorphic two-form. By (6.6), Ω2,0 ∈ N(ρ)⊥ ⊗C . We can express Ω2,0 as a

linear combination of the basis elements of the lattice N(ρ)⊥ = A2(−1)⊕ A6
2

Ω2,0 = B0(e0 − ζf0) +

6∑

i=1

Bi(ei − ζfi) (6.14)

where B0 and Bi for i = 1, . . . , 6 are complex constants and {e0, f0}, {ei, fi} are respec-

tively the basis elements of A2(−1) and the six A2’s. We shall take all pairs of {e, f} to

transform under ρ as in (6.12). The constants B0, Bi determine the complex structure and

equivalently the periods with respect to a specified marking of two-cycles on the K3. They

are constrained by three consistency conditions. The two standard ones are

∫

S

Ω2,0 ∧ Ω2,0 = 0 , (6.15)

∫

S

Ω2,0 ∧ Ω̄2,0 = 3(|B0|
2 −

6∑

i=1

|Bi|
2) > 0 . (6.16)
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The first condition is automatically satisfied by an Ω2,0 expressed as in (6.14). The second

by itself is a weak condition and can be easily satisfied.

The third consistency condition involves the Picard lattice N . In general, the Picard

lattice N consists of the invariant N(ρ) and also any elements in N(ρ)⊥ that are (1, 1),

i.e. N(ρ)⊥ ∩ Ω⊥. Let T = N⊥ be the complement lattice to N . For a generically chosen

complex structure Ω2,0, we will have T = N(ρ)⊥ and N = N(ρ), that is all elements

in N(ρ)⊥ will have a (2, 0) and a (0, 2) part. But for special complex structures, only

T ⊂ N(ρ)⊥ and N(ρ) ⊂ N . Nevertheless, for elements in the Picard lattice that transforms

non-trivially under ρ, it is necessary that there exists no element h with (h, h) = −2. For

if such exists, then by the Riemann-Roch theorem applied to K3 surfaces, there is an

effective divisor ±h which under the action ρ : ±h → ±ζh or ± ζ2h which is not possible

[42]. Thus, for instance, choosing B0 = 1 and Bi = 0 would lead to (−2)-curves for h = ei

or h = fi and would not be valid. A consistent choice would be

B0 = 3 , B1 = 1 , and 0 < Bi ≤ 1 for i = 2, . . . , 6 . (6.17)

for Bi sufficiently generic.

Having established the lattice structure and the complex structure, we can now deter-

mine the possible torus curvature two-form ω. As mentioned, under the discrete symmetry

action, ω must transform as in (6.9). Matching the transformation property of ω with those

in (6.13) implies that ω can be written as a linear combination

ω = C0(f0 − ζe0) +

6∑

i=0

Ci(fi − ζei) (6.18)

where C0 and Ci’s are complex constants. Since we require that ω does not have an (0, 2)

component, we have the additional constraint

∫

S

Ω2,0 ∧ ω = −3ζ(B0C0 −
6∑

i=0

BiCi) = 0 . (6.19)

Note that
∫
S
Ω̄0,2 ∧ ω = 0 is automatically satisfied for ω given by (6.18).

For the choice of complex structure specified by (6.14) and (6.17), we can for example

choose C0 = 1, C1 = 3 and all other Ci = 0 which gives

ω = ω1 + ζω2 = (f0 + 3f1) + ζ(−e0 − 3e1) ∈ H1,1(S) . (6.20)
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We see that although ω1, ω2 ∈ H2(S,ZZ) only, the combination ω = ω1 + ζω2 ∈ H1,1(S) as

required. Furthermore, for ω in (6.20) we also have
∫
S
ω ∧ ω̄ = −24 (having set A = τ2 in

(2.11)) which would give us a N = 2 FSY geometry with trivial gauge bundle.

Orbifolding the FSY geometry by the ZZ3 action,

ρ : (z0, z1, z2, z3, z4, z) → (ζ2z0, ζ
2z1, ζz2, z3, z4, ζ

2z) . (6.21)

the resulting supersymmetric orbifold geometry has 3×3 = 9 fixed points. (The ZZ3 action

on the torus, ρ : θ → ζ2θ, also lead to three fixed points.) Each fixed point is locally a

C3/ZZ3 orbifold that can be minimally resolved by a IP2. Thus the resolved manifold of

this singular orbifold has Euler characteristic χ(Ŷ ) = (0− 9)/3 + 9χ(IP2) = 24 . For this

orbifold with only 9 fixed points, there is already a candidate local model that we can

use to resolve each singularity of the geometry. This is the well-known local Calabi-Yau

metric that resolves C3/ZZ3 [43,22]. However, careful analysis is required to verify that

such gluing-in can preserve the required supersymmetry and anomaly conditions.

7. Discussions

We have constructed new non-Kähler heterotic geometries Y = X/Γ by orbifolding

the torus bundle over K3 base geometry by a discrete symmetry group Γ. The orbifolds Y

are clearly topologically distinct from the starting torus bundle geometry X . For smooth

orbifold models, the first fundamental group π1(Y ) additionally contains the symmetry

group Γ. For singular orbifolds where G has a fixed locus set, the resolution of singularities

will generically give a non-zero Euler characteristic for the resolved manifold Ŷ .

The orbifold models we have constructed can be supersymmetric or break all super-

symmetries. We have given explicit constructions of orbifold solutions where the K3 base

of the FSY model is either a Kummer K3 or has a branched covering description or a

more general algebraic description. Those orbifold geometries arising from a shift action

on the fiber can still be viewed as having a fiber space structure. The base is now the K3

orbifolded by the discrete action and the complex structure of the torus jumps along the

fixed locus set of the discrete action. Rotation actions on the torus fiber may result in
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orbifold models with singularities, which potentially can have a non-vanishing Euler char-

acteristic as well as a non-vanishing number of generations. The smooth resolution of these

non-Kähler singular orbifold solutions is an important question that shall be addressed in

future work.

The smooth non-supersymmetric geometries we have constructed are each an elliptic

fibration over a complex surface. For example, the one in Section 5.1 utilizing a branched

covered K3 surface is an elliptic fibration over a IP1×IP1 base. Being non-supersymmetric,

the holomorphic three-form of the FSY geometry has been projected out. It is thus inter-

esting to ask whether these smooth torsional elliptically fibered three-folds more generally

can support a no-where vanishing holomorphic three-form. Such would lead directly to

smooth supersymmetric heterotic geometries. Some preliminary metric ansätze for these

elliptically fibered three-folds has been proposed in [44]. Interestingly, from the perspective

of F-theory and heterotic string duality [45,18], elliptically fibered three-folds should be

dual to F- or M-theory flux compactifications on Calabi-Yau four-folds [46] that are K3

fibrations. Recent work using this approach appears to indicate the existence of such class

of heterotic flux compactifications [47].

It is worthwhile to emphasize that the FSY geometries, at least for those that preserve

N = 2 SUSY, have a conformal field theory description [17] and represent a class of string

vacua valid to all orders in α′. The construction of geometric orbifold models described

here should therefore have an analogous orbifold description from the CFT perspective.

The CFT orbifold models that are constructed from freely acting discrete groups should

just consist of a projection. For the non-freely acting ones, the resolution of singularities

should correspond to the addition of twisted sector modes. It would be interesting to work

out the CFT description of the orbifold models constructed herein.

An important question which we leave for future work is whether the non-super-

symmetric orbifolds are stable in the gs loop expansion. Some beautiful examples of non-

supersymmetric stable orbifolds were constructed in [48]. Non-supersymmetric unstable

orbifolds can lead to an interesting decay process as has been discussed in the recent

literature [49,50]. In particular in [50] non-compact non-supersymmetric orbifolds were

shown to decay into supersymmetric ALE spaces. It would be interesting to see if an
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analysis along the lines of [49] can be performed for the heterotic orbifold models we have

constructed.
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folds and the complex Monge-Ampére equation,” J. Differential Geom. 78, 369 (2008)

[arXiv:hep-th/0604063].

[11] K. Becker, M. Becker, J.-X. Fu, L.-S. Tseng and S.-T. Yau, “Anomaly cancellation

and smooth non-Kähler solutions in heterotic string theory,” Nucl. Phys. B 751, 108

(2006) [arXiv:hep-th/0604137].

[12] E. Goldstein and S. Prokushkin, “Geometric model for complex non-Kähler manifolds

with SU(3) structure,” Commun. Math. Phys. 251, 65 (2004) [arXiv:hep-th/0212307].

[13] K. Becker, M. Becker, K. Dasgupta and P. S. Green, “Compactifications of heterotic

theory on non-Kaehler complex manifolds I,” JHEP 0304, 007 (2003), [arXiv:hep-

th/0301161].

[14] E. Calabi and B. Eckmann, “A class of compact, complex manifolds which are not

algebraic” Ann. of Math. 58, 494 (1953).

[15] K. Dasgupta, G. Rajesh and S. Sethi, “M theory, orientifolds and G-flux,” JHEP

9908, 023 (1999) [arXiv:hep-th/9908088].

30



[16] K. Becker and K. Dasgupta, “Heterotic strings with torsion,” JHEP 0211, 006 (2002)

[arXiv:hep-th/0209077].

[17] A. Adams, M. Ernebjerg and J. M. Lapan, “Linear models for flux vacua,” Adv.

Theor. Math. Phys. 12, 821 (2008) [arXiv:hep-th/0611084].

[18] K. Becker, M. Becker, P. S. Green, K. Dasgupta and E. Sharpe, “Compactifications of

heterotic strings on non-Kaehler complex manifolds II,” Nucl. Phys. B 678, 19 (2004),

[arXiv:hep-th/0310058].

[19] P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, “Vacuum configurations

for superstrings,” Nucl. Phys. B 258, 46 (1985).

[20] L. J. Dixon, J. A. Harvey, C. Vafa and E. Witten, “Strings on orbifolds,” Nucl. Phys.

B 261, 678 (1985); L. J. Dixon, J. A. Harvey, C. Vafa and E. Witten, “Strings on

orbifolds. 2,” Nucl. Phys. B 274, 285 (1986).

[21] S.-T. Yau, “Compact three dimensional Kähler manifolds with zero Ricci curvature,”

in Symposium on anomalies, geometry, and topology, ed. William A. Bardeen and

Alan R. White (1985) 395.

[22] A. Strominger and E. Witten, “New manifolds for superstring compactification,” Com-

mun. Math. Phys. 101, 341 (1985).
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[43] E. Calabi, “Métriques Kählériennes et fibrés holomorphes,” Ann. Sci. Ec. Norm. Super.

12, (1979) 269.

[44] M. Becker, L.-S. Tseng and S. T. Yau, unpublished.

[45] D. Morrison and C. Vafa, “Compactifications of F-theory on Calabi-Yau threefolds-

II,” [arXiv:hep-th/9603161].

[46] K. Becker and M. Becker, “M-theory on eight-manifolds,” Nucl. Phys. B 477, 155

(1996) [arXiv:hep-th/9605053].

[47] Talk of K. Becker at String Phenomenlogy 2008, May 28 - June 1, 2008, University of

Pennsylvania; K Becker and S. Sethi, paper to appear.

[48] S. Kachru and E. Silverstein, “4d conformal theories and strings on orbifolds,” Phys.

Rev. Lett. 80, 4855 (1998) [arXiv:hep-th/9802183].

[49] A. Adams, J. Polchinski and E. Silverstein, “Don’t panic! Closed string tachyons in

ALE space-times,” JHEP 0110, 029 (2001) [arXiv:hep-th/0108075].

[50] G. T. Horowitz, J. Orgera and J. Polchinski,“Nonperturbative instability of AdS5 ×

S5/Zk,” Phys. Rev. D 77, 024004 (2008) [arXiv:0709.4262 [hep-th]].

32


