Calabi-Yau Varieties and Pencils of K3 Surfaces

S. Hosono ${ }^{1 \dagger}$, B.H. Lian ${ }^{2 \ddagger}$ and S.-T. Yau ${ }^{3 \diamond}$
${ }^{1}$ Department of Mathematics $\quad{ }^{2}$ Department of Mathematics
Brandeis University
Waltham, MA 02154
${ }^{3}$ Department of Mathematics
Harvard University
Cambridge, MA 02138

Abstract

In this note, we give a list of Calabi-Yau hypersurfaces in weighted projective 4 -spaces with the property that a hypersurface contains naturally a pencil of K3 variety. For completeness we also obtain a similar list in the case K3 hypersurfaces in weighted projective 3 -spaces. The first list significantly enlarges the list of K3-fibrations of [1] which has been obtained on some assumptions on the weights. Our lists are expected to correspond to examples of the so-called heterotic-type II duality [2] [3].

3/2/96

[^0]
1. Problems

Let $w_{1}, . ., w_{n+1}$ be positive integers, and put $d:=\sum w_{i}$. We call the weight vector $\hat{w}=\left(w_{1}, . ., w_{n+1}\right)$ admissible if the generic weighted degree d hypersurface in \mathbf{C}^{n+1} is smooth away from the origin. This means that the weighted projectivized hypersurface in $\mathbf{P}[w]$ is transversal, ie. it only acquires singularities from the ambient space $\mathbf{P}[\hat{w}]$. For $n=3$, there is a list of admissible weights of Reid-Yonemura (see [⿴囗 a list admissible weights obtained by Klemm-Schimmrigk [5] and Kreuzer-Skarke [6].

Given an admissible weight $\hat{w}=\left(w_{1}, . ., w_{n+1}\right)$ we can consider in $\mathbf{P}[\hat{w}]$ the generic Calabi-Yau variety given by

$$
\begin{equation*}
\hat{X}_{a}=\left\{z \mid \sum_{\hat{w} \cdot \nu=d} a_{\nu} z^{\nu}=0\right\} . \tag{1.1}
\end{equation*}
$$

Suppose we intersect this variety with the coordinate hyperplane $z_{n+1}=0$.

Problem 1.1. When is $X_{a}:=\hat{X}_{a} \cap\left\{z_{n+1}=0\right\}$ isomorphic to a transversal Calabi-Yau variety?

Note that by permuting the weights, this includes the cases $\hat{X}_{a} \cap\left\{z_{i}=0\right\}$ for any i. More generally,

Problem 1.2. When is there a 1-parameter family of hypersurfaces Z_{λ} such that $X_{a, \lambda}:=$ $\hat{X}_{a} \cap Z_{\lambda}$ is isomorphic to a transversal Calabi-Yau variety?

For $n=4$ and with some assumptions on the weights, a short list of such cases has been tabulated in [1]. We say that ν is compatible with the weight \hat{w} if $\hat{w} \cdot \nu=d$.

Let $w=\left(w_{1}, . ., w_{n}\right)$ and \bar{w} its normalization, ie. $\bar{w}:=\left(w_{1} / \delta_{1}, . ., w_{n} / \delta_{n}\right)$ where $\delta_{i}:=$ $\operatorname{lcm}\left(\rho_{1}, . ., \hat{\rho}_{i}, . ., \rho_{n}\right)$ and $\rho_{i}:=\operatorname{gcd}\left(w_{1}, . ., \hat{w}_{i}, . ., w_{n}\right)$. It is well known that $\phi: \mathbf{P}[w] \rightarrow \mathbf{P}[\bar{w}]$ is an isomorphism under the normalization map $\left(z_{1}, . ., z_{n}\right) \mapsto\left(z_{1}^{\rho_{1}}, . ., z_{n}^{\rho_{n}}\right)$. It is easy to show that $\delta_{1} \rho_{1}=\cdots=\delta_{n} \rho_{n}$; we call this integer k.

We require that the image $\bar{X}_{a}=\phi X_{a}$ is a transversal Calabi-Yau variety in $\mathbf{P}[\bar{w}]$. If $x_{1}, . ., x_{n}$ are the quasi-homogeneous coordinates of $\mathbf{P}[\bar{w}]$, then a Calabi-Yau variety can be written as

$$
\begin{equation*}
\bar{X}_{b}=\left\{x \mid \sum_{\bar{w} \cdot \mu=\bar{d}} b_{\mu} x^{\mu}=0\right\}, \tag{1.2}
\end{equation*}
$$

where $\bar{d}:=\sum_{i=1}^{n} \bar{w}_{i}=\sum w_{i} / \delta_{i}$. Pulling this back by the normalization map, we see that

$$
\begin{equation*}
\phi^{-1} \bar{X}_{b}=\left\{z \mid \sum_{\bar{w} \cdot \mu=\bar{d}} b_{\mu} \prod z_{i}^{\rho_{i} \mu_{i}}=0\right\} \subset \mathbf{P}[w] . \tag{1.3}
\end{equation*}
$$

If we require that $\phi^{-1} \bar{X}_{b}=X_{a}$ for some a, then we conclude that
(a) every $\mu \in \mathbf{Z}_{+}^{n}$ compatible with \bar{w} has $\sum w_{i} \rho_{i} \mu_{i}=d$, and $\nu=\left(\rho_{1} \mu_{1}, . ., \rho_{n} \mu_{n}, 0\right)$ is an exponent compatible with \hat{w}.
(b) every exponent $\nu \in \mathbf{Z}_{+}^{n+1}$ compatible with \hat{w} having $\nu_{n+1}=0$ is of the form $\nu=$ $\left(\rho_{1} \mu_{1}, . ., \rho_{n} \mu_{n}, 0\right)$ for some exponent μ compatible with \bar{w}.
We claim that $d=k \bar{d}$. This follows from (a) and the fact that $k=\rho_{i} \delta_{i}$. Since $\mu=(1, . ., 1)$ is compatible with \bar{w}, it follows from (a) that $w \cdot \rho=d$. Thus our task is to search through the list of normalized admissible weights $\hat{w}(n=4)$ satisfying

$$
\begin{align*}
& \text { (i) } \hat{w} \cdot \nu=d, \quad \nu_{5}=0 \Rightarrow \rho_{i} \mid \nu_{i} \forall i \\
& \text { (ii) } w \cdot \rho=d \tag{1.4}\\
& \text { (iii) } \bar{w} \text { admissible }
\end{align*}
$$

On the last condition, we will check that \bar{w} be in the Reid-Yonemura list. It is also clear that (i)-(iii) implies that $\hat{X}_{a} \cap\left\{z_{n+1}\right\}$ is isomorphic to \bar{X}_{a} in the admissible $\mathbf{P}[\bar{w}]$. Our computer search shows that there are 628 admissible weights \hat{w} of length 5 satisfying (i)-(iii).

Example: Take $\hat{w}=(42,27,8,4,3), d=84$. We consider the intersection $X:=$ $\hat{X} \cap\left\{z_{3}=0\right\}$. Then $\rho=(1,1,3,1)$, and so condition (ii) holds. The normalized weight of $w=(42,27,4,3)$ becomes $\bar{w}=(14,9,4,1)$, which is an admissible weight of length 4 (see (4]), and so condition (iii) holds. The equations for X in $\mathbf{P}[\hat{w}]$ is $z_{3}=0$ plus that of \hat{X}. The latter is given by the generic sum of the monomials with admissible exponent ν with $\nu_{5}=0$. There are exactly 24 such exponents:

$$
\begin{align*}
& z_{5}^{28}, z_{5}^{24} z_{4}^{3}, z_{5}^{20} z_{4}^{6}, z_{5}^{16} z_{4}^{9}, z_{5}^{12} z_{4}^{12}, z_{5}^{8} z_{4}^{15}, z_{5}^{4} z_{4}^{18}, z_{4}^{21}, z_{5}^{19} z_{2} \\
& z_{5}^{15} z_{4}^{3} z_{2}, z_{5}^{11} z_{4}^{6} z_{2}, z_{5}^{7} z_{4}^{9} z_{2}, z_{5}^{3} z_{4}^{12} z_{2}, z_{5}^{10} z_{2}^{2}, z_{5}^{6} z_{4}^{3} z_{2}^{2} \tag{1.5}\\
& z_{5}^{2} z_{4}^{6} z_{2}^{2}, z_{5} z_{2}^{3}, z_{5}^{14} z_{1}, z_{5}^{10} z_{4}^{3} z_{1}, z_{5}^{6} z_{4}^{6} z_{1}, z_{5}^{2} z_{4}^{9} z_{1}, z_{5}^{5} z_{2} z_{1}, z_{5} z_{4}^{3} z_{2} z_{1}, z_{1}^{2}
\end{align*}
$$

Condition (i) holds because the exponent ν_{4} of z_{4} is always a multiple of $\rho_{3}=3$. The equation for the isomorphic image \bar{X} of X in $\mathbf{P}[14,9,4,1]$ is the generic sum of the above monomials with the replacement, $z_{1} \mapsto x_{1}, z_{2} \mapsto x_{2}, z_{4} \mapsto x_{3}^{3}, z_{5} \mapsto x_{4}$.

We note that given an admissible weight \hat{w}, the Calabi-Yau varieties in $\mathbf{P}[\hat{w}]$ can give two distinct transversal Calabi-Yau varieties when intersect with two different coordinate hyperplanes $z_{i}=0$.

1.1. the second problem

We consider our second problem under the following assumption. We assume that Z_{λ} is of the form $\lambda_{1} z_{n+1}=\lambda_{2} p(z)$ where $\lambda=\left[\lambda_{1}, \lambda_{2}\right]$ is regarded as a point in \mathbf{P}^{1}, and $p(z)$ a fixed nonzero quasi-homogeneous polynomial independent of z_{n+1} and has degree w_{n+1}. When $\lambda_{2}=0$ this reduces to the case in the first problem. This generalization turns out to require just some minor modification. Specifically, in addition to conditions (i)-(iii), we must require that the weight component
(iv) w_{n+1} can be partitioned by the components $w_{1}, . ., w_{n}$.

This is true iff p exists. Note that as λ varies the intersections $\hat{X}_{a} \cap Z_{\lambda}$ form a pencil of codimension one subvarieties in \hat{X}_{a}. In the case of $n=4$ we require that they are transversal K3 varieties when $\lambda_{1} \neq 0$. In our list of 628 cases above, we find that all of them admit this description hence enlarging the list of [1].

The table given in the appendix is the list of the 628 cases. The number denoted i between 1 and 5 in the table indicates Z_{λ} is of the form $\lambda_{1} z_{i}=\lambda_{2} p(z)$ as in the case $i=n+1$ discussed above. Some of the examples in this list have been studied in great details in the context of mirror symmetry (see for example [7] [8] [9]), and in connection with string duality in (2) [10] and others.

We note that the conditions we impose in our method for enumerating K3 pencils are only sufficient but not necessary. There is in fact a criterion given in (11 for K3 pencils using the intersection ring of the Calabi-Yau variety. In fact in [9] (see the conclusion section there) we have already used this criterion to give a few examples of K3 pencils in which we have computed the intersection ring. For example, the Calabi-Yau hypersurfaces in $\mathbf{P}[8,3,3,1,1]$ was found to have a K3 pencil according to the criterion of [11], but this example fails to satisfy conditions (i)-(iii) above. In [9], we have also given an algorithm for computing the intersection ring of Calabi-Yau hypersurfaces in weighted projective spaces. This algorithm can in principle be carried out for all of the list [5], and be used to check the criterion above. But the actual computation can be enormous.

For completeness, we also do the case of $n=3$. Thus we search through the list of transversal K3 hypersurfaces in [4] which admits a pencil of elliptic curves in one of the following transversal weighted projective spaces $\mathbf{P}[1,1,1], \mathbf{P}[2,1,1], \mathbf{P}[3,2,1]$. The $n=3$ analogues of conditions (i)-(iii) are satisfied by 18 admissible weights, and all of them satisfy condition (iv).

Acknowledgement: We thank S. Kachru and C. Vafa for helpful discussions, and C. Doran for pointing out an error in the early version of this paper.

$\hat{w}=\left(w_{1}, \ldots, w_{4}\right)$	i	\bar{w}	$\hat{w}=\left(w_{1}, \ldots, w_{4}\right)$	i	\bar{w}
$(4,3,3,2)$	1	$(2,1,1)$	$(4,3,3,2)$	2	$(3,2,1)$
$(2,2,1,1)$	3	$(1,1,1)$	$(4,4,3,1)$	3	$(1,1,1)$
$(4,2,1,1)$	3	$(2,1,1)$	$(6,3,2,1)$	3	$(2,1,1)$
$(10,5,4,1)$	3	$(2,1,1)$	$(6,4,1,1)$	3	$(3,2,1)$
$(9,6,2,1)$	3	$(3,2,1)$	$(12,8,3,1)$	3	$(3,2,1)$
$(21,14,6,1)$	3	$(3,2,1)$	$(3,3,2,1)$	3	$(1,1,1)$
$(12,4,3,2)$	2	$(3,2,1)$	$(8,4,3,1)$	3	$(2,1,1)$
$(15,10,4,1)$	3	$(2,1,1)$	$(18,11,4,3)$	2	$(3,2,1)$
$(3,2,1)$	$(18,12,5,1)$	3	$(3,2,1)$		

References

[1] A. Klemm, W. Lerche and P. Mayr, K3-Fibrations and Heterotic-Type II String Duality, hep-th/9506112.
[2] S. Kachru and C. Vafa, Exact Results for N=2 Compactifications of Heterotic Strings, hep-th/9505105.
[3] S. Kachru and E. Silverstein, N=1 Dual String Pairs and Gaugino Condensation, hep-th/9511228.
[4] T. Yonemura, Tôhoku Math. J. 42(1990),351.
[5] A. Klemm and R. Schimmrigk, Landau-Ginzburg String Vacua, CERN-TH-6459/92, Nucl. Phys. B.
[6] M. Kreuzer and H. Skarke, Nucl. Phys. B388 (1993) 113
[7] S.Hosono, A.Klemm, S.Theisen and S.-T.Yau, Commun. Math. Phys. 167 (1995) 301.
[8] P.Candelas, A.Font, S.Katz and D.Morrison, Nucl.Phys.B416(1994)481.
[9] S. Hosono, B. Lian and S.T. Yau, GKZ-Generalized Hypergeometric Systems in Mirror Symmetry of Calabi-Yau Hypersurfaces, Harvard Univ. preprint, alg-geom/9511001, to appear in CMP 1996.
[10] P. Aspinwall and M. Gross, Heterotic-Heterotic String Duality and Multiple K3 Fibrations, hep-th/9602118.
[11] K. Oguiso, Int. J. Math. 4 (1993) 439.

2. Appendix

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
480	287	$(882,588,251,36,7)$	3	$(21,14,6,1)$
376	201	$(280,140,109,16,15)$	3	$(14,7,4,3)$
324	212	$(630,420,179,24,7)$	3	$(15,10,4,1)$
256	147	$(200,100,77,15,8)$	3	(10, 5, 3, 2)
240	173	$(504,336,143,18,7)$	3	$(12,8,3,1)$
216	141	$(200,100,79,16,5)$	3	$(10,5,4,1)$
192	110	$(60,60,43,9,8)$	3	$(5,5,3,2)$
180	114	$(143,110,44,30,3)$	4	$(13,10,4,3)$
180	114	$(130,100,40,27,3)$	4	$(13,10,4,3)$
168	95	$(144,67,48,20,9)$	2	$(12,5,4,3)$
160	115	$(160,80,61,15,4)$	3	$(8,4,3,1)$
160	115	$(160,80,63,12,5)$	3	$(8,4,3,1)$
156	86	$(77,56,42,30,5)$	4	$(11,8,6,5)$
156	86	$(66,48,36,25,5)$	4	$(11,8,6,5)$
144	131	$(378,252,107,12,7)$	3	$(9,6,2,1)$
144	98	$(162,99,32,27,4)$	3	$(18,11,4,3)$
144	91	$(80,56,32,21,3)$	4	$(10,7,4,3)$
120	86	$(48,48,35,9,4)$	3	$(4,4,3,1)$
120	69	$(100,35,32,25,8)$	3	$(20,8,7,5)$
120	69	$(54,42,25,24,5)$	3	$(9,7,5,4)$
120	65	$(60,40,36,35,9)$	3	$(12,9,8,7)$
120	65	$(48,32,28,27,9)$	4	$(12,9,8,7)$
112	76	$(98,49,24,21,4)$	3	$(14,7,4,3)$
112	63	$(55,30,28,20,7)$	3	$(11,7,6,4)$
112	63	$(44,24,21,16,7)$	3	$(11,7,6,4)$
108	60	$(50,30,25,24,21)$	1	$(25,10,8,7)$
108	60	$(25,25,20,16,14)$	1	$(25,10,8,7)$
96	167	$(225,200,150,24,1)$	4	$(9,8,6,1)$
96	167	$(216,192,144,23,1)$	4	$(9,8,6,1)$
96	87	$(120,60,47,8,5)$	3	$(6,3,2,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
96	79	$(88,64,21,16,3)$	3	(11, 8, 3, 2)
96	65	$(63,42,35,24,4)$	4	$(9,6,5,4)$
96	59	$(99,44,22,18,15)$	2	$(33,22,6,5)$
96	59	$(44,33,33,12,10)$	2	$(33,22,6,5)$
96	59	$(44,39,22,15,12)$	1	$(22,13,5,4)$
96	59	$(56,33,20,12,11)$	2	$(14,11,5,3)$
96	59	$(42,22,15,11,9)$	2	$(14,11,5,3)$
96	57	$(44,32,24,15,5)$	4	$(11,8,6,5)$
96	55	$(38,24,19,18,15)$	1	$(19,8,6,5)$
96	55	$(19,19,16,12,10)$	1	$(19,8,6,5)$
84	104	$(294,196,56,39,3)$	4	$(21,14,4,3)$
84	54	$(36,27,27,10,8)$	2	$(27,18,5,4)$
84	54	$(38,33,19,15,9)$	1	$(19,11,5,3)$
84	54	$(22,19,19,10,6)$	2	$(19,11,5,3)$
84	50	$(36,31,18,15,8)$	2	$(6,5,4,3)$
84	50	$(34,21,18,17,12)$	1	$(17,7,6,4)$
84	50	$(17,17,14,12,8)$	1	$(17,7,6,4)$
80	68	$(112,56,32,21,3)$	4	$(14,7,4,3)$
80	51	$(32,16,15,12,5)$	3	$(8,5,4,3)$
72	68	$(108,49,36,20,3)$	2	$(9,5,3,1)$
72	68	$(108,53,36,15,4)$	2	$(9,5,3,1)$
72	65	$(36,36,25,8,3)$	3	$(3,3,2,1)$
72	59	$(56,35,18,14,3)$	3	$(8,5,3,2)$
72	57	$(50,35,20,12,3)$	4	(10, 7, 4, 3)
72	50	$(72,32,16,15,9)$	2	$(24,16,5,3)$
72	50	$(44,27,20,9,8)$	2	$(11,9,5,2)$
72	49	$(34,30,17,12,9)$	1	$(17,10,4,3)$
72	49	$(28,24,15,8,5)$	3	$(7,6,5,2)$
72	49	$(28,11,11,10,6)$	2	$(14,11,5,3)$
72	49	$(20,17,17,8,6)$	2	$(17,10,4,3)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
72	48	$(33,24,18,10,5)$	4	$(11,8,6,5)$
72	47	$(60,21,16,15,8)$	3	$(20,8,7,5)$
72	47	$(27,21,12,10,5)$	4	$(9,7,5,4)$
72	46	$(33,18,14,12,7)$	3	$(11,7,6,4)$
72	44	$(24,16,14,9,9)$	4	$(12,9,8,7)$
72	44	$(24,21,20,12,7)$	2	$(7,6,5,3)$
72	44	$(18,15,14,9,7)$	3	$(7,6,5,3)$
72	44	$(21,18,16,9,8)$	3	$(8,7,6,3)$
64	47	$(36,16,15,8,5)$	3	(9, 5, 4, 2)
64	43	$(22,12,8,7,7)$	4	$(11,7,6,4)$
60	194	$(465,248,186,30,1)$	4	$(15,8,6,1)$
60	194	$(450,240,180,29,1)$	4	$(15,8,6,1)$
60	59	$(90,55,16,15,4)$	3	$(18,11,4,3)$
60	49	$(25,25,12,10,3)$	3	(5, 5, 3, 2)
60	44	$(22,16,12,5,5)$	4	$(11,8,6,5)$
54	56	$(35,35,21,12,2)$	4	$(5,5,3,2)$
50	44	$(35,25,20,12,3)$	4	$(7,5,4,3)$
48	83	$(156,91,39,24,2)$	4	(12, 7, 3, 2)
48	59	$(96,40,32,21,3)$	4	$(12,5,4,3)$
48	53	$(52,40,16,9,3)$	4	$(13,10,4,3)$
48	43	$(28,21,21,10,4)$	2	$(21,14,5,2)$
48	43	$(32,27,16,15,6)$	1	$(16,9,5,2)$
48	41	$(36,21,12,8,7)$	2	$(9,7,3,2)$
48	41	$(27,14,9,7,6)$	2	$(9,7,3,2)$
48	41	$(22,10,9,9,4)$	3	$(11,9,5,2)$
48	39	$(18,14,8,5,5)$	4	$(9,7,5,4)$
48	39	$(26,18,15,13,6)$	1	$(13,6,5,2)$
48	39	$(40,24,21,20,15)$	1	$(20,8,7,5)$
48	39	$(32,21,16,15,12)$	1	$(16,7,5,4)$
48	39	$(15,15,14,12,4)$	1	$(15,7,6,2)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
48	39	$(13,13,12,10,4)$	1	$(13,6,5,2)$
48	38	$(40,21,16,12,7)$	2	(10, 7, 4, 3)
48	37	$(24,12,10,9,5)$	3	$(8,5,4,3)$
48	36	$(36,24,16,15,5)$	4	$(9,6,5,4)$
48	35	$(16,15,12,12,5)$	2	$(5,4,3,3)$
48	35	$(12,10,7,7,6)$	3	$(7,6,5,3)$
48	35	$(12,10,9,9,5)$	2	$(5,4,3,3)$
44	51	$(70,35,18,14,3)$	3	(10, 5, 3, 2)
42	55	$(49,35,21,12,2)$	4	$(7,5,3,2)$
40	69	$(110,55,33,20,2)$	4	$(10,5,3,2)$
40	41	$(40,25,20,12,3)$	4	$(8,5,4,3)$
36	116	$(133,114,76,18,1)$	4	$(7,6,4,1)$
36	116	$(126,108,72,17,1)$	4	$(7,6,4,1)$
36	38	$(28,21,21,8,6)$	2	$(21,14,4,3)$
36	38	$(26,24,13,9,6)$	1	$(13,8,3,2)$
36	38	$(16,13,13,6,4)$	2	$(13,8,3,2)$
36	35	$(21,18,10,6,5)$	3	$(7,6,5,2)$
36	34	$(66,31,15,12,8)$	2	(11, 5, 4, 2)
36	34	$(22,15,12,11,6)$	1	$(11,5,4,2)$
36	34	$(11,11,10,8,4)$	1	(11, 5, 4, 2)
32	103	$(102,85,68,16,1)$	4	$(6,5,4,1)$
32	103	$(96,80,64,15,1)$	4	$(6,5,4,1)$
32	46	$(70,35,20,12,3)$	4	$(14,7,4,3)$
32	33	$(16,8,6,5,5)$	4	$(8,5,4,3)$
24	80	$(216,144,43,27,2)$	3	$(12,8,3,1)$
24	49	$(100,40,33,25,2)$	3	$(10,5,4,1)$
24	48	$(55,40,12,10,3)$	3	$(11,8,3,2)$
24	47	$(72,35,24,9,4)$	2	$(6,3,2,1)$
24	41	$(105,42,30,28,5)$	3	$(15,6,5,4)$
24	41	$(90,36,25,24,5)$	3	$(15,6,5,4)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
24	38	$(42,21,9,8,4)$	4	$(14,7,4,3)$
24	38	$(63,28,15,14,6)$	2	$(21,14,5,2)$
24	38	$(32,20,9,8,3)$	3	(8,5,3,2)
24	38	$(27,18,16,8,3)$	3	$(9,8,6,1)$
24	38	$(32,21,20,7,4)$	2	($8,7,5,1$)
24	38	$(24,15,14,7,3)$	3	($8,7,5,1$)
24	38	$(33,16,9,8,6)$	2	(11, 8, 3, 2)
24	36	$(35,20,12,10,3)$	3	(7, 4, 3, 2)
24	34	$(27,18,15,8,4)$	4	$(9,6,5,4)$
24	33	$(18,7,7,6,4)$	2	$(9,7,3,2)$
24	33	$(25,12,10,10,3)$	2	(5, 3, 2, 2)
24	33	$(27,12,10,6,5)$	3	(9,5,4, 2)
24	33	$(20,9,8,8,3)$	2	(5, 3, 2, 2)
24	32	$(14,12,5,5,4)$	3	(7, 6, 5, 2)
24	32	$(32,15,12,8,5)$	2	(8,5,3,2)
24	32	$(30,17,12,9,4)$	2	(5, 3, 2, 2)
24	31	$(28,15,12,8,5)$	2	(7, 5, 3, 2)
24	30	$(54,25,12,9,8)$	2	(9, 4, 3, 2)
24	29	$(15,15,12,10,8)$	1	$(15,6,5,4)$
24	28	$(24,18,17,9,4)$	3	$(4,3,3,2)$
24	27	$(27,18,12,10,5)$	4	$(9,6,5,4)$
24	27	$(30,14,12,9,7)$	2	$(10,7,4,3)$
24	27	$(8,6,6,5,5)$	4	$(5,4,3,3)$
20	50	$(91,56,18,14,3)$	3	$(13,8,3,2)$
18	53	$(63,49,21,12,2)$	4	(9, 7, 3, 2)
16	31	$(18,8,5,5,4)$	3	(9, 5, 4, 2)
16	29	$(20,16,9,8,3)$	3	$(5,4,3,2)$
12	41	$(54,33,9,8,4)$	4	$(18,11,4,3)$
12	36	$(26,21,15,13,3)$	1	$(13,7,5,1)$
12	36	$(16,15,15,12,2)$	2	$(15,8,6,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
12	36	$(14,13,13,10,2)$	2	$(13,7,5,1)$
8	29	$(28,16,9,8,3)$	3	$(7,4,3,2)$
6	23	$(21,10,9,6,5)$	2	$(7,5,3,2)$
0	251	$(903,602,258,42,1)$	4	$(21,14,6,1)$
0	251	$(882,588,252,41,1)$	4	$(21,14,6,1)$
0	131	$(253,138,92,22,1)$	4	$(11,6,4,1)$
0	131	$(242,132,88,21,1)$	4	$(11,6,4,1)$
0	121	$(153,136,102,16,1)$	4	$(9,8,6,1)$
0	119	$(210,105,84,20,1)$	4	$(10,5,4,1)$
0	119	(200, 100, 80, 19, 1)	4	$(10,5,4,1)$
0	89	$(225,150,45,28,2)$	4	$(15,10,3,2)$
0	89	$(96,80,48,15,1)$	4	$(6,5,3,1)$
0	89	$(90,75,45,14,1)$	4	$(6,5,3,1)$
0	83	$(252,168,71,7,6)$	3	$(6,4,1,1)$
0	77	$(70,56,42,13,1)$	4	$(5,4,3,1)$
0	77	$(65,52,39,12,1)$	4	$(5,4,3,1)$
0	71	$(52,52,39,12,1)$	4	$(4,4,3,1)$
0	71	$(48,48,36,11,1)$	4	$(4,4,3,1)$
0	65	$(168,112,32,21,3)$	4	$(21,14,4,3)$
0	59	$(165,110,30,22,3)$	3	$(15,10,3,2)$
0	59	$(150,100,27,20,3)$	3	$(15,10,3,2)$
0	55	$(80,40,31,5,4)$	3	$(4,2,1,1)$
0	55	$(147,98,36,7,6)$	3	$(21,14,6,1)$
0	55	$(98,63,24,7,4)$	3	$(14,9,4,1)$
0	55	$(80,56,21,8,3)$	3	$(10,7,3,1)$
0	55	$(70,49,18,7,3)$	3	$(10,7,3,1)$
0	41	$(24,24,17,4,3)$	3	$(2,2,1,1)$
0	39	$(50,25,16,5,4)$	3	$(10,5,4,1)$
0	39	$(75,35,24,10,6)$	3	$(15,7,6,2)$
0	39	$(35,20,12,5,3)$	3	(7, 4, 3, 1)

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
0	39	$(45,25,16,10,4)$	3	(9, 5, 4, 2)
0	38	$(60,25,20,12,3)$	4	$(12,5,4,3)$
0	35	$(63,28,18,14,3)$	2	$(21,14,6,1)$
0	35	$(63,28,18,14,3)$	3	(9, 4, 3, 2)
0	35	$(28,21,21,12,2)$	2	$(21,14,6,1)$
0	35	$(28,21,21,12,2)$	4	$(4,3,3,2)$
0	35	$(28,27,14,12,3)$	1	$(14,9,4,1)$
0	35	$(40,21,12,7,4)$	2	($10,7,3,1)$
0	35	$(30,14,9,7,3)$	2	(10, 7, 3, 1)
0	34	$(20,14,8,3,3)$	4	$(10,7,4,3)$
0	31	$(60,24,16,15,5)$	4	$(15,6,5,4)$
0	31	$(20,20,12,5,3)$	3	$(4,4,3,1)$
0	31	$(16,16,9,4,3)$	3	$(4,4,3,1)$
0	31	$(22,18,12,11,3)$	1	$(11,6,4,1)$
0	31	$(24,19,15,12,2)$	2	$(5,4,2,1)$
0	31	$(24,23,12,10,3)$	2	$(5,4,2,1)$
0	31	$(40,35,24,15,6)$	3	$(8,7,6,3)$
0	31	$(35,16,15,10,4)$	2	(7, 4, 3, 2)
0	31	$(16,10,7,7,2)$	3	$(8,7,5,1)$
0	31	$(12,11,11,8,2)$	2	$(11,6,4,1)$
0	29	$(45,20,10,9,6)$	2	$(15,10,3,2)$
0	29	$(24,15,12,5,4)$	2	$(6,5,3,1)$
0	29	$(18,10,9,5,3)$	2	$(6,5,3,1)$
0	29	$(13,12,12,9,2)$	1	$(3,2,2,1)$
0	27	$(20,15,15,6,4)$	2	$(15,10,3,2)$
0	23	$(28,21,14,12,9)$	1	$(14,7,4,3)$
0	23	$(14,9,7,6,6)$	1	(7, 3, 2, 2)
0	23	$(9,9,8,6,4)$	1	$(9,4,3,2)$
0	23	$(9,9,8,6,4)$	3	$(4,3,3,2)$
0	23	$(7,7,6,4,4)$	1	(7, 3, 2, 2)

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
0	22	$(24,10,9,6,5)$	2	(8,5,3,2)
0	18	$(18,12,8,5,5)$	4	$(9,6,5,4)$
0	18	$(20,8,7,7,6)$	3	$(10,7,4,3)$
-4	26	$(35,12,10,10,3)$	2	(7, 3, 2, 2)
-8	29	$(40,20,9,8,3)$	3	(10, 5, 3, 2)
-8	25	$(24,16,15,5,4)$	3	$(6,5,4,1)$
-12	38	$(26,20,8,3,3)$	4	$(13,10,4,3)$
-12	30	$(20,15,15,8,2)$	2	$(15,10,4,1)$
-12	30	$(20,15,15,8,2)$	4	(4, 3, 3, 2)
-12	30	$(22,21,11,9,3)$	1	(11, 7, 3, 1)
-12	30	$(14,11,11,6,2)$	2	(11, 7, 3, 1)
-12	25	$(10,10,4,3,3)$	4	(5,5,3,2)
-12	24	$(18,13,12,9,2)$	2	$(3,3,2,1)$
-12	16	$(10,9,6,6,5)$	1	(5, 3, 2, 2)
-16	23	$(70,28,20,15,7)$	2	$(14,7,4,3)$
-16	23	$(56,21,16,12,7)$	2	$(14,7,4,3)$
-20	15	$(14,6,5,5,4)$	3	(7,5,3,2)
-24	110	$(144,128,96,15,1)$	4	(9, 8, 6, 1)
-24	77	$(72,60,48,11,1)$	4	$(6,5,4,1)$
-24	60	$(40,40,30,9,1)$	4	$(4,4,3,1)$
-24	51	$(84,49,21,12,2)$	4	$(12,7,3,2)$
-24	29	($20,7,7,6,2)$	2	$(10,7,3,1)$
-24	27	$(16,10,4,3,3)$	4	$(8,5,3,2)$
-24	26	$(36,16,9,8,3)$	2	$(12,8,3,1)$
-24	26	$(36,16,9,8,3)$	3	(9, 4, 3, 2)
-24	26	$(28,15,8,5,4)$	2	(7,5,2,1)
-24	26	$(21,10,6,5,3)$	2	(7,5,2,1)
-24	25	$(48,23,15,6,4)$	2	$(8,5,2,1)$
-24	23	$(12,6,5,5,2)$	3	$(6,5,3,1)$
-24	22	$(36,17,9,6,4)$	2	$(6,3,2,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
-24	22	$(21,9,8,6,4)$	3	(7, 4, 3, 2)
-24	21	$(40,15,12,8,5)$	2	(10, 5, 3, 2)
-24	21	$(18,12,11,4,3)$	3	(3, 2, 2, 1)
-24	20	$(42,14,12,9,7)$	2	$(14,7,4,3)$
-24	20	(10, 4, 4, 3, 3)	4	(5, 3, 2, 2)
-24	18	$(18,12,10,5,3)$	3	$(6,5,4,1)$
-24	17	$(20,15,10,9,6)$	1	(10, 5, 3, 2)
-24	15	$(16,6,5,5,4)$	3	(8,5,3,2)
-24	12	$(6,5,5,4,4)$	2	$(5,3,2,2)$
-28	17	$(14,10,8,3,3)$	4	$(7,5,4,3)$
-30	24	$(15,15,8,5,2)$	3	$(3,3,2,1)$
-30	23	$(15,15,9,4,2)$	4	(5, 5, 3, 2)
-30	17	$(15,9,8,4,3)$	3	(5, 4, 3, 1)
-32	87	$(136,68,51,16,1)$	4	$(8,4,3,1)$
-32	87	$(128,64,48,15,1)$	4	$(8,4,3,1)$
-32	29	$(52,32,9,8,3)$	3	(13, 8, 3, 2)
-32	19	$(16,9,8,4,3)$	2	$(4,3,2,1)$
-32	17	$(16,10,8,3,3)$	4	$(8,5,4,3)$
-36	148	$(345,184,138,22,1)$	4	$(15,8,6,1)$
-36	102	$(170,85,68,16,1)$	4	(10, 5, 4, 1)
-36	98	$(171,95,57,18,1)$	4	$(9,5,3,1)$
-36	98	$(162,90,54,17,1)$	4	$(9,5,3,1)$
-36	44	$(30,30,20,9,1)$	4	(3, 3, 2, 1)
-36	44	$(27,27,18,8,1)$	4	(3, 3, 2, 1)
-36	26	$(30,15,8,4,3)$	3	(10, 5, 4, 1)
-36	26	$(27,15,8,6,4)$	3	(9, 5, 4, 2)
-36	20	$(42,19,12,8,3)$	2	(7, 4, 2, 1)
-36	20	$(14,12,7,6,3)$	1	(7, 4, 2, 1)
-36	20	$(8,7,7,4,2)$	2	(7, 4, 2, 1)
-36	20	$(10,9,9,6,2)$	2	$(9,5,3,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
-36	17	$(30,10,9,6,5)$	2	$(10,5,3,2)$
-36	14	$(10,8,4,3,3)$	4	$(5,4,3,2)$
-40	70	$(66,55,44,10,1)$	4	$(6,5,4,1)$
-40	59	(50, 40, 30, 9, 1)	4	$(5,4,3,1)$
-40	49	$(44,33,22,10,1)$	4	$(4,3,2,1)$
-40	49	$(40,30,20,9,1)$	4	$(4,3,2,1)$
-40	25	$(40,20,12,5,3)$	3	$(8,4,3,1)$
-40	19	$(20,9,8,4,3)$	2	$(5,3,2,1)$
-42	23	$(21,15,9,4,2)$	4	$(7,5,3,2)$
-42	17	$(21,9,8,4,3)$	3	$(7,4,3,1)$
-48	77	$(84,72,48,11,1)$	4	$(7,6,4,1)$
-48	67	$(165,110,33,20,2)$	4	$(15,10,3,2)$
-48	67	$(66,55,33,10,1)$	4	$(6,5,3,1)$
-48	59	$(65,52,26,12,1)$	4	$(5,4,2,1)$
-48	59	$(60,48,24,11,1)$	4	$(5,4,2,1)$
-48	50	$(36,36,27,8,1)$	4	$(4,4,3,1)$
-48	43	$(126,84,31,7,4)$	3	$(9,6,2,1)$
-48	39	$(24,24,16,7,1)$	4	$(3,3,2,1)$
-48	35	$(40,28,9,4,3)$	3	(10, 7, 3, 1)
-48	35	$(27,18,18,8,1)$	4	$(3,2,2,1)$
-48	35	$(24,16,16,7,1)$	4	$(3,2,2,1)$
-48	31	$(22,16,4,3,3)$	4	(11, 8, 3, 2)
-48	22	$(24,13,9,6,2)$	2	$(4,3,1,1)$
-48	21	$(14,5,5,4,2)$	2	$(7,5,2,1)$
-48	19	$(8,8,3,3,2)$	3	$(4,4,3,1)$
-48	19	$(12,9,9,4,2)$	2	$(9,6,2,1)$
-48	19	$(12,9,9,4,2)$	4	$(4,3,3,2)$
-48	19	$(16,15,8,6,3)$	1	$(8,5,2,1)$
-48	17	$(45,18,12,10,5)$	4	$(15,6,5,4)$
-48	17	$(15,8,6,4,3)$	2	$(5,4,2,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
-48	15	$(16,12,9,8,3)$	1	(8, 4, 3, 1)
-48	15	$(16,12,9,8,3)$	3	(4, 3, 3, 2)
-48	15	$(20,15,12,10,3)$	1	(10, 5, 4, 1)
-48	15	$(20,15,12,10,3)$	3	(4, 3, 3, 2)
-48	15	$(12,11,6,4,3)$	2	(2, 2, 1, 1)
-48	15	$(10,6,6,5,3)$	1	$(5,2,2,1)$
-48	15	$(5,5,4,4,2)$	1	$(5,2,2,1)$
-48	14	$(14,8,4,3,3)$	4	($7,4,3,2)$
-48	12	$(12,8,5,5,2)$	3	$(6,5,4,1)$
-48	11	$(15,10,9,6,5)$	2	(5,5,3,2)
-48	11	$(20,15,12,8,5)$	2	($5,5,3,2)$
-50	24	$(25,15,8,5,2)$	3	(5, 3, 2, 1)
-54	53	$(45,36,27,8,1)$	4	$(5,4,3,1)$
-56	93	$(160,80,64,15,1)$	4	(10, 5, 4, 1)
-56	76	$(112,56,42,13,1)$	4	(8, 4, 3, 1)
-60	222	$(777,518,222,36,1)$	4	$(21,14,6,1)$
-60	164	$(465,310,124,30,1)$	4	$(15,10,4,1)$
-60	164	$(450,300,120,29,1)$	4	$(15,10,4,1)$
-60	19	$(25,20,15,12,3)$	4	$(5,4,3,3)$
-60	14	$(9,9,4,3,2)$	3	(3, 3, 2, 1)
-64	39	$(32,24,16,7,1)$	4	$(4,3,2,1)$
-64	29	$(21,14,14,6,1)$	4	$(3,2,2,1)$
-64	17	$(28,14,8,3,3)$	4	$(14,7,4,3)$
-64	15	$(40,16,15,5,4)$	2	(8, 4, 3, 1)
-64	15	$(40,16,15,5,4)$	3	$(10,5,4,1)$
-64	11	$(28,8,7,7,6)$	3	$(14,7,4,3)$
-64	11	$(14,4,4,3,3)$	4	(7, 3, 2, 2)
-64	8	$(4,4,3,3,2)$	3	$(3,2,2,1)$
-66	32	$(21,21,14,6,1)$	4	(3, 3, 2, 1)
-66	23	$(27,21,9,4,2)$	4	(9, 7, 3, 2)

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
-72	88	$(117,104,78,12,1)$	4	$(9,8,6,1)$
-72	69	$(104,52,39,12,1)$	4	$(8,4,3,1)$
-72	57	$(60,50,30,9,1)$	4	$(6,5,3,1)$
-72	56	$(54,45,36,8,1)$	4	$(6,5,4,1)$
-72	53	$(78,39,26,12,1)$	4	$(6,3,2,1)$
-72	53	$(72,36,24,11,1)$	4	$(6,3,2,1)$
-72	40	$(28,28,21,6,1)$	4	$(4,4,3,1)$
-72	32	$(60,35,15,8,2)$	4	(12, 7, 3, 2)
-72	29	$(42,27,8,4,3)$	3	$(14,9,4,1)$
-72	26	$(40,20,13,5,2)$	3	$(4,2,1,1)$
-72	26	$(18,12,12,5,1)$	4	$(3,2,2,1)$
-72	23	$(42,21,12,7,2)$	3	$(6,3,2,1)$
-72	23	$(35,21,14,12,2)$	4	(5, 3, 2, 2)
-72	21	$(14,8,3,3,2)$	3	$(7,4,3,1)$
-72	20	$(36,17,12,4,3)$	2	$(3,1,1,1)$
-72	14	$(20,10,4,3,3)$	4	(10, 5, 3, 2)
-72	14	$(16,9,4,4,3)$	2	$(4,3,1,1)$
-72	13	$(30,12,10,5,3)$	2	$(6,3,2,1)$
-72	13	$(30,12,10,5,3)$	3	(10, 5, 4, 1)
-72	13	$(24,9,8,4,3)$	2	$(6,3,2,1)$
-72	13	$(24,9,8,4,3)$	3	$(8,4,3,1)$
-72	13	$(24,11,6,4,3)$	2	$(4,2,1,1)$
-72	13	$(30,12,8,5,5)$	4	$(15,6,5,4)$
-72	13	$(12,7,6,3,2)$	2	$(2,1,1,1)$
-72	11	$(7,6,6,3,2)$	1	$(1,1,1,1)$
-72	10	$(20,6,5,5,4)$	3	(10, 5, 3, 2)
-72	9	(8, 4, 3, 3, 2)	3	$(4,3,2,1)$
-72	8	$(12,9,8,4,3)$	2	$(3,3,2,1)$
-72	8	$(12,9,8,4,3)$	3	$(4,4,3,1)$
-72	7	$(10,6,5,5,4)$	3	$(5,5,3,2)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
-80	39	$(55,22,22,10,1)$	4	$(5,2,2,1)$
-80	39	$(50,20,20,9,1)$	4	$(5,2,2,1)$
-80	33	$(28,21,14,6,1)$	4	$(4,3,2,1)$
-80	11	$(15,10,8,5,2)$	3	$(3,2,2,1)$
-84	76	$(126,70,42,13,1)$	4	$(9,5,3,1)$
-84	62	$(105,60,30,14,1)$	4	(7, 4, 2, 1)
-84	62	$(98,56,28,13,1)$	4	(7, 4, 2, 1)
-84	61	$(70,60,40,9,1)$	4	$(7,6,4,1)$
-84	48	$(66,33,22,10,1)$	4	$(6,3,2,1)$
-84	44	$(45,36,18,8,1)$	4	$(5,4,2,1)$
-84	41	$(35,28,21,6,1)$	4	(5, 4, 3, 1)
-84	14	$(15,9,4,3,2)$	3	($5,3,2,1$)
-84	12	$(10,9,5,3,3)$	1	$(5,3,1,1)$
-84	12	$(6,5,5,2,2)$	2	$(5,3,1,1)$
-84	9	$(10,4,3,3,2)$	3	$(5,3,2,1)$
-84	8	$(9,8,4,3,3)$	2	$(4,3,1,1)$
-88	17	$(34,20,8,3,3)$	4	$(17,10,4,3)$
-90	24	$(15,15,10,4,1)$	4	$(3,3,2,1)$
-90	24	$(35,25,8,5,2)$	3	$(7,5,2,1)$
-90	8	$(9,4,3,3,2)$	2	$(3,2,1,1)$
-92	5	$(4,3,3,2,2)$	2	$(3,2,1,1)$
-96	147	$(405,270,108,26,1)$	4	$(15,10,4,1)$
-96	119	$(300,200,75,24,1)$	4	$(12,8,3,1)$
-96	119	$(288,192,72,23,1)$	4	$(12,8,3,1)$
-96	47	$(48,40,24,7,1)$	4	$(6,5,3,1)$
-96	43	$(60,30,20,9,1)$	4	$(6,3,2,1)$
-96	39	$(40,32,16,7,1)$	4	$(5,4,2,1)$
-96	33	$(45,18,18,8,1)$	4	(5, 2, 2, 1)
-96	31	$(96,64,21,8,3)$	3	$(12,8,3,1)$
-96	31	$(72,45,16,9,2)$	3	$(8,5,2,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
-96	27	$(24,18,12,5,1)$	4	$(4,3,2,1)$
-96	23	$(60,40,9,8,3)$	3	$(15,10,3,2)$
-96	19	$(30,15,9,4,2)$	4	(10, 5, 3, 2)
-96	19	$(15,10,10,4,1)$	4	$(3,2,2,1)$
-96	17	$(12,12,6,5,1)$	4	$(2,2,1,1)$
-96	17	$(14,14,7,6,1)$	4	$(2,2,1,1)$
-96	14	$(24,10,8,3,3)$	4	$(12,5,4,3)$
-96	11	$(18,8,4,3,3)$	2	$(6,4,1,1)$
-96	11	$(18,8,4,3,3)$	4	$(9,4,3,2)$
-96	11	$(8,3,3,2,2)$	2	$(4,3,1,1)$
-96	9	$(20,9,4,4,3)$	2	$(5,3,1,1)$
-96	7	$(8,6,4,3,3)$	1	$(4,2,1,1)$
-96	7	$(8,6,4,3,3)$	4	$(4,3,3,2)$
-96	7	$(9,6,4,3,2)$	3	$(3,2,2,1)$
-96	5	$(6,4,3,3,2)$	2	$(2,2,1,1)$
-96	5	$(6,4,3,3,2)$	3	$(3,3,2,1)$
-96	5	$(4,3,3,3,2)$	1	$(2,1,1,1)$
-104	17	$(12,8,8,3,1)$	4	$(3,2,2,1)$
-108	14	$(26,16,4,3,3)$	4	$(13,8,3,2)$
-108	13	$(10,10,5,4,1)$	4	$(2,2,1,1)$
-108	6	$(3,3,2,2,2)$	1	$(3,1,1,1)$
-112	20	$(49,21,14,12,2)$	4	$(7,3,2,2)$
-112	20	$(21,14,7,6,1)$	4	$(3,2,1,1)$
-112	20	$(24,16,8,7,1)$	4	$(3,2,1,1)$
-112	10	$(16,8,3,3,2)$	3	$(8,4,3,1)$
-112	7	$(20,8,5,5,2)$	2	$(4,2,1,1)$
-112	7	$(20,8,5,5,2)$	3	$(10,5,4,1)$
-120	109	$(240,128,96,15,1)$	4	$(15,8,6,1)$
-120	108	$(264,176,66,21,1)$	4	$(12,8,3,1)$
-120	76	$(132,72,48,11,1)$	4	$(11,6,4,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
-120	68	$(81,72,54,8,1)$	4	$(9,8,6,1)$
-120	65	$(110,55,44,10,1)$	4	(10, 5, 4, 1)
-120	49	$(72,36,27,8,1)$	4	$(8,4,3,1)$
-120	48	$(49,42,28,6,1)$	4	$(7,6,4,1)$
-120	47	$(77,44,22,10,1)$	4	$(7,4,2,1)$
-120	39	$(36,30,18,5,1)$	4	$(6,5,3,1)$
-120	38	$(36,30,24,5,1)$	4	$(6,5,4,1)$
-120	31	$(35,28,14,6,1)$	4	$(5,4,2,1)$
-120	29	$(25,20,15,4,1)$	4	$(5,4,3,1)$
-120	26	$(20,20,15,4,1)$	4	$(4,4,3,1)$
-120	26	$(16,16,12,3,1)$	4	$(4,4,3,1)$
-120	25	$(30,12,12,5,1)$	4	$(5,2,2,1)$
-120	25	(20, 14, 3, 3, 2)	3	$(10,7,3,1)$
-120	22	$(60,40,12,5,3)$	3	$(12,8,3,1)$
-120	22	$(40,25,8,5,2)$	3	$(8,5,2,1)$
-120	21	$(36,21,9,4,2)$	4	(12, 7, 3, 2)
-120	17	$(12,12,8,3,1)$	4	$(3,3,2,1)$
-120	17	$(18,12,6,5,1)$	4	$(3,2,1,1)$
-120	10	$(18,9,4,3,2)$	3	$(6,3,2,1)$
-120	10	$(8,8,4,3,1)$	4	$(2,2,1,1)$
-120	10	$(15,9,6,4,2)$	4	$(5,3,2,2)$
-120	9	$(25,10,8,5,2)$	3	$(5,2,2,1)$
-120	9	$(10,5,5,4,1)$	4	$(2,1,1,1)$
-120	9	$(12,6,6,5,1)$	4	$(2,1,1,1)$
-120	6	$(12,4,3,3,2)$	2	$(4,2,1,1)$
-120	6	$(12,4,3,3,2)$	3	$(6,3,2,1)$
-120	5	$(4,4,4,3,1)$	4	$(1,1,1,1)$
-120	5	$(5,5,5,4,1)$	4	$(1,1,1,1)$
-128	19	$(16,12,8,3,1)$	4	$(4,3,2,1)$
-128	7	$(8,4,4,3,1)$	4	$(2,1,1,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
-130	14	$(15,10,5,4,1)$	4	$(3,2,1,1)$
-132	56	$(90,50,30,9,1)$	4	$(9,5,3,1)$
-132	30	$(42,21,14,6,1)$	4	$(6,3,2,1)$
-132	14	$(21,15,4,3,2)$	3	(7,5,2,1)
-132	7	$(10,8,6,3,3)$	4	$(5,4,3,3)$
-132	4	(10, 3, 3, 2, 2)	2	$(5,3,1,1)$
-132	3	$(3,3,3,2,1)$	4	(1, 1, 1, 1)
-136	34	$(30,25,20,4,1)$	4	$(6,5,4,1)$
-138	14	$(9,9,6,2,1)$	4	$(3,3,2,1)$
-144	71	$(171,114,38,18,1)$	4	$(9,6,2,1)$
-144	71	$(162,108,36,17,1)$	4	$(9,6,2,1)$
-144	55	$(90,45,36,8,1)$	4	(10, 5, 4, 1)
-144	38	$(56,32,16,7,1)$	4	(7, 4, 2, 1)
-144	26	$(36,18,12,5,1)$	4	$(6,3,2,1)$
-144	26	$(81,54,16,9,2)$	3	$(9,6,2,1)$
-144	26	$(36,27,9,8,1)$	4	$(4,3,1,1)$
-144	26	$(40,30,10,9,1)$	4	$(4,3,1,1)$
-144	25	$(25,20,10,4,1)$	4	$(5,4,2,1)$
-144	23	$(20,16,12,3,1)$	4	$(5,4,3,1)$
-144	19	$(32,16,8,7,1)$	4	$(4,2,1,1)$
-144	19	$(36,18,9,8,1)$	4	$(4,2,1,1)$
-144	11	$(12,8,4,3,1)$	4	(3, 2, 1, 1)
-144	11	$(9,6,6,2,1)$	4	$(3,2,2,1)$
-144	7	$(6,6,3,2,1)$	4	$(2,2,1,1)$
-144	5	$(15,6,4,3,2)$	3	$(5,2,2,1)$
-144	5	$(6,3,3,2,1)$	4	(2, 1, 1, 1)
-150	29	$(30,25,15,4,1)$	4	$(6,5,3,1)$
-152	37	$(56,28,21,6,1)$	4	$(8,4,3,1)$
-152	17	$(25,10,10,4,1)$	4	$(5,2,2,1)$
-152	16	$(28,14,7,6,1)$	4	$(4,2,1,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
-156	176	$(609,406,174,28,1)$	4	$(21,14,6,1)$
-156	66	$(153,102,34,16,1)$	4	$(9,6,2,1)$
-156	21	$(63,42,12,7,2)$	3	$(9,6,2,1)$
-156	21	$(28,21,7,6,1)$	4	$(4,3,1,1)$
-156	8	$(18,6,6,5,1)$	4	$(3,1,1,1)$
-156	8	$(21,7,7,6,1)$	4	$(3,1,1,1)$
-160	59	$(110,60,40,9,1)$	4	$(11,6,4,1)$
-160	15	$(20,8,8,3,1)$	4	$(5,2,2,1)$
-168	86	$(204,136,51,16,1)$	4	$(12,8,3,1)$
-168	50	$(63,56,42,6,1)$	4	$(9,8,6,1)$
-168	32	$(48,24,18,5,1)$	4	$(8,4,3,1)$
-168	25	$(24,20,16,3,1)$	4	$(6,5,4,1)$
-168	20	$(30,15,10,4,1)$	4	$(6,3,2,1)$
-168	18	$(20,16,8,3,1)$	4	$(5,4,2,1)$
-168	17	$(24,18,6,5,1)$	4	$(4,3,1,1)$
-168	16	$(12,12,9,2,1)$	4	$(4,4,3,1)$
-168	13	$(12,9,6,2,1)$	4	$(4,3,2,1)$
-168	12	$(20,10,5,4,1)$	4	$(4,2,1,1)$
-168	12	$(24,15,4,3,2)$	3	$(8,5,2,1)$
-168	8	$(21,9,6,4,2)$	4	$(7,3,2,2)$
-168	8	$(9,6,3,2,1)$	4	$(3,2,1,1)$
-168	6	$(12,4,4,3,1)$	4	$(3,1,1,1)$
-168	2	$(2,2,2,1,1)$	4	$(1,1,1,1)$
-172	29	$(49,28,14,6,1)$	4	(7, 4, 2, 1)
-172	10	$(22,14,3,3,2)$	3	$(11,7,3,1)$
-180	26	$(42,24,12,5,1)$	4	(7, 4, 2, 1)
-180	24	$(50,30,10,9,1)$	4	$(5,3,1,1)$
-180	24	$(55,33,11,10,1)$	4	$(5,3,1,1)$
-180	17	$(15,12,9,2,1)$	4	$(5,4,3,1)$
-180	14	$(45,30,8,5,2)$	3	$(9,6,2,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	${ }^{i}$	\bar{w}
-180	14	$(20,15,5,4,1)$	4	$(4,3,1,1)$
-184	9	$(16,8,4,3,1)$	4	$(4,2,1,1)$
-192	77	$(180,96,72,11,1)$	4	$(15,8,6,1)$
-192	51	$(117,78,26,12,1)$	4	$(9,6,2,1)$
-192	47	$(88,48,32,7,1)$	4	$(11,6,4,1)$
-192	41	$(54,48,36,5,1)$	4	$(9,8,6,1)$
-192	35	$(63,35,21,6,1)$	4	$(9,5,3,1)$
-192	27	$(28,24,16,3,1)$	4	$(7,6,4,1)$
-192	21	$(24,20,12,3,1)$	4	$(6,5,3,1)$
-192	19	$(40,24,8,7,1)$	4	$(5,3,1,1)$
-192	16	$(24,12,8,3,1)$	4	$(6,3,2,1)$
-192	13	$(16,12,4,3,1)$	4	$(4,3,1,1)$
-192	11	$(30,20,4,3,3)$	4	$(15,10,3,2)$
-192	11	$(36,24,7,3,2)$	3	$(6,4,1,1)$
-192	8	$(6,4,4,1,1)$	4	$(3,2,2,1)$
-192	5	$(4,4,2,1,1)$	4	$(2,2,1,1)$
-192	3	$(9,3,3,2,1)$	4	$(3,1,1,1)$
-192	3	$(4,2,2,1,1)$	4	$(2,1,1,1)$
-200	25	$(40,20,15,4,1)$	4	$(8,4,3,1)$
-204	16	$(30,18,6,5,1)$	4	$(5,3,1,1)$
-204	14	$(42,28,8,3,3)$	4	$(21,14,4,3)$
-204	9	$(6,6,4,1,1)$	4	$(3,3,2,1)$
-216	92	$(240,160,64,15,1)$	4	$(15,10,4,1)$
-216	68	$(165,88,66,10,1)$	4	$(15,8,6,1)$
-216	66	$(156,104,39,12,1)$	4	$(12,8,3,1)$
-216	42	$(90,60,20,9,1)$	4	$(9,6,2,1)$
-216	36	$(45,40,30,4,1)$	4	$(9,8,6,1)$
-216	33	$(60,30,24,5,1)$	4	$(10,5,4,1)$
-216	33	$(50,25,20,4,1)$	4	$(10,5,4,1)$
-216	21	$(32,16,12,3,1)$	4	$(8,4,3,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
-216	18	$(18,15,12,2,1)$	4	$(6,5,4,1)$
-216	17	$(45,30,9,4,2)$	4	$(15,10,3,2)$
-216	17	$(18,15,9,2,1)$	4	$(6,5,3,1)$
-216	13	$(15,12,6,2,1)$	4	$(5,4,2,1)$
-216	9	$(15,6,6,2,1)$	4	$(5,2,2,1)$
-216	6	$(12,6,3,2,1)$	4	$(4,2,1,1)$
-224	17	$(28,16,8,3,1)$	4	(7, 4, 2, 1)
-228	12	$(18,9,6,2,1)$	4	$(6,3,2,1)$
-228	8	$(27,18,4,3,2)$	3	$(9,6,2,1)$
-228	8	$(12,9,3,2,1)$	4	$(4,3,1,1)$
-232	9	$(8,6,4,1,1)$	4	$(4,3,2,1)$
-232	5	$(6,4,2,1,1)$	4	$(3,2,1,1)$
-240	137	$(462,308,132,21,1)$	4	$(21,14,6,1)$
-240	34	$(81,54,18,8,1)$	4	$(9,6,2,1)$
-240	23	$(72,48,12,11,1)$	4	$(6,4,1,1)$
-240	23	$(78,52,13,12,1)$	4	$(6,4,1,1)$
-240	11	$(8,8,6,1,1)$	4	$(4,4,3,1)$
-240	9	$(20,12,4,3,1)$	4	$(5,3,1,1)$
-240	7	$(24,16,3,3,2)$	3	$(12,8,3,1)$
-252	76	$(210,140,56,13,1)$	4	$(15,10,4,1)$
-252	18	$(54,36,9,8,1)$	4	$(6,4,1,1)$
-252	18	$(21,18,12,2,1)$	4	$(7,6,4,1)$
-252	2	$(6,2,2,1,1)$	4	$(3,1,1,1)$
-256	23	$(40,20,16,3,1)$	4	(10, 5, 4, 1)
-264	48	$(108,72,27,8,1)$	4	(12, 8, 3, 1)
-264	28	$(63,42,14,6,1)$	4	$(9,6,2,1)$
-264	26	$(36,32,24,3,1)$	4	$(9,8,6,1)$
-264	20	$(36,20,12,3,1)$	4	$(9,5,3,1)$
-264	15	$(24,12,9,2,1)$	4	$(8,4,3,1)$
-264	15	$(42,28,7,6,1)$	4	$(6,4,1,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
-264	11	$(10,8,6,1,1)$	4	$(5,4,3,1)$
-272	7	$(10,4,4,1,1)$	4	$(5,2,2,1)$
-276	48	$(105,56,42,6,1)$	4	$(15,8,6,1)$
-276	6	$(15,9,3,2,1)$	4	$(5,3,1,1)$
-288	115	$(399,266,114,18,1)$	4	$(21,14,6,1)$
-288	63	$(165,110,44,10,1)$	4	$(15,10,4,1)$
-288	39	$(96,64,24,7,1)$	4	$(12,8,3,1)$
-288	23	$(44,24,16,3,1)$	4	$(11,6,4,1)$
-288	11	$(30,20,5,4,1)$	4	$(6,4,1,1)$
-288	11	$(21,12,6,2,1)$	4	$(7,4,2,1)$
-288	9	$(10,8,4,1,1)$	4	$(5,4,2,1)$
-288	4	$(8,4,2,1,1)$	4	$(4,2,1,1)$
-300	40	$(90,48,36,5,1)$	4	$(15,8,6,1)$
-300	15	$(27,15,9,2,1)$	4	$(9,5,3,1)$
-304	12	$(12,10,8,1,1)$	4	$(6,5,4,1)$
-312	34	$(84,56,21,6,1)$	4	$(12,8,3,1)$
-312	20	$(27,24,18,2,1)$	4	$(9,8,6,1)$
-312	18	$(45,30,10,4,1)$	4	$(9,6,2,1)$
-312	17	$(30,15,12,2,1)$	4	$(10,5,4,1)$
-312	11	$(12,10,6,1,1)$	4	$(6,5,3,1)$
-312	8	$(12,6,4,1,1)$	4	$(6,3,2,1)$
-312	8	$(24,16,4,3,1)$	4	$(6,4,1,1)$
-312	5	$(8,6,2,1,1)$	4	$(4,3,1,1)$
-336	95	$(315,210,90,14,1)$	4	$(21,14,6,1)$
-336	15	$(36,24,8,3,1)$	4	$(9,6,2,1)$
-348	12	$(14,12,8,1,1)$	4	$(7,6,4,1)$
-360	24	$(60,40,15,4,1)$	4	$(12,8,3,1)$
-360	16	$(33,18,12,2,1)$	4	$(11,6,4,1)$
-360	5	$(18,12,3,2,1)$	4	$(6,4,1,1)$
-368	10	$(16,8,6,1,1)$	4	$(8,4,3,1)$

Euler \#	$h^{1,1}$	$\hat{w}=\left(w_{1}, \ldots, w_{5}\right)$	i	\bar{w}
-372	80	$(273,182,78,12,1)$	4	$(21,14,6,1)$
-372	36	$(105,70,28,6,1)$	4	$(15,10,4,1)$
-372	8	$(14,8,4,1,1)$	4	$(7,4,2,1)$
-372	4	$(10,6,2,1,1)$	4	$(5,3,1,1)$
-384	25	$(60,32,24,3,1)$	4	$(15,8,6,1)$
-396	32	$(90,60,24,5,1)$	4	$(15,10,4,1)$
-408	18	$(48,32,12,3,1)$	4	$(12,8,3,1)$
-408	10	$(27,18,6,2,1)$	4	$(9,6,2,1)$
-420	10	$(18,10,6,1,1)$	4	$(9,5,3,1)$
-432	59	$(210,140,60,9,1)$	4	$(21,14,6,1)$
-432	13	$(18,16,12,1,1)$	4	$(9,8,6,1)$
-432	11	$(20,10,8,1,1)$	4	$(10,5,4,1)$
-456	22	$(60,40,16,3,1)$	4	$(15,10,4,1)$
-456	18	$(45,24,18,2,1)$	4	$(15,8,6,1)$
-456	14	$(36,24,9,2,1)$	4	$(12,8,3,1)$
-480	47	$(168,112,48,7,1)$	4	$(21,14,6,1)$
-480	47	$(147,98,42,6,1)$	4	$(21,14,6,1)$
-480	11	$(22,12,8,1,1)$	4	$(11,6,4,1)$
-480	3	$(12,8,2,1,1)$	4	$(6,4,1,1)$
-528	7	$(18,12,4,1,1)$	4	$(9,6,2,1)$
-552	15	$(45,30,12,2,1)$	4	$(15,10,4,1)$
-564	29	$(105,70,30,4,1)$	4	$(21,14,6,1)$
-612	12	$(30,16,12,1,1)$	4	$(15,8,6,1)$
-624	23	$(84,56,24,3,1)$	4	$(21,14,6,1)$
-624	9	$(24,16,6,1,1)$	4	$(12,8,3,1)$
-720	17	$(63,42,18,2,1)$	4	$(21,14,6,1)$
-732	10	$(30,20,8,1,1)$	4	$(15,10,4,1)$
-960	11	$(42,28,12,1,1)$	4	$(21,14,6,1)$

[^0]: \dagger email: hosono@sci.toyama-u.ac.jp
 \ddagger email: lian@max.math.brandeis.edu
 ${ }^{\diamond}$ email: yau@math.harvard.edu

