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L. INTRODUCTION

In 1970 Lawson [22] proved that two embedded closed diffeomorphic minimal surfaces in
the unit three-dimensional sphere S* in R* are ambiently isotopic in §3. Lawson proved this
theorem by first proving that an embedded orientable closed minimal surface of genus ¢ in
a closed orientable Riemannian three-manifold M?* with positive Ricci curvature discon-
nects M* into two genus-g handlebodics. A result of Frankel [7] was used to prove this.
Lawson then applied a deep result of Waldhausen {33] that states that decompositions of
$? into two genus-g handlebodics are unique up to ambient isotopy. More preciscly,
Waldhausen's uniqueness theorem states that whenever a closed surface of genus ¢ in S?
separates S into handlebodics, then the embedding of the surface is as simple as possible; in
other words, the surface is obtaincd from a two-sphere $? < S by adding handles in an
unknotted mannecr.

Meeks [23] generalized Lawson’s argument to the case of oricntable closed minimal
surfaces in a closed M? with nonncgative Ricci curvature. Meck’s result and another
topological uniqueness result of Waldhausen [33] implies that two closed diffeomorphic
minimal surfaces in §2 x §' with the usual product metric are ambiently isotopic. Finally,
Meeks-Simon-Yau [25] proved that if £ is a closed minimal surface in S* equipped with
a metric of non-negative scalar curvature, then X disconnects S3 into two handlebodies and
hence determines a unique ambient class in S°.

In [23] Mceks considered the problem of the topological uniqueness of minimal surfaces
in three-dimensional Euclidean space. In particular, Meeks proved that any two compact
difftomorphic minimal surfaces, with boundary a simple closed curve on the boundary of
a smooth convex ball, are ambiently isotopic in the ball. Later Hall [13] showed that there
exist two simple closed curves on the unit sphere S? that bound a knotted minimal surface
of genus one.

In this paper we will use global properties of stable minimal surfaces in R? to prove:
A properly embedded minimal surface of finite topological type in R® is unknotted. In
particular, if £, and X, are two such diffeomorphic surfaces, then they are ambiently
isotopic. This is the main result of our paper and it is restated in a more precise form in
Theorem 5.1. Because of Hall's counterexample to unknottedness for compact minimal

tThe rescarch described in this paper was supported by research grant DE-FG02-86ER250125 of the Applied
Mathematical Science subprogram of Office of Energy Rescarch, U.S. Department of Energy, and National
Science Foundation grant DMS-8611574. V

$Supported in part by the National Science Foundation grant DMS-8711394.

305



306 Willlam H. Meeks III and Shing-Tung Yau

surfaces discussed in the previous paragraph, the proof of Theorem 5.1 depends in an
essential way on the completeness of the properly embedded minimal surface in R>.

The proof of our topological uniqueness theorem further clarifies the geometric descrip-
tion of the ends of a general properly embedded minimal surface X in R?, even when I has
an infinite number of ends. This geometric description of the ends of a properly embedded
minimal surface has been exploited by Choi, Meecks and White [3] to prove that if
a properly embedded minimal surface has more than one end, then every intrinsic isometry
of the surface extends to an ambient isometry. Hoffman and Meeks [17] have applied our
techniques to prove that a properly embedded minimal surface of finite topological type has
at most two ends with infinite total curvature. This result implies that the conformal
structure of properly embedded minimal surfaces of finite topological type with more than
two ends is restricted.

In our proofs we frequently exploit the property that each annular end of a complete
embedded minimal surface of finite total curvature is asymptotic to a plane or to a half-
catenoid. This property can be proved with the Weierstrass Representation of a minimal
surface [31].

Hoffman and Meeks [16, 18] and Callahan, Hoffman and Meeks [ 1] have constructed
properly embedded minimal surfaces in R® of finite topological type with every possible
genus. All these new examples have either three or four ends. Computer graphics images of
these surfaces illustrate that the surfaces have a rather complex geometric appearance.
However, our main thcorem demonstrates that these surfaces, after composing with a dif-
feomorphism of RY, have the simplest possible geometric appearance (see Fig. 1).

Recently Frohman and Mecks [11, 12] have proven a related topological uniquencss
thcorem for certain properly embedded minimal surfaces with possibly infinite genus (also
see [9]). Their Theorem 1.1 states that a properly embedded minimal surface with one end
in R? is topologically unknotted. Their proof of this result is based in part on some of the
technical results in Sections 2 and 3 of our paper. A recent result of Callahan, Hoffman and
Mccks (Corotlary 2 in [2]) states that every properly embedded nonplanar doubly-periodic
minimal surface in R? has one end, and hence, it is unknotted by the Frohman-Meceks
theorem, Sce Conjecture 1.2 in [10] for a possible natural necessary and sufficient condition
for two properly embedded minimal surfaces in R? to be ambiently isotopic.

2. STABLE MINIMAL SURFACES WITH BOUNDARY

In this section our aim is to describe the global geometry of certain minimally immersed
surfaces in R? that are complete and have compact boundary. It is well-known that
a complete minimal surface of finite total curvature in R* is conformally diffeomorphic to
a closed Riemann surface punctured in a finite number of points (see [20] or [29]). Il M has
compact boundary and it is a complete minimal surface of finite total curvature, then it
remains true that the ends of M are conformally diffeomorphic to punctured disks. In the
case where an end of such an M is embedded, then it is asymptotic to a catenoid or to a flat
plane in R? [31]. The next theorem gives a sufficient condition for a complete minimal
surface with compact boundary in R* to have finite total curvature.

TueoreM 2.1. If f1 M - R> is a complete minimally immersed orientable surface with
compact boundary is stable, then M has finite total curvature.

Proof. This theorem follows immediately from results of Fischer-Colbrie in [5]. In fact,
the statements and proofs of Theorem | and Corollary 1 in [5] also prove that if M is
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a complete stable minimal surface with compact boundary in a complete orientable N* with
nonnegative scalar curvature, then M has finite total curvature. O

3. THE ENDS OF A PROPERLY EMBEDDED MINIMAL SURFACE

The ends of a surface correspond to the different ways to travel to infinity on the surface.
We will call a connected proper subsurface E of M an end of M if E has compact boundary
but E is not compact. A surface is said to have more than one end if it contains at least two
pairwise disjoint ends. It is straightforward to check that a surface M has more than one end
if and only if there is a simple closed curve on M that separates M into two components,
each of whose closure is noncompact. The following theorem is the first step in our analysis
of the geometry of the ends of a properly embedded minimal surface.

THEOREM 3.1. Suppose that M is a properly embedded minimal surface in R® and suppose
d is a smooth simple closed curve on M that separates M into two components, each of whose
closure is noncompact. Let N, and N, denote the closures of the two components of R> — M.
Then:

1. Either & is not homologous to zero in N, or d is not homologous to zero in N,;

2. If & is not homologous to zero in N, (resp. N,), then 3 is the boundary of a smooth
properly embedded, noncompact, orientable, minimal surface T of finite total curvature
in N, {resp. N;). Furthermore, T is an area-minimizing surface in N, (resp. N;) in the
sense that compact subsurfuces of T have least area with respect to their boundaries in
the region Ny (resp. N;).

Proof. If the curve § is homologous to zecro in Ny, then J§ is the boundary of an
embedded compact surface K, in N, such that K; n M = 4. Similarly, if § is homologous to
zero in N,, then § is the boundary of an embedded surface K, in N, with K;n M =4.
Thus, if é is homologous to zero in both N, and N,, then there is a closed surface K, U K,
that intersects M in the curve d. Furthermore, one of the components of M —  must be
contained in the compact region R of R* with boundary surface K, u K,. However, since
M is proper, the component of M — 6 contained in R must have compact closure, which
contradicts our hypotheses that § separates M into two noncompact components. Thus,
é can not be homologous to zero in both N, and N,, which proves part | of Theorem 3.1.
Suppose now that § is not homologous to zero in N ;.

Let M ;. be the closure of one of the componentsof M — 8. Let M, c---c M, < - - -be
an exhaustion of M , by smooth compact subdomains of M , and such that § « dM,. Since
N has nonnegative mean curvature, dM; is the boundary of a least-area rectifiable current
A; in N; (see Theorem | in [28] and also see [32]). By interior regularity theorems of
area-minimizing currents, A; — J is a smooth embedded surface. Since A; U M, disconnects
R?, the surface A, is orientable and the boundary regularity theorem in [14] shows that A; is
a smooth compact least-area minimal surface in N, with boundary dM,. The usual
compactness theorems for least-area surfaces show that a subsequence {4, } converges
smoothly on compact subsets of R? to a properly embedded, stable, minimal surface £ with
6L = J (see [32] or the proof of Lemma 3 in [24] for explicit details on this compact
property for {A;} in a similar context). Since d is not homologous to zero in N, the surface
X is noncompact. Since either Zu M, orZu(M—M,)isa properly embedded surface in
R3, X is orientable. Hence, £ has finite total curvature by Theorem 2.1.
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For the sake of completeness we prove the well-known property that any compact
smooth subdomain £ of T has least-area in N 1 (with respect to surfaces in N,; with
boundary equal to ¢£). If this condition fails, then we may assume that £ < £ and there
exists a compact surface £ = N; with £ = 2% and a positive number ¢ such that
Area(}:'.) = Area(f) + & However, X is the smooth limit of least-area surfaces. This means
that we can approximate b3 by a least-area surface £’ in N, with Area($) < Area(¥’) + /2
and such that the boundary curves £’ and £ form the boundary of surface 4 of area less
than e/2. However, the surface A U I has the same boundary as £’ but has area strictly less
than the area of £’. This contradicts the supposed least-area property of £ and proves that
Z satisfies the least-area property described in the statement of the theorem. This completes
the proof of Theorem 3.1. O

ProposiTioN 3.1. Suppose M is a properly embedded minimal surface in R>. Suppose that
d is a simple closed curve on M such that 6 separates M into two unbounded components E,
and E, where E, has one end. If ¢ is not homologous to zero in the closure N of one of the
components of R® — M, then & is the boundary of a stable, orientable, properly embedded,
minimal surface T in N that has finite total curvature and at most two ends.

Proof. Suppose N the closure of a component of R® — M where J is not homologous to
zero. Recall the part of the proof of Theorem 3.1 where, from an exhaustion of the end E;,
one produces a least-arca orientable surface T that is the limit of compact least-area surfaces
I, in N with boundary curves consisting of J and some other curves on the end E;. We will
prove that  has at most two ends. Supposc now that £ has more than two ends and we
shall derive a contradition.

Since E, has exactly one end, the maximum principle for minimal surfaces implies that
the interior of X is disjoint from E,; otherwise, X is equal to E,, which has one end. Hence,
INE, =06 Let W be the region of N with boundary T U E,. Since Z is an embedded
minimal surface with finite total curvature, there exists a positive number R, such that for
R > R,, T intersccts the sphere Sg = {xeR?| {x| = R} in k “parallel” simple closed curves
that are almost geodesics on Sg, where k is the number of ends of Z (see [21]). What this
means geometrically is that under the homothety h(x) — x/R, the set h(Sg n Z) is a collec-
tion of k simple closed curves that are C2-close to a common great circle in the unit sphere.

Choose an R > R, such that Sg is transverse to E, and such that J is contained in the
ball By with boundary Si. Since E, has exactly one end and it is properly embedded in
R3, E, can only intersect one of the components of R® - (Int(Bg)u Z) in a noncompact
component. Actually we claim that this noncompact component is the only component.
Since ¢E, < Int(Bg), we conclude that if E, intersects some component of
R? — (Int(Bgr) U ) in a component that is a compact surface, then the boundary of this
compact surface is contained in Sg. The existence of such a compact minimal surface
contradicts the convex hull property for minimal surfaces. Hence E; can only intersect
exactly one component, say C, of R® — (Int(Bg)u ).

Recall that T # E, and so for large i the least-area surfaces I, that limit to be T intersect
E, only along ¢X;. We now prove that the surfaces I; must be contained in the region W.
Consider the compact region R; of R? with boundary M; U Z; where M; is defined in the
proof of Theorem 3.1. Let W be the closure of N — W. If Z; is not contained in W, then the
region R;n W’ gives a homology in N between X, W' and a least-area domain X} < X.
Replacing £,n W’ on X; by Z; yields another least-area surface but this surface is not
smooth along 6Z ;. This contradicts the interior regularity of least-area surfaces and proves
o W.
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Since for large i, ¢X; consists of the curve ¢ and curves contained in E; n C, the convex
hull property for minimal surfaces implies that £, (R? — (Int(Bg) U X)) = Z; C. Since
the Z; limit to be I, it follows that £ n (R® — Int(Bg)) = ¢C. Hence, X has either one or two
ends, since ¢C has one or two components. 0

We now consider the case when the end E has finite topology.

THEOREM 3.2. Suppose M is a properly embedded minimal surface in R® with more than
one end. If E is a smooth annular end of M, then 2E is the boundary of a stable minimal annulus
A of finite total curvature that is contained in the closure of one of the components of R* — M.

Proof. Let £ < N be the least-area minimal surface whose existence is guaranteed by
Theorem 3.1 and Proposition 3.1 and where N is the closure of one of the components of
R3 — M where JE is not homologous to zero.

Case 1.  has one end.

The surface ¥ separates N into two components. Let W denote the closure of the
component that contains E in its boundary. Let By be a ball centered at the origin of radius
R where R is chosen large enough so that:

l. 6B, n X is a simple closed curve z, for r 2 R;
2. JE < Int(Bg);
3. ¢Bg is transverse to E.

From the simple topology of the annulus and the maximum principle, one easily checks
that 0By N E contains a unique component f that is homotopically nontrivial in E. Let C be
the component of 0Bz n W that contains 8. Notice also that all of the boundary curves of
2Bg N W bound disks in ¢W except the curves ag and f. Then since neither of the cycles ag,
f1s homologous to zero in W, the curve ag must also be contained in dC. It follows that ag is
homotopic to ff in W and hence ag is homotopic to JE. By the Geometric Dehn Lemma in
[27] and [28], ¢E U a, is the boundary of a least-area embedded minimal annulus 4, in
W forr > R. Since the area of £ N B grows like 7R 2, the monotonicity formula implies that
a sequence {A, } have uniformly bounded area in By for any R as r; » co. Furthermore,
the stable annuli {4, } have bounded curvature away from JE by the curvature estimates of
Schoen [30]. Hence the usual compactness theorem shows that the A4,, converge smoothly
on compact subsets of R*, away from JE, to a properly embedded stable minimal surface M.
Furthermore, the usual argument of lifting curves on M to nearby approximating surfaces
shows that M is an annulus. Since the area of A, is bounded in a neighborhood of JE, the
proof of Hildebrandt's boundary regularity theorem [15] implies that M is smooth up to
and including its boundary.

Case 2. Z has two ends.

Recall, from the proof of Proposition 3.1, that this case can only occur when the end E is
asymptotically contained between the two ends of Z. The ends of £ are asymptotic to planes
or catenoids whose normals at infinity are parallel. Suppose, after a possible rotation, that
the normal vectors to the ends of Z are vertical. It is then clear that every vertical cone of the
form z2 = ¢(x? + y?)intersects E in a compact set. Lemma 4 in [17] states that if an annular
end of a properly embedded minimal surface intersects a sufficiently flat cone in a compact
set, then it must have finite total curvature, Thus, E has finite total curvature and hence has
area approximately nr? in balls B, radius r. As in the proof of Case 1, this gives an estimate
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for the area of a least-area annulus A4, in N with boundary ¢E and a curve in En 3B,
r large. As before, this estimate leads to the existence of the stable minimal annulus. In fact
this estimate also shows that if the least-area surface X is obtained by the procedure of
Theorem 3.2, then £ ~ B, has area growth nr?, which implies £ has one end. g

4. THE ENDS OF A PROPER MINIMAL SURFACE ARE TOPOLOGICALLY PARALLEL

The first step in the proof of the topological uniqueness theorem for a minimal surface
M of finite type in R? is to show that there is only one possibility for the placement of
M near infinity. The correct notion is captured in the next definition.

Definition. 4.1. A properly embedded surface M of finite type in R® will be said to have
topologically parallel ends if there is a diffcomorphism f: R* — R3 such that the intersection
of the complement C of the open unit ball in R* with f(M) is the intersection of a collection
of parallel planes with C.

THEOREM 4.1. Suppose M is a properly embedded minimal surface in R® that has finite
topological type. Then the ends of M are topologically parallel.

Proof. If M has finite total curvature, then the theorem follows directly from the
description of M in Theorem 1 in [21]. Originally we found a direct but rather complicated
argument to prove Theorem 4.1 when M did not have finite total curvature. These
complications can now be avoided by using the Annular End Theorem of Hoffman and
Meeks [17]. Their theorem states that M can have at most two annular ends with infinite
total curvature and, furthermore, their theorem shows that the ends of M can be well-
ordered in the following sense. First suppose that M has exactly two annular ends F,, F, of
infinite total curvature andends E,, . . ., E, of finite total curvature. For large R, if By is the
ball of radius R, then 3Bz n (U, E;) is a collection of n simple closed curves that are almost
geodesics on 3B, i.e., under the homothety x + x/R, these n curves become C?-close to
a common great circle in the unit sphere. Then it follows dircctly from the proof of the
Annular End Theorem that F, n @By is contained in onc of the disk components, D, of
0Bg — UE; and Fy n 8By is contained in the other disk component, D,, of dBg — U E;.

The simple topology of annulus and the maximum principle easily imply that F; 1 dBg
contains exactly one curve y; that is homotopically nontrivial on F;,i = 1, 2. The Jordan
curve theorem shows that the curves I' = {y,,y,,0Bg N E;, . .., 8Br N E,} disconnect 0By
into components consisting of annuli and disks D}, D where éD; = y;,j = 1,2. The End
Uniqueness Theorem (Theorem 4 in [23]) states that there is a homeomorphism h: R* - R*
that is the identity on I', such that A(M ) (R? — Int(Bg)) is a cone over I". Since I" consists
of topologically parallel curves on dBg, there is a diffeomorphism f: R* — R* such that the
intersection of the complement C of the unit ball with f(M) is equal to the intersection of
C with a collection of parallel planes.

The case where M has exactly one end F, of infinite total curvature is proved in a similar
manner. 0

Remark 4.1, Frohman and Meeks recently proved an important generalization of
Theorem 4.1 by proving that the ends of an arbitrary properly embedded minimal surface
M in R? with more than one end can be “ordered” by their height over “the limit tangent
plane at infinity” of M. See [10] and [12] for details.
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S. THE TOPOLOGICAL UNIQUENESS THEOREM

We now state our main theorem.

THEOREM S.1. A properly embedded minimal surfuce in R’ that is homeomorphic to
a closed surface of genus g with k points removed is ambiently isotopic to the surface obtained
by taking the connected sum of k parallel planes along unknotted arcs in the slabs between the
planes and then taking the connected sum of this surfuce with a standardly embedded closed
surface of genus g in the standard way. (See Fig. 1).

ko OO}

genus = g

k ends

Fig. 1.

Proof. If M has onc end, then the theorem was proved in {23]. Assume now that & is
greater than one.

Before proceeding with the proof of Theorem 5.1, we give an outline of our approach to
the proof. From the statement of Theorem 4.1 we already know that M has a standard
appearance in the complement of some ball. In fact, Theorem 4.1 shows that there exists an
exhaustion of R? by balls, not necessarily round,

BicB,c...cB,c...cR?

such that B, M = M, is diffecomorphic to M, M n(R* — B,) consists of topologically
parallel annuli and the boundary curves of M, approach infinity as n approaches infinity.

It remains to prove that M, is standardly embedded in B, . Since care must be taken in
this step of the proof since P. Hall has proven that there exist knotted minimal surfaces of
genus onc with two boundary curves on the unit sphere [13]. Hall's example demonstrates
that the completeness of the metric on M must be used to show that M, is standardly
embedded.

One technique that we employ is to minimize arca in the ambient isotopy class of M,
rel(CM;) in the closure of a fixed component of R> — M. By this process we create a stable
minimal surface M; with boundary &M, approaching infinity and we show that M; must
escape the ball B, for large values i or M; converges to a flat plane that intersects B, and this
plane is disjoint from M. This second possibility is impossible by a result of Meeks and
Hoffman that states that a nonplanar minimal surface is not contained in a halfspacc of R?
[19]. During this minimization process, handles on M; may collapse so that the topology of
the stable minimal surface M; is in general different from the topology of M.

The fact that M, escapes B, for large i is then used to get some additional information.
This additional information is that therc exist certain compressing minimal disks on the
closures of the two components of B, — M. (A compressing disk is an embedded minimal
disk in the closure C of a component of B, — M, and the boundary of this disk is
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a homotopically nontrivial curve in 6C.) By cutting along these compressing disks we then
reduce the question of uniqueness of M, to the question of uniqueness when M, has one
boundary curve. This case of one boundary curve was proved earlier by Meeks {23]. This
completes the outhine of the proof.

We first define the required sequence of balls B, = B, ... < R?. (For further dis-
cussion on the construction of these balls see the proof of Theorem 4 in [23].) Let
E=1{E,....,E.} denote a collection of pairwise disjoint annular end representatives for
M. First choose a sequence of round balls B, c B, = ... c R? centered at the origin such
that u,B, = R3, B, is transverse to M, and ¢E < B,. We may choose E so that CE < ¢B,
and a neighborhood of @E is disjoint from Int(B,). It was shown in [23] that for i > I,
E ~ B, consists of k compact annuli, one for each end, and a collection of disk components
whose union we denote by D;. Let B; denote the closure of the component of B; — D; that
contains CE.

The balls B; are piecewise smooth balls whose boundaries consist of convex spherical
surfaces and minimal disks. By the approximation procedure in the proof of Theorem 1 in
[28]. we can modify B;in a small neighborhood of D; n B, to obtain for i > | new smooth
balls B; satisfying:

1. ¢B; has nonnegative mean curvature;

2. 0B;nM =¢B,nE and consists of the k& simple closed curves dB;n
E,,...,¢B,nE;

3. Int(B;)n M = M, is diffcomorphic to M;

4. M — M, consists of k annular end representatives of M.

By Theorem 4.1, we may also assume that the ends E are indexed so that there exists
a diffcomorphism f: R® — R? such that f(B,) is the ball # centered at the origin of radius
land f(E) = {(x.y.2)e(R* = AB)|x = — 1/i+ 1}

Let Y be the closure of the componcnt of R — M that contains the point
S7H(-1,0,0)) and let W be the closure of the other component. Let ¥, = YN B;,
W, = Wn B, and x; = E; ~ 3B, except that 2;, will be denoted by ;. Let A; = B, be the
annulus with 24; = %, U 2, (see Fig. 2).

B,

Fig. 2. Picture of M, in a convex ball B,

Let A= {y,,...,7.} be a collection of pairwisc disjoint simple closed curves that
generate the kernel of the map n,(M,) — n,(W,) induced by inclusion. The existence of the
collection A follows from the loop theorem [26]. The Geometric Dehn’s Lemma {28]
implies that the curves in A form the boundary of a collection of pairwise disjoint minimal
disks {D,, ..., D,}in W, and such that D;n W, = y;. Let W* denote the geodesic closure
of W~ u;D; and let M* denote the surface in W* that corresponds to the component of
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M surgered along v ;D; and that contains the curve x,. (By geodesic closure of a path
connected subset of R*, we mean the completion of the subset as a metric space in the metric
induced by taking the infimum of lengths of curves joining two points in the subset.) Let
W? denote the geodesic closure of W; — u;D; and similarly define M{=M*n W7 It
follows that M* is incompressible in W* and M| is incompressible in B'{. Since W7 satisfies
the barrier boundary condition in [28] (in other words, é¢#73 can be approximated by
a smooth surface with nonnegative mean curvature), there exists an embedded minimal
surface M, in W3 such that éM,; = éM3. M, is isotopic to M} relative to ¢Mj], and M, has
least area in this isotopy class [25]. Now consider M, to lie in W;.

AsSERTION S.1. For j sufficiently large, CBinM; = &

Proof. We will show that ¢B, N 1\7,- = & for large j. (This argument would also show
that é’B,-rm\'.lj = & for fixed i and large j) Suppose that (’Blnlﬁjk is nonempty for
a subsequence j, <j; <... . Then since the surfaces Mj are stable and the boundaries

escape to infinity, a subsequence of the {M, M, ...} converges to a stable orient-

ooy My,
able surface, one of whose components is ‘; stable su;face X that intersects 0B,. (See the
proof of Proposition 3.1 for this convergence argument.) Since X is a stable complete
orientable minimal surface, the surface X contains a component that is a flat plane in W~
([4] or [6]). However, if X contains a flat plane disjoint from M?, the surface M lies in
a halfspace, which is impossible by the Halfspace Theorem [19]. This contradiction proves
the assertion. 0

ASSERTION 5.2. The component of M7 that contains ay is an annulus in W% and it is
topologically parallel to A, = (W) — M} inside W1,

Proof. Suppose for the moment that M7 is an annulus. Then ¢ W1 is a torus. Proposi-
tions | and 2 in [23] would then imply WY is a solid torus since ¢ W has nonnegative mean
curvature. Since 2, < ¢M7 is homotopically nontrivial in W and «, bounds a disk in the
closure of the complement of W™, in fact in £B,, elecmentary knot theory shows that M is
topologically parallel to A in W, Thus, it remains to prove that the component T of M*
that contains x, is an annulus. Assertion 5.1 implies that for large values of i, T; = T Wiis
isotopic rel(27;) to a minimal surface C; that is disjoint from A,. Since C; is contained in
a component U of W* — W and U has fundamental group isomorphic to Z, C; can only be
incompressible if 7,(C;) = Z. Hence, T, must be an annulus. The assertion now follows
from these observations. O

It follows from Assertion 5.2 that there is an embedded arc on M, — (U ;D; U Int(4,))
and an embedded arc on A4, such that the union of these two arcs is a simple closed
homotopically nontrivial curve 6, on ¢W, and J, is the boundary of an embedded disk K,
in W,. Choose f3, to be a curve on M, such that §8, is parallel to «, and such that the
annulus L bounded by f8, and z, is disjoint from U ;D; and f8, intersects &, transversely in
a single point. It follows that §, is the boundary of a disk P, in Y and we can choose P,, as
well as K, to be least area by the Geometric Dchn's Lemma [28]. Let ¥* denote the
geodesic closure of the component of Y — P, that contains the curve x, (see Fig. 2). If
k equals 2, then skip the following construction.

Assume now that k is greater than 2. Let M’=(Mn Y°)uUP,. Let M{and ¥ be the
associated subsets obtained by intersecting with B;. The kernel of the inclusion
T (M%) > (73)is generated by a collection A = {y,, ..., 7,} of pairwise disjoint simple

TP 31:2-H
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closed curves that are disjoint from P,. (Note we are using the same notation
A ={7,....,7.} for a similar collection of curves defined earlier in the proof and these
curves are not the curves labeled in Fig. 2.). Let {D,, ..., D,} be a collection of pairwise
disjoint minimal disks in Y3 where éD; = y; for each integer i. (Note that this notation was
also used earlier in the proof to denote a similar collection of disks.) Define Y* to be the
geodesic closure of the component of ¥* — U ;D; that contains the curve «,. Let M* be the
component in @¥* corresponding to M* surgered along v ;D; and that contains the curve
x;. Let M} denote the associated compact subdomains of M* obtained by intersecting with
B; and similarly define Y}. Then the proofs of Assertion 5.1 and 5.2 work in the new case
under consideration to show that M3 is parallel in Y3 to the annulus A; on éB, with
boundary curves x; and x,. It is now straightforward to construct simple closed curves J,
and 8, on ¢ Y that satisfy the following properties:

. J, is the union of an arc on M — P, and an arc on A

. &, is the boundary of an embedded minimal disk K, in ¥3;

B2 x, bounds an annulus L, on M$ that is disjoint from U ;D;. In fact, §, can be
chosen to be onc of the boundary curves of a small annular neighborhood L; of
AU (0 N 1\7“,);

4 (Brud)n(Bud)=T:

5. 8, intersects &, transversely in a single point.

AT O

ASSERTION 5.3. The curve fi; bounds an embedded minimal disk Py in W that is disjoint
Jrom the least-area disk Ky in W (where 0K = §,).

Proof. Let C be the closure of the component of B, — M* that contains the curve a, .
Since /8, U 2, bounds an annulus on M* that is contained in C A M* and since 2, bounds
a disk component of @B, n C, the curve ff, is the boundary of a disk Tin C. Let N, be
a small regular e-neighborhood of K| w L in C where L is the annulus on M with boundary
fiiua,. Choose ¢ small enough so that the boundary of N, is disjoint from f,. By
construction of §, and f§,, the boundary of N, in the closure of C — N, consists of a single
disk component Q that is contained in W,. Since T and Q arc embedded disjoint disks, the
usual disk replacement argument, replacing some components of 77 — Q by components of
@ — Tand moving slightly, we may assume that T is chosen so that @ is disjoint from T and
hence, T is disjoint from Ly P,. Hence, T = (C — (L u P,)), which implies that 8, is the
boundary of an embedded disk in W, . Let P, be a least-area disk in W, with boundary f3,.
By construction, P, is a minimal disk in W, with boundary f, and P, is disjoint from the
least-area disk K by the disjointness property of least-arca minimal disks (see [27]). The
assertion is now proved. 0

If k is greater than three; then the process of finding pairwise disjoint simple closed
curves oy, ..., d; and pairwise disjoint simple closed curves ff,,...,f; for j < k can be
continued such that these curves satisfy the following properties:

1. J;consists ol an arc on M, and an arc on the annulus 4; c ¢B, with boundary «; and
Xj+qs

. B; = M, and [i; intersects J; transversely in one point when i =jand §,nd;= &
when i@ #

3. ; bounds a minimal disk K; in W when j is odd and in ¥ when j is even;

. f; bounds a minimal disk P; in W when j is even and in Y when j is odd:

5. The sets K;n K;, P, P; and K;n P; are empty when i is different from j;

o

P =S
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6. the curve B; disconnects M, with one component being a planar domain X; with
boundary curves {x,, ..., %, ;}:

The same arguments used to prove the existence of the two collections {f;, ..., fx-1}»
{01....,0c—} generalize immediately to prove:

ASSERTION 5.4. When j = k — 1, there is a curve B, on M, that satisfies Property 6 given
above and such that B, is the boundary of a minimal disk P, in the closure one of the components
of B, ~ M, and a minimal disk R in the closure of the other component of the closure of
B, — M. Furthermore, R is disjoint from K; and P; for i < k.

We now complete the proof of the theorem.

Let S be the sphere with boundary P, u R and let B be the ball with boundary S. Since
each component of § — M, has nonnegative mean curvature, Theorem 2 in [23] implies
M, ~ Bis adisk F with k trivial handles attached. Let M = (M — B)u F. By construction
(see properties 16 above), M ~ B, is seen to be isotopic to the connected sum of parallel
disks in B, along unknotted arcs. It follows that the surface M, is standardly embedded in
B, up to ambicnt isotopy. Since the end structure of M is standard, M is ambiently isotopic
to the connected sum of k parallel planes along k — 1 unknotted arcs followed by taking the
connected sum with a standardly embedded surface of genus g in the standard way (sec
Fig. 1). The thecorem follows from the last statement. 0

Remark 5.1, Very recently Frohman [8] has shown that a “real” Heegaard splitting of
a compact ball is topologically standard. Theorem 4.1 and Corollary 3.1 in [11] imply
rather casily that the surface M, < B,, defined at the beginning of the proof of Theorem 5.1,
is a “real” Heegaard splitting of the ball B,. Hence, Frohman's topological uniqueness
theorem for such splittings of B, give an alternative approach to completing the proof of
Theorem 5.1.
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