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A new geometric approach to problems in birational
geometry

Chen-Yu Chi and Shing-Tung Yau

1. Introduction

In this paper, we initiate a program to study problems in birational geometry.
This approach will be more geometric than other more algebraic approaches. Most
of the arguments can, however, be phrased in a purely algebraic way. It is quite
likely some of them can be applied to deal with the geometry over different ground
fields.

Given a projective varietyM , we shall study the geometric information pro-
vided by the pluricanonical space H0(M,mKM ). Note that the minimal model
program, as led by Mori, Kawamata, Kollár and others, has achieved great success.
While the earlier workers had solved the problem for threefolds completely, the
spectacular finite generation question was recently solved by several people, using
different approaches: the analytic approach due to Siu [14] and the algebraic ap-
proach due to Birkar, Cascini, Hacon and McKernan [1]. In our approach, instead
of using the full canonical ring, we shall focus our study on the pluricanonical space
for a fixed m.

Ideally, we would like to determine the birational type of our algebraic vari-
ety based on the information on this space only. Any birational transformations of
algebraic manifolds will induce a linear map between the corresponding pluricanon-
ical spaces (for each fixed m). The plurigenera are of course invariant under the
birational transformations. But more importantly, there are other finer invariants
that are preserved by these transformations. The most important ones are the nat-
ural normlike functions (called norms in this introduction) induced by integrating
over M the m-th root of the product of a m-pluricanonical form and its conju-
gate. The norm defines an interesting geometry which was not explored extensively
before.

In our work, we shall initiate a program to study this geometry. The first
major questions we address to are the following ones:

1. Torelli type theorem. Given two algebraic varietiesM andM ′, suppose
there is a linear map that defines an isometry (with respect to the norm mentioned
above) between the two normed vector spaces H0(M,mKM ) and H0(M ′,mKM ′).
We claim that with a few exceptional cases of M and M ′, the linear isometry is
induced by a birational map between M and M ′. This can be considered as a
Torelli type theorem in birational geometry.

We call this kind of theorem a Torelli type theorem because the classical
Torelli theorem says that the periods of integrals determine an algebraic curve.
This remarkable theorem was generalized to higher dimensional algebraic varieties.
The most notable one was the work of Piatetsky-Shapiro and Shafarevich [11] for
algebraic K3 surfaces, which was generalized to Kähler K3s by Burns-Rapoport
[2], where they proved the injectivity of period maps. The surjectivity of period
maps for K3 surfaces was done using Ricci flat metrics by Siu [13] and Todorov [16]
following the work of Kulikov [9] and of Perrson and Pinkham [10]. This phenomena
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of surjectivity is known to be rather generic, and in many cases the period map can
be proved to have degree one for hypersurfaces (see e.g. Donagi [5]).

2. Existence. Characterize geometrically and algebraically those normed
vector spaces that can be realized as the pluricanonical spaces of some algebraic
varieties the way above. Hopefully, there may be some effective way to construct
the birational models of these varieties.

3. Computation. In the case of the classical Torelli theorems, the periods
can be effectively computed by methods dated back to Picard, Leray, Dwork and
others. We hope to calculate these normed spaces effectively too. Some differential
geometric methods will be brought in.

4. Relations with questions of GIT and other invariants. Making use
of the pluricanonical series, we are able to form new invariant (pseudo-)metrics on
the algebraic manifolds. There should be some relationship between these metrics
and other well known canonical metrics such as Kähler-Einstein metrics. We hope
to build up a link between our approach with other metrical approaches to algebraic
geometry.

In this paper, we shall prove that when |mKM | has no base point and defines
a birational map, the normed space is indeed powerful enough to determine the
birational type of the algebraic varieties. We can achieve this when m is large
enough (depending on the dimension ofM only). Indeed we prove a Torelli theorem
that is described in 1 under rather general assumptions. We should say that in case
the manifold is one dimensional and m = 2, the problem was treated by Royden in
his study of the biholomorphic transformations of Teichmüller space. We think it
is possible to generalize Royden’s work to higher dimensional manifolds.

We shall study 2 by using a more differential geometric approach. We here
outline what kind of metric we can obtain. At every point η0 ∈ H0(M,mKM ) and
η1, η2 ∈ H0(M,mKM ), viewed as two tangent vectors at η0 in H0(M,mKM ), we
define a hermitian metric

h(η1, η2) =

∫

M

η1
η0

(
η2
η0

)
〈η0〉m

where η1
η0

and η2
η0

are viewed as meromorphic functions onM and 〈η0〉m is a real non-

negative continuous (n, n)-form as defined in 2.1. H0(M,mKM ) is then given with
the structure of a hermitian manifold. This hermitian structure is closely related
to the norm we mentioned above. Actually the norm function on H0(M,mKM ) is
the Kähler potential of this hermitian metric in a suitable sense. More details will
be given in [4].

2. Pseudonorms on H0(M,mKM ) and their asymptotic properties

2.1. The pseudonorm 〈〈 〉〉m. Let M be a complex manifold of dimension n. To
every η ∈ H0(M,mKM ) we can associate a real nonnegative continuous (n, n)-form
on M , denoted as 〈η〉m, as follows:

let U = {(U, (wjU = ujU + ivjU )
n
j=1)} be an open cover of M of coordinate

charts. If η|U = ηU (dw
1
U ∧ · · · ∧ dwnU )

⊗m with ηU ∈ OM (U), we can define on U a
real nonnegative continuous (n, n)-form

〈η|U 〉m = |ηU |
2
m du1U ∧ dv1U · · · ∧ dunU ∧ dvnU
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and can verify that {〈η|U 〉m}U∈U does give a globally defined form, denoted as 〈η〉m.
It is routine to see that this definition does not depend on the choice of U .

If M is compact, we define

〈〈η〉〉m =

∫

M

〈η〉m

and will abbreviate it as 〈〈η〉〉 if m is clear in the context. Therefore, for a compact
complex manifold M we have defined a function

〈〈 〉〉 : H0(M,mKM ) → R≥0

and will call it the pseudonorm associated to mKM .
From the fact that |a + b|α ≤ |a|α + |b|α for any 0 < α < 1 and a, b ∈ C

we can verify the triangle inequality 〈〈η1 + η2〉〉 ≤ 〈〈η1〉〉 + 〈〈η2〉〉 for any η1, η2 ∈
H0(M,mKM ). From the definition 〈〈η〉〉 = 0 if and only if η = 0 ∈ H0(M,mKM ).

However, 〈〈cη〉〉 = |c|
2
m 〈〈η〉〉 for c ∈ C, which shows that 〈〈 〉〉 is not a norm if

m 6= 2.
We define a metric space structure on H0(M,mKM ) using 〈〈 〉〉 by

d(η1, η2) = 〈〈η1 − η2〉〉 for any η1, η2 ∈ H0(M,mKM ).

H0(M,mKM ) so metrized will be denoted as
(
H0(M,mKM ), 〈〈 〉〉

)
.

If ϕ : M ′
99K M is a birational map, then the induced isomorphism Φ :(

H0(M,mKM ), 〈〈 〉〉
)
→

(
H0(M ′,mKM ′), 〈〈 〉〉

)
is an isometry.

2.2. A local asymptotic expansion. We will state the main local asymptotic
result, whose proof can be found in [3], and then deduce from it the global one in
the next section, namely the asymptotic property of 〈〈 〉〉.

We first settle the notation as follows:

n,m ∈ N, m > 2, ∆0 = {(z1, . . . , zn) ∈ Cn| |zj| < 1, j = 1 . . . , n},

χ(x1, y1, . . . , xn, yn) ∈ C∞(∆0), φ(z1, . . . , zn) ∈ O(∆0),

A = (a1, . . . , an), B = (b1, . . . , bn) ∈ (N ∪ {0})n,

lj =
bj+1
aj

if aj 6= 0 and = ∞ otherwise, j = 1, . . . , n.

l = min {lj| j = 1, . . . , n},

Assume that l(A,B) = l1 = · · · = lµ(A,B) < lµ(A,B)+1 ≤ · · · ≤ ln. Notice that
l(A,B) and µ(A,B) only depend on the multi-indices A and B. If A and B are
clear in our arguments we will denote l(A,B) and µ(A,B) by l and µ respectively.

We abbreviate (x1, y1, . . . , xn, yn), (z1, . . . , zn), z
a1
1 . . . zann , |z1|

b1 . . . |zn|
bn ,

and dx1dy1 . . . dxndyn as (X,Y ), Z, ZA, |Z|B, and dX dY respectively. Let

Ψ(t) =

∫

∆0

χ(X,Y )
∣∣ZA + tφ(Z)

∣∣ 2
m
∣∣Z

∣∣2BdXdY .
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Theorem 2.2.1.

Ψ(t)−Ψ(0) =





O
(
|t|
(
ln 1

|t|

)µ)
if 2l + 2

m
≥ 1;

c(A,B, φ) |t|2l+
2
m

(
ln 1

|t|

)µ−1

+o
(
|t|2l+

2
m

(
ln 1

|t|

)µ−1
) if 2l+ 2

m
< 1,

where c(A,B, φ) is a real number depending on φ. In the last case we have c(A,B, φ) ≥
0, and

c(A,B, φ) = 0 ⇐⇒ φ(0, . . . , 0, zµ+1, . . . , zn) ≡ 0.

Remark 2.2.2. More specific information when 2l + 2
m

≥ 1 can be given. We

actually can show that when k < 2l+ 2
m
< k+1 where k ∈ N, Ψ(j)(0) exists for j ≤

k. In addition, we get in this case an asymptotic expansion for Ψ(t)−
k∑
j=0

Ψj(0)
j! tj.

We will not need these in this paper so we omit them here. For more detail see [3].

In 2.4 we will apply this result to obtain the main global result. Let
η0, η ∈ H0(M,mKM ). We hope to describe the asymptotic behavior of 〈〈η0 + tη〉〉
as t→ 0.

2.3. The characteristic index and indicatrix. Before getting into the deduc-
tion of the global asymptotic expansion, we introduce several quantities measuring
how singular a divisor is at a point in the ambient space.

Let M be a smooth variety, D a nonzero effective divisor on M . (In 2.4 D
will be chosen to be {η0 = 0} for the η0 ∈ H0(M,mKM ) we consider.) We first

choose a log resolution π : M̃ →M for the pair (M,D) and write

π∗D =
∑

E

aEE and KfM
= π∗KM +

∑

E

bEE,

where E runs over all irreducible subvarieties of M̃ of codimension 1.

Definition 2.3.1. (1) For every x ∈ M the log canonical threshold of D at x,
denoted as lct(D, x), is given by

lct(D, x) = min
{E|x∈π(E)}

bE + 1

aE
.

We also have the global log canonical threshold of D,

lct(D) = min
E

bE + 1

aE
.

It is clear that lct(D) = min
x∈M

lct(D, x).

(2) For every x ∈ M the log canonical multiplicity of D at x, denoted as
µ(D, x), is given by

µ(D, x) = max

{
q

∣∣∣∣∣
There exist distinct irreducible divisors E1, . . . , Eq in M̃

such that
bEj

+1

aEj

= lct(D, x) for all j and x ∈ π(∩Ej).

}
.
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(3) The characteristic index of D at x is the pair (lct(D, x), µ(D, x)). Con-
sider the following total order:

(l1, µ1) > (l2, µ2) ⇐⇒





l1 = l2 and µ1 > µ2

or
l1 < l2

The global characteristic index of D, denoted as
(
lct(D), µ(D)

)
, is given by

(
lct(D), µ(D)

)
= sup

p∈M

(
lct(D, p), µ(D, p)

)
.

(4) We define the characteristic indicatrix of (M,D), denoted as C(D), to
be the set of points achieving global characteristic index, i.e.

C(D) =
{
x ∈M

∣∣ (lct(D, x), µ(D, x)
)
=

(
lct(D), µ(D)

)}
.

Notice that in general C(D) is different from the minimal log canonical centers of
D.

The total order defined here is adapted to the comparison of the asymptotic
order of functions of the form |t|l

(
ln 1

|t|

)µ
. We have

|t|l
′

(
ln

1

|t|

)µ′

= o

(
|t|l

(
ln

1

|t|

)µ
)

if (l, µ) > (l′, µ′).(1)

Let E be the set of all irreducible divisors E such that bE+1
aE

= lct(D),

M̃D,r =
⊔

E1,...,Er: distinct in E

E1 ∩ · · · ∩ Er,

and ιr : M̃D,r → M̃ the canonical morphisms induced by inclusions. We have

µ(D) = sup{r| M̃D,r 6= φ} and C(D) = πιµ(D)(M̃D,µ(D)).(2)

The log canonical thresholds is well defined, namely it is independent of the
choice of log resolutions. In fact

lct(D, x) = inf{c > 0|J (M, cD)x 6= OM,x},

and the multiplier ideal sheaves J (M, cD) do not depend on the log resolution we
choose.

This also gives the basic inequality

lct(D, x) ≤
n

multxD
(3)

(by taking a blow-up Blx(M) →M followed by a log resolution).

Remark 2.3.1. In the rest of the paper we do not need µ(D, x) and C(D) to be
independent of the choice of log resolution. For each divisor D we can simply choose
a fixed resolution to define µ(D, x) and C(D). However, they can indeed be defined
in terms of some resolution free ideal sheaves, hence are both independent of the
choice of resolution (see [3]). Instead of giving a formal proof of this independence
here, we would like to point out that one can see this, at least analytically, by using
Theorem 2.2.1 for the case χ = φ ≡ 1 and that pulling back a differential form by
an analytic modification does not change its integral.
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Remark 2.3.2. The characteristic index is a finer measurement of singularity
than lct is. For example, lct alone can not tell between a reduced non-smooth s.n.c.
divisor and a smooth divisor. Higher characteristic indices correspond to worse
singularities. In this sense, the characteristic indicatrix C(D) is the set of points
at which the pair (M,D) is the most singular.

2.4. The asymptotic property of 〈〈 〉〉m. In this subsection we assumeM to be

compact. We first give the local setting. As in 2.1, let U = {(U, (wjU )
n
j=1)} be a fi-

nite open cover of coordinate charts on M . We choose a log resolution π : M̃ →M
for (M,Dη0 = {η0 = 0}) and a finite refinement V = {(V, ZV = XV + iYV )}

of π−1U = {π−1U} formed by charts in M̃ , where ZV and (XV , YV ) abbreviate
(z1V , . . . , z

n
V ) and (x1V , y

1
V . . . , x

n
V , y

n
V ) respectively. Let τ : V → U be such that

π(V ) ⊂ τ(V ). Finally, we choose a partition of unity {χV (XV , YV )} subordinate
to V . V and {χV } can be so chosen that

(i) the image of ZV : V → Cn is ∆0 = {(z1, . . . , zn) ∈ Cn| |zj| < 1 for all j};

(ii) if U = τ(V ), then

π∗(dw1
U ∧ · · · ∧ dwnU ) =

(
jV (ZV )

)
ZBV

V dz1V ∧ · · · ∧ dznV

for some nonvanishing jV ∈ O(∆0) (hence all its derivatives are bounded) and
multi-index BV = (b1V , . . . , b

n
V ) ∈ (N ∪ 0)n;

(iii) following the notation in (ii), we have

π∗η0 = cV (ZV )
(
jV (ZV )

)m
ZAV +mBV

V (dz1V ∧ · · · ∧ dznV )
⊗m

and

π∗η = cV (ZV )
(
jV (ZV )

)m
φV (ZV )Z

mBV

V (dz1V ∧ · · · ∧ dznV )
⊗m

where φV and cV ∈ O(∆0), cV is nonvanishing, and AV = (a1V , . . . , a
n
V ) ∈ (N∪0)n;

(iv) for each V we have l1V = · · · = lµV

V < lµV +1
V ≤ · · · ≤ lnV , where l

j
V =

b
j
V +1

a
j

V

.

(v) χV (0, 0) 6= 0 for every V .

Remark 2.4.1. In (ii) and (iii) and in the following proof of Theorem 2.4.2 we

will have to consider two different kinds of pullbacks via π : M̃ → M of ele-
ments in H0(M,KM ), and it is important not to mix them up. The first one

is π∗ : H0(M,mKM ) → H0(M̃,mKfM
) which acts on KM as the usual pullback

of differential forms via the map π. The second one is π∗∗ : H0(M,mKM ) →

H0
(
M̃, π∗(mKM )

)
, the usual pullback map from the sections of a vector bundle to

those of its pullback bundle via a map.

In terms of the V and χV chosen above we can write

〈〈η0 + tη〉〉 =
∑

V ∈V

∫

∆0

(
χV |cV |

2
m |jV |

2
)∣∣ZAV

V + tφV
∣∣ 2
m
∣∣ZV

∣∣2BV
dXV dYV .

Our main asymptotic result for 〈〈 〉〉m is the following
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Theorem 2.4.2. Given η0, η ∈ H0(M,mKM ), let (l, µ) =
(
lct(Dη0), µ(Dη0)

)
and

C(Dη0) be defined as in 2.3. We have

〈〈η0 + tη〉〉 − 〈〈η0〉〉 =





O
(
|t|
(
ln 1

|t|

)µ)
if 2l+ 2

m
≥ 1;

c(η0, η) |t|
2l+ 2

m

(
ln 1

|t|

)µ−1

+o
(
|t|2l+

2
m

(
ln 1

|t|

)µ−1
) if 2l+ 2

m
< 1,

where c(η0, η) is a real number depending on η0 and η. In the last case we have
c(η0, η) ≥ 0, and

c(η0, η) = 0 ⇐⇒ η vanishes on C(Dη0 ).

Proof. Following the notation at the beginning of 2.2, for each V ∈ V we obtain
correspondingly a pair (lV , µV ). It is clear that (l, µ) = sup

V

(lV , µV ) according to

the total order we introduced in 2.3(3). For each V , applying Theorem 2.2.1 to the

case χ = χV |cV |
2
m |jV |

2, φ = φV , A = AV and B = BV , and then summing up the
corresponding asymptotic expansions, we obtain the expected expansion.

For the statement about c(η0, η), notice that, by (2.1), only those V with
(lV , µV ) = (l, µ) will contribute to c(η0, η). More precisely,

c(η0, η) =
∑

{V |(lV ,µV )=(l,µ)}

c(AV , BV , φV ).

By Theorem 2.2.1 we know that c(η0, η) ≥ 0 and

c(η0, η) = 0

⇔
c(AV , BV , φV ) = 0 for all V
such that (lV , µV ) = (l, µ)

⇔
φV (0, . . . , 0, z

µ+1
V , . . . , znV ) ≡ 0

for all V such that (lV , µV ) = (l, µ).

We know that ιµ(M̃D,µ) (see (2.2)) is defined by z1V = · · · = zµV = 0 in every such
V . Regarding the conditions (ii) and (iii) above satisfied by the V we choose, the

last statement is equivalent to saying that p∗∗η vanishes on ιµ(M̃D,µ). This is the

same as saying that η vanishes on πιµ(M̃D,µ) = C(Dη0). �

3. Identifying the Images of Rational Maps ϕ|mKM |

We still assume M to be compact. In this section we are going to use
Theorem 2.4.2 to study the image of the rational map ϕ = ϕ|mKM | associated to
the linear system |mKM |.

Let B = Bs|mKM |. First we recall the definition of ϕ. It is given by

ϕ : M 99K PH0(M,mKM )∗

x 7−→

{
η ∈ H0(M,mKM )

∣∣ η(x) = 0
}
viewed

as a hyperplane of H0(M,mKM ).
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Notice that ϕ is defined only for x ∈ M − B. (Otherwise {η| η(x) = 0} =
H0(M,mKM ) is not a hyperplane.) In general, for any hyperplaneH inH0(M,mKM )
we have

H
α

⊆ {η| η|Bs|H|
≡ 0} = {η| η|Bs|H|−B

≡ 0}
β

⊆ H0(M,mKM )

and Bs|H | −B = ϕ−1(H). Therefore

H is in the image of ϕ⇐⇒ Bs|H | −B 6= φ⇐⇒ β is (

⇐⇒ α is an equality ⇐⇒ H = {η| η|Bs|H|−B
≡ 0}.

(4)

Question: Given H in the image of ϕ, can we characterize H by a subset of the
hyperplane in H0(M,mKM ) it represents and metrical properties of 〈〈 〉〉?

Idea: If we can find η0 ∈ H0(M,mKM ) such that 2lct(Dη0) +
2
m
< 1 and φ 6=

C(Dη0)−B ⊆ Bs|H | −B, then

H
(3.1)
= {η| η|Bs|H|−B

≡ 0} ⊆ {η| η|C(Dη0 )−B
≡ 0}

( H0(M,mKM ) since C(Dη0)−B 6= φ,

hence the ⊆ above is actually an equality, and by Theorem 2.4.2

H = {η| η|C(Dη0 )−B
≡ 0} = {η| η|C(Dη0 )

≡ 0} = {η| c(η0, η) = 0}.

We know that c(·, ·) can be read off from 〈〈 〉〉.

Definition 3.1. We say that property (CS) (standing for ”concentrating singu-
larities”) holds for mKM if for a generic H in the image of ϕ there exists η0 ∈
H0(M,mKM ) such that 2lct(Dη0) +

2
m
< 1 and φ 6= C(Dη0)−B ⊆ Bs|H | −B.

The following is the main ingredient in using metrical properties of pseudonorms
to identify images of rational maps of the form we consider above.

Lemma 3.1. Let M , M ′ be compact complex manifolds. If (CS) holds for both
mKM and mKM ′ and

ι :
(
H0(M,mKM ), 〈〈 〉〉m

)
→

(
H0(M ′,mKM ′), 〈〈 〉〉m

)

is a linear isometry, then the isomorphism induced by ι,

I : PH0(M,mKM )∗ → PH0(M ′,mKM ′)∗,

maps the closure of the image of ϕ|mKM | isomorphically onto that of ϕ|mKM′ |.

Proof. By symmetry, it suffices to prove that I maps a generic point in the image
of ϕ|mKM | into that of ϕ|mKM′ |.

By (CS), for a genericH in the image of ϕ we select a section η0 ∈ H0(M,mKM )
such that 2lct(Dη0) +

2
m
< 1 and φ 6= C(Dη0)−B = Bs|H | −B. We already know

from Idea that H =
{
η ∈ H0(M,mKM )

∣∣ c(η0, η) = 0
}
.

By the definition of I and the fact that ι is a linear isometry,

I(H) =
{
ι(η) ∈ H0(M ′,mKM ′)

∣∣ c(η0, η) = 0
}

=
{
ι(η) ∈ H0(M ′,mKM ′)

∣∣ c(ιη0, ιη) = 0
}

=
{
η′ ∈ H0(M ′,mKM ′)

∣∣ c(ιη0, η′) = 0
}
.
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By the first ⇐⇒ in (3.1), showing that I(H) is in the image of ϕ′ = ϕ|mKM′ | is
equivalent to showing that Bs|I(H)| −B′ 6= φ, where B′ = Bs|mKM ′ |.

By Theorem 2.4.2, C(Dιη0) ⊆ Bs|I(H)|, hence it suffices to prove C(Dιη0) *
B′. Assume this to be false, i.e. C(Dιη0) ⊆ B′. Since ι is an isometry, ιη0 has the
same asymptotic behavior as that of η0, hence 2lct(Dιη0)+

2
m

= 2lct(Dη0)+
2
m
< 1.

Theorem 2.4.2 then implies that
{
η′
∣∣ c(ιη0, η′) = 0

}
= H0(M ′,mKM ′), which is

also I(H) as shown in last paragraph, a contradiction. �

A more general image identifying result using the pseudonorms can be found
in [3] and [4].

Remark 3.1. The more detailed asymptotic expansions which are mentioned in
Remark 2.2.2 actually allow us to remove the condition 2lct(Dη0) +

2
m
< 1 in the

definition of (CS). This is useful in getting better uniform bounds for the results in
4. See [3].

4. Birational Equivalence between Smooth Varieties of General

Type

In this section M will be a smooth compact complex manifold such that the
rational map ϕ|mKM | maps M to its image birationally for sufficiently large m. We
want to know for which r ∈ N (CS) holds for rKM .

In case rKM maps M birationally to its image, the condition (CS) admits
an equivalent statement in terms of points in M instead of those in the image. It
is clear that in this case (CS) can be restated in the following way:

(CS) For a generic point x in M there exists η0 ∈ H0(M, rKM ) such that

(lct(Dη0 , x), µ(η0, x)) > (lct(Dη0 , y), µ(η0, y))

for any y 6= x and (2lct(Dη0) +
2
m

=) 2lct(Dη0 , x) +
2
m
< 1.

Definition 4.1. (i) For any x ∈M we define

V (r, x) =

{
η ∈ H0(M, rKM )

∣∣ multxη ≥
2nr

r − 2

}
.

(ii)

SM =

{
3 ≤ r ∈ N

∣∣∣∣
(i) Bs|rKM | = φ, and
(ii) for a generic x ∈M Bs|V (r, x)| = {x}.

}

Remark 4.1. (ii) in particular implies that ϕ = ϕ|rKM | maps M birationally to
its image. Indeed for a generic x ∈M

ϕ−1ϕ(x) = ϕ−1({η ∈ H0(M, rKM )|η(x) = 0})

= Bs
∣∣{η ∈ H0(M, rKM )|η(x) = 0}

∣∣ ⊆ Bs|V (r, x)| = {x}.

Lemma 4.1. If r ∈ SM then (CS) holds for rKM .

Proof. (ii) and Bertini’s theorem imply that for a generic x ∈ M there is η0 ∈
H0(M, rKM ) such that multxη0 ≥ 2nr

r−2 and multyη0 ≤ 1 for y 6= x. This shows that

lct(Dη0 , y) = 1 or ∞ and by (2.3) that lct(Dη0 , x) ≤
n

multxη0
< r−1

2r = 1
2 − 1

r
< 1

2 .

It is clear from Definition 2.3.1(3) that

(lct(Dη0 , x), µ(η0, x)) > (lct(Dη0 , y), µ(η0, y)).
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Besides, 2lct(Dη0 , x) +
2
r
< 2n(r−2)

2nr + 2
r
= 1. �

Lemma 4.2. SM is a semigroup, i.e. (r1 + r2) ∈ SM if r1, r2 ∈ SM .

Proof. Condition (i) obviously holds for (r1 + r2) if it does for r1 and r2. As for
condition (ii), for x in some Zariski open subset U ⊆ M we have Bs|V (r1, x)| =
Bs|V (r2, x)| = {x} since r1 and r2 ∈ SM . We want to show that for x ∈ U ,
y /∈ Bs|V (r1 + r2, x)| if y 6= x. By Bertini’s theorem we can find ηj ∈ V (rj , x) such
that ηj(y) 6= 0 for j = 1, 2. Let η = η1 ⊗ η2 ∈ H0(M, (r1 + r2)KM ). We have

multxη = multxη1 +multxη2 >
2nr1
r1 − 2

+
2nr2
r2 − 2

>
2n(r1 + r2)

r1 + r2 − 2

by the fact that x+y
x+y−2 <

x
x−2 + y

y−2 if x, y ≥ 3. Therefore η ∈ V (r1 + r2, x) and

η(y) 6= 0. So y /∈ Bs|V (r1 + r2, x)|. �

Lemma 4.3. Suppose Bs|mKM | = φ and ϕ|mKM | maps M onto its image in

PH0(M,mKM )∗ birationally. Then νm ∈ SM for any integer ν ≥ 2n+ 1.

Proof. Condition (i) in the definition of SM obviously holds. Only (ii) needs to be
verified.

Since ϕ|mKM | maps M to its image birationally, we can find Zariski open
subsets U0 and U of M and the image of ϕ|mKM | respectively such that ϕ|mKM | :

U0 = ϕ−1
|mKM |(U)

∼
→U .

We want to show that y /∈ Bs|V (νm, x)| if y 6= x (i.e. (ii)) for x ∈ U0.
By the choice of U0 it is clear that Bs

∣∣{η ∈ H0(M,mKM )| η(x) = 0}
∣∣ = {x}.

Therefore, for any y 6= x there exists η ∈ H0(M,mKM ) such that η(x) = 0 and
η(y) 6= 0. Taking η0 = η⊗ν ∈ H0(M, νmKM ), we have η ∈ V (νm, x) since

multxη0 = νmultxη ≥ ν >
2nνm

νm− 2

when ν > 2n+ 1. So y /∈ Bs|V (νm, x)|. �

Lemma 4.4. Let M be a nonsingular complex projective variety of general type
and of dimension n. Let d ∈ N be such that Bs|mdKM | = φ for m ≥ m0. Then
there exists r0 ∈ N depending only on m0 and n such that rd ∈ SM if r ≥ r0.

Proof. It is proved in [6] and [15] that for each n ∈ N there exists mn ∈ N such
that if M is a smooth projective variety of general type and of dimension n then
the rational map ϕ|mKM | maps M to its image birationally for any m ≥ mn.

Choose distinct prime numbersm,m′, ν and ν′ such thatm,m′ ≥ max{mn

d
,m0},

ν and ν′ > 2n+1. Then Lemma 4.3 implies that mνd and m′ν′d ∈ SM and Lemma
4.2 implies the lemma. �

Our main theorem is the following

Theorem 4.1. Let M and M ′ be smooth complex projective varieties of general
type and of dimension n and d ∈ N such that Bs|mdKM | = Bs|mdKM ′ | = φ for
m ≥ m0. Let r0 ∈ N as given by Lemma 4.4.

If for some r ≥ r0 we have a linear isometry

ι :
(
H0(M, rdKM ), 〈〈 〉〉

)
→

(
H0(M ′, rdKM ′), 〈〈 〉〉

)

then there exists a unique birational map ψ : M 99K M ′ and c ∈ C with |c| = 1
such that cι = ψ∗, the isomorphism induced by ψ.
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Proof. Lemma 4.1 and Lemma 4.4 together imply the (CS) holds for ρdKM and
ρdKM ′ if ρ ≥ r0. By Lemma 4.4 and Remark 4.2 ϕ|rdKM | and ϕ|rdKM′ | map M
and M ′ birationally to their images respectively. Denote the isomorphism induced
by ι as

I : PH0(M, rdKM )∗ → PH0(M ′, rdKM ′)∗.

The assumption and Lemma 3.1 implies that I identifies the images of ϕ|rdKM |

and ϕ|rdKM |. Therefore we obtain a unique birational map ψ making the following
diagram of rational maps commutative:

M
ψ

//

φ|rdKM |

��

M ′

φ|rdK
M′ |

��

PH0(M, rdKM )∗
I

// PH0(M ′, rdKM ′ )∗

Let ψ∗ : H0(M, rdKM ) → H0(M ′, rdKM ′ ) be the isomorphism induced
by ψ. It is an isometry with respect to 〈〈 〉〉rd. Since ψ∗ and ι both induce
I : PH0(M, rdKM )∗ → PH0(M ′, rdKM ′)∗, there is c ∈ C such that cι = ψ∗. Both
ι and ψ∗ are isometries with respect to those 〈〈 〉〉s, hence |c| = 1. �

Using this theorem we can obtain several uniform results. For example, in
the case n = 2, we can even have r0 depending only on n. The reason is that it is
enough to prove the theorem for M and M ′ both minimal models. By the classical
results due to Bombieri and Kodaira Bs|mKM | = Bs|mKM ′ | = φ if m ≥ 5.
The proof of Lemma 4.4 shows that S, the additive semigroup of N generated by
{ab | a, b ∈ N, a ≥ 5, b ≥ 6}, is contained in SM . It is not hard to see that m ∈ S
for any m ≥ 75, and hence r0 can be chosen to be 75. Then we can take d = 1 and
m0 = 5 in Theorem 4.1 and get the following

Theorem 4.2. Given a linear isometry

ι :
(
H0(mKM ), 〈〈 〉〉

)
→

(
H0(mKM ′), 〈〈 〉〉

)

for some m ≥ 75, there exists a unique pair of a birational map ψ : M ′
99KM and

a complex number c of unit length such that ψ∗, the isomorphism induced by ψ, is
equal to cι.

For higher dimensions, in the same spirit we obtain the following

Theorem 4.3. There exists r0 ∈ N which depends on n, such that for any two
smooth complex projective varieties M and M ′ of general type and of dimension
n which both admit smooth minimal models, if for some r ≥ r0 we have a linear
isometry

ι :
(
H0(M, 2r(n+ 2)!KM ), 〈〈 〉〉

)
→

(
H0(M ′, 2r(n+ 2)!KM ′), 〈〈 〉〉

)

then there exists a unique birational map ψ : M 99K M ′ and a unique complex
number c of unit length such that ψ∗, the isomorphism induced by ψ, is equal to cι
.

Proof. As remarked in the paragraph before Theorem 4.2 we may assume that M
and M ′ are both minimal models, i.e. KM and KM ′ are both nef.

Kollár’s effective base freeness theorem ([8], 1.1 Theorem) says that if a
log pair (X,∆) is proper and klt of dimension n, L a nef Cartier divisor on X , and
a ∈ N such that aL−(KX+∆) is nef and big, then |2(n+2)!(a+n)L| is base point
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free. Applying this to the case X = M (resp. M ′), ∆ = 0, L = KM (resp. KM ′)
and a ≥ 2 we have that Bs|2m(n+2)!KM | = Bs|2m(n+2)!KM ′ | = φ if m ≥ n+2.

Therefore we may take d = 2(n + 2)! and m0 = n + 2 in Lemma 4.4 and
Theorem 4.1, and then the theorem follows. �

Remark 4.2. It is shown in [1] that every variety of general type admits a mini-
mal model. However in the proof above the smoothness of the minimal models are
required.

Here, in order to illustrate how the main idea goes, we only deal with the
case when suitable base point free conditions hold. The presence of base loci is
another technical issue. By a careful analysis and modification of the results in
2, a suitable use of the effective base point freeness, and the existence of minimal
models for varieties of general type, we are still able to say something for the general
case. The following theorems 4.4 and 4.5 are the precise results whose proofs can
be found in [3] and [4].

We first recall some facts about the minimal models. It is known that every
projective manifold X of general type admits a minimal model Y with KY Q-
Cartier[1]. The index of Y is defined as jY = min{j | jKY is Cartier}. It is also
known that any two birational minimal models have the same index. Hence we can
define the index of a projective manifold to be that of any of its minimal models.
We have the following

Theorem 4.4. ([3] and [4]) For every natural number j there exists rn,j which
depends only on n and j such that given any two n-dimensional projective manifolds
M and M ′ with indices j, and a linear isometry

ι :
(
H0(M, 2r(n+ 2)!KM ), 〈〈 〉〉

)
→

(
H0(M ′, 2r(n+ 2)!KM ′), 〈〈 〉〉

)

for some r ≥ rn,j, there exists a unique birational map ψ :M ′
99KM and a unique

complex number c of unit length such that the induced map ψ∗ is equal to cι.

The number rn,j in this theorem depends not only on the dimension n but
also on the index of minimal models. To get a uniform result in higher dimensional
cases, we need to introduce some objects here. Let

V (M,m, r) = image
(
SymrH0(M,mKM ) → H0(M, rmKM )

)

for any m, r ∈ N, where the map is the canonical one. V (M,m, r) inherits from(
H0(M, rmKM ), 〈〈 〉〉rm

)
a pseudonorm, still denoted as 〈〈 〉〉rm. It is clear that(

V (M,m, r), 〈〈 〉〉rm
)
is a birational invariant.

Recall also the definition ofmn in the proof of Lemma 4.4, which is a number
such that φ|mKM | maps M birationally to its image for every m ≥ mn. With these
notions, we can also prove the following result :

Theorem 4.5. ([3] and [4]) Given a linear isometry

ι :
(
V (M,m, r), 〈〈 〉〉

)
→

(
V (M ′,m, r), 〈〈 〉〉

)

for some r ≥ 2n+1 and m ≥ mn, there exists a unique birational map ψ :M ′
99KM

and a unique complex number c of unit length such that the induced map ψ∗ is equal
to cι.

Remark 4.3. Many of the results in this paper have a more general version for
L+mKM where L is a hermitian line bundle (see [3]).
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