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1 Abstract: We prove that for spacetimes solving the Einstein-Maxwell (EM) equations,
the electromagnetic field contributes at highest order to the nonlinear memory effect of grav-
itational waves. In [5] D. Christodoulou showed that gravitational waves have a nonlinear
memory. He discussed how this effect can be measured as a permanent displacement of test
masses in a laser interferometer gravitational wave detector. Christodoulou derived a precise
formula for this permanent displacement in the Einstein vacuum (EV) case. We prove in
Theorem 6 that for the EM equations this permanent displacement exhibits a term coming
from the electromagnetic field. This term is at the same highest order as the purely gravita-
tional term that governs the EV situation. On the other hand, in Chapter 3, we show that
to leading order, the presence of the electromagnetic field does not change the instantaneous
displacement of the test masses. Following the method introduced by D. Christodoulou in [5]
and asymptotics derived by N. Zipser in [8] and [9], we investigate gravitational radiation at
null infinity in spacetimes solving the EM equations. We study the Bondi mass loss formula
at null infinity derived in [9]. We show that the mass loss formula from [9] is compatible
with the one in Bondi coordinates obtained in [4]. And we observe that the presence of
the electromagnetic field increases the total energy radiated to infinity up to leading order.
Moreover, we compute the limit of the area radius at null infinity in Theorem 7.
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1 Introduction and Main Results

In this paper we investigate the null asymptotics for spacetimes solving the Einstein-Maxwell
(EM) equations, compute the radiated energy, derive limits at null infinity and compare them
with the Einstein vacuum (EV) case. We show that the presence of the electromagnetic field
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does not affect the instantaneous displacement of the test masses of a laser interferometer de-
tector at leading order, as it only comes in at lower order. But the electromagnetic field does
contribute to the nonlinear effect of the displacement of the test masses. The EM case gives
us a wonderful opportunity to observe mass loss and also to measure gravitational radiation.
It is crucial to understand fully the behavior of the gravitational field also when other fields
are present and to investigate their interplay. The only way to achieve this, is to compute
the null asymptotics of the spacetimes.

A major goal of mathematical General Relativity (GR) and astrophysics is to precisely de-
scribe and finally observe gravitational radiation, one of the predictions of GR. In order to
do so, one has to study the null asymptotical limits of the spacetimes for typical sources.
Among the latter we find binary neutron stars and binary black hole mergers. In these pro-
cesses typically mass and momenta are radiated away in form of gravitational waves. Bondi,
van der Burg and Metzner studied these in [3]. D. Christodoulou showed in his paper [5] that
every gravitational-wave burst has a nonlinear memory. The insights of this work are based
on the precise description of null infinity obtained by D. Christodoulou and S. Klainerman
in [7]. Among the many pioneering results they derived the Bondi mass loss formula. This
is all in the regime of the Einstein vacuum equations. Then N. Zipser studied the Einstein-
Maxwell equations in [8], [9] and computed limits along the lines of [7] for this case. She
derived a Bondi mass loss formula, where in addition to the one obtained by Christodoulou
and Klainerman, a component of the electromagnetic field comes in. Thus the mass radiated
away goes into the gravitational and the electromagnetic field. Here, we rely on the methods
introduced in [7], used in [8], [9] and by one of the present authors in [1], [2]. There is a
large literature about gravitational radiation. However, in the present paper, we only give
the references which are relevant to our investigations.

The main results of this paper are the following. We first recall the Bondi mass loss for-
mula obtained in [9] for spacetimes solving the EM equations.

∂

∂u
M (u) =

1

8π

∫
S2

(
|Ξ|2 +

1

2
|AF |2

)
dµ◦

γ

Compared to the formula obtained in [7] for spacetimes solving the EV equations, we have an
additional term, |AF |2, from the electromagnetic field. Furthermore, we compare the above
mass loss formula to the corresponding formula in Bondi coordinates [4]

∂

∂w
M(w) = −

∫
S2

(
(∂wc)

2 + (∂wd)2 +
1

2
(X2 + Y 2)

)
dµ◦

γ

and show that the two formulae agree.

As shown in the work of Christodoulou [5], Σ+−Σ− is the term which governs the permanent
displacement of test particles. Using this fact, Christodoulou shows that the gravitational
field has a non-linear “memory” which can be detected by a gravitational-wave experiment
in a spacetime solving the EV equations. We will describe this experiment in the last section
as well. In section 2.3 of our paper, we study the permanent displacement formula for un-
charged test particles of the same gravitational-wave experiment in a spacetime solving the
EM equations and show that the electromagnetic field contributes to the nonlinear effect.
We first obtain Theorem 6 which determines Σ+ − Σ− in the EM case. From Theorem 6,
we observe that the electromagnetic field changes the leading order term of the permanent
displacement of test particles. Then in the last section, we study in details a gravitational
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wave experiment for our findings. We observe that the electromagnetic field does not enter
the leading order term of the Jacobi equation. As a result, to leading order, it does not
change the instantaneous displacement of test particles. But the electromagnetic field does
contribute at highest order to the nonlinear effect of the permanent displacement of test
masses. Furthermore, in Theorem 7 we compute the limit of the area radius r on any null
hypersurface Cu as t goes to ∞ and show that the result coincides with the one obtained in
[7] for EV.

We follow the method introduced by Christodoulou in [5] to study the effect of gravitational
waves. The treatment is based on the asymptotic behavior of the gravitational field obtained
at null and spatial infinity. These rigorous asymptotics allow us to study the structure of the
spacetimes at null infinity. The spacetime is foliated by a time function t and by an optical
function u. The corresponding lapse functions are denoted by φ and a. Each level set of u,
Cu, is an outgoing null hypersurface and each level set of t, Ht is a maximal spacelike hyper-
surface. We pick a suitable pair of normal vectors along the null hypersurface. The flow along
these vector fields generates a family of diffeomorphisms φu of S2. We use φu to pull back
tensor fields in our spacetime. This allows us to study their limit at null infinity along the
null hypersurface Cu. Then we study the effect of gravitational waves by taking the limit as u
goes to ±∞. Christodoulou in [5] gives a complete explanation of the structure at null infinity.

The methods introduced in [7], used in [8], [9], reveal the structure of the null asymptotics of
our spacetimes. In these works, to prove the stability result, the data is assumed to be small.
However, as far as the study of the null asymptotics is concerned, the data can be large. We
give a brief outline in the last part of this introduction of the methods of [7].

In General Relativity the fundamental equations are the Einstein equations linking the cur-
vature of the spacetime to its matter content.

Gµν := Rµν −
1

2
gµν R = 8π Tµν , (1)

(setting G = c = 1), µ, ν = 0, 1, 2, 3. Gµν denotes the Einstein tensor, Rµν is the Ricci
curvature tensor, R the scalar curvature tensor, g the metric tensor and Tµν is the energy-
momentum tensor.

Here, we are discussing the Einstein-Maxwell equations. This means that Tµν on the right
hand side of (1) is the stress-energy tensor of the electromagnetic field. The twice contracted
Bianchi identities imply that

DνGµν = 0 . (2)

This is equivalent to the following equation, namely, that the divergence of the stress-energy
tensor of the electromagnetic field vanishes:

DνTµν = 0 (3)

with

Tµν =
1

4π

(
F ρ
µ Fνρ −

1

4
gµνFρσF

ρσ
)

(4)

where F denotes the electromagnetic field. Note that F is an antisymmetric covariant 2-
tensor. As Tµν is trace-free, the Einstein equations (1) take the form

Rµν = 8πTµν . (5)
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We find that the scalar curvature is identically zero. We write the Einstein-Maxwell (EM)
equations as

Rµν = 8πTµν (6)

DαFαβ = 0 (7)

Dα ∗Fαβ = 0. (8)

As a consequence of the Maxwell equations, we have

�F = 0 (9)

where � is the de Rham Laplacian with respect to the metric g.

We split the Riemannian curvature Rαβγδ into its traceless part, namely the Weyl tensor
Wαβγδ, and a part including the spacetime Ricci curvature Rαβ and spacetime scalar curva-
ture R:

Rαβγδ = Wαβγδ +
1

2
(gαγRβδ + gβδRαγ − gβγRαδ − gαδRβγ)

−1

6
(gαγgβδ − gαδgβγ)R . (10)

One can then define the Bel-Robinson tensor

Qαβγδ = WαργσW
ρ σ
β δ + ∗Wαργσ

∗W ρ σ
β δ . (11)

The Bianchi equations for the Weyl tensor in the presence of an electromagnetic field read

DαWαβγδ =
1

2
(DγRβδ −DδRβγ) . (12)

In [7] Christodoulou and Klainerman derived the asymptotic behavior in the case of strongly
asymptotically flat initial data of the following type.

Definition 1 We define a strongly asymptotically flat initial data set in the sense of [7]
(studied by Christodoulou and Klainerman) to be an initial data set (H, ḡ, k), where ḡ and
k are sufficiently smooth and there exists a coordinate system (x1, x2, x3) defined in a neigh-

bourhood of infinity such that, as r = (
∑3

i=1(xi)2)
1
2 →∞, ḡij and kij are:

ḡij = (1 +
2M

r
) δij + o4 (r−

3
2 ) (13)

kij = o3 (r−
5
2 ) , (14)

with M denoting the mass.

Under a smallness condition on the initial data, Christodoulou and Klainerman proved in [7]
that this can be extended uniquely to a smooth, globally hyperbolic and geodesically com-
plete spacetime solving the EV equations. The resulting spacetime is globally asymptotically
flat. Together with the existence and uniqueness theorem comes a precise description of the
asymptotic behavior of the spacetime. While the smallness condition was imposed in order to
ensure completeness, the results about the behavior at null infinity are largely independent
of the smallness. The decay behavior of the components of the Weyl tensor are given below.
And the limits at null infinity of the relevant quantities are given in section 2.
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In [7] as well as in [8], [9] and [1], [2] the Weyl tensor W in (M, g) is decomposed with
respect to the null frame e4, e3, e2, e1. That is, e4 and e3 form a null pair which is supple-
mented by eA, A = 1, 2, a local frame field for St,u = Ht ∩ Cu. Given this null pair, e3 and
e4, we can define the tensor of projection from the tangent space of M to that of St,u.

Πµν = gµν +
1

2
(eν4e

µ
3 + eν3e

µ
4 ).

We decompose the second fundamental form kij of Ht into

kNN = δ (15)

kAN = εA (16)

kAB = ηAB (17)

where N is the unit normal vector of St,u in Ht. Let T be the future-directed unit normal to
Ht. We define

θAB = 〈∇AN, eB〉.
The Ricci coefficients of the null standard frame T−N,T+N, e2, e1 are given by the following

χ′AB = θAB − ηAB (18)

χ′
AB

= −θAB − ηAB (19)

ξ′
A

= φ−1∇/ Aφ− a
−1∇/ Aa (20)

ζ ′
A

= φ−1∇/ Aφ− εA (21)

ζ ′A = φ−1∇/ Aφ+ εA (22)

ν ′ = −φ−1∇/ Nφ+ δ (23)

ν ′ = φ−1∇/ Nφ+ δ (24)

ω′ = δ − a−1∇/ Na (25)

We use χ, χ, etc for the Ricci coefficients of the null frame a−1(T −N), a(T +N), e2, e1.

Definition 2 We define the null components of W as follows:

αµν (W ) = Π ρ
µ Π σ

ν Wργσδ e
γ
3 e

δ
3 (26)

β
µ

(W ) =
1

2
Π ρ
µ Wρσγδ e

σ
3 eγ3 e

δ
4 (27)

ρ (W ) =
1

4
Wαβγδ e

α
3 eβ4 eγ3 e

δ
4 (28)

σ (W ) =
1

4
∗Wαβγδ e

α
3 eβ4 eγ3 e

δ
4 (29)

βµ (W ) =
1

2
Π ρ
µ Wρσγδ e

σ
4 eγ3 e

δ
4 (30)

αµν (W ) = Π ρ
µ Π σ

ν Wργσδ e
γ
4 e

δ
4 . (31)

The estimates in [7] yield the decay behavior:

α(W ) = O (r−1 τ
− 5

2
− )

β(W ) = O (r−2 τ
− 3

2
− )

ρ(W ) = O (r−3)

σ(W ) = O (r−3 τ
− 1

2
− )

α(W ), β(W ) = o (r−
7
2 )
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where τ2
− = 1 + u2 and r(t, u) is the area radius of the surface St,u.

In [8], [9], Zipser works with the same conditions on the metric, second fundamental form and
curvature, in addition she imposes a decay condition on the electromagnetic field F , namely

F |H = o3

(
r−

5
2

)
. (32)

The null components of the electromagnetic field are written as

FA3 = α(F )A FA4 = α (F )A
F34 = 2ρ (F ) F12 = σ (F ) .

(33)

The corresponding null decomposition {α (∗F ) , α (∗F ) , ρ (∗F ) , σ (∗F )} of ∗F is given by

α (∗F )A = −α (F )B εBA α (∗F )A = α (F )B εBA

ρ (∗F ) = σ (F ) σ (∗F ) = −ρ (F ) (34)

where the Hodge dual of a tensor u tangent to St,u, is defined by

∗uA = εA
BuB.

The estimates in [8], [9] yield the decay behavior:

α(F ) = O (r−1 τ
− 3

2
− )

ρ(F ), σ(F ) = O (r−2 τ
− 1

2
− )

α(F ) = o (r−
5
2 ).

One of the main difficulties in [7] is that a general spacetime has no symmetries and thus
does not have suitable vectorfields to construct integral conserved quantities. To overcome
this difficulty, Christodoulou and Klainerman use the ‘closeness’ of their spacetimes to the
Minkowski spacetime and construct quasi-conformal vector fields. The main step is carried
out within a bootstrap argument in the ‘last slice’, namely in a spacelike hypersurface which
is a level set of the time function t. First, the authors foliate the spacetime by functions
t and u near the initial slice. From the foliations, one constructs vectorfields that are al-
most Killing. Combining these vectorfields with the Bel-Robinson tensor, one obtains local
estimates for the Weyl curvature tensor W and the electromagnetic field F . With these
estimates, one constructs a new optical function which is defined on a larger domain in the
spacetime. Then, following a continuity argument, one obtains a smooth, globally hyperbolic
and geodesically complete spacetime solving the Einstein equations. The resulting spacetime
is globally asymptotically flat, satisfying the above decay properties.

Acknowledgment. We thank Demetrios Christodoulou for helpful discussions, critcal read-
ing of our paper and constructive feedback.

2 Null Asymptotics

2.1 Asymptotic Behavior and Bondi Mass

We need precise data at null infinity. In particular, we have to know the Bondi mass and the
asymptotic behavior of the components of the curvature and the electromagnetic field. Zipser
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described them in [8], [9] following the discussion in Chapter 17 of [7], making changes as
necessary due to the presence of the electromagnetic field. The parameters of the foliations
and the components of the Weyl tensor behave exactly as in [7]. That is, the following holds:
along the null hypersurfaces Cu as t→∞, it is

lim
Cu,t→∞

φ = 1, lim
Cu,t→∞

a = 1 (35)

and
lim

Cu,t→∞
(rtrχ) = 2, lim

Cu,t→∞

(
rtrχ

)
= −2 (36)

Furthermore, we let

H = lim
Cu,t→∞

(
r2(trχ′ − 2

r
)

)
. (37)

From the existence theorem of [8], [9], Zipser makes the following conclusions, which are
generalizations of conclusions 17.0.1 through 17.0.4 in [7].

Following the convention in [7] and [9], the pointwise norms | | of the tensors on S2 re-

late to the metric
◦
γ, which is the limit of the induced metrics on St,u rescaled by r−2 for each

u as t→∞ .

Theorem 1 On any null hypersurface Cu, the normalized curvature components rα (W ),
r2β (W ), r3ρ (W ), r3σ (W ), rα (F ), r2ρ (F ), r2σ (F ) have limits as t→∞, in particular

lim
Cu,t→∞

rα (W ) = AW (u, ·) , lim
Cu,t→∞

r2β (W ) = BW (u, ·)

lim
Cu,t→∞

r3ρ (W ) = PW (u, ·) , lim
Cu,t→∞

r3σ (W ) = QW (u, ·)

lim
Cu,t→∞

rα (F ) = AF (u, ·) ,

lim
Cu,t→∞

r2ρ (F ) = PF (u, ·) , lim
Cu,t→∞

r2σ (F ) = QF (u, ·)

with AW a symmetric traceless covariant 2-tensor, BW and AF 1-forms and PW , QW , PF ,
QF functions on S2 depending on u. The following decay properties hold:

|AW (u, ·)| ≤ C (1 + |u|)−5/2 |BW (u, ·)| ≤ C (1 + |u|)−3/2∣∣PW (u, ·)− PW (u)
∣∣ ≤ (1 + |u|)−1/2

∣∣QW (u, ·)−QW (u)
∣∣ ≤ (1 + |u|)−1/2

|AF (u, ·)| ≤ C (1 + |u|)−3/2

|PF (u, ·)| ≤ (1 + |u|)−1/2 |QF (u, ·)| ≤ (1 + |u|)−1/2

and
lim

u→−∞
PW (u) = 0, lim

u→−∞
QW (u) = 0.

The existence of the limits in the conclusion follows from the estimates in the existence
theorem of [9] (i.e. [8]).

Theorem 2 On the null hypersurface Cu, the normalized shear r2χ̂′ has limit as t→∞:

lim
Cu,t→∞

r2χ̂′ = Σ (u, ·)

with Σ being a symmetric traceless covariant 2-tensor on S2 depending on u.
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The proof is the same as in [7] because the propagation equation stays unaltered

dχ̂AB
ds

= −trχχ̂AB − α(W )AB.

Theorem 3 On any null hypersurface Cu, the limit of rη̂ exists as t→∞, that is

lim
Cu,t→∞

rη̂ = Ξ (u, ·)

with Ξ being a symmetric traceless 2-covariant tensor on S2 depending on u and having the
decay property

|Ξ (u, ·)|◦
γ
≤ C (1 + |u|)−3/2 .

Further, it is

lim
Cu,t→∞

rθ̂ = −1

2
lim

Cu,t→∞
rχ̂′ = Ξ

as well as

∂Σ

∂u
= −Ξ (38)

∂Ξ

∂u
= −1

4
AW . (39)

Zipser proves this result as conclusion 3 in [9]. The argument is along the lines of the proof
of conclusion 17.0.3 in [7].

Zipser follows [7] to derive the Bondi mass formula by calculating a propagation equation for
the Hawking mass enclosed by a 2-surface St,u. The Hawking mass is defined as

m (t, u) =
r

2

(
1 +

1

16π

∫
St,u

trχtrχ

)
. (40)

Let

µ = −div/ ζ +
1

2
χ̂ · χ̂− ρ (W )− 1

2

(
ρ2 (F ) + σ2 (F )

)
. (41)

With respect to the l-pair, one has the null structure equations

dtrχ

ds
+

1

2
trχtrχ = −2µ+ 2 |ζ|2

dtrχ

ds
+

1

2
(trχ)2 = − |χ̂|2 − |α (F )|2 .

One computes,

d

ds
trχtrχ+ trχ

(
trχtrχ

)
= −2µtrχ+ 2trχ |ζ|2

−trχ |χ̂|2 − trχ |α (F )|2

thus

∂

∂t

∫
St,u

trχtrχ = −2

∫
St,u

aφµtrχ (42)

+

∫
St,u

aφ
(
−trχ |χ̂|2 − trχ |α (F )|2 + 2trχ |ζ|2

)
.

8



Using the Gauss equation

K = −1

4
trχtrχ+

1

2
χ̂ · χ̂− ρ (W )− 1

2

(
ρ2 (F ) + σ2 (F )

)
,

one derives

µ = −div/ ζ +K +
1

4
trχtrχ. (43)

By the Gauss-Bonnet formula and formulas (41), (43), conclude that∫
St,u

µ =

∫
St,u

(
1

2
χ̂ · χ̂− ρ (W )− 1

2

(
ρ2 (F ) + σ2 (F )

))
(44)

= 4π

(
1 +

1

16π

∫
St,u

trχtrχ

)
=

8π

r
m.

Moreover, by
d

dt
r =

r

2
φatrχ,

and (42), (44), it is

∂

∂t
m (t, u) = − r

16π

∫
St,u

(
aφtrχ− φatrχ

)
µ (45)

+
r

8π

∫
St,u

aφ

(
1

2
trχ |ζ|2 − 1

4
trχ |χ̂|2 − 1

4
trχ |α (F )|2

)
.

Note that K + 1
4 trχtrχ = O

(
r−3
)
, µ = O

(
r−3
)
. From the asymptotic behavior of the

right-hand side of (45), it follows

∂

∂t
m (t, u) = O

(
r−2
)
.

This means that m (t, u) has a limit for any fixed u as t → ∞, namely the Bondi mass of
the null hypersurface Cu. As in [7], it is denoted by M (u). The terms appearing due to the
presence of the electromagnetic field are shown to decay fast enough so that the mass decays
at the same rate as in [7]. In particular,

m (t, u) = M (u) +O
(
r−1
)

as t→∞ on Cu.

Following [7], Zipser calculates a Bondi mass loss formula by considering

∂

∂u
m (t, u)

with
∂

∂u
m (t, u) =

1

2
atrθm+

r

32π

∫
St,u

a
(
∇Nµ+ trθµ

)
.

As l = a−1 (T +N) and l = a (T −N),

a(∇Nµ+ trθµ) =
1

2
a2
(
D4µ+ trχµ

)
−1

2

(
D3µ+ trχµ

)
9



and

D4µ+ trχµ = O(r−4)

D3µ+ trχµ = −1

4
trχ

∣∣χ̂∣∣2 − 1

2
trχ |α (F )|2 +O(r−4).

Thus,
∂

∂u
m (t, u) =

r

64π

∫
St,u

trχ

(∣∣χ̂∣∣2 +
1

2
|α (F )|2

)
+O

(
r−1
)
.

Following [7], Zipser uses the following facts to derive the Bondi mass loss formula: the metric

γ̃ = φ∗t,u
(
r−2γ

)
converges to the standard metric

◦
γ of the unit sphere S2 as t→∞ for each

u (φ∗t,u is a diffeomorphism from S2 to St,u), moreover r
2 trχ converges to 1, and rχ̂ converges

to −2Ξ. This yields
∂

∂u
M (u) =

1

8π

∫
S2

(
|Ξ|2 +

1

2
|AF |2

)
dµ◦

γ
.

The right-hand side of this expression is positive and integrable in u. Thus, M (u) is a non-
decreasing function of u and has finite limits M (−∞) for u→ −∞ and M (∞) for u→∞.
Further, Zipser concludes from (44) that M (−∞) = 0, and M (∞) is the total mass.

Theorem 4 The Hawking mass m (t, u) tends to the Bondi mass M (u) as t → ∞ on any
null hypersurface Cu. That is,

m(t, u) = M(u) +O(r−1).

and M (u) verifies the Bondi mass loss formula

∂

∂u
M (u) =

1

8π

∫
S2

(
|Ξ|2 +

1

2
|AF |2

)
dµ◦

γ

with dµ◦
γ

being the area element of the standard unit sphere S2.

We see that in the Bondi mass loss formula the limiting term AF of the electromagnetic field
comes in. At this point, let us compare this with the Bondi mass loss formula obtained in
[7] (p. 499): ∂

∂uM (u) = 1
8π

∫
S2 |Ξ|2 dµ◦γ . In fact, the electromagnetic field contributes to the

change of the Bondi mass by 1
16π

∫
S2 |AF |2 dµ◦γ .

The decay behavior of AF is the same as for Ξ. See theorems 1 and 3. Similarly as in
[7], [5] for the Einstein vacuum case, we can define now the new function

F =
1

8

∫ +∞

−∞

(
| Ξ |2 +

1

2
| AF |2

)
du . (46)

Then F
4π is the total energy radiated to infinity in a given direction per unit solid angle. Thus

the integrand in (46) is proportional to the power radiated to infinity at a given retarded time
u, in a given direction, per unit area on S2 (per unit solid angle). Already in [5] Christodoulou
tells us how to adapt the formula for F when matter radiation is present, that is also in the
EM case.

In the next two subsections, we also need the following theorem for H.
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Theorem 5 The function H satisfies

∂H

∂u
= 0 (47)

H̄ = 0 (48)

Proof: In the EV case, equation (47) is proved in conclusion 17.0.5 of [7] where one uses the
fact that

∇N trχ′ +
1

2
χ′ = O(r−3).

In the EM case, it is easy to see that the additional terms involving the electromagnetic field
are also O(r−3). Thus equation (47) is still true in the EM case.

In the EV case, equation (48) is proved in lemma 17.0.1 in [7]. In the proof, we need to
show that r2δ̄ converges to 2M(u). From Proposition 4.4.4 in [7], we have

4πr3δ̄ =

∫ u

u0

du′(

∫
St,u

arθ̂ · η̂ − 1

2
κ(δ − δ̄)− ra−1∇/ a · ε+ r(divk)N )

Following the proof of lemma 17.0.1 in [7], we see that∫
St,u

arθ̂ · η̂ − 1

2
κ(δ − δ̄)− ra−1∇/ a · ε = r

∫
S2

|Ξ|2dµ◦
γ

+O(1)

Moreover, in the EM case, due to the constraint equation, we have

(divk)N = R0N = 2F ρ
0 FNρ. (49)

Using the equation (49), we see that∫
St,u

r(divk)N =
r

2

∫
S2

|AF |2dµ◦γ +O(1)

since the leading term of F0A and FNA are both 1
2α(F )A. As a result, we can still conclude

that

rδ̄ =
2

r2

∫ u

u0

r
∂

∂u
m(t, u) +O(r−1)

The rest of the proof follows easily from the proof of lemma 17.0.1 in [7].

2.2 Compare result with mass loss in Bondi coordinates

In this subsection, we compare the mass loss formula obtained in [8], [9], cited above in The-
orem 4, with the mass loss formula in Bondi coordinates. Bondi coordinates are first defined
by Bondi, van der Burg and Metzner in [3] for axially symmetric vacuum spacetimes. The
main motivation for such coordinates is to study gravitational radiation at null infinity. The
form of the metric is chosen such that many computations are simplified at null infinity. As
a result, one can derive many useful theorems and formulae assuming the existence of such
coordinates. In particular, the Bondi mass loss formula in Bondi coordinates is first derived
for axially symmetric vacuum spacetimes in [3] and is generalized to the Einstein-Maxwell
case in [4]. However, for a given spacetime, it is hard to tell whether such coordinates exist.
On the other hand, spacetimes studied in [8] are obtained by evolving small initial data on a
spacelike hypersurface by EM equations. In particular, it is not clear whether all spacetimes
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studied in [8] admit such coordinates. Here we show that for the leading term in the mass
loss formula, the two different coordinate systems give the same result.

The mass loss formula from [8], [9] is:

∂

∂u
M (u) =

1

8π

∫
S2

(
|Ξ|2 +

1

2
|AF |2

)
dµ◦

γ
.

Let us recall the mass loss formula and asymptotic expansion for solutions to the Einstein-
Maxwell equations in Bondi coordinates [4]. The line segment is:

−UV dw2 − 2Udwdr + σab(dx
a +W adw)(dxb +W bdw) a, b = 2, 3

with the electromagnetic field given by a skew-symmetric two tensor Fµν . We have the
following asymptotics for the line segment.

V = 1− 2m

r
+O(r−2), U = 1 +O(r−2) and W a = O(r−2).

σab =

(
r2 + 2cr + · · · −2dr sin θ + · · ·
−2dr sin θ + · · · sin2 θ(r2 − 2cr) + · · ·

)
.

We also need the following asymptotics for Fµν

Fwθ = X +O(r−1) and Fwφ = Y sin θ +O(r−1).

as well as
Fra = O(r−2), Fab = O(1) and Fwr = O(r−2).

Level sets of w, Cw, are outgoing null hypersurfaces. Each Cw is then foliated by level sets
of r, Sw,r. Hence, it is natural to consider the following pair of null vectors normal to Sw,r

e3 =
∂

∂w
−W c ∂

∂xc
− V

2

∂

∂r
and e4 =

∂

∂r

since e4 is a natural choice of null vector on Cw and

lim
r→∞
〈e3, e4〉 = −1.

Let M(w) be the Bondi mass. It is given by

M(w) =
1

8π

∫
S2

mdµ◦
γ
.

The mass loss formula reads

∂

∂w
M(w) = −

∫
S2

(
(∂wc)

2 + (∂wd)2 +
1

2
(X2 + Y 2)

)
dµ◦

γ
.

To show that the two mass loss formulae agree, we prove that

|Ξ|2 = (∂wc)
2 + (∂wd)2 and |AF |2 = X2 + Y 2.
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First we compute

−χ′( ∂

∂xa
,
∂

∂xb
) = 〈 ∂

∂w
−W c ∂

∂xc
− V

2

∂

∂r
,∇ ∂

∂xa

∂

∂xb
〉

= 〈 ∂
∂w
−W c ∂

∂xc
− V

2

∂

∂r
,Γrab

∂

∂r
+ Γwab

∂

∂w
+ Γcab

∂

∂xc
〉

= 〈 ∂
∂w
−W c ∂

∂xc
− V

2

∂

∂r
,Γrab

∂

∂r
+ Γwab

∂

∂w
〉

The Christoffel symbols are

Γwab = − 1

2
gwr∂rgab =

1

2
∂rgab +O(1)

Γrab =
1

2
gwr(∂bgwa + ∂agwb − ∂wgab) +

1

2
grr(−∂rgab) +

1

2
grc(∂bgca + ∂agcb − ∂cgab)

=
1

2
∂wgab −

1

2
∂rgab +O(1)

As a result, one finds

〈 ∂
∂w
−W c ∂

∂xc
− V

2

∂

∂r
,∇ ∂

∂xa

∂

∂xb
〉 =

1

4
∂rσab −

1

2
∂wσab +O(1).

One can easily see that up to O(1) terms, ∂wσab is traceless and ∂rσab has zero traceless part.
As a result,

|Ξ|2 = (∂wc)
2 + (∂wd)2.

For the second equality, we use the expression for e3 and the asymptotics for Fµν . A direct
computation shows that

|AF |2 = X2 + Y 2.

2.3 Permanent Displacement Formula

The permanent displacement of the test masses of a laser interferometer gravitational-wave
detector is governed by Σ+−Σ−. Christodoulou showed in [5] how this works. We discuss the
corresponding wave experiment in the EM case in section 3. In the following, we are going to
state and prove a theorem for Σ+ −Σ− in the EM case. We point out that the final formula
- even though in its form identical to the one obtained by Christodoulou and Klainerman in
[7] - differs from the EV case by a contribution from the electromagnetic field. The form of
the formula is not altered due to the fact that the corresponding extra electromagnetic terms
cancel. However, the limiting term AF enters the new formula nonlinearly.

Theorem 6 Let Σ+(·) = limu→∞Σ(u, ·) and Σ−(·) = limu→−∞Σ(u, ·). Let

F (·) =

∫ ∞
−∞

(
| Ξ(u, ·) |2 +

1

2
| AF (u, ·) |2

)
du . (50)

Moreover, let Φ be the solution with Φ̄ = 0 on S2 of the equation

◦
4/ Φ = F − F̄ .

Then Σ+ − Σ− is given by the following equation on S2:

◦
div/ (Σ+ − Σ−) =

◦
∇/ Φ . (51)
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Proof: Equation (38) in theorem 3 yields that Σ tends to limits Σ+ as u → ∞ and Σ− as
u→ −∞. Also, it is

Σ(u) = Σ− −
∫ u

−∞
Ξ(u′)du′

and

Σ+ − Σ− = −
∫ ∞
−∞

Ξ(u′)du′ .

When taking the limits for the Hodge system ((57), (58)) on Cu as t→∞, we will compute
the corresponding limits for and involving Ψ, Ψ′. From Zipser’s work [9], chapter 9.1, (9.13)
and lemma 9, we know

4Ψ = r | η̂ |2 −r
4
| α(F ) |2 (52)

4Ψ′ = −ra−1λ
(
| η̂ |2 −| η̂ |2

)
+
r2a−1

4

(
aD/ 4 | α(F ) |2 −aD/ 4 | α(F ) |2

)
(53)

whereas in the work of Christodoulou and Klainerman [7], chapter 11.2, (11.2.2b) and
(11.2.7b) it is

4Ψ = r | η̂ |2 (54)

4Ψ′ = −ra−1λ
(
| η̂ |2 −| η̂ |2

)
. (55)

We compute the following limits in the new case.

lim
Cu,t→∞

Ψ = Ψ lim
Cu,t→∞

Ψ′ = Ψ′

lim
Cu,t→∞

r∇NΨ = Ω(u, ·) lim
Cu,t→∞

r∇NΨ′ = Ω′(u, ·). (56)

We proceed by investigating the Hodge system for ε. The Hodge system for ε reads, see also
[9], chapter 9:

div/ ε = −∇Nδ −
3

2
trθδ + η̂ · θ̂

−2(a−1∇/ a) · ε+
1

4
| α(F ) |2 −1

4
| α(F ) |2 (57)

curl/ ε = σ(W ) + θ̂ ∧ η̂ . (58)

We observe that the curl/ equation coincides with the one obtained by Christodoulou and
Klainerman in [7], whereas the div/ equation contains the extra terms | α(F ) |2 and | α(F ) |2
from the electromagnetic field. (See [7], chapter 17, ((17.0.12a), (17.0.12b)).) According to
[9], chapter 9, one has:

∇Nδ − θ̂ · η̂ +
1

4
| α(F ) |2 = −2r−3(∇Nr)p+ r−2∇Np− r−2(∇Nr)∇NΨ + r−1∇2

NΨ

= −χ̂ · η̂ − r−14/ Ψ− r−2
(
rtrθ + a−1λ

)
∇NΨ

−r−1a−1∇/ a · ∇/ Ψ + r−2∇Np− 2r−3a−1λp (59)

with
p = r∇Nq + q′ + Ψ′

This differs from [7], chapter 17, (17.0.12c) by the extra curvature term from the electromag-
netic field. Zipser derived in [9], chapter 9, Lemma 9,

4q = r(µ− µ) + I (60)
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where

I =
1

2
(rN)π̂ijkij +

r

4
| α(F ) |2 −r

4
| α(F ) |2 −4Ψ

= rχ̂ · η̂ − κδ − 2ra−1∇/ a · ε+
r

4
| α(F ) |2

and µ is the mass aspect function given by

µ = −ρ(W )− χ̂ · η̂ .

Recall the radial decomposition of 4 to be ∇2
N = 4− trθ∇N −4/ − a−1∇/ a · ∇/ . Now, we

obtain from the last equations that

4q = ∇2
Nq + trθ∇Nq +4/ q + a−1∇/ a · ∇/ q

= −r(ρ− ρ̄)− rχ̂ · η̂ − κδ − 2ra−1∇/ a · ε+
r

4
| α(F ) |2 (61)

We proceed as follows: Substituting first for ∇Np from (61) in (59) and then the resulting
terms from (59) in (57) yields

div/ ε = ρ− ρ̄+ χ̂ · η̂ − χ̂ · η̂ + r−14/ Ψ− r−2∇NΨ′ − r−3a−1λΨ′ + l.o.t. (62)

curl/ ε = σ(W ) + θ̂ ∧ η̂ (63)

Let
E = lim

Cu,t→∞
(rε)

We multiply equations (62) and (63) by r3 and take the limits on Cu as t→∞. This yields:

◦
curl/ E = Q+ Σ ∧ Ξ (64)
◦
div/ E = P − P̄ + Σ · Ξ− Σ · Ξ

+
◦
4/ Ψ−Ψ′ − Ω′ . (65)

Then we investigate the limits as u → +∞ and u → −∞. Considering the last equations
for ε, respectively E, and using theorems 3 and 1 one finds that E tends to a limit E+ as
u→ +∞ and to E− as u→ −∞.

By conclusions along the lines of [7], chapter 17, we obtain

◦
curl/ (E+ − E−) = 0

In order to compute
◦
div/ (E+ −E−), we have to consider especially the corresponding limits

for the terms involving Ψ and Ψ′, that is also Ω′.

Much like Christodoulou and Klainerman computed the formulas in lemma 17.0.2, on page
504 of [7], we derive the new results in which the electromagnetic field term α(F ), respectively
its limit AF , is present. To do that, we use the fact that

D/ 4α(F )A = −1

2
trχα(F )A + l.o.t. (66)
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The derivation of (66) can be found in Zipser’s work [9] on p. 351 formula (4.15). Now,
considering (53) and using (66), we find that

D/ 4 | α(F ) |2= −trχ | α(F ) |2 +l.o.t. (67)

Using (67), (54) and (55), we deduce formulas for Ψ, Ψ′, Ω, Ω′ by computing the limits (56).
We give the formulas:

Ψ = − 1

2
1
2 4π

∫ +∞

−∞

{∫
S2

| Ξ |2 (u′, ω′)

(1− ωω′)
1
2

dω′ +
1

2

∫
S2

| AF |2 (u′, ω′)

(1− ωω′)
1
2

dω′
}
du′

Ψ′ =
1

2
1
2 4π

∫ +∞

−∞

{∫
S2

| Ξ |2 (u′, ω′)− | Ξ |2 (u′)

(1− ωω′)
1
2

dω′ +
1

2

∫
S2

| AF |2 (u′, ω′)− | AF |2 (u′)

(1− ωω′)
1
2

dω′
}
du′

Ω =
1

2
3
2 4π

∫ +∞

−∞

{∫
S2

| Ξ |2 (u′, ω′)

(1− ωω′)
1
2

dω′ +
1

2

∫
S2

| AF |2 (u′, ω′)

(1− ωω′)
1
2

dω′
}
du′

+
1

2

∫ +∞

−∞

{
sgn(u− u′)

(
| Ξ |2 (u′, ω′) +

1

2
| AF |2 (u′, ω′)

)}
du′

Ω′ = − 1

2
3
2 4π

∫ +∞

−∞

{∫
S2

| Ξ |2 (u′, ω′)− | Ξ |2 (u′)

(1− ωω′)
1
2

dω′ +
1

2

∫
S2

| AF |2 (u′, ω′)− | AF |2 (u′)

(1− ωω′)
1
2

dω′
}
du′

−1

2

∫ +∞

−∞

{
sgn(u− u′)

((
| Ξ |2 (u′, ω′)− | Ξ |2 (u′)

)
+

1

2

(
| AF |2 (u′, ω′)− | AF |2 (u′)

))}
du′

Straightforward calculation shows that when evaluating the difference of the limits as

u → +∞ and u → −∞ in (65), the contribution of
◦
4/ Ψ, Ψ′ and Ω′ comes only from terms

in Ω′. We find that Ω′ tends to limits Ω′+(·) and Ω′−(·) as t→∞ and t→ −∞, respectively.
Thus, we conclude

Ω′+(·)−Ω′−(·) =

∫ +∞

−∞

(
| Ξ(u, ·) |2 −| Ξ(u, ·) |2+

1

2
| AF (u, ·) |2 −1

2
| AF (u, ·) |2

)
du . (68)

Finally, we obtain

◦
div/ (E+ − E−) = −Ω′+ + Ω′− (69)

=

∫ +∞

−∞

(
− | Ξ(u, ·) |2 +| Ξ(u, ·) |2 − 1

2
| AF (u, ·) |2 +

1

2
| AF (u, ·) |2

)
du .

Proceeding along the lines of [7], chapter 17, it is

(E+ − E−) =
◦
∇/ Φ (70)

with Φ being the solution of vanishing mean of

◦
4/ Φ = −Ω′+ + Ω′− on S2 .

Accordingly, also by conclusions along the lines of [7], chapter 17, we derive (72). To see this,
we consider the normalized null Codazzi equation

(div/ χ̂)A −
1

2
∇/ Atrχ+ εBχ̂AB −

1

2
εAtrχ = −β(W )A − ρ(F )α(F )A − εABσ(F )α(F )B (71)
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Multiply equation (71) by r3 and take the limit as t→∞ on Cu. We obtain

◦
div/ Σ =

◦
∇/ H + E

as in [7] p. 510, conclusion 17.0.8 since the extra terms from the electromagnetic field in (71)
decay fast enough. Due to equation (47), we conclude

◦
div/ (Σ+ − Σ−) = E+ − E− . (72)

Thus, the theorem is proven.

2.4 Limit for r as t→∞ on Null Hypersurface Cu

We shall use the fact that the constraint on the spacelike scalar curvature, which is given by

R = |k|2 +R00,

differs from the constraint in the vacuum case only by the term R00, which is a quadratic in F .

Building on the results of D. Christodoulou and S. Klainerman in [7] as well as the results of
N. Zipser in [9] (i.e. [8]), we can now prove the following results.

Theorem 7 As t→∞ we obtain on any null hypersurface Cu

r = t− 2M(∞) log t+O(1) .

Proof: We recall from [7], p. 503, with φ′ = φ− 1,

dr

dt
=

r

2
φtrχ′

=
r

2
(1 + φ′)(

2

r
+ (trχ′ − 2

r
))

= 1 + φ′ +O(r−2)

In the last equality, we use equation (48).
From [9], p. 465

R00 =
1

2
(| α(F ) |2 + | α(F ) |2) + ρ(F )2 + σ(F )2 (73)

with α(F ), α(F ), ρ(F ), σ(F ) the components of the electromagnetic field. Moreover, the lapse
equation in our situation is given by

4φ = (| k |2 +R00)φ . (74)

We integrate the lapse equation (74) on Ht in the interior of St,u′ to obtain∫
St,u

∇Nφ′ =
∫ u

u0

du′
∫
St,u′

aφ(| k |2 +R00) .

In view of (73) and the fact that all the terms on the right hand side of (73) except α(F ) are
of lower order, we estimate∫

St,u

∇Nφ′ =

∫ u

u0

du′
∫
St,u′

aφ(| k |2 +
1

2
| α(F ) |2) + l.o.t.
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We see that ∫
St,u′

aφ(| k |2 +
1

2
| α(F ) |2)→

∫
S2

| Ξ |2 +
1

2
| AF |2 .

Consider the Bondi mass loss formula in theorem 4. Then, as t→∞ we conclude∫
St,u

∇Nφ′ − 8πM(u) = O(r−1) (75)

on each Cu. In view of φ′ we compute:

φ′ =
1

4πr2

∫
St,u

φ′ = − 1

4π

∫
B
div(r−2φ′N)

=
1

4π

∫
B

(
− 1

a(r(t, u′))2
atrθNφ′ +

1

(r(t, u′))2
φ′ (divN)︸ ︷︷ ︸

=trθ

+
1

(r(t, u′))2
∇Nφ′

)
= − 1

4π

∫ ∞
u

1

(r(t, u′))2
du′
( ∫

St,u′

a∇Nφ′ + (atrθ − atrθ)φ′
)

= − 1

4π

∫ ∞
u

1

(r(t, u′))2
du′
( ∫

St,u′

∇Nφ′
)

+O(r−2) .

where B denotes the exterior of St,u. Therefore, from (75) it follows on Cu as t→∞,

φ′(t, u) = −2

∫ ∞
u

1

(r(t, u′))2
M(u′)du′ +O(r−2) = −2

r
M(∞) +O(r−2) .

Thus, we obtain on any cone Cu for t→∞,

dr

dt
= 1− 2

r
M(∞) +O(r−2) . (76)

Thus, the statement of our theorem follows, which closes the proof.

3 Wave Experiments

We are now going to show how the results above relate to experiment. In [5] Christodoulou
established his breaking result on the nonlinear memory effect. The idea of the gravitational
wave experiment and setup is given in [5], discussing a laser interferometer gravitational-wave
detector. There Christodoulou explained how the theoretical result on Σ+ − Σ− leads to an
effect measurable by such detectors. This effect manifests itself in a permanent displacement
of the test masses of the detector after a wave train has passed. In the present EM case,
we find a result on the displacement of test masses which is twofold. Considering the Jacobi
equation (see (86)), the highest order term remains unchanged. However, there is an extra
term at highest order from the electromagnetic field in the formula for Σ+ −Σ−, the perma-
nent displacement of test masses, as we have shown in the proof of theorem 6. In the present
chapter, we shall show how the electromagnetic field enters the experiment and we will derive
results for this case.

We will follow the lines of argumentation by Christodoulou in [5] and [6].
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Let us briefly review the setup of a laser interferometer experiment: Three test masses are
suspended by pendulums of equal length. Denote by m0 the reference mass, which is also
the location of the beam splitter. For timelike scales much shorter than the period of the
pendulums, the motion of the masses in the horizontal plane can be considered free. By laser
interferometry the distance of the masses m1 and m2 from the reference mass m0 is measured.
Whenever the light travel times between m0 and m1 and m2, respectively, differ, this shows
in a difference of phase of the laser light at m0.

The masses m0, m1, m2 move along geodesics γ0, γ1, γ2 in spacetime. Let T be the unit
future-directed tangent vectorfield of γ0 and t the arc length along γ0. For each t denote by
Ht the spacelike, geodesic hyperplane through γ0(t) orthogonal to T .

Take (E1, E2, E3) to be an orthonormal frame for H0 at γ0(0), and parallelly propagate
it along γ0 to obtain the orthonormal frame field (T,E1, E2, E3) along γ0. It follows that
(E1, E2, E3) at each t is an orthonormal frame for Ht at γ0(t). Then one assigns to a point p
in spacetime, lying in a neighbourhood of γ0, the cylindrical normal coordinates (t, x1, x2, x3),
based on γ0, if p ∈ Ht and p = expX with X =

∑
i x

iEi ∈ Tγ0(t)Ht. Denote by d the distance

of p from the center γ0(t) on Ht, that is, d =| X |=
√∑

i(x
i)2. The difference between the

metric and the Minkowski metric ηµν in these coordinates is:

gµν − ηµν = O (R d2) . (77)

As usual, we put c = 1. Now, let τ be the time scale in which the curvature varies significantly.
Then, the displacements of the masses from their initial positions will be O(Rτ2). Assume
that

d

τ
<< 1 . (78)

Then we can read off from the differences in phase of the laser light differences in distance of
m1 and m2 from m0. Further, in view of (78) one can replace the geodesic equation for γ1

and γ2 by the Jacobi equation (geodesic deviation from γ0).

d2xk

dt2
= − RkT lT x

l (79)

with RkT lT = R (Ek, T, El, T ). One is free to assume that the source is in the E3-direction.
This was derived by Christodoulou for the EV case in [5], and can also be found in his [6].

We now investigate the formula (79) for the Einstein-Maxwell situation. If we assume the test
masses not to be charged, then formula (79) stays the same, but through the EM equations
and in view of (10) the electromagnetic field comes in. We shall see that it enters at lower
order though. From (10) one can write

Rk0l0 = Wk0l0 +
1

2
(gklR00 + g00Rkl − g0lRk0 − gk0R0l) . (80)

As there is from the EM equations:

R00 = 8πT00 ,

and in particular, we have

R00 =
1

2
(| α(F ) |2 + | α(F ) |2) + ρ(F )2 + σ(F )2 (81)
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we can investigate the components of the Ricci curvature on the right hand side of (80). The
component R00 includes the term | α(F ) |2. Recall that α(F ) is the part of the electromag-
netic field with worst decay behavior. However it enters as a quadratic the formula for R00.

To proceed, we consider L = T − E3, L = T + E3. The leading components of the cur-
vature are

αAB(W ) = R (EA, L, EB, L) (82)

αAB(W ) =
AAB(W )

r
+ o (r−2) . (83)

And the leading components of the electromagnetic field are

αA(F ) = F (EA, L) (84)

αA(F ) =
AA(F )

r
+ o (r−2) . (85)

In the following the kth Cartesian coordinate of the mass mA for A = 1, 2 will be denoted
by xk(A). Then the Jacobi equation becomes

d2 xk(A)

d t2
= − 1

4
r−1 AAB xl (B) −

1

8
r−2 | AF |2 xl (B) + O (r−2) (86)

that is

d2 x3
(C)

d t2
= 0 (87)

d2 xA(C)

d t2
= − 1

4
r−1 AAB xB(D) −

1

8
r−2 | AF |2 xB(D) + O (r−2) . (88)

From the Jacobi equation (86) we see that the electromagnetic field enters on the right
hand side at order (r−2) only. Thus, we have shown that the electromagnetic field does
not contribute at leading order to the deviation measured by the Jacobi equation. There-
fore, at leading order, we can rely on the results for the Einstein vacuum case, derived by
Christodoulou in [5]. Instead of (86) he obtained

d2 xk(A)

d t2
= − 1

4
r−1 AAB xl (B) + O (r−2) (89)

As in [5] one obtains that in the vertical direction there is no acceleration to leading order
(r−1). Initially m1 and m2 are at rest at equal distance d0 and at right angles from m0.
This implies the following initial conditions, as t → −∞: x3

(A) = 0 , ẋ3
(A) = 0 , xB(A) =

d0δ
B
A , ẋB(A) = 0. The right hand side being very small, one can substitute the initial values

on the right hand side. Then the motion is confined to the horizontal plane. One has to
leading order:

··
x
A

(B) = − 1

4
r−1 d0 AAB . (90)

One obtains

ẋA(B) (t) = − 1

4
d0 r

−1

∫ t

−∞
AAB (u) du . (91)
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In the following, let us revisit the result (95) from [5]. In view of equation (39), i.e. ∂Ξ
∂u = −1

4 A
and lim|u|→∞ Ξ = 0 we obtain

−
∫ t

−∞
AAB (u) du = Ξ (t) (92)

and

ẋA(B) (t) =
d0

r
ΞAB (t) . (93)

As Ξ → 0 for u → ∞, the test masses return to rest after the passage of the gravitational
wave. Taking into account (38), i.e. ∂Σ

∂u = −Ξ, and integrating again:

xA(B) (t) = − (
d0

r
) (ΣAB (t) − Σ−) . (94)

The limit t→∞ is taken and it follows that the test masses experience permanent displace-
ments. Thus Σ+ − Σ− is equivalent to an overall displacement of the test masses:

4 xA(B) = − (
d0

r
) (Σ+

AB − Σ−AB) . (95)

The right hand side of (95) includes terms from the electromagnetic field at highest order
as given in our theorem 6. Even though the form of (95) is as in the EV case investigated
by Christodoulou in [5] and [6], the nonlinear contribution from the electromagnetic field is
present in Σ+

AB − Σ−AB.
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