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Abstract

We show how two topologically distinct spaces - the Kähler K3 × T 2 and the non-

Kähler T 2 bundle over K3 - can be smoothly connected in heterotic string theory. The

transition occurs when the base K3 is deformed to the T 4/ZZ2 orbifold limit. The orbifold

theory can be mapped via duality to M-theory onK3×K3 where the transition corresponds

to an exchange of the two K3’s.
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1. Introduction

Background geometry affects strings and point particles very differently. From the

many well-studied string dualities, we know that string theories on different geometrical

spaces can be dual, that is identical up to some identification. Moreover, string theory

can also smoothly connect topologically different spaces. Some of these string transitions,

for example those of flops [1,2,3] and conifolds [4,5,6,7], have geometrical origins and are

closely related to the mathematics of singularity resolutions.

It is conceivable that many vacua in the string theory landscape are connected by

transitions and one may wonder if the more recently studied manifolds with torsion can be

connected to more conventional string theory compactifications. Many years ago, it was

conjectured [8] that Calabi-Yau manifolds can indeed be connected via transitions through

non-Kähler manifolds [9,10] (see also [11]). Kähler/non-Kähler transitions have also been

described recently from the worldsheet conformal field theory point of view in [12] in the

context of gauged linear sigma models [13].

In this paper, we take the space-time approach to explore transitions between Kähler

and non-Kähler manifolds in the context of flux compactifications of heterotic string the-

ory.1 In the heterotic theory, there can be two types of fluxes - the gauge two-form FMN

and the three-form HMNP . Preserving supersymmetry in four dimensions will constrain

both the compactification geometry and the fluxes. It is the goal of this paper to relate

two different types of spaces both of which are locally K3× T 2. The first is the geometry

of the K3 × T 2 manifold with non-zero U(1) gauge fields. The second is the non-Kähler

geometry of a T 2 bundle over K3, the FSY (Fu-Strominger-Yau) geometry.

This paper is organized as follows. In Section 2, we analyze the conditions under which

a Kummer surface can be blown down to a T 4/ZZ2 orbifold in the presence of fluxes while

maintaining supersymmetry throughout. In Section 3, we show that a transition between

the Kähler geometry K3 × T 2 and the non-Kähler FSY geometry can take place using

the mapping to M-theory on K3×K3 where the transition corresponds to an exchange of

the two K3’s. In Section 4, we present our conclusions. In an appendix, we work out the

1 For non-compact geometries, non-Kähler to non-Kähler transitions in heterotic strings have

been discussed in [14]
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conditions for the FSY geometry to preserve N = 2 supersymmetry, which is necessary in

order that a smooth transition to the K3× T 2 geometry can take place.

2. N = 2 heterotic compactifications

We are interested in supersymmetric compactifications to four dimensions in heterotic

string theory. The conditions on the hermitian form J and the holomorphic (3,0)-form Ω

are 2

d(‖Ω‖J J ∧ J) = 0 , (2.1)

F (2,0) = F (0,2) = 0 , FmnJ
mn = 0 , (2.2)

2i ∂∂̄J =
α′

4
[tr(R ∧R)− tr(F ∧ F )] . (2.3)

The standard background fields - the three-form H and the dilaton φ - are determined

from the supersymmetric constraints

H = i(∂̄ − ∂)J , (2.4)

‖Ω‖J = e−2(φ+φ0) . (2.5)

We focus on two special classes of solutions. The first is the K3 × T 2 solution [16].

The hermitian metric and the holomorphic three-form is taken to be

J = e2φJK3 +
i

2
dz ∧ dz̄ , Ω = ΩK3 ∧ dz . (2.6)

In general, φ is non-constant and has dependence on the K3 coordinates. By (2.4), this

gives a contribution to the H-field. The second is the torus bundle over K3 solution

[17,18,15] with the torus twisted with respect to the K3 base. The metric and the three-

form are generalized to

J = e2φJK3 +
i

2
(dz + α) ∧ (dz̄ + ᾱ) , Ω = ΩK3 ∧ θ , (2.7)

2 We mostly follow the notation and conventions of [15]. In this paper, F = F aT a is taken to be

anti-hermitian with trT aT b = −δab. For convenience, we shall subsequently also set 2π
√

α′ = 1.

2



where θ = (dz+α) is a globally-defined (1, 0)-form. We shall only consider the case where

the curvature of the torus bundle ω = ω1 + iω2 = dθ = dα ∈ H2(K3,ZZ) is a (1, 1)-form;

that is,

ω(2,0) = ω(0,2) = ωmnJK3
mn = 0 . (2.8)

The H-field now has contributions from both the derivative of φ and also ω.

To fully describe both solutions, we have to specify the gauge bundle. In addition

to being hermitian-Yang-Mills (2.2), the gauge bundle must satisfy the anomaly equation

(2.3). Integrating the anomaly equation over K3 leads to the topological condition

1

16π2

∫

K3

trF ∧ F −
∫

K3

ω ∧ ω̄ = 24 , (2.9)

where ω̄ = ω1 − iω2 is the complex conjugate of ω. It turns out that this condition

is sufficient to guarantee that the anomaly equation, which for these geometries can be

interpreted as a highly non-linear second order partial differential equation for φ, can

be solved. [18,15]. Note that by (2.2) and (2.8), both F and ω are anti-self-dual and

therefore the left hand side of (2.9) is positive semi-definite. As a simplification, we will

consider only direct sums of U(1) gauge bundles. Dirac quantization requires that i
2πF

a ∈
H2(K3,ZZ). Considering also (2.2) and (2.8), the field strength F and ω indeed satisfy

identical equations. This is suggestive that the the gauge bundle and torus bundle under

appropriate conditions might perhaps be interchangeable. In general, this is not the case.

But we shall show in Section 3 that different values for the pair (F, ω) can be smoothly

connected.

We point out that the K3 × T 2 solution preserves N = 2 SUSY in four dimensions.

Likewise, with ω ∈ H(1,1)(K3,ZZ), the FSY geometry also preserves N = 2 SUSY. These

two solutions must preserve the same amount of supersymmetry if we desire a smooth

transition between them. It is worthwhile to emphasize that the conditions for spacetime

supersymmetry do allow for the presence of a (2, 0) component for ω. However, the result-

ing four-dimensional supersymmetry would then be reduced down to N = 1. A discussion

of the supersymmetry of the FSY geometry is provided in Appendix A.

2.1. Deforming to the orbifold limit of K3

We will take the K3 surface S to be a Kummer surface. This can be described as
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the blow-up of T 4/ZZ2 at all 16 fixed points. Here, we want to find the conditions under

which a Kummer surface can be blown down to a T 4/ZZ2 orbifold in the presence of fluxes

while maintaining supersymmetry throughout. Keeping the complex structure fixed, the

supersymmetry variation conditions with non-zero fluxes were worked out in [19]. For ease

of presentation, we describe below the equivalent reverse process of blowing up the fixed

points for a given flux.

Let Ci ∈ H2(S,ZZ), i = 1, . . . , 16, be a basis for the 16 blown up (-2)-curves of the

Kummer surface.3 We let βi ∈ H2(S,ZZ) be the associated dual two-forms. Since these

rational curves are localized and thus disjoint, the matrix of intersection numbers is

Ci.Cj =

∫

S

βi ∧ βj = −2 δij . (2.10)

Note that this intersection matrix is different from that for the standard basis of H2(S,ZZ)

which is given by

(−E8)⊗ (−E8)⊗
(

0 1
1 0

)

⊗
(

0 1
1 0

)

⊗
(

0 1
1 0

)

, (2.11)

where E8 denotes the Cartan matrix of the Lie algebra E8. Though the 16 Ci’s together

with the 6 two-cycles of T 4/ZZ2 provide a natural set of elements in H2(S,ZZ) for the

Kummer surface, this set as constituting a basis turns out to only generate a sublattice

of the full H2(S,ZZ) lattice (see for example [21]). This “Kummer” basis however can be

used as a basis for H2(S,Q).

Proceeding on, the area of the ith-rational curve is given by4

Ai =

∫

Ci

J =

∫

S

J ∧ βi , (2.12)

where we have used the dual relation associating Ci ∼ βi. In the orbifold limit, each

rational curve shrinks to a point and thus Ai = 0. To deform away from the orbifold limit,

we want to deform J such that δAi > 0. That is we need,
∫

Ci

J + δJ =

∫

Ci

δJ =

∫

S

δJ ∧ βi > 0 . (2.13)

3 For a review of the mathematical aspects of K3 surfaces, see [20].
4 We will take J = JK3 in this subsection since we are only interested here in deforming the

K3.
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Furthermore, to preserve supersymmetry in the presence of fluxes, i.e. non-zero torus

bundle and/or gauge bundle curvature, we have to satisfy the additional conditions [19]

∫

S

δJ ∧ ω = 0 ,

∫

S

δJ ∧ F = 0 . (2.14)

These arise from varying the primitivity condition for the curvatures ω and F . Let us

focus below on the torus bundle curvature as the conditions for the the gauge bundle are

identical. Varying ω ∧ J = 0 implies

0 = δω ∧ J + ω ∧ J

= i∂∂̄f ∧ J + ω ∧ δJ ,
(2.15)

where δω = i∂∂̄f imposes that ω can only vary in its cohomology class. Taking the hodge

star of (2.15) results in ∆f = ∗(ω∧ δJ). This then implies the integral condition in (2.14),

which is the necessary and sufficient condition that a solution for f exists.

It is not difficult to satisfy both (2.13) and (2.14). Using the βi basis, let δJ = ajβj

and ω = biβi .
5 Then, we have

∫

Ci

δJ =

∫

S

ajβj ∧ βi = −2 ai = δAi > 0 , (2.16)

∫

S

δJ ∧ ω =

∫

S

ajβj ∧ biβi = −2 aib
i = δAib

i = 0 , (2.17)

where δAi = −2 ai. Thus, as long as two of the bi ’s are non-zero and also not of the

same signs, there exist positive δAi’s as required for (2.16) that satisfy (2.17). This is the

condition for ω (and similarly for F ) that ensures that the singularities can be blown up.

As a simple example, let ω for the FSY model be given by

ω = ω1 + iω2 = (1 + i)β1 + (1 + i)β2 − 2(1 + i)β3 , (2.18)

and F = 0. With (2.10), this model satisfies that anomaly condition (2.9)

−
∫

S

ω ∧ ω̄ = −
∫

S

2(β1 ∧ β1 + β2 ∧ β2) + 8 β3 ∧ β3 = 24 . (2.19)

5 Here, we have suppressed the non-relevant terms associated with the six nonlocalized (1,1)-

forms on T 4/ZZ2 which are orthogonal to the localized forms βi.
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It can be easily checked that (2.16) and (2.17) are satisfied for δA1 = δA2 = δA3 = a > 0,

where a is an arbitrary positive constant. δAi > 0 for i = 4, . . . , 16 are not constrained.

We shall show in the next section that this FSY model at the orbifold limit K3 = T 4/ZZ2

is smoothly connected to the K3× T 2 model with non-zero U(1) gauge field strengths

F 1

2π
=

F 2

2π
= −F 3

4π
= (1 + i) dz̄1 ∧ dz2 + (1− i) dz1 ∧ dz̄2, (2.20)

where the superscript index in F i, i = 1, . . . , 16, denotes the 16 U(1) gauge field strengths

and (z1, z2) are the complex coordinates on T 4/ZZ2.

3. Duality at the orbifold point

At the T 4/ZZ2 orbifold of K3, we can map the heterotic solutions to those of M-theory

on Y = K3×K3, where each K3 is a T 4/ZZ2 orbifold. Let us recall the chain of dualities

[22,23]. Starting from M-theory compactified on Y , we can treat the second T 4/ZZ2 orbifold

as a torus fibration over T 2/ZZ2. Taking the area of the torus fiber to zero, we arrive at

the type IIB theory on an orientifold T 4/ZZ2 × T 2/ZZ2, where at each of the four fixed

points of T 2/ZZ2, there are four D7 branes and one O7 brane. Such a brane configuration

gives an SO(8)4 enhanced gauge symmetry [24]. Now applying a T-duality along the two

directions of T 2/ZZ2 and then followed by an S-duality, we obtain the heterotic theory on

K3× T 2 with SO(8)4 gauge group [23].

The duality can incorporate a non-zero four-form G-flux. To preserve supersymmetry,

theG-flux in M-theory is required to be a primitive (2, 2)-form. TheG-flux is also quantized

so thatG ∈ H4(Y,ZZ). Additionally, it must satisfy the constraint (assuming no M2-branes)

[25,26]
1

2

∫

Y

G ∧G =
χ(Y )

24
. (3.1)

We shall take G to be the exterior product of two (1,1)-forms, one from each K3.

In the orbifold limit, there are 19 primitive (1,1)-forms - 16 localized at each of the fixed

points and 3 nonlocalized ones. They constitute the orthogonal Kummer basis, {βi, γI}
with i = 1, . . . , 16, I = 1, 2, 3, and normalized to -2, for the primitive forms in H(1,1)(S).

Thus, the most general G-flux that we consider takes the form

G = Cij βi ∧ β′
j + CIj γI ∧ β′

j +DiJ βi ∧ γ′
J +DIJ γI ∧ γ′

J , (3.2)
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where we have placed primes to denote forms from the second K3 and Cij , CIj , DiJ , DIJ

are integer constants suitably chosen such that G is integral quantized and satisfies (3.1).

The four different terms dualize to different types of fluxes in the heterotic theory. Let

us fix our convention by performing the duality operations always on the second K3.

Then, the DIJ and DiJ terms with nonlocalized (1,1)-forms γ′
J dualize to give a non-zero

torus curvature ω. In contrast, Cij and CIj terms with localized β′
j dualize to non-zero

heterotic field strengths F j . The case of DIJ 6= 0 in particular was discussed in detail in

[22,23,17,27].

Of interest for us is the exchange of the two K3’s. What we call the first or second K3

is certainly inconsequential for the physical theory. But for the G-flux, such an exchange

can interchange the different terms and result in a different heterotic dual theory when

the “second” K3 is dualized. The set of Cij terms and also that of the DIJ terms map

to itself under interchange. However, for the other two sets of terms, we have DiJ → CJi

and CIj → DjI , which implies that two types of heterotic fluxes are exchanged under

interchange of the two K3’s. Hence, we shall focus below on fluxes of types CIj and DiJ .

For simplicity, let us take the T 8 covering space of Y = T 4/ZZ2 × T 4/ZZ2 to have

standard periodicities zk ∼ zk + 1 ∼ zk + i, for k = 1, . . . , 4. Let us begin first with the

DiJ terms. We write out explicitly the nonlocalized part

G = Di1 βi ∧
1

2
(dz3 ∧ dz̄4 + dz̄3 ∧ dz4) +Di2 βi ∧

1

2i
(dz3 ∧ dz̄4 − dz̄3 ∧ dz4) . (3.3)

Note that we have not included the term with γ3 = 1
2
(dz3 ∧ dz̄3 − dz4 ∧ dz̄4) because it

is not normalizable when the area of the torus fiber is taken to zero when mapping from

M-theory to type IIB orientifold theory [22,23]. Now re-arranging the two terms, we have

G =
1

2
(Di1 + iDi2)βi ∧ dz̄3 ∧ dz4 +

1

2
(Di1 − iDi2)βi ∧ dz3 ∧ dz̄4

=
1

2
[D3 ∧ dz4 + D̄3 ∧ dz̄4)

=
1

2
[D3 ∧ (dx10 + idx11) + D̄3 ∧ (dx10 − idx11)]

=
1

2
(D3 + D̄3) ∧ dx10 +

1

2
(D3 − D̄3) ∧ i dx11

= H3 ∧ dx10 + F3 ∧ dx11 ,

(3.4)
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where we have introduced D3 = Diβi ∧ dz̄3 = (Di1 + iDi2)βi ∧ dz̄3 and substituted z4 =

x10 + ix11. In particular,

H3 = dB2 =
1

2
(Diβi ∧ dz̄3 + D̄iβi ∧ dz3) =

1

2
d(α ∧ dz̄3 + ᾱ ∧ dz3) (3.5)

B2 =
1

2
(α ∧ dz̄3 + ᾱ ∧ dz3) , (3.6)

where we have defined Diβi = dα. Applying two T-dualities in the z3 directions, the

metric and the B-field of the type IIB theory get mixed. After a further S-duality, the

resulting heterotic metric takes the form [22,23,27]

ds2 = e2φ(dz1dz̄1 + dz2dz̄2) + |dz3 + α|2 . (3.7)

This is the metric of the FSY solution in the ZZ2 orbifold limit. Thus, we see that the

M-theory solution, with a G-flux having a nonlocalized (1,1)-form γ′ on the second K3

which we dualized, gets map to a heterotic FSY solution. Of course, one can check that

the anomaly condition (2.9) is satisfied. This follows from (3.1),

24 =
1

2

∫

Y

G ∧G =
1

4

∫

S

Diβi ∧ D̄jβj

∫

S

dz3 ∧ dz̄3 ∧ dz4 ∧ dz̄4

= −
∫

S

Diβi ∧ D̄jβj ,

(3.8)

which is (2.9) after setting ω = Diβi = (Di1 + iDi2)βi and F = 0. Note that the torus

bundle curvature here is localized at the fixed points of the base T 4/ZZ2.

Let us now return to the M-theory model and exchange the two K3’s. The G-flux of

(3.3) maps to a G-flux with CIj terms

G = C1i
1

2
(dz1 ∧ dz̄2 + dz̄1 ∧ dz2) ∧ β′

i + C2i
1

2i
(dz1 ∧ dz̄2 − dz̄3 ∧ dz4) ∧ β′

i

= [
1

2
(C1i + iC2i)dz̄1 ∧ dz2 +

1

2
(C1i − iC2i)dz1 ∧ dz̄2] ∧ β′

i

≡ 1

2
[Cidz̄1 ∧ dz2 + C̄idz1 ∧ dz̄2] ∧ β′

i

≡ F i

4π
∧ β′

i .

(3.9)

Dualizing again in the z3, z4 directions, the resulting fluxes on the type IIB orientifold

are now very different. With the G-flux localized at points on the second K3 as in (3.9),
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we have in type IIB non-zero gauge field strengths F i ∼ CIiγ
I , on the D7/O7 planes

[22,23,17]. Unaffected by the two T-dualities and one S-duality, these gauge fluxes become

the gauge field strengths of the heterotic theory on K3×T 2. The anomaly condition again

follows from (3.1)

24 =
1

2

∫

Y

G ∧G =
1

32π2

∫

S

F i ∧ F j

∫

S

β′
i ∧ β′

j

= − 1

16π2

∫

S

F i ∧ F i .

(3.10)

As an example, let us compare the models (2.18) and (2.20) presented in the last

section. In fact, it is easy to see that the FSY model of (2.18) arise from the G-flux

G = (β1 + β2 − 2β3) ∧ γ′
1 + (β1 + β2 − 2β3) ∧ γ′

2 , (3.11)

and that of (2.20) from

G = (γ1 + γ2) ∧ β′
1 + (γ1 + γ2) ∧ β′

2 − 2(γ1 + γ2) ∧ β′
3 . (3.12)

They differ just by a switch of the two K3’s.

In short, we have shown that for identical G-flux (3.2) and (3.9) which differs only

in the assignment of what we called the first or second K3, the resulting dual heterotic

models have very different background geometries. The first maps to a FSY type solution

and the second maps to a U(1) gauge bundle on the Kähler manifold K3 × T 2. Since

the spectrum of the M-theory is invariant under the K3 exchange, it may seem that the

distinct dual heterotic models must be physically identical.

This is however not the case in four dimensions. We point out that such a heterotic-

heterotic duality can only be apparent when both heterotic models are compactified further

on an additional circle so that the external spacetime theory is three-dimensional. The

low energy theory would then be identical to that of M-theory on K3×K3, which is also

three-dimensional. For in the process of “dualizing” from M-theory to heterotic theory,

we shrank down the area of the elliptic fiber, AT 2 → 0, to obtain a type II and then

later heterotic theory in four dimensions. If we had not taken the zero area limit, then

the exact duality would result in a seven-dimensional compact geometry, e.g. the FSY
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geomtry times an additional S1. More specifically, AT 2 ∼ 1/RS1 , and thus the AT 2 → 0

limit corresponds to the decompactification limit of the extra circle in heterotic theory.

Taking into account of the deformation to the orbifold limit discussed in Section 2,

we have thus demonstrated a connection between two smooth geometries, one Kähler and

the other non-Kähler, via a path through an orbifold limit on the moduli space of the K3

surface.

4. Discussions and outlook

We have utilized the mapping to M-theory to connect Kähler and non-Kähler flux

compactifications in heterotic theory. The M-theory model organizes the heterotic models’

torus and gauge bundle curvatures into a single four-form G-flux. Turning on the torus

and gauge bundle curvatures correspond to turning on different types of forms for the

G-flux. As we have shown, an exchange in the two K3’s with non-zero G-flux can lead

to either the heterotic K3 × T 2 model or the FSY model. Interestingly, M-theory on

K3 × K3 can also be dual to Type IIA theory on X3 × S1, where X3 is a Calabi-Yau

three-fold. It has been pointed out in [28] that the exchange of two K3’s in this set up

corresponds to mirror symmetry for the Calabi-Yau three-fold. Following this observation,

it is conceivable that the duality we have pointed to is related to a “generalized” mirror

symmetry in the heterotic theory with fluxes.

The transition we have discussed preserves N = 2 supersymmetry in four dimensions.

An interesting old question is whether the space of all N = 2 string vacua is actually

connected. Prior to the current popularity of flux compactifications, many works in the

mid-90s gave evidences to unforseen connectedness between different vacua and thus hinted

at such a possibility. But with the recent increases in flux models which are quantized in

integral units, hopes of a single connected moduli space have now faded. But perhaps the

simple well-known moduli space of c = 1 closed bosonic string theory [29,30] will give a

guide to the moduli space of N = 2 vacua. In c = 1, the moduli space includes the circle

S1 with radius Rc and the ZZ2 orbifold S1/ZZ2 with radius Rt for the target space geometry.

Rather surprisingly, these two distinct geometries are connected or dual at precisely the
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point Rc/2 = Rt =
√
α′. In addition, there are three points in the moduli space which

are disconnected to all other theories. Taking this example as a lead, we may think that

the moduli space of N = 2 string vacua also smoothly link together topologically distinct

manifolds, but yet there will also be regions of isolated vacua which do not have any

moduli that connect to the rest. Our examples here of a connection between Kähler and

non-Kähler geometries is an example of a somewhat surprising link.

Finally, we have for simplicity focused our attention on a subset of non-Kähler FSY

solutions. It would be interesting to explore the connectedness of the moduli space when

the gauge bundle is non-Abelian. Studying this may involve non-perturbative effects. For

instance on the M-theory side, we would need to consider M2-branes wrapping singular

two-cycles of the K3 in order to generate non-Abelian flux. On the heterotic side, wrapped

branes of the sort discussed in [31] might also be required. FSY solutions with torus

curvature ω having a (2,0) component should also be investigated for possible transitions.

These N = 1 vacua would sit in the moduli space of all N = 1 heterotic compactifications,

which include the conventional Calabi-Yau compactifications. This moduli space should

incorporate the well-studied conifold transitions, both Kähler/Kähler and Kähler/non-

Kähler types, which are N = 1 transitions in heterotic theory. We hope to explore some

these issues in future works.
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Appendix A. N=2 supersymmetry conditions

We check that FSY geometry hasN = 2 supersymmetry in four dimensions. Assuming

N = 1 SUSY, we derive the additional conditions N = 2 SUSY imposes. Discussions and

references on the SU(2) structure relevant for N = 2 SUSY can be found in [32,33]. We

start from the supersymmetry constraints

∇Mη +
1

8
HMNP γNP η = 0 , (A.1)

γM∂Mφ η +
1

12
HMNP γMNP η = 0 , (A.2)

γMNFMNη = 0 , (A.3)

N = 1 SUSY implies the existence of a no-where vanishing spinor η1 on the manifold X .

This gives an SU(3) structure and in particular we can define

Jmn = −iη1
†γmnη1 , Ωmnp = e−2φη̄1

†γmnpη1 , (A.4)

where the complex conjugate spinor is defined to be η̄1 = B∗η∗1 .
6 The manifold is required

to be complex hermitian and the metric conformally balanced. Moreover, we have the

relations

H = i(∂̄ − ∂)J , ΩmnpΩ̄
mnp = 8e−4φ . (A.5)

N = 2 SUSY implies the existence of a second no-where vanishing spinor η2. Both

spinors have the same chirality, which we take to be positive, and we shall assume that

the two spinors are never parallel. We can therefore normalize so that

η†i ηj = δij , i, j = 1, 2 . (A.6)

With the additional spinor, there now exists a no-where vanishing one-form

vm = η̄1
†γmη2 . (A.7)

Alternatively, we can write η2 = 1
2
vmγmη̄1. In the holomorphic coordinates Ja

b = iδa
b, we

have Jm
nvn = ivm ; that is v has only holomorphic components. Moreover, the normal-

ization of η2 implies that |v|2 = gab̄vav̄b̄ = 2 .

6 The B matrix here satisfies BγmB∗ = −γ∗ and we shall work in a basis where Bt = B.
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We point out that the existence of a no-where vanishing one-form is a strong constraint

on X . Specifically, from the Poincaré-Hopf theorem, the number of zeroes of a vector field

(and its dual one-form) is at least that of the Euler characteristic (i.e. ≥ |χ|). Thus, N = 2

SUSY having a non-vanishing one-form requires χ(X) = 0.

Besides the vector, the additional spinor allows us to write down the forms,

η2
†γmnη1 =

1

2
v̄sΩsmne

2φ ≡ (K2)mn + i(K1)mn

η2
†γmnη2 = −iJmn − 2v[mv̄n] ≡ −2i(K3)mn + iJmn

(A.8)

η̄1
†γmnpη1 = (v ∧ (K2 + iK1))mnp

η̄2
†γmnpη2 = (v ∧ (K2 − iK1))mnp

η̄2
†γmnpη1 = (v ∧ J)mnp

(A.9)

Note that the hermitian form and holmorphic three-form can be written as

J = K3 +
i

2
v ∧ v̄

Ω = e−2φ(K2 + iK1) ∧ v .
(A.10)

The KA’s, with A = 1, 2, 3 , reside in a four-dimensional subspace and give a hyperkähler

structure

(KA)m
n(KB)n

k = −δAB [δm
k − 1

2
(vmv̄k + v̄mvk)] + ǫAB

C(KC)m
k, (A.11)

where the additional terms in v’s are present since the forms are defined in six-dimensions

and not in four. In particular, we have for example (K1)m
n(K1)n

m = −4 as typical for a

four-dimensional hyperkähler space.

The first constraint equation (A.1) requires that all the non-vanishing forms are co-

variantly constant with respect to the H-connection. Note that N = 1 SUSY already

ensures that J and Ωe2φ are covariantly constantly. Hence, the additional constraint of

N = 2 comes from requiring the covariantly constancy of the one-form

∇H
mvn = ∇mvn − 1

2
Hm

r
nvr = 0 . (A.12)

The second equation (A.2) gives further differential constraints on the forms. For

A = γn1...np
antisymmetric combination of gamma matrices, we can re-express (A.2) as

[34]

∂mφ η†j [A, γm]±ηi +
1

12
Hmnpη

†
j [A, γmnp]∓ηi = 0 (A.13)
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∂mφ η̄†j [A, γm]±ηi +
1

12
Hmnpη̄

†
j [A, γmnp]∓ηi = 0 (A.14)

where the + or − sign for the brackets denotes symmetric or antisymmetric brackets,

respectively. The condition on the one-form v can be derived with A = γn1n2
resulting in

the constraint

d[e−2φv] + i ∗ (H ∧ e−2φv) = 0 . (A.15)

For the two-forms and three-forms in (A.8) -(A.9) which we will denote generically as χ2

and χ3, the conditions are
d[∗(e−2φχ2)] = 0

d[∗(e−2φχ3)] = 0
(A.16)

Now for the gauge field strength F , in addition to being holomorphic F (2,0) = F (0,2) =

0 and primitive FmnJmn = 0, we now have in general the condition, Fmn(χ2)mn = 0 which

gives the additional requirement

Fmn(K3)mn = 0 . (A.17)

We now check that the FSY geometry with torus bundle curvature ω ∈ H(1,1)(K3,ZZ)

satisfies the N = 2 SUSY conditions. First, note that as required, the Euler characteristic

of a T 2 bundle over K3 is zero. From the decomposition of (A.10), it is clear that we have

the identification

v = θ , K3 = e2φJK3 , K2 + iK1 = e2φΩK3 . (A.18)

The KA’s are thus the hyperkähler forms on the conformal K3. We now check that the

differential equations are also satisfied. First, the covariantly constancy as in (A.12) can

be shown using (A.5) and (A.10) to be equivalent to ∂θ = 0. Therefore, the torus bundle

curvature twist can not contain a (2,0) component. The condition (A.15) can be shown to

reduce to

∂̄c̄φ θc̄ = 0 , Habc̄ θ
c̄ = 0 . (A.19)

This easily holds as vc̄ = gc̄ava = (0, 0, 2). The conditions of (A.16) for various forms

in (A.8) and (A.9) can also easily be checked to hold. And lastly, for the gauge field

strength, we see that the additional requirement (A.17) is satisfied since all field strengths

are hermitian Yang-Mills on the base K3.
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