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1 Introduction

One can define higher dimensional superconformal field theory (SCFT) in various ways. If

our theory has a conformal manifold, it might be possible to find a weakly coupled gauge

theory description: one can describe our theory by specifying matter contents and gauge

groups, and the coordinates of conformal manifold are identified with gauge couplings. This

method works for four dimensional N = 4 Super Yang-Mills theory and four dimensional

N = 2 SCFTs. These gauge theory descriptions are often not unique and one can have

very interesting S duality property.

Another way of defining a SCFT is as follows [1]: consider the Coulomb branch of

a four dimensional N = 2 theory, and there might be a locus where some extra massive

BPS particles become massless, and one can get a SCFT if these extra massless particles

are mutually non-local. Argyres-Douglas theory [2] was found in this way, and a very
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general argument for the existence of such SCFT is given in [3]. These extra massless

degree of freedoms make the description of physics singular at this particular point, and

such singularities can often be made geometrical [4]. One can actually define a SCFT by

simply specifying the geometrical singularity, and this idea has been used to engineer a

large class of new four dimensional N = 2 SCFTs [1, 5, 6].

Our focus in this paper is to use singularity approach to study five dimensional N = 1

SCFT [7]. This type of SCFT has no SUSY preserving exact marginal deformations [8],

therefore one can not write down a weakly coupled gauge theory description with confor-

mal gauging. One can still define 5d N = 1 SCFT [7] by going to a locus of Coulomb

branch where one has extra massless particles including W bosons, instanton particles and

tensionless strings.1 Again, instead of specifying extra massless degree of freedoms, we

may use a geometric singularity to define a 5d N = 1 SCFT. Such method has been used

in [9, 10] to study 5d N = 1 SCFT and the main purpose of this paper is to provide a

more systematic treatment.

The basic idea of engineering 5d N = 1 SCFT is using M theory on a 3-fold sin-

gularity [9, 10]. Then the first question that we would like to answer is that what kind

of singularity will lead to a five dimensional N = 1 SCFT? The main conjecture of this

paper is

Conjecture 1 M theory on a 3d canonical singularity X defines a 5d N = 1 SCFT.

Familiar examples of 3d canonical singularity include toric Gorenstein singularity, quotient

singularity C3/G with G a finite subgroup of SL(3), and certain class of hypersurface sin-

gularities. One of basic argument for this conjecture is that this is the class of singularities

that would appear in the degeneration limit of Calabi-Yau manifold [11]. Two dimen-

sional canonical singularity has a ADE classification, and this leads to a remarkable ADE

classification of six dimensional (2, 0) SCFT [12].

The two very basic numeric invariants associated with a 5d SCFT are the rank of

flavor symmetry f , and the rank of the Coulomb branch r. Finer information such as the

enhancement of flavor symmetry, chamber structure and prepotential of Coulomb branch

are also desired. One can derive many of these important physical results from the following

geometric properties of singularity X:

• The non-abelian flavor symmetry can be read from the ADE type over one dimen-

sional singular locus. The rank of other abelian flavor symmetry is read from the

rank of local divisor class group of the singularity.

• The Coulomb branch is given by crepant resolution of the singularity X, and differ-

ent crepant resolutions describe different chambers of the Coulomb branch. These

different resolutions are related by flops, and the rank of Coulomb branch is constant

across different chambers.

1We want to emphasize that it is not sufficient to define a 5d N = 1 SCFT by just specifying non-abelian

gauge theory description on certain locus of Coulomb branch, and one need to also specify other massive

degree frames such as instanton particles and strings which become massless or tensionless at the SCFT

point.
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• Given a crepant resolution, let’s choose a basis Di of generators of local divisor class

group, and the preopotential is given by following formula [10]:

F =
1

6

(

∑

i

φiDi

)3

=
1

6

∑

(Di ·Dj ·Dk)φiφjφk . (1.1)

Here (Di · Dj · Dk) is the triple intersection number for divisors. If Di is compact

(resp. non-compact), the corresponding parameter ψi is regarded as Coulomb branch

(mass) parameter. The range of real numbers ψ is determined by Nef cone. Inside Nef

cone, one have an abelian gauge theory description in the IR. The co-dimensional

one face of Nef cone describes the place where an extra massive particle becomes

massless. At the intersection of these faces, more massive particles become massless,

and sometimes one can have a non-abelian gauge theory description.

• For crepant resolution related by a flop, the corresponding Nef cones share a face. Nef

cones from all crepant resolutions form a fan which is identified as the full Coulomb

branch.

This paper is organized as follows: section 2 reviews some basic facts of 5dN = 1 SCFT

and 5d gauge theory; section 3 describes the classification of 3-fold canonical singularity.

Section 4 discusses in detail the SCFT associated with toric canonical singularity; section 5

and 6 describe SCFTs associated with quotient and hypersurface singularity; finally a

conclusion is given in section 7.

2 Generality of 5d N = 1 SCFT

5d N = 1 superconformal algera consists of conformal group SO(2, 5), R symmetry group

SU(2)R, and possibly global symmetry group G. Representation theory of five dimensional

N = 1 superconformal algebra is studied in [8, 13], and a general multiplet is labeled

as [j1, j2]
(R)
∆ , here j1, j2,∆ are spins and scaling dimension, and R is SU(2)R quantum

number. Short representations are classified in [8, 13], and one important class is called

CR = [0, 0]
(R)
∆ , with the relation ∆ = 3

2R. Flavor currents is contained in multiplet C1.

For 5d N = 1 SCFT, the only SUSY preserving relevant deformation is the mass

deformation, and there is no exact marginal deformation. One can have a different kind

of SUSY preserving deformation by turning on expectation value of certain operators, and

we could have continuous space of vacua called moduli space. The moduli space consists

of various branches:

• There could be a Higgs branch which can be parameterized by the expectation value

of operators CR, and the SU(2)R symmetry acts non-trivially on this branch. We

would like to determine the full chiral ring relation of the Higgs branch, from which

we can read the non-abelian flavor symmetry G. The simplest data we’d like to

determine is the rank f of the flavor group G.

• There could be a Coulomb branch which is parameterized by the real numbers

ψj , j = 1, . . . r. Unlike four dimensional N = 2 theory, we can not parameterize
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it by expectation value of BPS operators. The Coulomb branch is not lifted by

turning on mass deformations with mass parameters mi, i = 1, . . . , f , but the low

energy physics is changed. At generic point, the low energy theory could be described

by abelian gauge theory with gauge group U(1)r, and the important question is to

determine the rank r and the prepotential which is a cubic function of U(1) vector

multiplet and mass parameter:

F(m,ψ) =
∑

i,j,k

aijkφiφjφk . (2.1)

We have φi = mi, i = 1, . . . , f , and φf+j = ψj , j = 1, . . . , r. A particular intriguing

feature of 5d N = 1 SCFT is that there might be many chambers of Coulomb

branch and each chamber has different prepotentials. The BPS particle has central

charge Z = n
(i)
e ψi + Simi, and one also has tensile strings whose tension is given by

Z = n
(i)
m ψD

i with ψD
i the dual coordinates.

• One could also have the mixed branch which is a direct product of a Coulomb and

Higgs factor.

Five dimensional N = 1 SCFT can be constructed as follows:

1. Particular UV completion of a non-abelian gauge theory [7, 9], and the typical ex-

ample is SU(2) with Nf ≤ 7 fundamental flavors and the corresponding UV SCFT is

5d ENf+1 SCFT.

2. M theory on 3-fold singularities [9, 10, 14–17], and the cone over Del Pezzo k surfaces

will give 5d Ek SCFT.

3. (p, q) five brane webs in type IIB string theory [18], and some of Ek SCFTs can be

engineered in this way.

Many aspects of 5d N = 1 SCFTs such as the verification of enhanced flavor symmetry,

superconformal inex, etc have been recently studied in [19–54].

2.1 5d Gauge theory and enhanced flavor symmetry

Along some sub-locus of Coulomb branch, the low energy theory can be described by a

non-abelian gauge theory. Part of enhanced flavor symmetry might be derived by analyzing

the instanton operators [39–42, 48], and here we review the basic result. In this subsection,

all the gauge groups are taken as SU(N) and we only consider bi-fundamental matter.

Consider a single SU(N) gauge group coupled with nf hypermultiplets in fundamental

representation, one can turn on Chern-Simons term with level k satisfying the constraint

k +
nf

2
∈ Z . (2.2)

We use m0 = 1
g2
cl

to denote the classical gauge coupling. Part of coulomb branch can be

parameterized by the real numbers (a1, . . . , aN ) with the constraint
∑

ai = 0. Using Weyl

– 4 –



J
H
E
P
0
6
(
2
0
1
7
)
1
3
4

invariance, we can take a1 ≥ a2 ≥ . . . ≥ aN . At m0 = 0, the prepotential reads

F =
1

6

( N
∑

i<j

(ai − aj)
3 + k

3
∑

i=1

a3i −
nf

2

N
∑

i=1

|ai|
3

)

. (2.3)

The manifest flavor symmetry is U(nf )×U(1)I , where U(1)I is associated with the instanton

current ∗F ∧ F . The SCFT point might be achieved by taking ai, gauge couplings, and

masses to be zero,2 and the flavor symmetry at the SCFT point could be further enhanced.

We will also consider a linear quiver with SU(Ni) gauge group [ni]−SU(N1)−SU(N2)−

. . .− SU(Nr)− [ne]. We also have the Chern-Simons level ki on each gauge group SU(Ni),

and we put further constraints on ki:

2|ki| ≤ 2Ni −Nf , (2.4)

here Nf is the number of flavors on ith gauge group. The manifest flavor symmetry is

U(ni) × U(ne) × U(1)r × U(1)r−1, with U(ni) and U(ne) from the fundamental flavors on

two ends of quiver, and U(1)s from instanton current and flavor of bi-fundamentals. The

enhanced flavor symmetry can be found as follows. Consider two Ar Dynkin diagrams Γ±,

and for Γ+, we color ith node of Γ+ black if the following identity holds

2ki = 2Ni −Nf . (2.5)

Similarly, color ith node of Γ− black if we have

− 2ki = 2Ni −Nf . (2.6)

The flavor symmetry from Γ+ is GΓ+ =
⊗

j Anj
× U(1)r−

∑
ni , here nj is the length of

jth connected sub-diagram whose vertices are black. Similarly, one can read the enhanced

flavor symmetry GΓ− from Γ−. If we have the quiver tail 2 − SU(2) − SU(3) − . . . , we

replace the quiver as SU(1) − SU(2) − SU(3) − . . . and apply the above rule again. The

overall flavor symmetry for the linear quiver is

Gf = GΓ+ ×GΓ− ×U(ni)×U(ne)/U(1) . (2.7)

The flavor symmetry might be further enhanced.

3 Canonical singularity and five dimensional N = 1 SCFT

3.1 Three dimensional canonical singularity

We conjectured in the introduction that 3-fold canonical singularities would lead to 5d

N = 1 SCFT. In this section, we will review the relevant facts about 3-fold canonical

singularity [55–57]. Let’s start with the definition:

2To completely specify the SCFT, we need to specify other BPS particles which become massless at

SCFT point besides the W bosons.
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Definition 1 A variety X is said to have canonical singularity if its is normal and the

following two conditions are satisfied

• the Weil divisor KX
3 is Q-Cartier, i.e. rKX is a Cartier divisor.4 Here r is called

index of the singularity.

• for any resolution5 of singularities f : Y → X, with exceptional divisors Ei ∈ Y , the

rational numbers ai satisfying

KY = f∗KX +
∑

aiEi . (3.1)

are nonnegative. The numbers ai are called the discrepancies of f at Ei; if they are

all positive X is said to have terminal singularities. If ai = 0, the corresponding

prime exceptional divisor is called crepant divisor.

Two dimensional canonical singularity is completely classified and is also called Du Val

singularity. There is a ADE classification, and it can be characterized by the following three

ways:

• They are described by the following hypersurface singularity:

An : x21 + x22 + xn+1
3 = 0 ,

Dn : x21 + xn−1
2 + x2x

2
3 = 0 ,

E6 : x21 + x32 + x43 = 0 ,

E7 : x21 + x32 + x2x
3
3 = 0 ,

E8 : x21 + x32 + x53 = 0 . (3.2)

• They are defined as the quotient singularity C2/G with G a finite subgroup of SL(2).

• For A type canonical singularity, one has a toric description.

Let’s first introduce the concept of crepant resolution. Let X be a variety with canonical

singularities. A partial resolution of X is a proper birational morphism φ : Y → X from a

normal variety. The morphism φ is said to be crepant if

KY = φ∗KX . (3.3)

Two dimensional canonical singularity actually has a crepant resolution where Y is smooth.

Three dimensional canonical singularity is not completely classified, but a lot of general

properties have been studied by Reid [55–57]. There are some useful properties for 3-fold

canonical singularities:

3KX is the canonical divisor associated with X.
4A Cartier divisor implies that it can be used to define a line bundle.
5Given an irreducible variety X, a resolution of singularities of X is a morphism f : X

′

→ X such that:

a: X
′

is smooth and irreducible.

b: f is proper.

c: f induces an isomorphism of varieties f−1(X/Xsing) = X/Xsing. Furthermore, f : X
′

→ X is a

projective resolution if f is a projective morphism.

– 6 –
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1. Canonical singularity implies Du Val singularities in codimension 2. This implies that

the singularity type over a one dimensional singular locus has to be of ADE type.

2. Every canonical singularity can be written as X = X̃/µr with X̃ an index one

canonical singularity. The index one canonical singularity is also called rational

Gorenstein singularity.

3. There exists partial crepant resolution of a canonical singularity:

Theorem 1 Let X be an algebraic 3-fold with canonical singularities. Then there

exists a crepant projective morphism φ : Y → X, which is an isomorphism in codi-

mension 1, from a 3-fold Y with Q-factorial terminal singularities.

AQ-factorial terminal singularity means that every Weil divisor is a Q-Cartier divisor.

Such crepant resolution is not unique, and different resolutions are related by flop.

The crucial fact is that the number of crepant divisors are independent of the choice

of crepant resolution. In the following, by crepant resolution we always mean above

crepant morphism.

3.1.1 Classification of rational Gorenstein singularity

Since an index r canonical singularity can be covered using an index one canonical singular-

ity, we will focus on index one canonical singularity which is also called rational Gorenstein

singularity. To a rational Gorenstein 3-fold singularity, the general hyperplane section H

through the singularity is a two dimensional rational or elliptic Gorenstein singularity [55].

Two dimensional rational Gorenstein singularity is nothing but the ADE singularity, and

elliptic Gorenstein singularity is next simplest surface singularity. The above two class of

surface singularities are quite rigid which makes the classification much simpler. In fact,

use the minimal resolution of surface singularity, one can attach a natural integer k ≥ 0

for each 3-fold rational Gorenstein singuarlity. We have [55]:

• k = 0, the singularity is a cDV point, i.e. the singularity can be written as follows

f(x, y, z) + tg(x, y, z, t) = 0 , (3.4)

here f(x, y, z) denotes the Du Val singularity.

k ≥ 1, the general section H through the singularity has an elliptic Gorenstein singularity

p ∈ H with invariant k:

• If k ≥ 2, then k = multP X.

• If k ≥ 3, then k + 1 is equal to the embedding dimension = dim(mp/m
2
p). if k = 2,

then P ∈ X is isomorphic to a hypersurface given by x2 + f(y, z, t) with f a sum of

monomials with degree bigger than 4. If k = 1, then then P ∈ X is isomorphic to a

hypersurface given by x2 + y3 + f(y, z, t) = 0 with f(y, z, t) = yf1(z, t) + f2(z, t) and

f1 (respectively f2) is a sum of monomials zatb of degree ≥ 4 (respectively ≥ 6).

– 7 –
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r Type f Conditions

(1) any 1

r
(a,−a, 1, 0; 0) xy + g(zr, t) g ∈ m2, a, r, coprime

(2) 4 1

4
(1, 1, 3, 2; 2) xy + z2 + g(t) g ∈ m3

or x2 + z2 + g(y, t) g ∈ m3

(3) 2 1

2
(0, 1, 1, 1; 0) x2 + y2 + g(z, t) g ∈ m4

(4) 3 1

3
(0, 2, 1, 1; 0) x2 + y3 + z3 + t3

or x2 + y3 + z2t+ yg(z, t) + h(z, t) g ∈ m4, h ∈ m6

(5) 2 1

2
(1, 0, 1, 1; 0) or x2 + y3 + yzt+ g(z, t) g ∈ m4

or x2 + yzt+ yn + g(z, t) g ∈ m4, n ≥ 4

or x2 + yz2 + yn + g(z, t) g ∈ m4, n ≥ 3

(6) 2 1

2
(1, 0, 1, 1; 0) x2 + y3 + yg(z, t) + h(z, t) g, h ∈ m4, h4 6= 0

Table 1. List of three-fold terminal singularity.

• If k = 3, the singularity P is given by a hypersurface.

• If k = 4, then P is given by a complete intersection defined by two polynomials

(f1, f2).

• For k ≥ 5, the classification is incomplete.

Once we classify the rational Gorenstein singularity, the next step is to find out which

cyclic quotient µr would lead to a general canonical singularity.

Other class of familiar examples include the toric Gorenstein singularity which will be

studied in next section, and the quotient singularity C3/G with G a finite subgroup of

SL(3).

3.1.2 Classification of terminal singularity

The 3-fold terminal singularity has been completely classified. Terminal singularity is

important as they appear at the end of partial crepant resolution. A 3-fold singularity is

called cDV singularity if it can be written as the following form

f(x1, x2, x3) + tg(x1, x2, x3, t) = 0 . (3.5)

Here f(x1, x2, x3) is the two dimensional Du Val singularity. Index one terminal singularity

is classified by isolated cDV singularity.

Other terminal singularities are found as the cyclic quotient of the isolated cDV singu-

larity, and is classified by Mori [58]. The major result is that terminal singularities belong

to 6 families listed in table 1.

It is also proven in [59] that every isolated singularity in above list is terminal. If we

start with a smooth point (case (1) in table 1), then the terminal singularity is classified

as follows:

Theorem 2 X is terminal if and only if (up to permutations of (x, y, z) and symmetries

of µr) X = C3/µr of type 1
r
(a,−a, 1) with a coprime to r, where µr is the cyclic group of

order r.

– 8 –
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3.2 Physics and geometry

Flavor symmetry. The flavor symmetry of SCFT can be read from the singularity

structure. The non-abelian flavor symmetry can be read as follows: since our singularity

is normal, the singular locus Γ is at most one dimensional, and one has Du Val ADE

surface singularity over one dimensional singular locus. Using the fact that one get ADE

gauge symmetry by putting M theory on ADE singularity, and since the singular locus is

non-compact (affine), one get a corresponding ADE flavor group for each one dimensional

component Γi ⊂ Γ. One also have abelian flavor symmetry associated with the local divisor

class group, whose rank is denoted as d. The full flavor symmetry is then

G = U(1)d
∏

i

Gi . (3.6)

Here Gi is the corresponding ADE flavor symmetry associated with ith component of

singular locus. The flavor symmetry might be further enhanced. We also use f to denote

the rank of G.

Partial resolution and non-abelian gauge theory description. Let’s start with a

canonical singularity, and it might be possible to find a partial crepant resolution f : Y → X

such that Y has one dimensional singular compact locus whose singular type is one of ADE

type. According to the similar M theory argument we used for finding flavor symmetry, we

get ADE gauge symmetry. It is also possible to get a non-abelian gauge theory description

with Lagrangian description.

Coulomb branch and crepant resolution. Starting with canonical singularity, one

can find crepant partial resolutions f : Y → X, here Y has Q-factorial terminal singularity.

For rational Gorenstein singularity, such partial resolution can be found by first using

sequence of standard blow-up for k ≥ 3. For k = 0 or k = 1, we use the following weighted

blow up, and one affine piece of which is given by setting:

k = 2 : x = z2x1 , y = zy1 , z = z ,

k = 1 : x = z3x1 , y = z2y1 , z = z . (3.7)

After these blow-ups, we end-up with a variety Y with cDV singularity. We can further

blow-up the one-dimensional Du Val singularity so that we get an isolated cDV singularity.

One can further perform small resolution on non Q-factorial isolated cDV singularity, and

the end result is that we get an variety Y with Q-factorial terminal singularity. Using the

cyclic cover construction, one can construct such crepant resolution for every canonical

singularity.

Such crepant resolutions are not unique, but these different resolutions are all related

by a sequence flops! Let’s briefly introduce the concept of flops using the conifold singularity

X0: x
2 + y2 + z2 +w2 = 0. This singularity has two crepant resolutions X1 and X2 where

the exceptional locus is a curve, we say that X1 and X2 are related by flop: first a curve

C1 in X1 shrinks to zero size so we get singularity X0, we then resolve X0 in a different

way to get another variety X2 where the exceptional locus is another curve C2.

– 9 –
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Let’s now fix a crepant resolution Y , and one can define the Mori cone and Nef cone.

A divisor D is called Nef if

D · C ≥ 0 , (3.8)

for all complete curve C. All such Nef divisors form a cone and is called Nef-Cone. Its dual

cone is called Mori cone, which can also be defined using the complete curve. Our major

conjecture is that the range of Coulomb branch is just the Nef Cone.

Let’s denote the compact crepant divisors as Ei, i = 1, . . . , r, and non-compact crepant

divisors as Di, i = 1, . . . , f1, and further choose a basis Dj , j = 1, . . . , f−f1 of non-compact

divisors which generates the local class group of original singularity. The Coulomb branch

deformation is related to the compact divisors Ei, while the mass deformation is related to

Di. The prepotential takes the following form

F =
1

6

( r
∑

i=1

Eiφi +

f
∑

n=1

Dnmn

)3

=
1

6

∑

Ei · Ej · Ekφiφjφk . (3.9)

Here Ei ·Ej ·Ek is the triple intersection form (here we use Es to denote all the divisors).

One can do the similar computation for the Nef-cone and prepotential of different

crepant partial resolutions. Since different crepant partial resolution is related by flop, and

their Nef cones form a fan, which might be called Nef fan, our main conjecture in this

paper is that

Conjecture 2 The Coulomb branch of 5d N = 1 SCFT is the Nef fan.

The BPS spectrum can be described as follows: let’s start with the generators Ci of

Mori cone, and a M2 brane can wrap on those curves and form primitive BPS particles.

On the other hand, M5 brane can wrap on the compact exceptional divisors and one get

tensile strings. All these massive objects become massless in the SCFT limit.

4 Toric singularity

An important and useful class of 3-fold canonical singularity can be defined using toric

method [60], and we call them toric singularity. Toric singularity can be defined in a com-

binatorial way and various of its properties such as crepant resolutions can be described

explicitly, which makes many computations possible. We will describe these toric singular-

ities which are also canonical singularity.

We first briefly review how to define a toric variety, for more details, see [60]. Let’s

start with a tree dimensional standard lattice N , and its dual lattice M = Hom(N,Z). A

rational convex polyhedral cone σ in NR = N ⊗ R is defined by a set of lattice vectors

{v1, . . . , vn} as follows:

σ = {r1v1 + r2v2 + . . .+ rnvn|ri ≥ 0} . (4.1)

Here ray generator vρ of σ is a lattice vector such that it is not a multiple of another lattice

vector. Its dual cone σ∨ is defined by the set in MR = M ⊗R such that

σ∨ = {w · v ≥ 0|w ∈ MR, v ∈ σ} , (4.2)
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here we used standard pairing between lattices N and M . From σ∨, one can define a

semigroup S = σ∨ ∩M , and the affine variety associated with σ is

Xσ = Spec(σ∨ ∩M) . (4.3)

We have the following further constraints on the cones:

• A strongly rational convex polyhedral cone (s.r.c.p.c.) is a convex cone σ such that

σ ∩ (−σ) = 0.

• A simplicial s.r.c.p.c. is a cone whose generators form a R basis of NR.

A fan Σ with respect to a lattice N is a finite collection of of rational convex polyhedral

cones in NR such that

• any face τ of σ belongs to Σ;

• for σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of both σ1 and σ2.

A fan is called simplicial if all the cones are simplicial. By |Σ| := ∪{σ|σ ∈ Σ} one denotes

the support and Σ(i) the set of all i dimensional cones of fan Σ.

There is an important cone-orbit correspondence for toric variety: for each k dimen-

sional cone, one can associate a 3−k dimensional toric invariant orbit in Xσ. In particular,

the toric divisors are determined by one dimensional cone, which is also specified by the

ray generator vρ.

We are interested in affine toric singularity which is defined by a single cone σ. The

singular locus of affine toric singularity is given by the sub-cone σi whose generators do

not form a Z-basis, and the singular locus corresponds to the orbit which is determined by

σi. For 3-fold toric singularity, the maximal dimension of singular locus is one dimensional

which is then formed by a two dimensional sub-cone σi in σ.

A toric singularity is Q-Gorenstein if one can find a vector mσ in MQ
6 such that

〈mσ, vρ〉 = 1 for all the one dimensional generator vρ of σ. A toric singularity is Gorenstein

if one can find a vector H in M such that 〈H, vρ〉 = 1 for all ρ. Equivalently, one can choose

a hyperplane in N such that all the ray generators σρ lie on it. For a 3-fold Q-Gorenstein

singularity with index r, we take the hyperplane as z = r, and the ray generators form

a two dimensional convex polygon P . Our 3-fold Q-Gorenstein toric singularity is then

specified by a index r and a two dimensional convex polygon P at z = r plane.

Let’s start with a 3-fold Q-Gorenstein toric singularity. The classification of 3-fold

canonical and terminal singularity is given as follows:

• The cone σ of 3-fold canonical singularity has the following property: there is no lat-

tice points in σ between the origin and the polygon P . In particular, toric Gorenstein

singularity is canonical.

• The cone σ of 3-fold terminal singularity is characterized as follows: there is no

lattice points in σ between the origin and the polygon P , and furthermore there is

no internal lattice points for P .

6MQ denotes points in MR with rational coordinates.
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Figure 1. A toric diagram and one of its partial resolution, and we also write down a gauge theory

description.

Among toric terminal singularities, the Q-factorial terminal singularity is specified by

smooth point and the quotient singularity of the type C3/µr, with µr =
1
r
(a,−a, 1), here r

and a are co-prime. Smooth point is the only Q factorial Gorenstein terminal singularity.

There is only one kind of non Q-factorial Gorenstein terminal singularity: the conifold

singularity which is defined by the equation: x21 + x22 + x23 + x24 = 0.

4.1 Toric Gorenstein singularity

We focus on toric Gorenstein 3-fold singularity which is specified by a convex polygon P

(it is often called toric diagram). The only terminal singularity is the smooth point whose

associated convex polygon is a triangle with no internal lattice points and no boundary

lattice points. We denote the number of lattice points on the boundary of P as N , and the

number of internal lattice points as I.

4.1.1 Flavor symmetry

The enhancement of flavor symmetry is determined by the ADE type of one dimensional

singular locus, which in the toric case, is associated with the two dimensional cone σi in σ.

The two dimensional cone in σ is specified by boundary edges of P . For a one dimensional

boundary in P , it is easy to determine the singularity type: the only toric ADE singularity

is A type, and the corresponding singularity type for a boundary edge with d internal

points is Ad, and the flavor symmetry has the following type

∏

i

Adi ×U(1)N−3−
∑

di . (4.4)

The local divisor class group has rank N−3−
∑

di, which is equal to the number of vertices

of P minus three. So the rank of the mass parameter is given by the following formula

f = N − 3 . (4.5)

Example. Let’s see figure 1 for a toric diagram, and the flavor symmetry is

G = SU(9)× SU(3)× SU(3)× SU(3)×U(1) (4.6)

We also write down a gauge theory description for it. Using the instanton method reviewed

in section II (see [42] and use the fact that the two SU(3) gauge groups connected with

SU(2) gauge groups have CS level k = 1
2), we see that field theory result and geometric

result agree.
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Figure 2. Two different resolutions of a lattice polygon can be related by sequence of flops shown

above.

4.1.2 Partial resolution and gauge theory description

One can consider partial resolution which is formed by adding edges connecting the vertices

of P . Those internal edges represent non-abelian gauge group of Adi type if there are di
internal points on extra edges. Those internal edges will cut P into various smaller convex

polygons Pi. The physical interpretation is following: one have a non-abelian gauge theory

description: each Pi represents a matter system, and each added internal edge connecting

two smaller polygons PA, PB represents a gauge group coupled to two matter systems

represented by PA and PB. Sometimes we also have non-trivial CS term too.

For some convex polygon P , it is possible to find above type of subdivision of P such

that each subsystem Pi carries no internal lattice points. Those Pi could be interpreted as

free matter, and one would have a non-abelian Lagrangian description.

Often one could find more than one type of such decompositions of P , and one have

different Lagrangian descriptions. It might be tempting to call these different descriptions

as some kind of duality. However, we would like to avoid that because the description of

non-abelian gauge theory itself does not define a SCFT.

4.1.3 Crepant resolution and Coulomb branch solution

The resolution of toric singularity can be described in following explicit way: one construct

a new fan Σ from the cone σ by adding rays inside σ. The crepant resolution is given by

the uni-modular triangulation of the lattice polygon P . Such triangulation is easily found

by using the lattice points in polygon P .7 The final toric variety is smooth as the only

Q-factorial toric Gorenstein singularity is smooth. Obviously, such triangulations are not

unique, but they can all be related by the flops, see figure 2.

Exceptional divisors. Let’s choose a crepant triangulation P
′

of P . The exceptional

divisors corresponding to the internal and boundary lattice points of P which are not

vertices. The number of such divisors is a constant and is independent of choice of crepant

resolution. The local divisor class group of P
′

is generated by the ray generators vρ subject

to following relations
∑

ρ

〈vρ, ei〉Dρ = 0 , i = 1, 2, 3 . (4.7)

Here Dρ is the corresponding divisor from vρ, and ei is the standard basis of M and we

used the bracket to denote the standard paring between N and M . So there are three

7For a two dimensional lattice polygon, its area is given by the formula A = B
2
+ I − 1, here B is

the boundary lattice points, and I is the internal points. Uni-modular triangulation implies that all the

triangles in the triangulation has area 1

2
. This is achieved by a triangle with no internal lattice points and

no other boundary points except three vertices.
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Figure 3. Quadrilaterals in a triangulation of a polygon P .

equations and the number of independent divisors are N + I − 3. The above relation is

independent of the triangulation and only depend on polygon P . The topology of these

divisors are follows: a) the divisors from internal lattice points are compact; b) the divisors

from vertices of the lattice polygon are non-compact, i.e. of the form C2; c) the divisors

from other boundary lattice points are semi-compact, i.e. of the form C × P 1.

Triple intersection number. Consider a quadrilateral in the triangulation whose ver-

tices have coordinates ui, i = 1, . . . , 4. We assume that the diagonal C connects u2 and

u3. The coordinates ui of quadrilateral’s vertices satisfy the relation:

u1 + au2 + bu3 + u4 = 0 . (4.8)

Since the z coordinate of uis are all 1, we have a + b = −2. The only non-trivial triple

intersection numbers involving the curve C = E2 · E3 are

C · E1 = 1 , C · E4 = 1 , C · E2 = a , C · E3 = b . (4.9)

We have following solutions (see figure 3):

Case 1 : a = −1 , b = −1

Case 2 : a = 0 , b = −2

Case 3 : a = 1 , b = −3

. . .

Case i : a = i− 2 , b = −i (4.10)

Notice that only case 1 allows the flop. Using above formula, we can compute all the

triple intersection number involving at least one compact divisors E. The self-intersection

number for a compact divisor E can be computed as follows: we always have a relation

between divisors

E +
∑

Di = 0 → E3 = −
∑

E2Di , (4.11)

and one can get E3 using the known triple intersection number. In fact only the divisors

connected to E contribute to E3. Other intersection numbers involving no compact divisors
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can be computed using three relations between the divisors and above known intersection

numbers involving at least one compact divisor.8

Mori cone. Mori cone is an important structure of a algebraic variety. It is described in

the toric case as the following simple set:

∑

R>0[V (τ)] , (4.12)

here V (τ) is the complete curve corresponding to a wall of a crepant resolution P
′

. These

walls are represented by the internal edges of P
′

. The generators of Mori cone can be found

as follows. For each internal edge Ci which is a diagonal edge of a quadrilateral, we have

the following relations for the four generators corresponding to the vertices of quadrilateral:

u
(i)
1 + au

(i)
2 + bu

(i)
3 + u

(i)
4 = 0 . (4.13)

Not all of these relations are independent. Now a curve is the generator of Mori cone if

the corresponding relation can not be written as the sum of other relations with positive

coefficients. There are a total of N + I − 3 generators, and the Mori cone is just R+
N+I−3

once we identify those generators.

Nef cone. A divisor D =
∑

aiDi is called Nef if it satisfies the following condition

D · C ≥ 0 , (4.14)

for all irreducible complete curve C. The space of Nef divisors form a cone and called Nef

cone. This cone is dual to the Mori cone, and is defined as

(

∑

aiDi

)

· Ck ≥ 0 . (4.15)

Here Di is the basis of the divisors, Ck is the generator of Mori cone. So each generator

of Mori cone defines a hypersurface in the space of divisors, and this hypersurface gives a

co-dimension one surface of the Nef cone.

Prepotential. Each crepant resolution and its Nef cone gives a chamber of Coulomb

branch, and the prepotential in this chamber is given by

F =
1

6
~D · ~D · ~D =

1

6

(

∑

Diφi

)3

. (4.16)

Here ~D is a general point in Nef cone and Di denote the basis of the divisors. To compare

our result with the formula from the gauge theory, we need to use following expression from

8Those numbers are not really the usual intersection number: usually one consider the restriction of a

Cartier divisor D on a complete curve C and then compute the degree of the corresponding line bundle

on C which is denoted as D · C. In our case, C is defined as the intersection of two divisors Di · Dj so

we have a triple intersection number. We do not have above interpretation of triple intersection number

involving three non-compact divisor, and these numbers are coming from the consistent condition on the

divisor relations.
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Figure 4. One toric diagram and its crepant resolution.

SU(N) gauge theory. Let’s denote aj = φj − φj−1 with φN = φ0 = 0. Consider SU(N)

SYM theory with CS term k and nf fundamental flavors, we have (assume gauge coupling

is zero):

F =
1

6

[

∑

i<j

(ai − aj)
3 + k

N
∑

i=1

a3i −
nf

2

N
∑

i=1

|ai|
3

]

=
1

6

(

8
N−1
∑

j=1

φ3
j − 3

N−1
∑

j=1

(φ2
jφj+1 + φjφ

2
j+1) + 3

N−1
∑

j=1

(k +N − 2j − 1)(φ2
jφj+1 − φjφ

2
j+1)

−
nf

2

N
∑

i=1

|ai|
3

)

. (4.17)

Flop. Different crepant resolutions are related by flops, see figure 2. Now consider a

quadrilateral and the corresponding flop, we have two relations for two curves:

C : u1 − u2 − u3 + u4 = 0

C
′

: −u1 + u2 + u3 − u4 = 0 (4.18)

The constraint on the dual Nef cone is

∑

aiDi · C ≥ 0 → a1 − a2 − a3 + a4 ≥ 0 ,
∑

aiDi · C
′

≥ 0 → −a1 + a2 + a3 − a4 ≥ 0 . (4.19)

So they define the same hypersurface in the space of divisors, but the two chamber is living

on different sides of this hypersurface. In fact, this hypersurface is shared by two Nef cones

corresponding to these two crepant resolutions related by above flop!

Example 1. Consider the toric diagram and its unique triangulation shown in figure 4.

The divisor class group is generated by torus invariant divisors E, D1, D2, D3 associated

with the ray generators of the fan. These divisors satisfy the relations:

E +D1 +D2 +D3 = 0 , D2 −D3 = 0 , D1 −D3 = 0 , (4.20)

and we have:

E = −3D1 , D2 = D3 = D1 . (4.21)
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Figure 5. Three toric diagrams which have pure SU(2) gauge theory description along certain

locus of Coulomb branch.

The triple intersection numbers are

ED2
1 = 1 , E2D1 = −3 , E3 = 9 . (4.22)

There are three complete curve Ci = E · Di, and they are equal due to the divisor

relations, i.e. C1 = C2 = C3 = C. The Mori cone is generated by C and is just the positive

real line. The Nef cone is computed as follows

aD1 · C = a ≥ 0 , → a ≥ 0 . (4.23)

Now for a point in Nef cone, the prepotential is

F =
1

6
(φE)3 =

3

2
(φ3) , −a = 3φ . (4.24)

The effective coupling constant is

1

g2
=

1

2

∂2F

∂2φ
=

9

2
φ . (4.25)

Example 2. We will compute the Coulomb branch of three toric diagrams listed in

figure 5.

A: consider toric diagram A in figure 5 and its unique crepant resolution shown in figure 6.

The relations between the divisors are:

E = −2D1 − 2D2 , D1 = D3 , D2 = D4 . (4.26)

The triple intersection numbers are E3 = 8, E2D1 = E2D2 = −2.

The complete curves are C1 = E ·D1, C2 = E ·D2, C3 = E ·D3, C4 = E ·D4. They

have the relations C1 = C3 and C2 = C4. So the Mori cone is generated by C1 and C2.

Let’s take D2 and D1 as the basis of divisor class. The Nef cone is defined as
(

a[D1] + b[D2]
)

· C1 ≥ 0 → a ≥ 0 ,
(

a[D1] + b[D2]
)

· C2 ≥ 0 → b ≥ 0 . (4.27)

The prepotential is then

F =
1

6
(aD1 + bD2)

3 =
1

6
(Eφ−D1m0)

3 =
1

6
(8φ3 + 6m0φ

2) ,

−a = 2φ+m0 ≤ 0 , −b = 2φ ≤ 0 . (4.28)

We change the coordinate to make the contact with the gauge theory result. The effective

gauge coupling is

g =
1

2

∂2F

∂2φ
= 4φ+m0 . (4.29)
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Figure 6. Left: the crepant resolution of toric diagram A in figure 5 and two partial resolutions

where we have a gauge theory description. Right: up is the Nef cone with basis of divisors D1 and

D2; lower is the cone using the basis E and −D1.

Remark 1. It is interesting to note that the range of m0. One SU(2) gauge theory de-

scription is valid in the range φ ≤ 0 and m0 ≤ 0 (we choose a different Weyl chamber from

the usual one where m0 and φ are both non-negative). In the other region m0 > 0 we have

a different gauge theory theory description.

Remark 2. The boundary of the Coulomb branch corresponds to the locus where there is

extra massless particle. In our case, we know that it corresponds to shrink one of the cycle

C1 or C2, and we get a pure SU(2) gauge theory description. We interpret the boundary

defined by the equation 2φ (a = 0 and C1 is vanishing) as the indication that a W boson

become massless, and the boundary defined by the equation 2φ +m0 = 0 (b = 0 and C2

is vanishing) indicates that a instanton particle carry 2 electric charge and one instanton

charge become massless.

B: next let’s consider toric diagram B in figure 5 and its crepant resolution shown in

figure 7. We have the relation for the divisors:

E = −2D1 − 4D2 , D3 = D1 + 2D2 , D4 = D2 . (4.30)

The basis of the divisors are D1 and D2. We have the triple intersection number

E3 = 8, ED2
1 = −2, E2D2 = −2. The complete curves are:

C1 = E ·D1 , C2 = E ·D2 , C3 = E ·D3 = C1 + 2C2 . (4.31)

The Mori cone is generated by C1 and C2. The Nef cone is defined as

(

a[D1] + b[D2]
)

· C1 = −2a+ b ≥ 0 ,
(

a[D1] + b[D2]
)

· C2 = a ≥ 0 . (4.32)
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Figure 7. The crepant resolution of a toric diagram B in figure 5 and its Coulomb branch.

The prepotential can be written as

F =
1

6

(

a[D1] + b[D2]
)3

=
1

6
(φE −m0D2)

3 =
1

6
(8φ3 + 6m0φ

2) . (4.33)

Here −a = 2φ, −b = 4φ+m0. The range of coordinates is

φ ≤ 0 , m0 ≤ 0 . (4.34)

The coupling constant is g = 1
2
∂2F

∂2φ
= 4φ+m0.

Remark. The prepotential of this example takes the exact same form as the above case.

However, there are two important differences. First, the range of the Coulomb branch

is different. Second, we still have a massless W boson at the boundary 2φ = 0 (a = 0

with C2 vanishing), but on the other boundary we have a particle with quantum number

m0 (2a − b = 0 with C1 vanishing) which carries no electric charge and one instanton

charge to become massless. We do not see a SU(2) gauge theory description on the other

boundary. In the literature [30], it is argued that this SCFT and the theory studied in last

case describe the same SCFT. Our analysis of Coulomb branch indicates that they are

different theories.

C: next let’s consider toric diagram C shown in figure 5 and its crepant resolution shown

in left of figure 8. We have the following relation of the divisors

E = −2D1 − 3D2 , D4 = D2 , D3 = D1 +D2 . (4.35)

The basis of the divisor can be taken as D1 and D2. The triple intersection numbers are

E3 = 8, E2D2 = −2, E2D1 = −1, ED2
1 = −1. The complete curves are

C1 = E ·D1 , C2 = E ·D2 , C3 = E ·D3 = C1+C2 , C4 = E ·D4 = C2 . (4.36)

C1 and C2 are the generators for the Mori cone. The Nef cone is defined as:

(

a[D1] + b[D2]
)

· C1 = −a+ b ≥ 0 ,
(

a[D1] + b[D2]
)

· C2 = a ≥ 0 . (4.37)
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Figure 8. Two resolutions of toric diagram C in figure 5.

The prepotential is

F =
1

6
(aD1 + bD2)

3 =
1

6
(Eφ−D2m0)

3 =
1

6
(8φ3 + 6m0φ

2) ,

−a = 2φ , −b = 3φ+m0 . (4.38)

For this chamber at the boundary (a = 0 or φ = 0), we have C2 vanishing, and we have a

SU(2) gauge theory description. At other boundary defined by −a+b = 0, we have another

particle with BPS mass formula φ+m0 to become massless. This is clearly different from

the case A and B.

For the other resolution shown in the right of figure 8, the triple intersection numbers

are E3 = 9, E2D2 = −3, ED2
2 = 1. We have complete curves

C
′

1 = D4 ·D2 , C
′

2 = E ·D2 , C
′

3 = E ·D3 = C
′

2 , C
′

4 = E ·D4 = C
′

2 . (4.39)

The Nef-cone is defined as:

(

a[D1] + b[D2]
)

· C
′

1 = a− b ≥ 0 ,
(

a[D1] + b[D2]
)

· C
′

2 = b ≥ 0 . (4.40)

The prepotential in this chamber is

F =
1

6
(aD1 + bD2)

3 =
1

6
(Eφ−D2m0)

3 =
1

6
(9φ3 + 9m0φ

2 + 3m2
0φ)

−a = 2φ , −b = 3φ+m0 (4.41)

One boundary of this chamber is defined as a − b = 0 which gives the same BPS particle

from the first chamber. There is another boundary defined by b = 0 (corresponds to C
′

2

vanishing). The full Coulomb branch is shown in figure 9.

Example 3. Consider four toric diagrams and their resolutions shown in figure 10, and

let’s consider only compact divisors. The prepotential is

F =
1

6
(φ3

1E
3
1 + 3φ2

1φ2E
2
1E2 + 3φ1φ

2
2E1E

2
2 + φ3

2E
3
2) . (4.42)

The data for intersection numbers is shown in table 2.
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Figure 9. The Nef fan for the toric diagram C in figure 5, see figure 8 for the resolutions and

notation for the curves.

SU(3),   k=3

E1 E2
E1

E2
E1 E2 E1 E2

SU(3),   k=2 SU(3),   k=1 SU(3),   k=0

A: B: C: D:

Figure 10. Four toric diagrams with their partial crepant resolutions. We also write down the

gauge theory descriptions.

E3

1
E3

2
E2

1
E2 E1E

2

2

A 8 8 −4 2

B 8 8 −3 1

C 8 8 −2 0

D 8 8 −1 −1

Table 2. The triple intersection number of the compact divisors for the toric diagrams in figure 10.

For the prepotential for SU(3) gauge theory with nf = 0 and CS level k, we get

F = 8φ3
1 + 8φ3

2 + 3(k − 1)φ2
1φ2 + 3(−k − 1)φ1φ

2
2 . (4.43)

If nf = 0, the prepotential is invariant under the change k → −k, φ1 → φ2. Comparing

above formula and the formula (4.42), we can write down the CS level for the corresponding

toric diagrams in figure 10. We leave the detailed study of the Coulomb branch to the

interested reader.
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Figure 11. Two resolutions of a toric diagram and its Nef-cone.

Example 4. Let’s consider the toric diagram and one of its crepant resolution shown in

left of figure 11. The relations9 for the complete curves are

C1 : −2E1 +A+ C = 0 , C5 : −2E2 +D + F = 0 ,

• C2 : −C − E1 +B +D = 0 , • C6 : A+ E − E2 − F = 0 ,

• C3 : E2 + C −D − E1 = 0 , • C7 : E1 + F −A− E2 = 0 ,

C4 : −2E2 + E1 + E = 0 , C8 : −2E1 +B + E2 = 0 ,

• C9 : A+D − E1 − E2 = 0 . (4.44)

We take C2, C3, C6, C7, C9 as the generator for the Mori cones, and other curves are

expressed as:

C1 = C3 + C9 , C4 = C6 + C7 , C5 = C7 + C9 , C8 = C2 + C3 . (4.45)

We get a SU(2)−SU(2) quiver gauge theory if C3, C7, C9 are vanishing. Now let’s compute

the Nef cone (let’s take the mass parameters to be zero), we have

(aE1 + bE2) · Ci ≥ 0 , i = 2, 3, 6, 7, 9 (4.46)

and we get the constraints:

C2 : −a ≥ 0 , C3 : −a+b ≥ 0 , C6 : −b ≥ 0 , C7 : a−b ≥ 0 , C9 : −a−b ≥ 0 .

(4.47)

9Here the notation of divisors indicate their coordinates, one should not confuse it with the relations

between divisors.
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So this chamber is defined by the equations a = b and a ≤ 0, b ≤ 0. It is interesting to

note that not all of the Coulomb branch of the SU(2)−SU(2) gauge theory can be probed!

The prepotential in this chamber is

F =
1

6
(aE1 + bE2)

3 =
1

6
(7a3 + 7b3 − 3a2b− 3ab2) . (4.48)

Next let’s compute the Mori cone and Nef cone for the resolution shown on the right

of figure 11. The relation for the complete curves are

C1 : −2E1 +A+ C = 0 , C5 : −2E2 +D + F = 0 ,

• C2 : −2E1 +B + E2 = 0 , • C6 : A+ E − E2 − F = 0 ,

• C3 : −E2 − C +D + E1 = 0 , • C7 : E1 + F −A− E2 = 0 ,

C4 : −2E2 + E1 + E = 0 , C8 : −2E1 +B + E2 = 0 ,

• C9 : −2E − 1 +A+ C = 0 . (4.49)

The generators for the Mori cone are C2, C3, C6, C7, C9, and the other curves are ex-

pressed as

C1 = C9 , C8 = C2 , C4 = C6 + C7 , C5 = C3 + C9 . (4.50)

One also has the SU(2)− SU(2) quiver gauge theory description when C3, C7, C9 vanish.

The Nef cone is again defined as

(aE1 + bE2) · Ci ≥ 0 , i = 2, 3, 6, 7, 9 (4.51)

and we have the constraints:

C2 : −2a+b ≥ 0 , C3 : a−b ≥ 0 , C6 : −b ≥ 0 , C7 : a−b ≥ 0 , C9 : −2a ≥ 0 .

(4.52)

The corresponding cone is shown in figure 11, and one of the boundary corresponds to

vanishing of C2 (one find a SU(2) gauge group here), while the other boundary corresponds

to vanishing of C3 and C7. The prepotential in this chamber is

F =
1

6
(aE1 + bE2)

3 = 8a3 + 6b3 − 6a2b . (4.53)

Remark. It was argued in [9, 10] that the UV limit of a quiver gauge theory does not

define a SCFT since the prepotential can not be convex in the whole Coulomb branch of

gauge theory which is identified with the Weyl Chamber. Our computation above shows

that actually the range of Coulomb branch is not the naive Weyl chamber of the gauge

theory.

4.1.4 Relation to (p, q) web and gauge theory construction

Given a crepant resolution of a toric Gorenstein singularity, one can construct a dual

diagram: put a trivalent vertex inside a triangle with edges perpendicular to the boundaries
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of triangle, and one get a (p, q) web by connecting those trivalent vertices. So a (p, q) web

is completely equivalent to a toric Gorenstein singularity.

As we see from above example, given a crepant resolution and it is possible to find

a non-abelian gauge theory at certain sub-locus of the Coulomb branch. However, the

SCFT is not completely characterized by the non-abelian gauge theory description as SCFT

has other massless particles from the boundary of the Coulomb branch which can not be

determined by the gauge theory.

4.1.5 Classification: lower rank theory

For toric Gorenstein singularity, the classification is reduced to the classification of two

dimensional convex lattice polygone up to following integral unimodular affine transforma-

tion on the plane:






x
′

y
′

1






=







a b e

c d f

0 0 1













x

y

1






(4.54)

here (a, b, c, d, e, f) are integers and ad−bc = 1. It is easy to check the number of boundary

points, internal points and the area of the polygon is not changed under above transfor-

mation. There are also some interesting facts about the convex lattice polygon, and here

we collect two of the useful ones:

1. The area of a lattice polygon is given by the Pick’s formula

A =
B

2
+ I − 1 . (4.55)

Here B is the number of boundary points and I is the number of interior points.

2. The boundary points are constrained by the interior points, i.e.

B ≤ 2I + 6 , I > 1 , (4.56)

and B ≤ 2I + 7 for I = 1.

Rank zero theory. The rank zero theory is classified by the convex polygon without

any interior point. They were classified in [61]. By TRIANG(p, h) we denote the triangle

whose vertices are (0, 0), (p, 0), and (0, h). By TRAP(p, q, h) we denote the trapezoid

whose vertices are (0, 0), (p, 0), (0, h) and (q, h). Then we have the following classification:

if K is a convex lattice polygon with g = 0 (g denotes the number of interior point), then

K is lattice equivalent to one of the following polygons

1. TRIANG(p, 1), where p is any positive integer. The flavor symmetry is SU(p). We

interpret this theory as “zero” flavor of SU(p) group.

2. TRIANG(2, 2). The flavor symmetry is SU(2) × SU(2) × SU(2). We interpret this

theory as the tri-fundamental of SU(2) groups.

3. TRAP(p, q, 1), where p and q are any positive integers. The flavor symmetry is

SU(p)× SU(q)×U(1). This is the bi-fundamental for SU(p)× SU(q).
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A B C

Figure 12. Toric diagram of rank zero theory.

2−SU(2)−2 2−SU(2)−2 2−SU(2)−2 2−SU(2)−2

Figure 13. Non-abelian gauge theory descriptions for a rank one toric diagram.

Figure 14. Toric diagram of rank one theory. The red lines indicate the partial resolution which

give a gauge theory description.

See figure 12 for some examples. With the field theory interpretation of these rank one zero

toric diagram, one can easily write down the gauge theory descriptions from the partial

resolution of the general toric Gorenstein singularity.

Example. See figure 13 for an example, and we list four gauge theory descriptions.

Rank one theory. The rank one theory is classified by the convex polygon with only

one interior point, see figure 14. We also show the partial resolution and the interested

reader can write down the gauge theory description.

Rank two theory. The rank two theory is classified by the convex polygon with two

interior points [62], see figure 15 and figure 16. We also write down one partial resolutions

for them.
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T

Q

Figure 15. Part A of toric diagram of rank two theory. The red lines indicate the partial resolution

which give a gauge theory description.

P

H

Figure 16. Part B of toric diagram of rank two theory. The red lines indicate the partial resolution

which will give a gauge theory description.
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4.2 Toric Q-Gorenstein singularity

One can also consider Q-Gorenstein toric singularity, and the computation of Mori and Nef

cones are similar. The major interesting new feature is that the generic point of Coulomb

branch has an interacting part described by the Q-factorial terminal toric singularity. It

would be interesting to further study the theories defined by those singularities.

5 Quotient singularity

Another important class of 3-fold canonical singularity is quotient singularity C3/G where

G is a finite subgroup of SL(3, C). All such finite subgroups have been listed in [63]. If G is

abelian, such singularity is also toric, and we can use the toric method to study them. For

more general class of singularities, We would like to point out some important properties

associated with such singularities:

• Flavor symmetry. Let G ∈ GL(n,C) be a small subgroup, let S = {z ∈ C3 : g(z) =

z}. Then the singular locus of VG is S/G. Since we are interested in finite subgroup

of SL(3, C), the singular locus is at least co-dimension two. The singularity over such

one dimensional singular locus is two dimensional ADE singularity, and they give the

corresponding non-abelian flavor symmetries.

In fact, three dimensional quotient singularity is isolated if and only if G is an abelian

subgroup and 1 is not an eigenvalue of g for every nontrivial element of g in G.

• Crepant resolution. There exists crepant resolution for the quotient singularity [64],

and the number of crepant divisors are related to the representation theory of finite

group G.

6 Hypersurface singularity

A third class of 3-fold canonical singularity can be defined by a single equation and we call

them hypersurface singularity. Let’s consider a hypersurface singularity f : C4 → C, and

further impose the condition that f is isolated, i.e. equations f = 0 and ∂f
∂zi

= 0, i = 0, . . . , 3

have a unique solution at the origin. We also impose the condition that f has a C∗ action

f(λqizi) = f(zi) , qi > 0 . (6.1)

The rational condition imposes the constraint on qi:

∑

qi > 1 . (6.2)

Since hypersurface singularity is Gorenstein, so the above rational condition also implies

that it is canonical! The partial crepant resolution for these singularities can be found

using the blow-up method. We’d like to compute the local divisor class group and the

number of crepant divisors.

We could consider more general isolated hypersurface singularity. Let’s consider an

isolated hypersurface singularity f : Cn+1 → C. Isolated singularity implies that equations
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f = 0 and ∂f
∂zi

= 0, i = 1, . . . , n+1 have a unique solution at the origin. We may represent

such an isolated singularity by a polynomial

f =
∑

ν∈Nn+1

aνz
ν . (6.3)

We set

supp f = {ν ∈ Nn+1|aν 6= 0}

Γ+(f) : convex hull of ∪ν∈supp f (ν +Rn+1
+ )

Γ(f) : union of compact faces of Γ+(f) (6.4)

Let σ be a face of Γ(f), set fσ =
∑

ν∈σ aνx
ν . A polynomial f is called Newton non-

degenerate if the critical points of fσ do not consist of points in C∗n+1 (points with all

coordinates non-zero) for all the faces in Γ(f). We may further assume that f is convenient

in the sense that its support intersects with the coordinate axis, and this assumption does

not change any generality.

Given a Newton non-degenerate singularity f , one can define a Newton order on the

polynomial ring C[z1, . . . , zn+1]. For ith n dimensional face σi of Γ(f), one can define a C∗

action li such that li(fσi
) = 1. For a monomial ν =

∑n+1
j=1 z

mj

j , we define its weight as

α(ν) = mini
(

li(ν)
)

. (6.5)

We notice that w(ν) = li(ν) if ν is in cone (0, σi). For a polynomial g in C[z1, . . . , zn+1],

we define

α(g) = min{w(ν)|ν ∈ supp g} . (6.6)

For such an singularity, we can define two algebras called Milnor algebra Jf and Tjurina

algebra Tf :

Jf =
C[z1, . . . , zn+1]
{

∂f
∂z1

, . . . , ∂f
∂zn+1

} ,

Tf =
C[z1, . . . , zn+1]

{

f, ∂f
∂z1

, . . . , ∂f
∂zn+1

} . (6.7)

These two algebras are finite dimensional since f defines an isolated singularity. µ =

dim(Jf ) is called Milnor number and τ = dim(Tf ) is called Tjurina number. Obvi-

ously µ ≥ τ , and µ = τ if and only if the singularity is quasi-homogeneous (or semi-

quasihomogeneous).

Example. Given an isolated singularity f = x4 + y7 + x2y3, the newton polyheron is

shown in figure 17. The Milnor number and Tjurina number are µ = 16, τ = 14. The

C∗ actions from f1 and f2 are l1(x) = 1/4, l1(y) = 1/6 and l1(x) = 2
7 , l1(y) = 1

7 . For a

monomial xy, we have l1(xy) =
3
7 , l2(xy) =

5
12 , so α(xy) = min

(

3
7 ,

5
12

)

= 5
12 .

Let’s focus on 3 dimensional singularity from now on, i.e. n = 3. Given a Newton

non-degenerate singularity, one can define a singularity spectrum S(f) using the Newton
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f
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f
2

x

y

Figure 17. Newton polyhedron for singularity f = x4 + y7 + x2y3.

filtration defined above. For the quasi-homogeneous singularity, the singularity spectrum

can be found easily. Let’s take a monomial basis φi, i = 1, . . . , µ of the Jacobian algebra

Jf , the spectrum is given by the following formula

S(f) = α(φi) +
∑

qi − 1 , φi ∈ Jf (6.8)

We can denote the spectrum S(f) as an ordered set (α1, . . . , αµ), and rational condition

implies α1 > 0, which implies
∑

qi − 1 > 0.10

For general Newton non-degenerate singularity, it is possible also to find a regular

monomial basis B of Jf such that the singularity spectrum is given by

S(f) = α(m+ 1)− 1 , m ∈ B (6.9)

Here m denotes the exponent of the monomial basis, and 1 denotes the vector (1, 1, 1, 1).

Rational condition implies that α1 > 1. The divisor class group ρ(X) can be expressed [65]

as follows

ρ(X) = {#αi = 1, αi ∈ S(f)} . (6.10)

namely we count the number of ones in singularity spectrum S(f).

Remark. These 3d canonical quasi-homogeneous singularity has been used in [1] to study

four dimensional N = 2 SCFT. In that context, the weights with value 1 in singularity

spectrum give the mass parameters.

Let’s define a crepant weighting as the weights w(1) = w(f) + 1 (here the weighting

has positive integral weights on coordinates). We denote all such weighting as W (f). The

number of crepant divisors are found as [65]:

c(X) =
∑

α∈W (f),dimΓα=1

lengthΓα +#{α ∈ W (f) : dimΓα ≥ 2} , (6.11)

where Γα denotes the face of Γ(f) corresponding to α.

More generally, one could consider isolated complete intersection canonical singularity

which is defined by two polynomials (f1, f2). Those complete intersection singularities with

C∗ action has been classified in [5]. The divisor class group for such quasi-homogeneous

singularity has been computed in [66].

10Since 1 is always the generator of Jf with minimal weight, and we have α1 =
∑

qi − 1.
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7 Conclusion

We argue that every 3-fold canonical singularity defines a five dimensional N = 1 SCFT.

We can read off the non-abelian flavor symmetry from the singularity structure, and the

Coulomb branch is described by the crepant resolutions of the singularity. For each crepant

resolution, one can compute Nef cone which describes a chamber of Coulomb branch. The

faces of Nef cone correspond to the locus where an extra massless particle appears. Different

resolutions are related by flops, and these Nef cones form a fan which is claimed to be the

full Coulomb branch.

We have given a description for the Coulomb branch of several simple theories defined

by toric singularity. Detailed computations for prepotential and Coulomb branch structure

for other interesting toric theories will appear elsewhere. The non-toric example would be

also interesting to study too, i.e. complex cone over Fano orbifolds should be interesting to

study.

It would be interesting to study other properties of these theories such as superconfor-

mal index and Seiberg-Witten curve for 5d theory on circle.
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[26] O. Bergman, D. Rodŕıguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal

index, JHEP 01 (2014) 079 [arXiv:1310.2150] [INSPIRE].

[27] H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d TN partition functions,

JHEP 06 (2014) 014 [arXiv:1310.3854] [INSPIRE].

[28] M. Taki, Notes on enhancement of flavor symmetry and 5d superconformal index,

arXiv:1310.7509 [INSPIRE].
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