
466 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002

On Automatic-Verification Pattern Generation for
SoC With Port-Order Fault Model

Chun-Yao Wang, Student Member, IEEE, Shing-Wu Tung, Member, IEEE, and Jing-Yang Jou, Senior Member, IEEE

Abstract—Embedded cores are being increasingly used in the
designs of large system-on-a-chip (SoC). Because of the high com-
plexity of SoC, the design verification is a challenge for system inte-
grators. To reduce the verification complexity, the port-order fault
(POF) model has been used for verifying core-based designs (Tung
and Jou, 1998) . In this paper, we present an automatic-verifica-
tion pattern generation (AVPG) for SoC design verification based
on the POF model and perform experiments on combinational and
sequential benchmarks. Experimental results show that our AVPG
can efficiently generate verification patterns with high POF cov-
erage.

Index Terms—Automatic-verification pattern generation
(AVPG), design verification, IEEE P1500, port-order fault (POF),
SoC, undetected port sequence (UPS).

I. INTRODUCTION

SPURRED by process technology leading to the availability
of more than one-million gates per chip and more strin-

gent requirements upon time-to-market and performance con-
straints, system-level integration and platform-based design [2]
are evolving as a new paradigm in system designs. A multitude
of components that are needed to implement the required func-
tionality make it hard for a company to design and manufacture
an entire system in time and within reasonable cost. Hence, de-
sign reuse and reusable building blocks (cores) trading are be-
coming popular in the system-on-a-chip (SoC) era. However,
present design methodologies are not enough to deal with cores
which come from different design groups and are mixed and
matched to create a new system design. In particular, verifying
whether a design satisfies all requirements is one of the most
difficult tasks.

Verification is a process used to demonstrate the functional
correctness of a design. Testing is a process that verifies whether
the design was manufactured correctly. Fig. 1 shows the recon-
vergent paths model for both verification and testing [3]. During
testing, the finished silicon is reconciled with the netlist that
was submitted for manufacturing. Therefore, when a design is
claimed to be fully tested, i.e., 100% fault coverage, under a
fault model, such as stuck-at fault (SAF) model, that means it
is manufactured correctly. However, we still cannot guarantee
that the chip satisfies the design specification if we do not verify
it properly before manufacturing. The chip may be a manufac-

Manuscript received May 23, 2001; revised November 1, 2001. This work
was supported in part by the R.O.C. National Science Council under Grant
NSC89-2215-E-009-009. This paper was recommended by Associate Editor J.
H. Kukula.

The authors are with the Department of Electronics Engineering, Na-
tional Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail:
wcyao@eda.ee.nctu.edu.tw).

Publisher Item Identifier S 0278-0070(02)02471-5.

Fig. 1. Reconvergent paths model for both verification and testing.

tured correctly but designed incorrectly chip. Thus, designers
spend about 70% of their efforts on the verification. But design
verification is still on the critical path of the design flow [3].

Usage of cores divides the integrated circuit (IC) design com-
munity into two groups: core providers and system integrators.
In traditional system-on-board (SoB) design, the components
that go from providers to system integrators are ICs, which
are designed, verified, manufactured, and tested. The system
integrator verifies the design by using these components
as fault-free building blocks. SoB verification is limited to
detecting faults in the interconnection among the components.
Similarly, in SoC design, the components are cores. The system
integrator verifies the design by using the cores as design
error-free building blocks. Based on this assumption, SoC
verification could be focused on detecting the misplacements
of the interconnection among the cores as the first step. This
higher level of abstraction decreases the complexity of design
verification on a system chip and reduces the time on design
verification of the entire system.

Most previous work in testing interconnection focused on
the development of deterministic tests for interconnection
between chips at the board level [4], [5]. The extension of these
board-level testing methods to core-based design verification
is inappropriate. In the interconnection testing phase, only
system-level interconnection is tested. The basic assumption
for a system under test is based on the system design being
correct and the faults are due to manufacturing defects on
interconnection among components. For core-based SoC
design verification, the system is not fully verified yet and
the most of system design errors are due to incorrect designs
of interconnection among predesigned cores. The methods
proposed to test interconnection do not guarantee that the
interconnection among cores is correct.

The focus of core-based design verification should be on how
the cores communicate with each other [6]. By creating the
testbenches at a higher level, a connectivity-based design fault
model, port-order fault (POF), proposed in [7] is used for re-
ducing the time on core-based design verification [1]. In [1],

0278-0070/02$17.00 © 2002 IEEE

WANG et al.: ON AVPG FOR SoC WITH POF MODEL 467

Fig. 2. A fault-free 4-bit adder.

Tunget al.proposed a verification pattern generation algorithm
based on the POF model. The algorithm cooperates with the
SAF automatic test pattern generation to generate the verifica-
tion pattern set for detecting the simple POF (SPOF) (two ports
misplaced at a time). This approach needs the circuit netlist to
generate the verification patterns, thus, it loses the capability
of integrating different levels of embedded cores (soft cores,
firm cores and hard cores) into a system. For example, this
algorithm cannot generate verification patterns for soft cores.
Furthermore, the simplified SPOF model is not enough to deal
with all possible misplacements occurred in a real design during
the cores integration phase. In this automatic-verification pat-
tern generation (AVPG), however, all possible misplacements
among the ports of cores are considered rather than two ports
misplacements. Furthermore, it only uses the simulation infor-
mation of the core rather than the circuit netlist to generate the
verification pattern set. This loosened requirement allows the
different levels of cores being integrated together for the POF
verification.

The POF AVPG is integrated into the SIS [8] environment.
Experiments are conducted on combinational and sequential
benchmarks, such as ISCAS-85, ISCAS-89, and MCNC bench-
marks. Experimental results show that the AVPG can efficiently
generate verification pattern sets with high POF coverage in
the proposed verification environment which exploits the IEEE
P1500 Standard for embedded core test (SECT) [9].

The remainder of this paper is organized as follows. The POF
model and some terminologies are introduced in Section II. Sec-
tion III describes the mechanism of conducting POF verifica-
tion. The POF AVPG is presented in Section IV. Section V
presents experimental results. Section VI concludes the paper.

II. PRELIMINARY

The POF model belongs to the group of pin-faults models
[10], which assumes that a faulty cell has at least two
input–output (I/O) ports misplaced. It also assumes that the
components are fault free and only the interconnection among
the components could be faulty. There are three types of POFs
[7].

Definition 1: The type-I POF is at least one input
misplaced with one output , i.e., the input ports

of faulty core
and output ports of faulty core

.
Example 1: A fault-free 4-bit adder is shown in Fig. 2. The

functionality of the adder is

Fig. 3. A 4-bit adder with the type-I POF.

Fig. 4. A 4-bit adder with the type-II POF.

Fig. 5. A 4-bit adder with the type-III POF.

. An example of the type-I POF is shown in
Fig. 3. Input port is misplaced with output port .

Definition 2: The type-II POF is at least two input
ports misplaced, i.e., the input ports of the fault-free core

, but the input ports of
the faulty core .

Example 2: An example of the type-II POF is shown in
Fig. 4. Input ports are misplaced with input ports

. The order of the input ports is reversed.
Definition 3: The type-III POF is at least two output

ports misplaced, i.e., the output ports of the fault-free cell
, but the output ports

of the faulty cell .
Example 3: An example of the type-III POF is shown in

Fig. 5. Output ports are misplaced with output ports
. The order of the output ports is reversed.

Because the misplaced output port in the type-I POF has no
driving source, it has invariant value (typical high impedance)
that could be detected by applying any verification patterns.
Therefore, the verification patterns for the type-II POF can also
detect the type-I POF.

In Fig. 6, it shows a generic system chip which contains
six cores, BLK1 BLK6. The verification on type-III POF of

468 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002

Fig. 6. Generic verification scheme.

BLK1 BLK4 is equivalent to the verification on type-II POF
of BLK4 BLK6. Therefore, if the type-II POF of all cores
in the system are verified, the type-III POF are also verified
simultaneously. Hence, in this paper, the AVPG generates the
verification patterns for detecting the type-II POF solely.

Definition 4: A port sequence is an input port numbers per-
mutation that indicates the relative positions among these input
ports.

Definition 5: The fault-free port sequence is a port sequence
that none of the input ports is misplaced. For an-input core,
the input ports are numbered from 1 to. The number of the
input port numbers permutation is and these permuta-
tions represent the port sequences of the core. Except the
fault-free port sequence, the remaining () port sequences
represent the core with some particular POFs and are called
faulty port sequences. In this paper, the POFs and the faulty port
sequences are used exchangeably.

III. I NTEGRATION VERIFICATION

Using core-based design methodology could reduce the
time-to-market for system chips. However, the verification
efforts of system chip are still proportional to the design
complexity. Both simulation and verification technique cannot
reduce the total verification time effectively if those pre-
designed and preverified blocks are to be verified exhaustively
during the integration phase. Therefore, in this section, we
introduce the IEEE P1500, which is a standard under devel-
opment and is used for embedded core testing, to reduce the
complexity of design verification. Besides, we will explain how
to use the POF verification pattern set for verifying integrated
SoC designs.

Fig. 6 depicts a generic verification scheme for the core-based
system chip. Since these cores, BLK1BLK6, are preverified,
the verification efforts during the integration phase should focus
on the interconnection among the cores. To verify the intercon-
nection among the BLK1 BLK6, designers apply the patterns

to primary inputs (PIs) of the integrated design, then compare
the responses to the expected results in primary outputs (POs).
If the responses are inconsistent with the expected ones, some
interconnection are misplaced. The generation of the patterns

Fig. 7. Generic test access architecture for embedded cores.

depends on the functionalities of BLK1BLK6. As the com-
plexity of cores increase or more cores are involved in the SoC
integration, the patterns become harder to generate.

To conquer this problem, we exploit the technique of design
for testability to conduct verification. The solution is the IEEE
P1500 SECT [9], [11]. The IEEE P1500 SECT is a standard
under development that aims at improving ease of reuse and fa-
cilitating interoperability with respect to the test of core-based
chips. The IEEE P1500 working group has suggested a module-
level boundary-scan structure which is very similar to the IEEE
1149.1 (JTAG) [12] structure. The structure, called “wrapper”,
is a thin shell around the core that allows intercore and intra-
core test functions to be carried out via a test access mechanism
(TAM). The TAM itself is user defined and is not specified in
the draft standard [13]. Fig. 7 depicts a generic access architec-
ture for testing embedded core schematically [11]. Fig. 8 shows
a typical configuration of how the chip-level connection of the
cores might be connected in one serial TAM and one parallel

WANG et al.: ON AVPG FOR SoC WITH POF MODEL 469

Fig. 8. A typical configuration of the cores integration using the IEEE P1500 architecture.

TAM per core [14]. The IEEE P1500 establishes the mecha-
nism that the test patterns of any circuits under test given by
core providers can be applied to PIs of the system chip (source)
and propagated to POs of the system chip (sink) via user-defined
TAMs.

Most of the POFs occur because of human introduced errors
in the SoC design process. These human errors are normally
introduced by misinterpretation of the design specification of
interconnection. Usually, the IP cores are integrated by system
integrators and the test structure among the cores is constructed
by test engineers. That is to say, the cores which are connected
for normal operation is done by an individual in the core inte-
gration phase and the cores which are connected for test mode is
done by another individual in the test insertion phase. These two
mode connections are independent. Therefore, the likelihood of
making the same mistake is very small.

A straightforward core integration methodology is used and
the system is integrated blockwise. As a block is added into the
system, the verification patterns for the added block are gener-
ated and applied to the integrated system for the interconnection
verification.

We exploit the IEEE P1500 wrappers and user defined TAMs
to propagate the verification patterns from PIs to the wrappers
in the predecessor of the core under verification (CUV) and
to propagate responses of the CUV to POs. The IEEE P1500
wrapper was proposed with a few predefined operations, such
as core-internal test, core-external test, bypass, isolation, and
normal modes.

In order to verify the interconnection among the CUV and its
predecessors, the CUV is set in normal mode which allows the
CUV to function in its normal system operation. The predeces-
sors connected to the CUV directly are set in external test mode
which allow verifying the interconnected wiring between cores
via the ordinary I/O ports in the core wrappers. The other prede-

cessors of the CUV are all set in bypass mode which allow the
stimuli being bypassed through cores to the CUV.

For example, assume the BLK1BLK6 have to be integrated
into a system as shown in Fig. 6. In the beginning, the BLK1
BLK3 are added into the system. Since these blocks do not have
any predecessors, it is not necessary to conduct the POF verifica-
tion. As the BLK4 is added into the system, the BLK1 and BLK2
are the predecessors that are directly connected to it. In order to
verify the interconnection A among these blocks, the BLK4 is
set in normal mode and the BLK1 and BLK2 are set in external
test mode to propagate the POF stimuli from PIs through the
wrappers (of BLK1 and BLK2) to the inputs of the BLK4 as
shown in Fig. 9. Hence, the verification patterns can easily go
through the system from PIs to POs and verify the interconnec-
tion A. If there are any misplacements in the interconnection
A, the inconsistent results will be observed in the output ana-
lyzer. Similarly, as the BLK5 is added into the system, it is set
in normal mode. The BLK2 and BLK3 are set in external test
mode as shown in Fig. 10. And so forth, as the BLK6 is added
into the system, it is set in normal mode. The BLK4 is the pre-
decessor that is directly connected to the BLK6. Hence, it is set
in external test mode. The BLK1 and BLK2 are the other prede-
cessors of the BLK6, they are set in bypass mode. This is shown
in Fig. 11.

This verification mechanism allows us solely focusing on the
functionality of the added block when generating the verifica-
tion pattern set and reduce the complexity of POF verification.
Note that for verifying the interconnection of an added core,
the core is exercised via the normal operation path. This is be-
cause system integrators possibly have misunderstanding about
the correct interconnection among cores. Only the consistency
of simulation results and expected results can guarantee the cor-
rectness of integration.

By using the IEEE P1500 test structure for the POF verifi-
cation, we do not introduce any more hardware overhead in the

470 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002

Fig. 9. The POF verification when integrating the BLK4.

Fig. 10. The POF verification when integrating the BLK5.

chip implementation. In fact, we reuse the hardware overhead
incurred in the testing phase.

IV. THE POF-BASED AVPG

This section describes the AVPG that is shown in the left part
of Fig. 11.

A. The Combinational AVPG

1) UPS Representation:Typically, the automatic pattern
generator for functional errors, such as transition fault [15]
or manufacturing faults, such as SAF [16], builds fault list
explicitly first to explore how many faults have to be detected
with specific patterns, then generates random patterns and
deterministic patterns. For the POF-based AVPG, however, the
fault list cannot be enumerated explicitly. This is because the
total number of POFs in an -input core is . This number
grows rapidly when increases, for instance, as ,

, as , . Instead,

an implicit representation is used to indicate the remaining
undetected port sequences (UPSs) during the verification pat-
tern generation. When the remaining UPS becomes empty, all
POFs are detected. In the pattern generation stage, the heuristic
patterns are generated instead of random patterns and deter-
ministic patterns. In other words, the approach is to “search”
proper patterns for the POF verification in a systematic way.

In the beginning, Example 4 demonstrates the implicit UPSs
representation.

Example 4: Given an 8-input core, the input ports are
numbered from 1 to 8. The UPS’s representation (12 345 678)
represents the UPSs that caused by all possible misplacements
among the port numbers in the same group, i.e., Port 1 to
Port 8. The number of undetected POFs is and the
one in the accounts for the fault-free port sequence.
The UPS’s representation (125)(4)(3678) indicates the UPSs
that caused by all possible misplacements among the port
numbers 1, 2, and 5 and/or all possible misplacements among
the port numbers 3, 6, 7, and 8. The number of the undetected

WANG et al.: ON AVPG FOR SoC WITH POF MODEL 471

Fig. 11. The POF verification when integrating the BLK6.

POFs is . Note that the port number 4 is the
only one element in the second group. It means that the port
sequences whose port number 4 in the wrong position are not
represented by this UPS’s representation. The order of the
groups in the UPS’s representation is irrelevant, neither is the
order of the numbers in each UPS’s group. For example, the
UPSs (125)(4)(3678) can also be expressed as (4)(215)(8763).
The UPSs (12)(3)(4)(5)(6)(78) contain four port sequences
and they are 12345678, 21345678, 12 345 687, and 21 345 687.
However, the UPS’s representation of the port sequences
21 345 678 and 12 345 687 is also (12)(3)(4)(5)(6)(78). This is
because we always use one UPS’s representation to express
all UPSs. The UPS representation (1)(2)(3)(4)(5)(6)(7)(8) has
eight groups and each group has only one element, therefore, no
misplacement could be occurred in each group. The number of
the undetected POFs is .
Hence, (1)(2)(3)(4)(5)(6)(7)(8) represents POFs are
all detected. If the UPS’s representation is induced from
(12 345 678) to (1)(2)(3)(4)(5)(6)(7)(8), all POFs are detected.

2) The Verification Pattern Generation:This section de-
scribes the verification pattern generation algorithm, which is
the foundation of our AVPG.

Definition 6: For an -input combinational core, the ex-
haustive pattern set is defined as . The size of is the
number of patterns in and is denoted as and
equals .

Definition 7: The set that consists of all patterns with
ones and () zeroes is denoted as , where

. The size of is the number of
patterns in and is denoted as and equals
where .

Example 5: For a 4-input core, is the exhaustive pattern
set with 4 bits. . ,
. , .

, ,
, . , and

.
For an -input core, can be used for verifying the func-

tionality of the core completely. However, equals 2 and
this number grows rapidly when increases. Hence, functional
verification using as verification pattern set is impractical.
We have to use another strategy to generate proper patterns for
verification.

The following paragraphs are going to introduce the three
steps in the pattern generation algorithm: fault activation,
fault propagation, and fault domination. They are operated
in sequence and iteratively and are described in detail in the
subsequent sections.

a) Fault Activation: Fault activation is the most important
procedure in the algorithm. If the fault effect is not activated, it
surely cannot be propagated out. To activate a POF, the logic
assignments of the corresponding input ports cannot be all the
same. For example, to activate the faulty port sequence 1243,
the assignments of Port 3 and Port 4 have to be different, either
Port 3 is assigned zero, Port 4 is assigned one or vice versa. All

POFs have to be activated during the verification pattern
generation. The following theorem states the completeness of
the POF activation.

Theorem 1: where can
activate all () POFs.

Proof: Given a pattern , there are ones and
() zeroes in . After any port misplacements, the pattern

turns to where must also have ones and ()
zeroes (). Because contains all patterns with
ones and () zeroes, for each POF, there must exist a pair of
patterns that corresponds to the original pattern

and the activated pattern . Thus, () POFs are all
activated by for . Q.E.D.

Example 6: Fig. 12 shows an example to illustrate that
can activate all () POFs. In Fig. 12(a), the pattern, 1100,
is the original pattern. After the misplacement of Port 2 and Port
3, the real pattern applied into the core is, 1010. The pattern

is different with , hence, the faulty port sequence 1324 is
activated. In Fig. 12(b), the patterns in the columnrepresent
the original patterns and the column represents the real pat-
terns applied into the core after the port misplacements shown
in the second column. In the second row, the pattern pair (1100,
1010) can activate faulty port sequences 1324, 1423, 2314, and
2413. In the third row, the pattern pair (1100, 1001) can activate
faulty port sequences 1342, 1432, 2341, and 2431 and so on.
() POFs are all activated by pattern pairs .
To activate a faulty port sequence, the pattern pair () is not
unique. For example, to activate the faulty port sequence 1243,
the only requirement is that the assignments of Port 3 and Port
4 have to be different, therefore, both pattern pair (1010, 1001)

472 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002

Fig. 12. The4!� 1 POFs are all activated by patterns in� .

and (0110, 0101) can activate this faulty port sequence, that is
shown in the last row of Fig. 12(b).

Corollary 1: and cannot be the verification pat-
terns.

According to Theorem 1 and Corollary 1, we can arbitrary
apply for to the inputs of the
core to activate () POFs. However, note that

for (1)

for (2)

Equations (1) and (2) show that the is smaller when
is closer to the end points of interval . There-
fore, to minimize the number of simulation patterns, we select

from one up to or from down to .

b) Fault Propagation: The simulation results of the ap-
plied patterns are observed to determine which activated POFs
are propagated to POs. The fault effects are propagated to POs
if there exists different responses among these input patterns.

c) Fault Domination: If a POF caused by the misplace-
ment of input ports and and denoted as POF() is
detected by a pattern, we can figure out what the other POFs
are detected by simultaneously. This characteristic of a POF
pattern can reduce the size of the verification pattern set and is
stated in Theorem 2. At this stage, the remaining UPSs are also
calculated so that more verification patterns can be generated
accordingly.

Theorem 2: For an -input core, assume the POF()
can be detected by a verification pattern , then can
actually detect POFs in total. This characteristic
is called the domination property of a POF pattern.

Proof: Suppose the output of the verification patternis
. Because detect the POF(), the logic value assign-

ments of and in must be different (, or
vice versa). The exchange of and reform a new pattern

and the output of is where . This is because
is a verification pattern for the POF(), the outputs of

and must be different. If the zeroes in are misplaced with
themselves, or the ones in are misplaced with themselves, the
representation of the pattern is still and the output remains.
These additional misplacements combined with the POF()
are all detected by (output value) and the total number
of these POFs are . Therefore, the verification
pattern can actually detect POFs. Q.E.D.

Example 7: For a 5-input core, assume a verification pat-
tern 11 000 detects the POF(2,3) and the output of the pattern
11 000 is . Because the verification pattern 11 000 detects the
POF(2,3), the output of the verification pattern 10 100 must not
be (assume it is). The additional misplacements among the
zeroes or between the ones in 10 100 make the pattern 10 100
intact and the output is still . Therefore, these additional mis-
placements combined with POF(2,3) are all detected by 11 000
and the amount of them are .

By using the property of the POF activation and domination
and the implicit UPS’s representation to handle the POF fault
list, the process of the POF-based combinational AVPG algo-
rithm is proposed.

The best way to demonstrate the algorithm is to discuss it
with an example. Given an 8-input core, according to the UPS’s
representation, the initial UPSs are (12 345 678). The number of
UPSs is . The simulation results of are
shown in Fig. 13 and are represented in symbolic output repre-
sentation. The simulation results depend on the functionality of
the core. For the first pattern, 10000000, the first bit is one and
the other bits are zeroes, the simulation output of 10 000 000 is
represented as . For the second pattern, 01000000, the output
is () and so on. If the first pattern 10 000 000 is
applied into the core and assume the interconnection is fault
free, the port sequence is 12 345 678 and the output isas
shown in Fig. 14(a). However, if the Port 1 and Port 2 are mis-
placed with each other, the port sequence becomes 21 345 678.
When the same pattern 10 000 000 is applied, the real pattern
assigned into the core is 01 000 000 and the output becomes

WANG et al.: ON AVPG FOR SoC WITH POF MODEL 473

Fig. 13. The simulation results of� patterns.

Fig. 14. Different outputs caused by the misplacement of Port 1 and Port 2.

as shown in Fig. 14(b). Because the fault-free output
and faulty output are different, the faulty port sequence
21 345 678 can be detected by the pattern 10 000 000. Further-
more, according to Theorem 2, the Port 28 are all zeroes, arbi-
trary port misplacements occurred among the ports 28 after
the POF(1,2) will evaluate to the same output () and all of
them are detected by the pattern 10000000, too. This is shown in
Fig. 14(b). Thus, the pattern 10 000 000 can detect {x1xxxxxx}
faulty port sequences where x means any other port numbers.
For another situation, if the Port 1 and Port 3 are misplaced
with each other, the port sequence becomes 32 145 678. When
the same pattern 10 000 000 is applied, the real pattern assigned
into the core is 00 100 000 and the output becomesagain
according to the simulation outputs of shown in Fig. 13.
Thus, 10 000 000 can detect this port sequence 32 145 678 and
dominate port sequences {xx1xxxxx}. For the other ports, such
as ports 4–8, when Port 1 is misplaced with them, the results
are similar. Thus, the faulty port sequences that are detected
by 10 000 000 are {x1xxxxxx, xx1xxxxx, xxx1xxxx, xxxx1xxx,
xxxxx1xx, xxxxxx1x, xxxxxxx1}. The faulty port sequences
that are detected by 10 000 000 have been figured out, therefore,

the faulty port sequences that cannot be detected by 10 000 000
are decided as well. These UPSs are {1xxxxxxx} which can
be represented as (1)(2 345 678) after the pattern 10 000 000 is
added into the verification pattern set. These results are shown
in Fig. 13.

When the second pattern 01 000 000 in Fig. 13 is applied into
the core, since the first pattern 10 000 000 in Fig. 13 is the only
one pattern which has different output with that of the second
pattern, the second pattern only detects the POF(1,2) and dom-
inates the port sequences {2xxxxxxx}. However, the port se-
quences {2xxxxxxx} have been detected by verification pat-
tern 10 000 000 in the previous discussion (the updated UPSs
are (1)(2 345 678). The second pattern does not detect any new
faulty port sequences, therefore, it is not chosen as the verifi-
cation pattern. Similarly, for the remaining patterns in, they
have no contribution in reducing the size of UPSs, either. Thus,
10 000 000 is the only verification pattern added into the verifi-
cation pattern set in this iteration.

In , the th bit is different with the other bits on theth
pattern. We use the port numberto represent theth pattern
and group the port numberaccording to the pattern outputs.
In this example, the output of the first pattern is different with
that of the other patterns, therefore, the grouping result of these
port numbers is (1)(2 345 678). This grouping result is the same
with the updated UPSs obtained from our detailed discussion
above. Hence, in the following discussion with applying
and (only one bit is different with the other bits) to the
input ports, the updated UPSs can be determined directly from
the input port number grouping according to the simulation out-
puts of these patterns.

Definition 8: A single-element group (SEG) is a group that
contains only one port number in the UPS’s representation. A
multiple-element group (MEG) is a group that contains more
than one port numbers in the UPS’s representation.

The group (1) in the updated UPSs (1)(2 345 678) is an SEG
and the group (2 345 678) in the updated UPSs (1)(2 345 678)
is a MEG. The physical meaning of the SEG is that the
remaining UPSs are all irrelevant to the port in the SEG and
the further pattern generation does not have to activate any
POFs related to the port in the SEG. Therefore, when we
search for additional verification patterns, we find that
the pattern 01 111 111 cannot activate any remaining POFs
in the updated UPSs (1)(2 345 678). This is because the logic
assignments in the ports 28 of pattern 01 111 111 are all
the same. Therefore, we exclude it from to minimize the
number of simulation patterns. The other patterns inand
their simulation outputs are shown in Fig. 15. We put anin
the output of the pattern 01 111 111 to indicate the exclusion
of this pattern from simulations. The remaining patterns in

are grouped into three groups {10 111 111}, {11 011 111},
and {11101111, 11110111, 11111011, 11111101, 11 111 110}
according to their outputs and the corresponding input port
numbers grouping is (2)(3)(45678). These groups are sorted
by size in ascending order. To add additional patterns into the
verification pattern set, we always choose the group with the
smallest size if it indeed can detect new faulty port sequences.
In this example, when the first group {10 111 111} is added
into the verification pattern set, the updated UPSs become

474 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002

Fig. 15. The simulation results of� patterns.

(1)(2)(3)(345 678). When the second group {11 011 111} is
included into the verification pattern set, the updated UPSs
become (1)(2)(3)(45678). These results come from the input
port numbers grouping discussed above directly. For the third
group, it has no contribution in reducing the size of UPSs
further. Hence, it is not added into the verification pattern set.
Consequently, in this iteration, the pattern {10 111 111} and
{11 011 111} are added into the verification pattern set and the
updated UPSs become (1)(2)(3)(45678). The size of the UPSs
currently is reduced to .

Hence, the search for the verification pattern of the UPSs
(1)(2)(3)(45678) is continued. The UPSs have four groups and
are numbered from to , i.e., is (1), is (2),
is (3), and is (45678). are SEGs and is a
MEG. Note that if the UPSs (1)(2)(3)(45678) can be reduced
to (1)(2)(3)(4)(5)(6)(7)(8), the remaining POFs are all detected.
The remaining POFs are only related to the ports in the MEGs
and the further pattern generation is focused on the activation of
these undetected POFs in the MEGs solely.

Then are applied into the core. The patterns in have
two ones and six zeroes. These two ones in each pattern can
be placed in the SEGs, MEGs or both. The SEG groups and the
MEG group are placed into two sides, respectively, and all com-
binations of patterns are listed in Fig. 16. In Fig. 16, the pat-
tern set P1 does not activate any undetected POFs. Therefore, we
have no need to simulate these patterns. In the pattern sets P2,
P3, and P4, the MEG side assignments areand all remaining
POFs are activated according to Theorem 1. For the pattern set
P5, the MEG side assignments are and also activate all re-
maining POFs. The SEG side assignments in each pattern set
influence on the propagation of the activated fault effects. The
propagation of fault effects is determined by the simulation out-
puts of these pattern sets. When the outputs of a pattern set are
different, the fault effects are propagated out and the remaining
UPSs could be further reduced.

In the pattern set P2, P3, since the outputs of the patterns in
each set are all the same, therefore, the activated POFs cannot be
propagated to POs and the UPSs remain (1)(2)(3)(45678). In the
pattern set P4, the MEG assignments areand the outputs are
grouped into two groups. According to the previous discussion,
the remaining UPSs can be determined directly by the input
port numbers grouping. The grouping result is (45)(678), thus,
the updated UPSs become (1)(2)(3)(45)(678) when the patterns

Fig. 16. The simulation results of� patterns.

{00110000, 00 101 000} are added into the verification pattern
set. Because the outputs of patterns in the P5 are all the same,
P5 is invalid for the POF verification.

In the next iteration, are applied into the core and the
simulation outputs are shown in Fig. 17. The only pattern set that
activates and propagates the remaining POFs is P10. According
to the outputs in the P10, the patterns are grouped into two sets
S1 and S2 shown in Fig. 17. Since the assignments in the MEG
side of P10 are not and , the remaining UPS cannot
be determined by input port numbers grouping directly. Here,
we introduce the characteristic vector (CV) grouping instead.

Definition 9: Given a set of patterns, we count the number
of digits 1 in the same bit position to form a vector with the
same length. This vector is called the CV ofand is denoted as

.
Definition 10: Given two pattern setsand , if the patterns

in the and are all identical, we said , otherwise
. If the corresponding bits in the and are all the

same, we said , otherwise .
The is 22 211 022 and the is

88855644, as shown in Fig. 17. Since the updated UPSs are
(1)(2)(3)(45)(678), the POFs related to ports in the SEG side
are all detected, thus, we only consider the and

when analyzing the updated UPSs.
Lemma 1: One pattern set has only one CV.

WANG et al.: ON AVPG FOR SoC WITH POF MODEL 475

Fig. 17. The simulation results of� patterns.

Lemma 2: Given two pattern sets and , if
, then .

Theorem 3: A pattern set turns to another pattern set
after the port misplacements. If , then the
port misplacements will be detected by patterns.

Proof: Because , according to Lemma
2, . Furthermore, because , must exist a
pattern . Since consists of all patterns with the same
outputs, the outputs of must be different with that of patterns
in the . Thus, the port misplacementswill cause the outputs
of and different and will be detected by patterns. Q.E.D.

According to Theorem 3, if in Fig. 17 is chosen as
the verification patterns, the port misplacements that change

will be detected. Consequently, the port
misplacements which cannot change the are
regarded as the remaining UPSs. The
is further grouped into subgroups, (11)(0)(22) and it corre-

Fig. 18. The simulation results of� patterns.

sponds to (45)(6)(78) of the UPSs. The port misplacements
occurred in a subgroup will keep the CV remaining the same.
Thus, when S1 is added into the verification pattern set, the
updated UPSs become (1)(2)(3)(45)(6)(78). It is rewritten as
(1)(2)(3)(6)(45)(78) for convenience. For the S2, since the
corresponding UPSs of the grouping result of ,
(45)(6)(78), is the same as that of , it is not added
into the verification pattern set.

Fig. 18 shows the succeeding procedure that applies
into the core. In the P12, the result of the input port numbers
grouping is (4)(578) when the pattern 11 001 000 is added
into the verification pattern set. It intersects with the UPSs in
the MEG side, (45)(78), to get the updated UPSs (4)(5)(78).
Then it concatenates with the UPSs in the SEG side to form
the updated UPSs (1)(2)(3)(4)(5)(6)(78). This is shown in the
description column in Fig. 18. In the P13, although the output
of the pattern, 10100100, is different from that of the other
patterns, it is not added into the verification pattern set. This is
because the UPSs are not further reduced. In the P14, the pat-
tern 10 010 001 reduces the UPSs from (1)(2)(3)(4)(5)(6)(78)
to (1)(2)(3)(4)(5)(6)(7)(8) and the algorithm is terminated at
this step. Because the generation of these pattern sets are from
the smallest size to the largest size, other pattern sets with
larger size in are not generated and not shown in Fig. 18.
The quality of the verification pattern set is determined by the
measurement of fault coverage. The fault coverage is defined as

(3)

therefore, in this example, the fault coverage is
and the verification pattern set is

476 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002

Fig. 19. The pseudocode of the combinational AVPG.

Fig. 20. The pseudocode of the sequential AVPG.

{10000000, 10111111, 11011111, 00110000, 00101000,
11101011, 11110011, 11001000, 10 010 001}.

Since the AVPG will generate all , for
if necessary and simulate the outputs for searching the veri-

fication patterns, it is a complete algorithm, i.e., given enough
time, the verification pattern set for 100% fault coverage will be
obtained. The pseudocode of this combinational AVPG is shown
in Fig. 19. In line 4, 5, it generates patterns and simulates the out-
puts. The effectiveness of the simulated patterns is determined
in line 6. In line 8, it adds the valid patterns into the verification
pattern set. At the end of the algorithm, the verification pattern
set, fault coverage, and UPSs are returned.

B. The Sequential AVPG

The development of the sequential AVPG is based on the
same assumption as the combinational AVPG is, i.e., the CUV
is preverified and fault free. The fault occurs only at the inter-
connection between the cores. Because the core is surrounded
by the IEEE P1500 wrapper, by taking the advantages of the
scan chains in the wrapper, the CUV can be set in arbitrary
state_values. Hence, a sequential core can be seen as a com-
binational one and the verification pattern generation algorithm
used in the combinational AVPG is applicable to the sequential
AVPG. The only difference is that the sequential core has to be
set astate_valuebefore being evaluated. Differentstate_values

WANG et al.: ON AVPG FOR SoC WITH POF MODEL 477

Fig. 21. The pseudocode of the heuristic combinational AVPG.

affect whether the fault effects could be propagated to POs or
not. The algorithm sets the sequential core to every possible
state until the fault coverage is 100%. The pseudocode of the
sequential AVPG is shown in Fig. 20. In line 4, it setsstate to
the sequential core before simulation. Then it reuses the com-
binational AVPG algorithm shown in Fig. 19. This process is
listed in line 6. Thestate_valuehas to be attached to the veri-
fication patterns obtained by the reused combinational AVPG.
Thus, in line 6, it uses verification_pattern_set() to represent
the verification pattern set obtained in state.

C. The Heuristic AVPG

Definition 12: An untestable POF is a POF which cannot be
detected by .

The untestable POF is harmless for the integration, therefore,
they should be regarded as detected POF in computing fault
coverage.

The complete AVPG algorithm may not be practical in gen-
erating the verification pattern set for large designs. The possi-
bility of existing untestable POFs in the CUV makes the algo-
rithm very time-consuming. Therefore, a heuristic AVPG algo-
rithm is proposed to trade-off between the fault coverage and
the execution time. Here, we only address the heuristic combi-
national AVPG. This is because the combinational AVPG is the
basis of the sequential AVPG.

We review Fig. 16, which shows the simulation outputs of ap-
plying in the complete combinational AVPG. In this figure,
the pattern sets P2 P5 are generated and simulated. However,

TABLE I
EXPERIMENTAL RESULTS OF THEHEURISTIC COMBINATIONAL AVPG

according to Theorem 1, any one of them can activate all re-
maining POFs and has the possibility to reduce the size of the
remaining UPSs. Hence, the heuristic approach is to generate

478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002

TABLE II
EXPERIMENTAL RESULTS OF THEHEURISTIC SEQUENTIAL AVPG

arbitrary one of them to simulate the outputs in one iteration in-
stead of all pattern sets. For example, it can only generate and
simulate P2 or P3, etc. No matter what the result of the simula-
tion of generated pattern set is, it proceeds to the next iteration.
On the other hand, the heuristic AVPG generates the verifica-
tion patterns iteratively, therefore, it sets an iteration counter to
bound the processing time.

The heuristic combinational AVPG algorithm is shown in
Fig. 21. In line 5, it generates a pattern setinstead of all

heuristically where is a subset of . The pattern set
satisfies the requirement of activating all remaining undetected
POFs. The pattern set P3, P8, or P12 listed in Figs. 16–18 are
all instances of . The check points in the algorithm bound the
AVPG to be executed in the acceptable run time. These codes in
lines 3, 8, 9, and 14 are all highlighted in Fig. 21.

V. EXPERIMENTAL RESULTS

Rather than simulating the entire SoC, the complexity of SoC
design verification can be significantly alleviated by using pre-
verified IP cores and concentrating on verifying the integra-
tion of the cores in the SoC. The interconnection verification
among each single block during integration is the first step of
the core-based SoC design verification. Furthermore, the gener-
ation of the verification patterns for verifying the interconnec-
tion among the cores only depends on the functionality of the
added core. Therefore, the experiment only reports the results
of single block examples.

The heuristic POF AVPG algorithm described above has been
integrated into the SIS [8] environment, which is developed

by the University of California at Berkeley. Experiments are
conducted over a set of ISCAS-85 and MCNC combinational
benchmarks for the heuristic combinational AVPG and a set
of ISCAS-89 sequential benchmarks for the heuristic sequen-
tial AVPG. Note that the benchmarks are in Berkeley Logic In-
terchange Format (BLIF) format which is a netlist-level design
description. However, only the simulation information of these
benchmarks are used to conduct the experiments and therefore,
arbitrary level of design description can be used for generating
verification patterns. Table I summaries the experimental results
of the heuristic combinational AVPG. The first five columns
show the parameters of each benchmark, including name,PI ,
PO, the number of literals (lits.), and the number of POFs. The
PI represents the number of inputs and the size of the POFs
set is PI . The PO represents the number of outputs and
influences on the probability of fault effect propagation. The
number of literals indicates the complexity of a benchmark. The
remaining columns show the number of verification patterns
(pats.), fault coverage (F_C), and CPU time (time). The iteration
bound was set to 100. The CPU time is measured on an Ultra
Sparc II workstation. The algorithm will be terminated automat-
ically if the iteration counter is over the bound or the fault cov-
erage reaches 100% and the verification pattern set, fault cov-
erage, and updated UPSs are returned. According to Table I,
the fault coverage of more than half benchmarks achieve 100%
and the processing time is acceptable. Furthermore, the size of
the verification pattern sets are very small as compared with the
() POFs. For example, the number of POFs in c5315 is
(), but the size of the verification pattern set is only 371

WANG et al.: ON AVPG FOR SoC WITH POF MODEL 479

for 100% fault coverage. For the other benchmarks, the fault
coverage also reach 99.999 999% high.

The results demonstrate that the heuristic combinational
AVPG is very efficient to generate high-quality verification
pattern set. Note that the undetected POFs in a benchmark
could be untestable. If we omit these untestable POFs from the
fault set, the fault coverage of the pattern set would be even
higher.

Table II summaries the experimental results of the heuristic
sequential AVPG. The fifth column lists the number of flip-flops
in a benchmark. Table II also demonstrates that all sequential
benchmarks achieve high fault coverage with acceptable run
time similar to the results indicated in the heuristic combina-
tional AVPG.

VI. CONCLUSION

In the SoC era, the embedded cores are mixed and integrated
to create a system chip. System designers integrate those cores
manually and have the possibility of incorrect integration due to
the misplaced I/O ports. Furthermore, without the knowledge of
the internal structures of the embedded cores, system designers
have difficult time to locate the position of having erroneous in-
terconnection. Therefore, we adopt the connectivity-based POF
model and use the proposed verification mechanism to integrate
the system blockwise. This raised abstraction level of the de-
sign verification reduce the time on functional verification in
core-based design methodology.

The POF-based AVPG algorithm generates the verification
pattern set for () POFs systematically by using the
property of the POF activation and domination and the implicit
UPS’s representation. We exploit the IEEE P1500 wrapper
structure as the integration verification mechanism. The POF
verification provides a sufficient high level of confidence on
verifying the correctness of the core-based system design.

REFERENCES

[1] S.-W. Tung and J.-Y. Jou, “Verification pattern generation for core-based
design using port-order fault model,” inProc. Asian Test Symp., Dec.
1998, pp. 402–407.

[2] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L.
Todd, Surviving the SoC Revolution—A Guide to Platform-Based
Design. Norwell, MA: Kluwer Academic, 1999.

[3] J. Bergeron, Writing Testbenches-Functional Verification of HDL
Model. Norwell, MA: Kluwer Academic, 2000.

[4] P. Goel and M. T. McMahon, “Electronic chip-in-place test,” inProc.
IEEE Int. Test Conf., Oct. 1982, pp. 83–90.

[5] A. Hassan, V. K. Agarwal, B. Nadeau-Dostie, and J. Rajski, “BIST of
PCB interconnects using boundary-scan architecture,”IEEE Trans.
Computer-Aided Design, vol. 11, pp. 1278–1288, Oct. 1992.

[6] J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface-based design,”
in Proc. Design Automation Conf., June 1997, pp. 178–183.

[7] S.-W. Tung and J.-Y. Jou, “A logic fault model for library coherence
checking,”J. Inform. Sci. Eng., pp. 567–586, Sept. 1998.

[8] E. M. Sentovich, K. T. Singh, C. Moon, H. Savoj, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “Sequential circuit design using synthesis and
optimization,” in Proc. IEEE Int. Conf. Computer Design, Oct. 1992,
pp. 328–333.

[9] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L. Whetsel, “Toward
a standard for embedded core test: An example,” inProc. IEEE Int. Test
Conf., Sept. 1999, pp. 616–627.

[10] M. Abramovici, M. A. Breuer, and A. D. Friedman,Digital Systems
Testing and Testable Design. New York: Computer Science Press,
1990, p. 95.

[11] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core-based
system chips,” inProc. IEEE Int. Test Conf., Oct. 1998, pp. 130–143.

[12] S. Runyon, “Testing big chips becomes an internal affair,”IEEE Spec-
trum Mag., vol. 36, pp. 49–55, Apr. 1999.

[13] R. G. B. Bennetts. IEEE P1500 Embedded Core Test Standard.
[Online]. Available: http://www.semiconductorfabtech.com/dft/tuto-
rial/p1500.PDF

[14] M. Ricchetti. Overview of proposed ieee scalable architecture
for testing embedded cores. presented at IEEE P1500 SECT
Meeting During DAC’01. [Online]. Available: http://www.grouper.
ieee.org/groups/1500/dac01/ctag-dac01.pdf.

[15] K.-T. Cheng and J.-Y. Jou, “A functional fault model for sequential ma-
chines,”IEEE Trans. Computer-Aided Design, vol. 11, pp. 1065–1073,
Sept. 1992.

[16] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A highly
efficient automatic test pattern generation system,”IEEE Trans. Com-
puter-Aided Design, vol. 7, pp. 126–137, Jan. 1988.

Chun-Yao Wang(S’00) was born on Oct 21, 1973 in
Taiwan, ROC. He graduated from the Department of
Electronics Engineering, National Taipei Institute of
Technology, Taiwan, ROC, in 1994. He is currently
pursuing the Ph.D. degree at the Department of Elec-
tronics Engineering, National Chiao Tung University,
Hsinchu, Taiwan, ROC.

His research interests include testing, design veri-
fication, and logic synthesis.

Shing-Wu Tung (M’92) received the B.S. degree
from the Department of Electrical Engineering,
National Cheng Kung University, and the M.S.
degree from the Department of Computer Science
and Information Engineering at National Chiao
Tung University, Hsinchu, Taiwan, ROC, in 1987
and 1989, respectively. He is working toward the
Ph.D. degree at the Department of Electronics
Engineering, National Chiao Tung University.

He is a senior manager at Prolific Technology Inc.
He has worked at Industrial Technology Research In-

stitute. His current research activities focus on design verification of platform-
based SoC design. His other areas of interest include computer architecture,
CPU design, and VLSI system verification.

Jing-Yang Jou (S’82–M’83–SM’02) received the
B.S. degree from the Department of Electrical
Engineering at National Taiwan University, Taiwan,
ROC, and the M.S. and Ph.D. degrees from the
Department of Computer Science, University of
Illinois at Urbana-Champaign, in 1979, 1983, and
1985, respectively.

He is currently a full Professor and Chairman
of Electronics Engineering Department at National
Chiao Tung University, Hsinchu, Taiwan, ROC.
Before joining National Chiao Tung University, he

was with GTE Laboratories and AT&T Bell Laboratories. His research interests
include behavioral, logic and physical synthesis, design verification, and CAD
for low power. He has published more than 100 journal and conference papers.

Dr. Jou is a member of Tau Beta Pi and is the recipient of the distinguished
paper award of the IEEE International Conference on Computer-Aided Design,
1990. He served as the Technical Program Chair of the Asia-Pacific Conference
on Hardware Description Languages (APCHDL’97).

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

