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NON-KÄHLER CALABI-YAU MANIFOLDS

VALENTINO TOSATTI

Dedicated to Professor Duong H. Phong on the occasion of his 60th birthday

Abstract. We study the class of compact complex manifolds whose
first Chern class vanishes in the Bott-Chern cohomology. This class
includes all manifolds with torsion canonical bundle, but it is strictly
larger. After making some elementary remarks, we show that a mani-
fold in Fujiki’s class C with vanishing first Bott-Chern class has torsion
canonical bundle. We also give some examples of non-Kähler Calabi-
Yau manifolds, and discuss the problem of defining and constructing
canonical metrics on them.

1. Introduction

In this paper, Calabi-Yau manifolds are defined to be compact Kähler
manifolds M with c1(M) = 0 in H2(M,R). Thanks to Yau’s theorem [84]
these are precisely the compact manifolds that admit Ricci-flat Kähler met-
rics. Using this, Calabi proved a decomposition theorem [13] which shows
that any such manifold has a finite unramified cover which splits as a prod-
uct of a torus and a Calabi-Yau manifold with vanishing first Betti number.
From this one can easily deduce that Calabi-Yau manifolds have holomor-
phically torsion canonical bundle (see Theorem 1.4).

One can ask how much of this theory carries over to the case of non-Kähler
Hermitian manifolds. Simple examples, such as a Hopf surface diffeomorphic
to S1×S3, show that the condition that c1(M) = 0 in H2(M,R) is too weak
in general (see Example 3.3). On the other hand, much interest has been de-
voted to studying non-Kähler compact complex manifolds with holomorphi-
cally trivial (or more generally torsion) canonical bundle, and many exam-
ples can be found in [6, 15, 17, 20, 23, 33, 35, 36, 37, 40, 43, 53, 60, 78, 83, 86]
and references therein. For example, every compact complex nilmanifold
with a left-invariant complex structure has trivial canonical bundle, and it
is always non-Kähler unless it is a torus [6]. A lot of interest in the sub-
ject was generated by “Reid’s fantasy” [64] that all Calabi-Yau threefolds
with trivial canonical bundle should form a connected family provided one
allows deformations and singular transitions through non-Kähler manifolds
with trivial canonical bundle. The geometry of compact complex mani-
folds with trivial canonical bundle has been investigated for example by
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[2, 6, 12, 19, 21, 25, 26, 27, 30, 33, 45, 52, 62, 65] and others. In this paper
we will consider a more general class of manifolds, that we now define, and
argue that they can naturally be considered as “non-Kähler Calabi-Yau”
manifolds.

On any compact complex manifold there is a (finite-dimensional) coho-
mology theory called Bott-Chern cohomology. We will need only the real
(1, 1) Bott-Chern cohomology

H1,1
BC

(M,R) =
{d-closed real (1, 1)-forms}
{
√
−1∂∂ψ, ψ ∈ C∞(M,R)}

.

There is a “first Bott-Chern class” map cBC
1 : Pic(M) → H1,1

BC
(M,R), which

can be described as follows. Given any holomorphic line bundle L → M
and any Hermitian metric h on the fibers of L, its curvature form Rh is
locally given by −

√
−1∂∂ log h. Then Rh is a closed real (1, 1)-form and if

we choose a different metric h′ then Rh′ −Rh =
√
−1∂∂ log(h/h′) is globally

∂∂-exact, so we can defined cBC
1 (L) to be the class of Rh in H1,1

BC
(M,R).

If g is any Hermitian metric on M , with fundamental 2-form ω, then its
first Chern form given locally by

Ric(ω) = −
√
−1∂∂ log det g,

represents cBC
1 (K∗

M ) = cBC
1 (M). We will call Ric(ω) the Chern-Ricci form

of ω.
We then define a non-Kähler Calabi-Yau manifold to be a compact com-

plex manifold M with cBC
1 (M) = 0 in H1,1

BC
(M,R). This class of manifolds

is contained in the class of compact complex manifolds with c1(M) = 0 in
H2(M,R), and contains the class of compact complex manifolds with holo-
morphically torsion canonical bundle, but both inclusions are strict, see the
examples in section 3.

In this paper we investigate the structure of such manifolds. The condi-
tion cBC

1 (M) = 0 simply means that given any Hermitian metric ω on M ,

its Ricci form satisfies Ric(ω) =
√
−1∂∂F for some F ∈ C∞(M,R). One

can think of these manifolds as possibly non-Kähler Calabi-Yau manifolds.
In fact, the conformally rescaled metric eF/nω has vanishing Chern-Ricci
curvature. More interestingly, there are other quite different ways of con-
structing Chern-Ricci flat metrics on such manifolds, see Theorem 1.2 below.
Furthermore, as shown by Gill [34], on such manifolds the Chern-Ricci flow
[73, 74, 77] deforms any given Hermitian metric to a Chern-Ricci flat one.

Let us start with some elementary characterizations of this class of man-
ifolds.

Proposition 1.1. Let M be a compact complex manifold with n = dimCM .
The following are equivalent:

(1) cBC
1 (M) = 0 in H1,1

BC
(M,R)

(2) There exists a Hermitian metric ω on M with Ric(ω) = 0
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(3) There exists a Hermitian metric on the fibers of KM with vanishing
curvature (i.e. KM is unitary flat)

(4) There exists a Hermitian metric ω on M whose Chern connection
has restricted holonomy contained in SU(n)

Lastly, if KM is holomorphically torsion (i.e. there exists ℓ > 1 such that
Kℓ

M
∼= OM ) then cBC

1 (M) = 0.

Next, we make part (2) in the above proposition more precise:

Theorem 1.2. Let M be a compact complex manifold with cBC
1 (M) = 0.

Given Hermitian metrics ω, ω0 on M , we can find Hermitian metrics ω̃j on
M , j = 1, 2, 3, with Ric(ω̃j) = 0 which are given by the following forms:

(1) ω̃1 = eϕ1ω,
(2) ω̃2 = ω +

√
−1∂∂ϕ2,

(3) ω̃n−1
3 = ωn−1 +

√
−1∂∂ϕ3 ∧ ωn−2

0 ,

where ϕ1, ϕ2, ϕ3 ∈ C∞(M,R) are unique up to addition of a constant.

While part (1) of this result is completely elementary, parts (2) and (3)
are considerably harder. When ω is Kähler, (2) is Yau’s solution of the
Calabi Conjecture [84], and in the non-Kähler case (2) follows from work of
Cherrier [16] when n = 2 and of Weinkove and the author [71] in general
(see also [41, 72]). Part (3) uses the solvability of an equation introduced
by Fu-Wang-Wu [27, 28], which was recently established by Weinkove and
the author [75, 76].

Conditions (2) and (3) are more satisfactory than condition (1), since
special properties of ω carry over to ω̃. For example, if dω = 0 or ∂∂ω = 0,
then the same will be true for ω̃2 constructed as in (2). Also, if dω0 = 0 and
d(ωn−1) = 0 (i.e. ω is balanced [59]), then ω̃3 as in (3) is balanced too. In
the same setup, if ∂∂(ωn−1) = 0 (i.e. ω is Gauduchon), then so is ω̃3, and
similarly if ∂(ωn−1) is ∂-exact (i.e. ω is strongly Gauduchon [63]).

If one replaces restricted holonomy with its unrestricted version in Propo-
sition 1.1, then one gets the following:

Proposition 1.3. Let M be a compact complex manifold with n = dimCM .
The following are equivalent:

(1) There exists a Hermitian metric ω on M whose Chern connection
has (unrestricted) holonomy contained in SU(n)

(2) The canonical bundle of M is holomorphically trivial

One is led to wonder whether every compact complex manifold with
cBC
1 (M) = 0 has torsion canonical bundle. This is not the case, as we
will explain below in Examples 3.1 and 3.2. Nevertheless, KM is torsion in
certain important cases. To start with we have the following results, which
are either elementary or already known.

Theorem 1.4. Let M be a compact complex manifold with cBC
1 (M) = 0.

Then KM is holomorphically torsion provided any of the following conditions
hold:
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(a) κ(M) > 0, or more generally H0(M,Kℓ
M ) 6= 0 for some 0 6= ℓ ∈ Z,

(b) b1(M) = 0,
(c) M is Kähler,
(d) n = 2.

Case (c), when M is Kähler, was proved by Calabi [13, Theorem 2] as-
suming his famous conjecture, later proved by Yau [84]. Before Yau’s work,
Matsushima [57, Theorem 3] proved this result for algebraic manifolds and
independently Bogomolov [10, Theorem 3], Fujiki [31, Proposition 6.6] and
Lieberman [51, Theorem 3.13] proved it in the Kähler case.

Recall that a compact complex manifold is said to be in Fujiki’s class C
if it is bimeromorphic to a Kähler manifold (this was not Fujiki’s original
definition, but it is equivalent to it thanks to work of Varouchas [81]). Class
C includes all Moishezon manifolds, which are bimeromorphic to projective
manifolds. All manifolds in C satisfy the ∂∂-Lemma and also have the
property that holomorphic forms are closed (see [18, Theorem 5.22] or [31,
Corollary 1.7]). In particular if M is in C then cBC

1 (M) = 0 if and only if
c1(M) = 0 in H2(M,R). There are many examples of non-Kähler manifolds
in class C with vanishing first Chern class. One class of such manifolds can be
obtained as small resolutions of threefolds with only ordinary double points
singularities and trivial canonical divisor (see e.g. [43] or [22]). Another
class of examples is obtained by applying a Mukai flop to a hyperkähler
manifold (see e.g. [39, Example 21.7], [86, Section 4.4] and also [40]). We
have the following result:

Theorem 1.5. Let M be a compact complex manifold which is in class C
with cBC

1 (M) = 0 (equivalently, c1(M) = 0 in H2(M,R)). Then KM is
holomorphically torsion.

Examples 3.1 and 3.2 shows that for a general compact complex manifold,
cBC
1 (M) = 0 does not imply that KM is torsion, and so there is no analog
of Theorem 1.5 outside of class C. As a side remark, we note that Theorem
1.5 was claimed in [42, Theorem 8], but the proof given there is incorrect,
since it does not distinguish between restricted and full holonomy (compare
Propositions 1.1 and 1.3).

Finally, we study the invariance of the property cBC
1 (M) = 0 under small

deformations of the complex structure. It is a classical fact that if M is
a compact Kähler manifold with KM torsion, then every sufficiently small
deformation Mt is also Kähler with KMt

torsion. It is also known that this
fails if M is not Kähler: for example Nakamura [60] constructed a complex
parallelizable solvmanifold M (so KM is trivial) which has arbitrarily small
deformations Mt with negative Kodaira dimension (so KMt

is not torsion),
see Example 3.2. We do not know whether the condition cBC

1 (M) = 0 is
preserved by small deformations of the complex structure, but we have the
following result:
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Proposition 1.6. Let M be a compact complex manifold with cBC
1 (M) = 0

and b1(M) = 2h0,1(M) (or equivalently, the ∂∂-Lemma holds for (1, 1)-
forms). Then every sufficiently small deformation Mt of M still satisfies
cBC
1 (Mt) = 0 and b1(Mt) = 2h0,1(Mt).

This result applies for example to all small deformations of the Iwasawa
threefold, studied in [60], and shows that all these manifolds have vanishing
first Bott-Chern class. Indeed, the Iwasawa threefold M is complex paral-
lelizable (so in particular KM is trivial), and has b1(M) = 4 and h0,1(M) = 2
(see e.g. [60, p.96]), and it follows that every sufficiently small deformation
Mt satisfies c

BC
1 (Mt) = 0. Note that Nakamura proved that many of these

deformations are not complex parallelizable.

This paper is organized as follows. In section 2 we prove all the results
stated in the Introduction. Section 3 is devoted to several interesting ex-
amples of non-Kähler compact complex manifolds. Lastly in section 4 we
discuss the problem of defining and constructing canonical metrics on non-
Kähler Calabi-Yau manifolds.

Acknowledgements: Part of this work was carried out while the author
was visiting the Mathematical Science Center of Tsinghua University in
Beijing, which he would like to thank for the hospitality. He is grateful to
V. Apostolov, G. Grantcharov, Z. Lu, G. Magnusson, D. Panov, M. Popa,
S. Rollenske, A. Tomassini, B. Weinkove and X. Yang for useful discussions,
and to the referee for suggesting Example 3.4.

The author wishes to thank Professor Duong H. Phong for his invaluable
help, support and guidance. Buon Compleanno Phong!

2. The canonical bundle of non-Kähler Calabi-Yau manifolds

In the following ∇ will denote the Chern connection of a Hermitian metric
and Hol(∇), Hol0(∇) will be the unrestricted and restricted holonomy of ∇.
We have that Hol0(∇) is the connected component of the identity of Hol(∇).
Throughout this paper we will assume that n = dimCM > 2, since when
n = 1 all the results are trivial.

Proof of Proposition 1.1. By definition the condition that cBC
1 (M) = 0 means

that given any Hermitian metric ω onM its Ricci form is ∂∂-exact, Ric(ω) =√
−1∂∂F for some smooth real function F . So obviously (2) implies (1), and

for the converse it is enough to consider the Hermitian metric eF/nω, whose
Ricci form is 0. We now show that (2), (3) and (4) are equivalent (see [47,
Proposition 6.1.1] for the Kähler case). First note that given any Hermit-
ian metric ω its Chern connection ∇ satisfies ∇J = 0, and therefore its
holonomy Hol(∇) is contained in U(n). Furthermore, ∇ induces a connec-
tion ∇K on the canonical bundle KM with Hol0(∇K) = detHol0(∇) where
det : U(n) → U(1). It follows that Hol0(∇) ⊂ SU(n) if and only if Hol0(∇K)
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is trivial, which is equivalent to ∇K being flat. But the curvature of ∇K is
exactly equal to Ric(ω), and so (2) is equivalent to (3) and to (4).

Finally, it is obvious that KM being torsion implies (1) since ℓcBC
1 (M) =

cBC
1 (Kℓ

M ) = 0. �

Proof of Theorem 1.2. Write again Ric(ω) =
√
−1∂∂F for some smooth real

function F . As noted above, for (a) it is enough to take ϕ1 = F/n. Fur-
thermore if Ric(eϕ̃1ω) = 0, then

√
−1∂∂(ϕ1 − ϕ̃1) = 0 and so ϕ̃1 equals ϕ1

plus a constant.
For (b), we use the solution of the Hermitian complex Monge-Ampère

equation due to Cherrier when n = 2 and Weinkove and the author [71]
in general (see also [41, 72]) to find a unique Hermitian metric of the form
ω +

√
−1∂∂ϕ2 which satisfies

(ω +
√
−1∂∂ϕ2)

n = eF+bωn,

where b is a uniquely determined real constant. Taking
√
−1∂∂ log of this

equation shows that Ric(ω +
√
−1∂∂ϕ2) = 0, and again it is clear that ϕ2

is unique up to addition of a constant.
Lastly for (c), we use the recent solution of the Monge-Ampère equation

for (n − 1)-plurisubharmonic functions by Weinkove and the author [76,
Theorem 1.1] (see also our earlier work [75] for the case when ω is Kähler,
as well as [27, 28]) to find a unique Hermitian metric ω̃ with ω̃n−1 = ωn−1+√
−1∂∂ϕ3 ∧ ωn−2

0 , solving the equation

ω̃n = eF+bωn,

where b is a uniquely determined real constant. Taking
√
−1∂∂ log of this

equation shows that Ric(ω+
√
−1∂∂ϕ3) = 0, and the fact that ϕ3 is unique

up to addition of a constant is proved in [76]. �

The following lemma is well-known (cf. [32]):

Lemma 2.1. Let M be a compact complex manifold with cBC
1 (M) = 0 and

fix a Hermitian metric ω with Ric(ω) = 0. Then every holomorphic section
of Kℓ

M , ℓ ∈ Z, is parallel with respect to ∇.

Proof. If η ∈ H0(M,Kℓ
M ) for some ℓ ∈ Z, and |η|2 is its pointwise norm

squared with respect to ω then a simple calculation shows that

(2.1) ∆|η|2 = |∇η|2 + ℓgijRij |η|2 = |∇η|2 > 0,

where ∆f = trω(
√
−1∂∂f) = gij∂i∂jf is the complex Laplacian of ω. Since

M is compact, the maximum principle implies that |η|2 is constant and
therefore ∇η = 0. �

Proof of Proposition 1.3. Recall that the Chern connection ∇ of any Her-
mitian metric has holonomy Hol(∇) contained in U(n). We furthermore
have that Hol(∇) ⊂ SU(n) if and only if there exists a nontrivial ∇-parallel
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(n, 0)-form η on M (which necessarily has no zeros). Such a parallel (n, 0)-
form must be holomorphic, because ∂η is the skewsymmetrization of ∇0,1η
(viewed as an element of Λ0,1 ⊗ Λn,0) which is zero. Therefore (1) implies
(2). For the converse, if KM is trivial then there exist on M a never vanish-
ing holomorphic (n, 0)-form η and a Hermitian metric ω with Ric(ω) = 0.
Lemma 2.1 shows that η is parallel and therefore Hol(∇) ⊂ SU(n). �

Proof of Theorem 1.4. (a) We know from Lemma 2.1 that every holomor-
phic section of Kℓ

M (any 0 6= ℓ ∈ Z) is parallel with respect to ∇. If the
Kodaira dimension κ(M) is nonnegative, or more generally if there is a non-
trivial section η of Kℓ

M for some 0 6= ℓ ∈ Z, then η is parallel and it can

never vanish, therefore Kℓ
M is trivial.

(b) This result is due to Shiffman [66, Lemma 2]. In general we have the
exact sequence

0 → H1(M,R/Z)
ι→ Pic(M)

cBC
1→ H1,1

BC
(M,R),

see [32, (7)], and since the canonical bundleKM has cBC
1 (KM ) = −cBC

1 (M) =
0, there is a cocycle ζ ∈ H1(M,R/Z) such that ι(ζ) = KM . On the other
hand the universal coefficient theorem gives

H1(M,R/Z) ∼= Hom(H1(M,Z),R/Z).

The assumption that b1(M) = 0 implies that H1(M,Z) is a finite abelian
group, so

Hom(H1(M,Z),R/Z) ∼= H1(M,Z)

and every element in H1(M,R/Z) is torsion. In particular, there is some
ℓ > 1 such that ℓζ = 1 and so ι(ℓζ) is the trivial bundleOM in Pic(M) but at
the same time ι(ℓζ) = Kℓ

M , which proves that Kℓ
M

∼= OM is holomorphically
trivial.

(c) As we remarked in the introduction, this is a well-known consequence
of the Calabi-Yau theorem and the Bogomolov-Calabi decomposition theo-
rem [8, 10, 13], and was proved in this generality by Bogomolov [10, Theorem
3], Fujiki [31, Proposition 6.6] and Lieberman [51, Theorem 3.13].

Indeed the decomposition theorem implies that a finite unramified cover
M̃ of M splits as a product T × F where T is a torus and F is a compact
Kähler manifold with c1(F ) = 0 and b1(F ) = 0. Obviously KT is trivial
and KF is torsion by (b). It follows that KM̃ is torsion and therefore KM

is torsion too.
(d) This is a theorem of Kodaira [48, Theorem 38]. For the reader’s

convenience, we give a sketch of proof (different from Kodaira’s original
one). By (a) and (c) if KM is not torsion then κ(M) = −∞ and M is not
Kähler. By the Kodaira-Enriques classification [7] we have b1(M) = 1 and
so M is of class VII. In this case we have that 0 = c21(M) = −b2(M), and
it follows from results of Bogomolov [11], Li-Yau-Zheng [50] and Teleman
[69] that M is either a Hopf or an Inoue surface. But in both cases it is
easy to see that cBC

1 (M) cannot be zero (see e.g. [70, Remarks 4.2 and
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4.3] and [73, p.24], as well as Example 3.3 for some special Hopf surfaces),
and we are done. Note that by the Kodaira-Enriques classification, compact
complex surfaces with torsion canonical bundle are either Kähler or Kodaira
surfaces. �

Proof of Theorem 1.5. SinceM is in class C, there is a modification µ : M̃ →
M with M̃ a compact Kähler manifold. In fact, we may furthermore assume
that µ is a composition of blowups with smooth centers (see the proof of
[54, Theorem 2.2.16] for example).

Now if π : X → Y is the blowup of a complex manifold Y along a complex
submanifold Z ⊂ Y , with exceptional divisor E ⊂ X, then it is well-known
that

KX = π∗KY + (n− 1− dimZ)E.

From this it follows that in our case we have

KM̃ = µ∗KM +
∑

E

aEE,

where the sum is over all µ-exceptional divisors and the coefficients aE are
nonnegative integers. If we denote by F = µ∗K−1

M , then F is a holomor-

phic line bundle on M̃ with cBC
1 (F ) = 0, and KM̃ ⊗ F is effective, i.e.

H0(M̃,KM̃ ⊗ F ) 6= 0.
The goal now is to show that this implies κ(M) > 0, since we can then

apply Theorem 1.4 (a), and finish the proof. We follow a strategy from [14].
We need a recent result of Wang [82] which extends a classical theorem

of Simpson [67] from the projective to the Kähler case. To state this, define
the cohomology jump loci

Si
m = {L ∈ Pic0(M̃ ) | hi(M̃, L) > m}.

The theorem of Wang [82] (in the projective case due to Simpson [67]) says
that for each value of i,m, the locus Si

m is a finite union of torsion translates

of subtori of Pic0(M̃ ). In particular, we have

S := Sn
1 =

N
⋃

i=1

{Ai + Ti},

where each Ai is a holomorphically torsion line bundle on M̃ , and each Ti
is a subtorus of Pic0(M̃ ). Thanks to Serre duality, we also have

S = {L ∈ Pic0(M̃) | H0(M̃,KM̃ ⊗ L∗) 6= 0}.
If we let S∗ = {L∗ | L ∈ S}, then we also have that S∗ = ∪N

i=1{−Ai + Ti}.
By what we proved above, we have that F ∈ S∗, and so we can write

F = −Ai+F1 for some Ai torsion and some F1 ∈ Ti. But we also have that
F1 = F2 −Aj for some Aj torsion and F2 ∈ S. We get F = −Ai −Aj + F2,
and so

H0(M̃,KM̃ ⊗ F ∗ ⊗A∗

i ⊗A∗

j) 6= 0.
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If ℓ > 1 is such that Aℓ
i ⊗Aℓ

j is trivial, then

H0(M̃,Kℓ
M̃

⊗ (F ∗)ℓ) 6= 0.

But thanks to H0(M̃,KM̃ ⊗ F ) 6= 0 we also have that

H0(M̃,Kℓ
M̃

⊗ F ℓ) 6= 0,

and using the tensor product map

H0(M̃,Kℓ
M̃

⊗ F ℓ)⊗H0(M̃,Kℓ
M̃

⊗ (F ∗)ℓ) → H0(M̃ ,K2ℓ
M̃
),

we conclude that H0(M̃ ,K2ℓ
M̃
) 6= 0. By the birational invariance of plurigen-

era, we also have H0(M,K2ℓ
M ) 6= 0, which implies κ(M) > 0, as needed. �

Proof of Proposition 1.6. It is an elementary and well-known fact that for
every compact complex manifold b1(M) 6 2h0,1(M) with equality if and
only if the ∂∂-Lemma holds for (1, 1)-forms (i.e. every d-exact (1, 1)-form is
∂∂-exact). Indeed, the map that associates to a real 1-form its (0, 1) part
induces an injection H1(M,R) →֒ H1(M,O), whence b1(M) 6 2h0,1(M),
and then the map that associates to a (0, 1)-form a the (1, 1)-form ∂a+ ∂a
induces an isomorphism

H1(M,O)

H1(M,R)
∼= {d-exact real (1, 1)-forms}

{
√
−1∂∂ψ, ψ ∈ C∞(M,R)}

.

As a remark, a cohomological characterization of when the ∂∂-Lemma holds
for all (p, q)-forms was recently given in [5].

Now the Betti number b1(M) is constant under small deformations, while
the Hodge number h0,1(M) is upper semicontinuous. It follows that for t
sufficiently small we have

2h0,1(Mt) > b1(Mt) = b1(M) = 2h0,1(M) > 2h0,1(Mt),

and so the ∂∂-Lemma holds for (1, 1)-forms on Mt. The assumption that
cBC
1 (M) = 0 implies that c1(M) = 0 in H2(M,R) and so there is some ℓ ∈ N

such that ℓc1(M) = 0 in H2(M,Z). This topological condition is preserved
for small t, so c1(Mt) = 0 in H2(Mt,R) and by the ∂∂-Lemma we see that
cBC
1 (Mt) = 0. �

Remark 2.2. In fact, the proof of Proposition 1.6 shows that if cBC
1 (M) = 0

and for every t 6= 0 sufficiently small we have b1(Mt) = 2h0,1(Mt), then
we have cBC

1 (Mt) = 0, even if M did not satisfy the ∂∂-Lemma for (1, 1)
forms. An example where this phenomenon occurs is a complex paralleliz-
able solvmanifoldM constructed by Nakamura [60, Example III-(3b)], which
is also referred to as the parallelizable Nakamura manifold in [4, Section 4].
This manifold has b1(M) = 2, h0,1(M) = 3 [60], and therefore it does not
satisfy the ∂∂-Lemma. However, it admits small deformations Mt with
h0,1(Mt) = 1, which therefore do satisfy the ∂∂-Lemma for (1, 1) forms
(these are the “case (1)” deformations in [4]). It follows that cBC

1 (Mt) = 0.
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Interestingly, this manifold has also other small deformations Nt which
do not satisfy the ∂∂-Lemma for (1, 1) forms but still have cBC

1 (Nt) = 0. We
will discuss them below in Example 3.2.

3. Examples

In this section we give some examples that elucidate the relations between
the three conditions (1) cBC

1 (M) = 0, (2) c1(M) = 0 in H2(M,R) and (3)
KM is holomorphically torsion.

Example 3.1. Following Magnusson [55], we give examples of non-Kähler
compact complex manifolds with vanishing first Bott-Chern class, whose
canonical bundle is nevertheless not holomorphically torsion.

Let Xn be a compact Kähler manifold with trivial canonical bundle and
with an automorphism f such that the induced automorphism onH0(X,KX)
∼= C has infinite order. This implies that if Ω is a never-vanishing holomor-
phic n-form on X then f∗Ω = λΩ with |λ| = 1 but λ not a root of unity.
An example of such X, f with X a 2-dimensional complex torus, due to
Yoshihara [85], is described in [80, Example 6.4]. There are also examples
with X a K3 surface, due to McMullen [58], and an explicit example with
X a 3-dimensional complex torus, due to Iitaka [79, Remark 14.6].

We will now describe Yoshihara’s example in detail. Let α, β be the two
roots of the equation

x2 − (1 + i)x+ 1 = 0.

Then clearly αβ = 1, but on the other hand αβ is not a root of unity. The
minimal polynomial over Q of α (and β) is

x4 − 2x3 + 4x2 − 2x+ 1.

Let Λ be the lattice in C2 spanned by the vectors (αj , β
j
), j = 0, . . . , 3, and

X = C2/Λ. The automorphism of C2 given by multiplication by
(

α 0

0 β

)

descends to an automorphism f of X, since

(α4, β
4
) = 2(α3, β

3
)− 4(α2, β

2
) + 2(α, β)− (1, 1).

The canonical holomorphic 2 form Ω = dz1∧dz2 on X satisfies f∗Ω = αβΩ.
The complex number αβ is not a root of unity, and hence the action of f
on H0(X,KX ) has infinite order.

Given any such X, f , one can then construct a holomorphic fiber bundle
M → C with fiber X where C is an elliptic curve. In particular, if X is the
above example then M is a 3-fold. This construction has appeared many
times in the literature (see e.g. [79, Remark 15.3], [10, Example, p.15],
[31, p.248], [3, Example 2.4], [56, p.491]), and is called “suspension” in [3].
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Namely, write C = C/(Z⊕ Zτ), and define a holomorphic free Z2-action on
X × C by

(1, 0) · (x, z) = (x, z + 1), (0, 1) · (x, z) = (f(x), z + τ).

The quotient is our manifold M , which fibers onto C. M cannot be Kähler
because the image of the monodromy map π1(C) → AutHn(X,R) contains
an element of infinite order, violating [31, Corollary 4.10].

Following [55, 79] we show that κ(M) = −∞ (so in particular KM cannot
be torsion). Indeed, if we had a nontrivial section s ∈ H0(M,Kℓ

M ) for some

ℓ > 1, its pullback to X × C would be of the form F · (Ω ∧ dz)ℓ where dz
is the standard holomorphic 1-form on C and F is a holomorphic function
on X × C. Since X is compact, F depends only on z ∈ C. The pullback is
invariant under the Z2-action, hence

F (z) · (Ω ∧ dz)ℓ = F (z + 1) · (Ω ∧ dz)ℓ = λℓF (z + τ) · (Ω ∧ dz)ℓ,
and so F (z) = F (z + 1) = λℓF (z + τ). Therefore |F (z)| = |F (z + 1)| =
|F (z + τ)| and so F is constant by the maximum modulus principle. This
implies that λℓ = 1 which contradicts the fact that λ is not a root of unity.

Finally, Magnusson [55] shows that cBC
1 (M) = 0. To see this, fix a Ricci-

flat Kähler metric ω on X. We have that f∗ωn = ωn, because both ωn and
f∗ωn are Ricci-flat volume forms with the same integral. Consider now the
volume form ωn ∧ωE on X ×C, where ωE is the standard Euclidean metric
on C. It is Ricci-flat and invariant under the Z2-action, and therefore it
descends to a Ricci-flat volume form on M , i.e. a flat Hermitian metric on
KM .

Example 3.2. We now discuss other examples of non-Kähler compact com-
plex manifolds with vanishing first Bott-Chern class and with canonical bun-
dle not holomorphically torsion.

The complex parallelizable solvmanifoldM constructed by Nakamura [60,
Example III-(3b)] (see also [4, Section 4]), has a family of small deformations
Nt which have b1(Nt) = h0,1(Nt) = 2 (“case (2)” in [4]) and therefore do
not satisfy the ∂∂-Lemma. They also have Kodaira dimension κ(Nt) = −∞
[60]. Nevertheless, these manifolds also satisfy cBC

1 (Nt) = 0. This can be
seen by using some computations in [4, Table 4]: we have that M = C3/Γ
for a certain discrete subgroup Γ, and using the standard coordinates on
C3 we can write the complex structure on Nt as given by the infinitesimal
deformation vector t∂1⊗ ez1dz3 ∈ H0,1(M,TM), where t is a small complex
number. The following 1-forms give well-defined linearly independent (1, 0)-
forms on Nt:

θ1 = dz1 − tez1dz3, θ2 = e−z1dz2, θ3 = ez1dz3.

Then ω =
√
−1θ1∧θ1+

√
−1θ2∧θ2+

√
−1θ3∧θ3 defines a Hermitian metric

on Nt. We have

ω3 = 6(
√
−1)3dz1 ∧ dz1 ∧ dz2 ∧ dz2 ∧ dz3 ∧ dz3,
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which in local holomorphic coordinates on Nt is a constant times the Eu-
clidean volume form, and hence Ric(ω) = 0 on Nt.

Example 3.3. We now give some examples of non-Kähler compact complex
manifolds with c1(M) = 0 in H2(M,R) but with cBC

1 (M) 6= 0. We start
with the following simple observation: if M is a compact complex manifold
that admits a Hermitian metric ω with Ric(ω) > 0 but not identically zero,
then cBC

1 (M) 6= 0. Indeed if we had cBC
1 (M) = 0 then there would be a

smooth function F with Ric(ω) =
√
−1∂∂F > 0, which implies that F must

be constant and so Ric(ω) = 0 which we assumed is not the case.
We apply this observation to the Hopf manifoldM = (Cn\{0})/ ∼, n > 2,

where we identify (z1 . . . , zn) ∼ (α1z1, . . . , αnzn), and the nonzero complex
numbers αj all have the same modulus which is different from 1. The com-
plex manifold M is diffeomorphic to S1 × S2n−1, so that b2(M) = 0. We
consider the Hermitian metric on M given by

ω =
δij
|z|2

√
−1dzi ∧ dzj.

A simple calculation (see e.g. [73, p.28]) shows that

Ric(ω) =
n

|z|2
(

δij −
zizj
|z|2

)√
−1dzi ∧ dzj ,

which is clearly not identically zero and is semipositive definite by the
Cauchy-Schwarz inequality. It follows that c1(M) = 0 in H2(M,R), yet
cBC
1 (M) 6= 0.

Example 3.4. The following example was suggested by the referee. This is
again a non-Kähler compact complex manifold with c1(M) = 0 in H2(M,R)
but with cBC

1 (M) 6= 0, obtained as a principal torus bundle over a compact
Riemann surface Σ of genus g > 2. Let T = Cn/Λ be an n-dimensional
complex torus, and π : M → Σ be any topologically nontrivial principal
T -bundle over Σ. Then the defining cocycle of the bundle determines a
characteristic class c ∈ H2(Σ,Z) ⊗ Λ, which can be viewed as a map δ :
H1(T,Z) → H2(Σ,Z), and this vanishes precisely when M is topologically
trivial. Therefore in our case δ is surjective, and furthermore M is non-
Kähler (see e.g. [44, Theorem 1.7]). In general we have that KM = π∗KΣ,
and so κ(M) = 1, and c1(M) = π∗c1(Σ) vanishes in H2(M,Z) iff c1(Σ) is
in the image of δ. In our case this holds, so c1(M) = 0 in H2(M,R). If we
had cBC

1 (M) = 0, then we would get a contradiction from Theorem 1.4 (a),
because κ(M) = 1 > 0 and KM is not holomorphically torsion.

Example 3.5. Here we consider a compact complex manifoldM diffeomor-
phic to the six-sphere S6, assuming one exists. Of course it is a well-known
open problem to determine whether such a manifold M exists.

Obviously we have c1(M) = 0 in H2(M,R), and we now show that
cBC
1 (M) 6= 0. Indeed, if we had cBC

1 (M) = 0 then we would have that
KM is holomorphically torsion thanks to Theorem 1.4 (b). However, the
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exponential exact sequence together with H1(M,Z) = H3(M,Z) = 0 imply
that Pic(M) ∼= H1(M,OM ), which has no torsion. Therefore KM is trivial,
and there is a never-vanishing holomorphic 3-form Ω. This form is clearly
d-closed, and hence d-exact, Ω = dβ. Then

0 < (
√
−1)n

2

∫

M
Ω ∧ Ω = (

√
−1)n

2

∫

M
d(β ∧ dβ) = 0,

a contradiction. The last part of this argument comes from [38].

4. Canonical metrics on non-Kähler Calabi-Yau manifolds

A Kähler Calabi-Yau manifold admits Ricci-flat Kähler metrics, exactly
one in each Kähler class [84]. These canonical metrics have proved extremely
useful in the study of the geometry of Calabi-Yau manifolds. It is natural
to ask whether an analog of such metrics exists on non-Kähler Calabi-Yau
manifolds.

We do not have a satisfactory general answer to this question, but there
are several possible approaches. First of all, it is clear from Theorem 1.2 that
Chern-Ricci flat metrics (which always exist on manifolds with vanishing first
Bott-Chern class) are not canonical in any reasonable sense: there are simply
too many of them, because every Hermitian metric is conformal to a Chern-
Ricci flat metric. However, if we restrict to Hermitian metrics which satisfy
additional hypotheses, there is some hope to construct suitable canonical
metrics.

For example, let M be a compact complex manifold with cBC
1 (M) = 0,

which admits a balanced Hermitian metric ω, which by definition satisfies
d(ωn−1) = 0, see [59]. Is it possible to find another balanced metric on M
which is Chern-Ricci flat? For emphasis, we state this as a conjecture (which
is part of the folklore of this subject, see e.g. [25, 29, 27, 62]).

Conjecture 4.1. Let M be a compact complex manifold with cBC
1 (M) =

0 and with a balanced metric ω. Then there is a balanced metric ω̃ with
[ω̃n−1] = [ωn−1] in H2n−2(M,R) with Ric(ω̃) = 0.

There are many examples of such manifolds. Indeed, any manifold in class
C is balanced by [1], and there are many with c1(M) = 0 (see the discussion
in the Introduction before Theorem 1.5). There are also examples not in
class C, which are diffeomorphic to connected sums ♯Ni=1(S

3 × S3), N > 1:
these manifolds have trivial canonical bundle by [23, 53] and admit balanced
metrics by [26], but are not in class C since they have vanishing second Betti
number. More examples of non-Kähler compact complex manifolds with
trivial canonical bundle and which admit balanced metrics were constructed
in [35, 30].

It is interesting to note that if ω is a balanced metric with Ric(ω) = 0,
then the Bismut connection [9] of ω (also known as the connection with skew
symmetric torsion) has vanishing Ricci curvature as well, which means that
its restricted holonomy is also contained in SU(n). This condition has been
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much studied in the mathematical physics literature [2, 21, 24, 38, 42, 45,
61], and Conjecture 4.1 would provide many more examples of such special
metrics.

An approach to Conjecture 4.1 was proposed in [27]. Given a balanced
metric ω on M , the condition cBC

1 (M) = 0 implies that Ric(ω) =
√
−1∂∂F

for some smooth function F . Then we seek a new balanced metric ω̃ such
that ω̃n−1 = ωn−1 +

√
−1∂∂(uωn−2

0 ) for some smooth function u and some
Hermitian metric ω0 on M , with ω̃ solving the Monge-Ampère equation

(4.2) ω̃n = eF+bωn,

for some constant b. This is called a “form-type Calabi-Yau equation” in
[27]. Regarding the solvability of (4.2) we have the following conjecture:

Conjecture 4.2. Let M be a compact complex manifold with a balanced
metric ω, a Hermitian metric ω0, a smooth function F . Then there are a
constant b and a balanced metric ω̃ with ω̃n−1 = ωn−1 +

√
−1∂∂(uωn−2

0 ) for
some smooth function u, such that (4.2) holds.

Conjecture 4.2 implies Conjecture 4.1, since with the above choice of F we
can apply

√
−1∂∂ log to (4.2) and see that Ric(ω̃) = Ric(ω)−

√
−1∂∂F = 0,

and clearly [ω̃n−1] = [ωn−1] inH2n−2(M,R). We have the following theorem:

Theorem 4.3. Conjecture 4.2 holds if the metric ω0 is Kähler. Therefore
Conjecture 4.1 holds when M is Kähler.

This theorem was proved by Weinkove and the author in [75]. Indeed,
since ω0 is Kähler, we see that

ωn−1 +
√
−1∂∂(uωn−2

0 ) = ωn−1 +
√
−1∂∂u ∧ ωn−2

0 ,

and so (4.2) becomes the “Monge-Ampère equation for (n−1)-plurisubharmonic
functions” solved in [75]. Note that even though in this case the manifoldM
is Kähler, the Chern-Ricci flat balanced metrics ω̃ that we get are usually
not Kähler (if n > 3). Note also that when M is Kähler, Conjecture 4.1
does not trivially follow from Yau’s Theorem [84], since in general given a
balanced metric ω there is no Kähler metric ω̃ with [ω̃n−1] = [ωn−1] (see
[29]).

If instead of dω0 = 0 we assume the astheno-Kähler condition ∂∂(ωn−2
0 ) =

0 of Jost-Yau [46], then we have that

ωn−1+
√
−1∂∂(uωn−2

0 ) = ωn−1+
√
−1∂∂u∧ωn−2

0 +2Re(
√
−1∂u∧∂(ωn−2

0 )),

and (4.2) falls into the class of equations studied in [76, 63] (the only differ-
ence is the factor of 2 in front of Re(

√
−1∂u∧∂(ωn−2

0 ), which does not affect
any of the results in [76]). In particular, if M admits astheno-Kähler met-
rics, then Conjectures 4.1 and 4.2 are reduced to proving a suitable second
order estimate for the solution u (see [76, Theorem 1.7]).

Finally, let us also mention that another candidate for a class of special
metrics on certain non-Kähler Calabi-Yau manifolds are solutions of Stro-
minger’s system [68]. In general, solutions of such system are extremely
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hard to construct, see [30, 49, 61, 78] and references therein for more about
this system.
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Sci. Paris Sér. A-B 282 (1976), no. 9, Aii, A479–A482.
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[44] Höfer, T. Remarks on torus principal bundles, J. Math. Kyoto Univ. 33 (1993), no.
1, 227–259.

http://arxiv.org/abs/1303.7444
http://arxiv.org/abs/1203.2978


NON-KÄHLER CALABI-YAU MANIFOLDS 17

[45] Ivanov, S., Papadopoulos, G. Vanishing theorems and string backgrounds, Classical
Quantum Gravity 18 (2001), no. 6, 1089–1110.

[46] Jost, J., Yau, S.-T. A nonlinear elliptic system for maps from Hermitian to Riemann-
ian manifolds and rigidity theorems in Hermitian geometry, Acta Math. 170 (1993),
no. 2, 221–254; Correction, Acta Math. 173 (1994), no. 2, 307.

[47] Joyce, D. Compact manifolds with special holonomy, Oxford Mathematical Mono-
graphs. Oxford University Press, Oxford, 2000.

[48] Kodaira, K. On the structure of compact complex analytic surfaces, II, Amer. J. Math.
88 (1966), no. 3, 682–721.

[49] Li, J., Yau, S.-T. The existence of supersymmetric string theory with torsion, J.
Differential Geom. 70 (2005), no. 1, 143–181.

[50] Li, J., Yau, S.-T., Zheng, F. On projectively flat Hermitian manifolds, Commun. Anal.
Geom. 2 (1994), 103–109.

[51] Lieberman, D.I. Compactness of the Chow scheme: applications to automorphisms
and deformations of Kähler manifolds, in Fonctions de plusieurs variables complexes,
III (Sém. François Norguet, 19751977), pp. 140–186, Lecture Notes in Math., 670,
Springer, Berlin, 1978.

[52] Liu, K., Yang, X. Geometry of Hermitian manifolds, Internat. J. Math. 23 (2012),
no. 6, 1250055, 40 pp.

[53] Lu, P., Tian, G. The complex structures on connected sums of S3
× S3, in Mani-

folds and geometry (Pisa, 1993), 284–293, Sympos. Math., XXXVI, Cambridge Univ.
Press, Cambridge, 1996.

[54] Ma, X., Marinescu, G. Holomorphic Morse inequalities and Bergman kernels,
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