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1. lNTRODUCTION 

IN 1970 Lawson [22] proved that two embedded closed diffeomorphic minimal surfaces in 

the unit three-dimensional sphere S3 in lRJ are ambiently isotopic in S3. Lawson proved this 

theorem by first proving that an embedded orientable closed minimal surface of genus y in 

a closed orientable Riemannian three-manifold M’ with positive Ricci curvature discon- 

nects M-’ into two genus-8 handlebodics. A result of Frankel [7] was used to prove this. 

Lawson then applied a deep result of Waldhauscn [33] that states that decompositions of 

SJ into two genus-cl handlebodies arc unique up to ambient isotopy. More prcciscly. 

Waldhauscn’s uniqucncss thcorcm states that whenever a closed surface of genus y in S” 

separates SJ into handlcbodics, then the embedding of the surface is as simple as possible; in 

other words, the surface is obtained from a two-sphere Sz c S’ by adding handles in an 

unknotted manner. 

Mccks [23] gcncralizcd Lawson’s argument to the case of oricntablc closed minimal 

surfaces in a closed ,V3 with nonnegative Ricci curvature. Meek’s result and another 

topological uniqueness result of Waldhauscn [33] implies that two closed diffeomorphic 

minimal surfaces in S2 x S’ with the usual product metric arc ambiently isotopic. Finally, 

Meeks-Simon-Yau [25] proved that if X is a closed minimal surface in S’ equipped with 

a metric of non-negative scalar curvature, then X disconnects S3 into two handlebodies and 

hence dctcrmincs a unique ambient class in S’. 

In [23] Mceks considered the problem of the topological uniqueness of minimal surfaces 

in three-dimensional Euclidean space. In particular, Meeks proved that any two compact 

diffeomorphic minimal surfaces, with boundary a simple closed curve on the boundary of 

a smooth convex ball, are ambiently isotopic in the ball. Later Hall [I33 showed that there 

exist two simple closed curves on the unit sphere S* that bound a knotted minimal surface 

of genus one. 

In this paper we will use global properties of stable minimal surfaces in [w’ to prove: 

A properly embedded minimal surface of finite topological type in R’ is unknotted. In 

particular, if X, and IEz are two such diffeomorphic surfaces, then they are ambiently 

isotopic. This is the main result of our paper and it is restated in a more precise form in 

Theorem 5.1. Because of Hall’s counterexample to unknottedness for compact minimal 
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surfaces discussed in the previous paragraph, the proof of Theorem 5.1 depends in an 

essential way on the completeness of the properly embedded minimal surface in R’. 

The proof of our topological uniqueness theorem further clarifies the geometric descrip- 

tion of the ends of a general properly embedded minimal surface E in W3, even when C has 

an infinite number of ends. This geometric description of the ends of a properly embedded 

minimal surface has been exploited by Choi. Meeks and White [3] to prove that if 

a properly embedded minimal surface has more than one end, then every intrinsic isometry 

of the surface extends to an ambient isometry. Hoffman and Meeks [ 171 have applied our 

techniques to prove that a properly embedded minimal surface of finite topological type has 

at most two ends with infinite total curvature. This result implies that the conformal 

structure of properly embedded minimal surfaces of finite topological type with more than 

two ends is restricted. 

In our proofs we frequently exploit the property that each annular end of a complete 

embedded minimal surface of finite total curvature is asymptotic to a plane or to a half- 

catenoid. This property can be proved with the Weierstrass Representation of a minimal 

surface [3 I]. 

Hoffman and Meeks [ 16, 181 and Callahan, Hoffman and Meeks [I] have constructed 

properly embedded minimal surfaces in IwJ of finite topological type with every possible 

genus. All these new examples have either three or four ends. Computer graphics images of 

these surfaces illustrate that the surfaces have a rather complex geometric appearance. 

However, our main thcorcm dcmonstratcs that these surfaces, after composing with a dif- 

fcomorphism of iw”. have the simplest possible geometric appearance (see Fig. 1). 

Rcccntly Frohman and Mccks [I 1, 121 have proven a related topological uniqueness 

thcorcm for certain properly cnibcddod minimal surfaces with possibly infinite genus (also 

XC [9]). Their Theorem I.1 states that a properly embcddcd minimal surface with one end 

in IwJ is topologically unknotted. Their proof of this result is based in part on some of the 

technical results in Sections 2 and 3 of our paper. A recent result of Callahan, Hoffman and 

Mccks (Corollary 2 in [2)) states that every properly embedded nonplanar doubly-periodic 

minimal surface in I@ has one end, and hence, it is unknotted by the Frohman-Meeks 

thcorcm. See Conjecture 1.2 in [IO] for a possible natural necessary and sufficient condition 

for two properly embedded minimal surfaces in [w’ to be ambiently isotopic. 

2. STABLE MINI,MAL SURFACES WIT11 BOUNDARY 

In this section our aim is to describe the global geometry of certain minimally immersed 

surfaces in iw’ that are complete and have compact boundary. It is well-known that 

a complete minimal surface of finite total curvature in Iw’ is conformally diffeomorphic to 

a closed Riemann surface punctured in a finite number of points (see [20] or [29]). If M has 

compact boundary and it is a complete minimal surface of finite total curvature, then it 

remains true that the ends of M are conformally ditfcomorphic to punctured disks. In the 

case where an end of such an M is embedded, then it is asymptotic to a catenoid or to a tlat 

plane in Iw-’ [31 J. The next theorem gives a sufficient condition for a complete minimal 

surface with compact boundary in iw3 to have finite total curvature. 

TtIEoRE%~ 2.1. Iff: hf 4 k! 3 is a complete minimally immersed orientable surface with 

compact boundary is stable, then M has finite total curvature. 

ProoJ This theorem follows immediately from results of Fischer-Colbrie in [S]. In fact, 

the statements and proofs of Thcorcm I and Corollary I in [S] also prove that if M is 
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a complete stable minimal surfaci with compact boundary in a complete orientable N’ with 

nonnegative scalar curvature, then M has finite total curvature. cl 

3. THE ENDS OF A PROPERLY EMBEDDED MINIMAL SURFACE 

The ends of a surface correspond to the different ways to travel to infinity on the surface. 

We will call a connected proper subsurface E of M an end of M if E has compact boundary 

but E is not compact. A surface is said to have more than one end if it contains at least two 

pairwise disjoint ends. It is straightforward to check that a surface M has more than one end 

if and only if there is a simple closed curve on M that separates M into two components, 

each of whose closure is noncompact. The following theorem is the first step in our analysis 

of the geometry of the ends of a properly embedded minimal surface. 

THEOREM 3.1. Suppose that M is a properly embedded minimal surface in [w’ and suppose 

S is a smooth simple closed curve on M that separates M into two components, each ofwhose 

closure is noncompact. Let N, and N2 denote the closures of the two components of Iw3 - M. 

Then: 

1. Either S is not homologous to zero in N, or S is not homologous to zero in Nz; 

2. If S is not homologous to :ero in N, (resp. N,), then S is the boundury of a smooth 

properly embedded, noncompuct, orientable, minimul surfuce I: ofjnite total curvuture 

in N, (resp. N2). Furthermore, C is an urea-minimbiny surfuce in N, (resp. N2) in the 

sense thut compact subsurfuces of X htrve least urea with respect to their boundtrries in 

the reyion N, (resp. N,). 

Proof If the curve S is homologous to zero in N,, then S is the boundary of an 

embedded compact surface K, in N, such that K, n M = 6. Similarly. if S is homologous to 

zero in Nz. then S is the boundary of an embedded surface K, in N2 with K2 n M = 6. 

Thus, if 6 is homologous to zero in both N, and Nz, then there is a closed surface K I u K2 

that intersects M in the curve 6. Furthermore, one of the components of M - S must be 

contained in the compact region R of R’ with boundary surface K, u K2. However, since 

M is proper, the component of M - S contained in R must have compact closure, which 

contradicts our hypotheses that S separates M into two noncompact components. Thus, 

S can not be homologous to zero in both N, and Nz, which proves part 1 of Theorem 3.1. 

Suppose now that S is not homologous to zero in N,. 

Let M + be the closure of one of the components of M - 6. Let ML c . * * c Mk c . . * be 

an exhaustion of M + by smooth compact subdomains of M + and such that S c 8M1. Since 

dN, has nonnegative mean curvature, dMi is the boundary of a least-area rectifiable current 

Ai in Ni (see Theorem I in [28] and also see [32]). By interior regularity theorems of 

area-minimizing currents, Ai - S is a smooth embedded surface. Since Ai u Mi disconnects 

R’. the surface Ai is orientablc and the boundary regularity theorem in [ 143 shows that Ai is 

a smooth compact least-area minimal surface in N, with boundary dM,. The usual 

compactness theorems for least-area surfaces show that a subsequence {Ai,} converges 

smoothly on compact subsets of R3 to a properly embedded, stable, minimal surface I: with 

SE = S (see [32] or the proof of Lemma 3 in [24] for explicit details on this compact 

property for {Ai} in a similar context). Since S is not homologous to zero in N,, the surface 

1 is noncompact. Since either E u M + or Z u (M - M + ) is a properly embedded surface in 

R3, E is orientable. Hence, 2: has finite total curvature by Theorem 2.1. 
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For the sake of completeness we prove the well-known property that any compact 

smooth subdomain 2 of 1 has least-area in N1 (with respect to surfaces in N1 with 

boundary equal to 22). If this condition fails, then we may assume that 2 c Z and there 

exists a compact surface z c N, with Sg = ST and a positive number E such that 

Area(g) = Area(z) + E. However, i is the smooth limit of least-area surfaces. This means 

that we can approximate f by a least-area surface 2’ in N, with Area(f) 5 Area + 42 

and such that the boundary curves 2’ and g form the boundary of surface A’ of area less 

than 42. However, the surface A’u 2 has the same boundary as 2’ but has area strictly less 

than the area of 2’. This contradicts the supposed least-area property of 2’ and proves that 

1 satisfies the least-area property described in the statement of the theorem. This completes 

the proof of Theorem 3.1. 0 

PROPOSITION 3.1. Suppose M is a properly embedded minimal surface in [w’. Suppose that 

6 is a simple closed curve on M such that S separates M into two unbounded components E, 

and E2 where E, has one end. lf 6 is not homologous to zero in the closure N of one of the 

components of 52’ - M, then 6 is the boundary of a stable. orientable, properly embedded, 

minimal surf~ice 1 in N hut has finite totul curvature and at most two ends. 

Proof Suppose N the closure of a component of I@ - M where 5 is not homologous to 

zero. Recall the part of the proof of Thcorcm 3.1 where, from an exhaustion of the end E,. 

one produces a Icast-arca oricntablc surface X that is the limit ofcompact least-area surfaces 

hi in N with boundary curves consisting of S and some other curves on the end E,. We will 

prove that X has at most two ends. Suppose now that C has more than two ends and WC 

shall dcrivc a contradition. 

Since El has exactly one end, the maximum principle for minimal surfaces implies that 

the interior of C is disjoint from I:‘,; othcrwisc. I: is equal to E,, which has one end. Hence, 

I: n E, = 6. Let W bc the region of N with boundary E u E,. Since E is an cmbeddcd 

minimal surface with finite total curvature, there exists a positive number R, such that for 

R > R,, X intersects the sphcrc SR = (x E iw3J 1x1 = R } in k “parallel” simple closed curves 

that are almost geodesics on SK, where k is the number of ends of 1 (see [Zl]). What this 

means geometrically is that under the homothcty h(x) H x/R, the set h(SR n I) is a collec- 

tion of k simple closed curves that are C2-close to a common great circle in the unit sphere. 

Choose an R > R, such that SR is transverse to E, and such that S is contained in the 

ball BR with boundary SR. Since E, has exactly one end and it is properly embedded in 

[w’, El can only intersect one of the components of Iw’ - (Int(BR) u X) in a noncompact 

component. Actually we claim that this noncompact component is the only component. 

Since dE, c Int(ER), we conclude that if E, intersects some component of 

Iw’ - (Int(BR) u Z) in a component that is a compact surface, then the boundary of this 

compact surface is contained in SR. The existence of such a compact minimal surface 

contradicts the convex hull property for minimal surfaces. Hence E, can only intersect 

exactly one component, say C, of aB3 - (Int(B,) u Z). 

Recall that E # E, and so for large i the least-area surfaces Xi that limit to be 1 intersect 

E, only along Z&. We now prove that the surfaces 1, must be contained in the region W. 

Consider the compact region Ri of 5X’ with boundary Miu~.i where Mi is defined in the 

proof of Theorem 3. I. Let IV’ be the closure of N - W. If I;i is not contained in W, then the 

region Ri n W’ gives a homology in N between C, n W’ and a least-area domain Z:I c Z. 

Replacing Z,n w’ on Xi by Xi yields another least-area surface but this surface is not 

smooth along aXi. This contradicts the interior regularity of least-area surfaces and proves 

&c w. 
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Since for large i, S& consists of the curve 6 and curves contained in E, n C, the convex 

hull property for minimal surfaces implies that fin (W3 - (Int(B,) u Z)) = Xi n C. Since 

the Ci limit to be II:, it follows that 2: n (Iw’ - Int(B,)) c SC. Hence, Z has either one or two 

ends, since SC has one or two components. 0 

We now consider the case when the end E has finite topology. 

THEOREM 3.2. Suppose M is a properly embedded minimal surface in R’ with more than 

one end. lf E is a smooth annular end of M, then 2E is the boundary of a stable minimal annulus 

A ofjnite total curcature that is contained in the closure of one of the components of [w’ - M. 

Prooj Let 1 c N be the least-area minimal surface whose existence is guaranteed by 

Theorem 3.1 and Proposition 3.1 and where N is the closure of one of the components of 

Iw’ - M where dE is not homologous to zero. 

Case 1. X has one end. 

The surface X separates N into two components. Let W denote the closure of the 

component that contains E in its boundary. Let BR be a ball centered at the origin of radius 

R where R is chosen large enough so that: 

I. I?& n I: is a simple closed curve z, for r 2 R; 

2. dE c Int(B,); 

3. o7B, is transverse to E. 

From the simple topology of the annulus and the maximum principle, one easily checks 

that 3BK n E contains a unique component /I that is homotopically nontrivial in E. Let C be 

the component of dB, n W that contains /J. Notice also that all of the boundary curves of 

ZBR n W bound disks in S Wcxcept the curves aR and p. Then since neither of the cycles t(R, 

p is homologous to zero in W, the curve aR must also be contained in dC. It follows that aR is 

homotopic to [I in Wand hence a,# is homotopic to dE. By the Geometric Dehn Lemma in 

[27] and [28], dEua, is the boundary of a least-area embedded minimal annulus A, in 

Wfor r 2 R. Since the area ofX n BR grows like RR’, the monotonicity formula implies that 

a sequence {A,,) have uniformly bounded area in BR for any R as ri + co. Furthermore, 

the stable annuli (A,,} have bounded curvature away from dE by the curvature estimates of 

Schoen [30]. Hence the usual compactness theorem shows that the A,# converge smoothly 

on compact subsets of Iw’. away from dE, to a properly embedded stable minimal surface M. 
Furthermore, the usual argument of lifting curves on M to nearby approximating surfaces 

shows that M is an annulus. Since the area of A, is bounded in a neighborhood of dE, the 

proof of Hildebrandt’s boundary regularity theorem [IS] implies that M is smooth up to 

and including its boundary. 

Case 2. E has two ends. 

Recall, from the proof of Proposition 3. I, that this case can only occur when the end E is 

asymptotically contained between the two ends of Z. The ends of X are asymptotic to planes 

or catcnoids whose normals at infinity are parallel. Suppose, after a possible rotation, that 

the normal vectors to the ends of Z are vertical. It is then clear that every vertical cone of the 

form z2 = c(.x2 + y2) intersects E in a compact set. Lemma 4 in [ I73 states that if an annular 

end of a properly embedded minimal surface intersects a sufficiently flat cone in a compact 

set, then it must have finite total curvature, Thus, E has finite total curvature and hence has 

area approximately nr2 in balls B, radius r. As in the proof of Case I, this gives an estimate 
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for the area of a least-area annulus A, in N with boundary dE and a curve in En dB,, 

r large. As before, this estimate leads to the existence of the stable minimal annulus. In fact 

this estimate also shows that if the least-area surface IL is obtained by the procedure of 

Theorem 3.2, then E n B, has area growth IV’, which implies Z has one end. cl 

4. THE ENDS OF A PROPER MINIMAL SURFACE ARE TOPOLOGICALLY PARALLEL 

The first step in the proof of the topological uniqueness theorem for a minimal surface 

M of finite type in R3 is to show that there is only one possibility for the placement of 

M near infinity. The correct notion is captured in the next definition. 

Defnirion. 4. I. A properly embedded surface M of finite type in R’ will be said to have 

topoloyically parallel ends if there is a diffeomorphismf: R3 + R3 such that the intersection 

of the complement C of the open unit ball in R3 withj(M) is the intersection of a collection 

of parallel planes with C. 

THEOREM 4.1. Suppose M is a properly embedded minimal surface in [w3 that has finite 

topoloyical type. Then the ends of M are topoloyically parallel. 

Prooj: If M has finite total curvature, then the theorem follows directly from the 

description of M in Theorem I in [213. Originally WC found a direct but rather complicated 

argument to prove Theorem 4.1 when M did not have finite total curvature. These 

complications can now be avoided by using the Annular End Theorem of Hotfman and 

Meeks [l7]. Their theorem states that M can have at most two annular ends with infinite 

total curvature and, furthermore, their theorem shows that the ends of M can be well- 

ordered in the following sense. First suppose that M has exactly two annular ends F,, F2 of 

infinite total curvature and ends E,, . , . , E, of finite total curvature. For large R. if BR is the 

ball of radius R, then dBR n ( U,Ei) is a collection of n simple closed curves that are almost 

geodesics on dBR, i.e., under the homothety x t-r x/R, these n curves become (?-close to 

a common great circle in the unit sphere. Then it follows directly from the proof of the 

Annular End Theorem that F, ndBR is contained in one of the disk components, D,, of 

dER - UiEl and F2 ndBH is contained in the other disk component, D2, of dBR - u,Ei. 

The simple topology of annulus and the maximum principle easily imply that Fi n dBR 

contains exactly one curve yi that is homotopically nontrivial on Fi, i = I, 2. The Jordan 

curve theorem shows that the curves r = {y,, y2, dBR n EI. . . . , dBR n E,} disconnect aB, 

into components consisting of annuli and disks D’, , 0; where aD> = yj. j = 1.2. The End 

Uniqueness Theorem (Theorem 4 in [23]) states that there is a homeomorphism h: iw’ + R’ 

that is the identity on r, such that h(M) n (II!’ - Int(BR)) is a cone over T. Since r consists 

of topologically parallel curves on dBR, there is a diffcomorphismf: R’ -+ R’ such that the 

intersection of the complement C of the unit ball withj(M) is equal to the intersection of 

C with a collection of parallel planes. 

The case where M has exactly one end F, of infinite total curvature is proved in a similar 

manner. Cl 

Remark 4.1. Frohman and Mecks recently proved an important generalization of 

Theorem 4.1 by proving that the ends of an arbitrary properly embedded minimal surface 

M in R’ with more than one end can be “ordered” by their height over “the limit tangent 

plane at infinity” of M. See [IO] and [I21 for details. 
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5. THE TOPOLOGICAL UNIQUENESS THE0RE.V 

We now state our main theorem. 

THEOREM 5.1. A properly embedded minimul surjuce in R3 that is homeomorphic to 

a closed surfuce of genus g with k points removed is amhientiy isotopic to the surface obtained 

by taking the connected sum of k purallel planes along unknotted urcs in the slabs between the 

planes and then taking the connected sum of this surface with a stundurdly embedded closed 

surface of genus g in t/w standard way. (See Fig. 1). 

k ends 

Fig. I 

f’rooj: If .\I has one end, then the thcorcm was proved in [X]. Assume now that k is 

greater than one. 

Bcforc proceeding with the proof of Theorem 5. I. WC give an outline of our approach to 

the proof. From the statcmcnt of Theorem 4.1 we already know that M has a standard 

appcarancc in the complcmcnt of some ball. In fact. Theorem 4.1 shows that there exists an 

exhaustion of R’ by balls. not necessarily round, 

B, c B2 c , . . c B, c . . . c w, 

such that B, n M = M, is difTeomorphic to M, M n (R’ - B,,) consists of topologically 

parallel annuli and the boundary curves of Mi approach infinity as n approaches infinity. 

It remains to prove that M, is standardly embedded in B,. Since care must be taken in 

this step of the proof since P. Hall has proven that there exist knotted minimal surPJces of 

genus one with two boundary curves on the unit sphere [13]. Hall’s example demonstrates 

that the completeness of the metric on M must be used to show that Ml is standardly 

em bedded. 

One technique that we employ is to minimize area in the ambient isotopy class of hfi 

rel(?Mi) in the closure of a fixed component of R’ - M. By this process WC create a stable 

minimal surface ~~i with boundary C7Mi approaching infinity and WC show that A?, must 

escape the ball B, for large values i or I converges to a tlat plane that intersects B, and this 

plane is disjoint from hf. This second possibility is impossible by a result of Mceks and 

Hoffman that states that a nonplanar minimal surface is not contained in a halfspacc of R’ 

[l9]. During this minimization process, handles on Mi may collapse so that the topology of 

the stable minimal surface pi is in general dih’erent from the topology of Mi. 

The fact that bTi escapes B, for large i is then used to get some additional information. 

This additional information is that there exist certain compressing minimal disks on the 

closures of the two components of B, - izf,. (A compressing disk is an embedded minimal 

disk in the closure C of a component of B, - M, and the boundary of this disk is 
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a homotopically nontrivial curve in X.) By cutting along these compressing disks we then 

reduce the question of uniqueness of ‘VI to the question of uniqueness when MI has one 

boundary curve. This case of one boundary curve was proved earlier by Meeks [23]. This 

completes the outhne of the proof. 

We first define the required sequence of balls Bt c Bt c . . . c R3. (For further dis- 

cussion on the construction of these balls see the proof of Theorem 4 in [23].) Let 

E= [E,...., EL) denote a collection of pairwise disjoint annular end representatives for 

iif. First choose a sequence of round balls B, c B, t . . . c R3 centered at the origin such 

that v,Bi = R3, S/?, is transverse to M, and SE c fi,. ‘We may choose E so that SE c Sfi, 

and a neighborhood of SE is disjoint from Int(g,). It was shown in [23] that for i > 1, 

En fii consists of B compact annuli. one for each end, and a collection of disk components 

whose union we denote by Di. Let Ei denote the closure of the component of B, - Di that 

contains SE. 

The balls B^i are piecewise smooth balls whose boundaries consist of convex spherical 

surfaces and minimal disks. By the approximation procedure in the proof of Theorem I in 

[28], we can modify ii in a small neighborhood of Di n I to obtain for i > I new smooth 

balls Bi satisfying: 

I. ?Bi has nonnegative mean curvature; 

2. ?Bi n M = 25, A E and consists of the k simple closed curves d5in 

E,,. . . , SB, n E,; 

3. Int(L?i)n M = ,Mi is diffcomorphic to bl; 

4. b1 - IV, consists of k annular end rcprcscntativcs of hf. 

By Thcorcm 4.1, WC may also assume that the ends E arc indcxcd so that there exists 

a dill’comorphismj: &I’ + R’ such that/(B,) is the ball 9 ccntcred at the origin of radius 

I and~(EJi)={(.~.~,:)~(RJ-isS)~x= -I/i+ I). 

Let Y be the closure of the component of [w3 - M that contains the point 

/‘-I(( - I. 0.0)) and let W bc the closure of the other component. Let Y, = Yn Bi, 

Wi = Wn B, and xii = Ei n CiB, except that ril will bc dcnotcd by xi. Let Ai c LlBr be the 

annulus with dni = z, u ri+ 1 (xc Fig. 2). 

Fig. 2. Picture of M, in a convex ball B, 

Let A = {y,, . . . ,y.} bc a collection of pairwisc disjoint simple closed curves that 

gcncratc the kernel of the map n,(M,) + IL, ( W, ) induced by inclusion. The existence of the 

collection A follows from the loop theorem [26]. The Geometric Dehn’s Lemma [28] 

implies that the curves in A form the boundary of a collection of pairwise disjoint minimal 

disks (0,. . . . , Dn) in W, and such that Dj n 2 W, = yj. Let IV’ denote the geodesic closure 

of CV - u jDj and let MS denote the surface in I+” that corresponds to the component of 
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M surgered along UjDj and that contains the curve 1,. (By geodesic closure of a path 

connected subset of R’, we mean the completion of the subset as a metric space in the metric 

induced by taking the infimum of lengths of curves joining two points in the subset.) Let 

Wf denote the geodesic closure of Wi - w iDi and similarly define Mf = M‘n k:. It 

follows that M’ is incompressible in W’ and Mf is incompressible in U’i. Since e satisfies 

the barrier boundary condition in [ZS] (in other words, SCt: can be approximated by 

a smooth surface with nonnegative mean curvature), there exists an embedded minimal 

surface n;ii in I+; such that S2, = ZMf, Qi is isotopic to Ml relative to SM;. and AOi has 

least area in this isotopy class [ZS]. Now consider Abii to lie in IVi. 

ASSERTION 5.1. For j suJicientl_v hryc. 2Bi n hIj = 0. 

Prooj We will show that ?B, n Gj = 0 for large j. (This argument would also show 

that 2Bi n hTj = 0 for fixed i and large j.) Suppose that ?B, n ~j, is nonempty for 

a subsequence j, < jz < , . . . Then since the surfaces ~j are stable and the boundaries 

escape to infinity, a subsequence of the {n’j,, . . . , hljk, . . .} converges to a stable orient- 

able surface, one of whose components is a stable surface X that intersects SB,. (See the 

proof of Proposition 3.1 for this convergence argument.) Since X is a stable complete 

orientable minimal surface, the surface X contains a component that is a flat plane in w” 

([4] or [6]). However, if X contains a tlat plane disjoint from M”, the surface bf lies in 

a halfspace, which is impossible by the Halfspace Theorem [ 191. This contradiction proves 

t hc assertion. 0 

ASSERTION 5.1. Thr cotnponrnt of lvf; thut conttrins a, is un unnulus in W{ and it is 

topoloyicully purullel to A, = (2 W; ) - icf ; inside CV; . 

Prooj: Suppose for the moment that bf; is an annulus. Then ;ICV, is a torus. Proposi- 

tions I and 2 in [23] would then imply Wi is a solid torus since c7 W’, has nonncgativc mean 

curvature. Since 2, c ?M; is homotopically nontrivial in ct’i and rl bounds a disk in the 

closure of the complement of W”, in fact in (?B,, elcmcntary knot theory shows that M’, is 

topologically parallel to A, in W-i. Thus, it remains to prove that the component T of M” 

that contains z, is an annulus. Assertion 5.1 implics that for large values of i, T = Tn Wf is 

isotopic rel(d7;:) to a minimal surface Ci that is disjoint from A,. Since Ci is contained in 

a component U of W” - Wi and U has fundamental group isomorphic to E, Ci can only be 

incompressible if nl(C1) = Z. Hence, T, must be an annulus. The assertion now follows 

from these observations. 0 

It follows from Assertion 5.2 that there is an embedded arc on M, - ( u ,Dj u Int(A,)) 

and an embedded arc on A, such that the union of these two arcs is a simple closed 

homotopically nontrivial curve 5, on C’CV, and S, is the boundary of an embedded disk K, 

in W,. Choose /?, to be a curve on 12f, such that /?, is parallel to a, and such that the 

annulus L bounded by /?, and rl is disjoint from UjDj and PI intersects 6, transversely in 

a single point. It follows that PI is the boundary of a disk P, in Y and we can choose P,, as 

well as K,, to be least area by the Geometric Dchn’s Lemma [28]. Let p denote the 

geodesic closure of the component of Y - P, that contains the curve zz (see Fig. 2). If 

k equals 2, then skip the following construction. 

Assume now that k is greater than 2. Let fi’ = (M n ?‘) u P,. Let I%?; and fi be the 

associated subsets obtained by intersecting with Bi. The kernel of the inclusion 

n,(k;) -, n,( PI,) is generated by a collection A = {yl, . . . , 7,) of pairwise disjoint simple 
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closed curves that are disjoint from PI. (Note we are using the same notation 

A = {j)r.. . . , y.} for a similar collection of curves defined earlier in the proof and these 

curves are not the curves labeled in Fig. 2.). Let {Or, . . . , D,} be a collection of pairwise 

disjoint minimal disks in PI where dDi = yi for each integer i. (Note that this notation was 

also used earlier in the proof to denote a similar collection of disks.) Define Y‘ to be the 

geodesic closure of the component of p - u jDj that contains the curve 01~. Let M’ be the 

component in i’ Y’ corresponding to Q’ surgered along UjDj and that contains the curve 

12. Let Mf denote the associated compact subdomains of M” obtained by intersecting with 

Bi and similarly define Yl. Then the proofs of Assertion 5.1 and 5.2 work in the new case 

under consideration to show that MI is parallel in Y; to the annulus A, on SB, with 

boundary curves z, and rz. It is now straightforward to construct simple closed curves S1 

and pz on ?Y; that satisfy the following properties: 

1. ij2 is the union of an arc on II?; - PI and an arc on A,; 

9. d2 is the boundary of an embedded minimal disk K2 in F;; 

3. Br u zI bounds an annulus L2 on fi; that is disjoint from u jDj. In fact. f12 can be 

chosen to be one of the boundary curves of a small annular neighborhood L2 of 

rz u(S, n A?;); 
4. (p, us,)n(p~uS~) = 0; 
5. /I2 intersects ii, transversely in a single point. 

I’roc$ Let C be the closure of the component of B, - I!?.’ that contains the curve a,. 

Since /iz u rz bounds an annulus on h?.’ that is contained in C n Ic? and since r2 bounds 

a disk component of r?U, AC. the curve /I, is the boundary of a disk T in C. Let N, bc 

a small regular E-neighborhood of K, u L in C whcrc L is the annulus on M with boundary 

/I , u ct,. Choose E small enough so that the boundary of N, is disjoint from /Il. By 

construction of 6, and /I,, the boundary of N, in the closure of C - N, consists of a single 

disk component Q that is contained in W,. Since Tand Q are embedded disjoint disks, the 

usual disk replacement argument, replacing some components of T - Q by components of 

Q - Tand moving slightly, we may assume that Tis chosen so that Q is disjoint from Tand 

hence, T is disjoint from L u P, . Hence, T c (C - (L u P, )), which implies that /Ir is the 

boundary of an embedded disk in WI. Let P2 be a least-area disk in W, with boundary fiz. 

By construction, P2 is a minimal disk in W, with boundary /I, and Pr is disjoint from the 

Icast-area disk K, by the disjointness property of least-arca minimal disks (see [27]). The 

assertion is now proved. 0 

If k is greater than three; then the process of finding pairwisc disjoint simple closed 

curves 61, . . . , dj and pairwise disjoint simple closed curves /I,, . . . , /?j for j < k can be 

continued such that these curves satisfy the following properties: 

I. 

7 
a. 

3. 

4. 

5. 

Sj consists of an arc on ML and an arc on the annulus Aj c c?B, with boundary Zj and 

zj+li 

/lj c hl, and /lj intersects 3, transversely in one point when i =j and /?i n6j = 0 
when i #j; 

6, bounds a minimal disk Kj in W when j is odd and in Y when j is even; 

/I, bounds a minimal disk Pi in W when j is even and in Y when j is odd; 

The sets Kin Kj. Pin fj and i(i n Pi are empty when i is different from j; 
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6. the curve fij disconnects MI with one component being a planar domain Zj with 

boundary curves 1~1,. . . •Zj~~j): 

The same arguments used to prove the existence of the two collections {/II, . . . , /$ - L 1, 

{b,, . . . , Sk _ 1 f generalize immediately to prove: 

ASSERTION 5.4. When j = k - 1. there is a curtye /L$ on M, that satisfies Property 6 given 

abore and such that /Jt is the boundary ofa minimal disk Pk in the closure one of the components 

of B, - M, and a minimal disk R in the closure of the other component of the closure of 

B, - M,. Furthermore. R is disjoint from K, and Pi for i c k. 

We now complete the proof of the theorem. 

Let S be the sphere with boundary Pk u R and let B be the ball with boundary S. Since 

each component of S - MI has nonnegative mean curvature, Theorem 2 in [23] implies 

M, n B is a disk F with k trivial handles attached. Let bj = (M - B) u F. By construction 

(see properties l-6 above), G n B, is seen to be isotopic to the connected sum of parallel 

disks in B, along unknotted arcs. It follows that the surface Ml is standardly embedded in 

B, up to ambient isotopy. Since the end structure of M is standard, M is ambiently isotopic 

to the connected sum of k parallel planes along k - I unknotted arcs followed by taking the 

connected sum with a standardly embedded surface of genus g in the standard way (see 

Fig. I). The thcorcm follows from the last statement. 0 

Remark 5.1. Very recently Frohmnn [X] has shown that a “real” Heegaard splitting of 

a compact ball is topologically standard. Theorem 4.1 and Corollary 3.1 in [I I] imply 

rather easily that the surface fkf , c B, , dcfincd at the beginning of the proof of Theorem 5. I, 

is a “rsal” Ilccgaard splitting of the ball B,. Hence. Frohman’s topological uniqucncss 

theorem for such splittings of B, give an altcrnativc approach to completing the proof of 

Thcorcm 5. I. 
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