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Abstract. Here we propose a novel method to compute Teichmiiller
shape space based shape index to study brain morphometry. Such a shape
index is intrinsic, and invariant under conformal transformations, rigid
motions and scaling. We conformally map a genus-zero open boundary
surface to the Poincaré disk with the Yamabe flow method. The shape
indices that we compute are the lengths of a special set of geodesics
under hyperbolic metric. Tests on longitudinal brain imaging data were
used to demonstrate the stability of the derived feature vectors. In leave-
one-out validation tests, we achieved 100% accurate classification (versus
only 68% accuracy for volume measures) in distinguishing 11 HIV/AIDS
individuals from 8 healthy control subjects, based on Teichmiiller co-
ordinates for lateral ventricular surfaces extracted from their 3D MRI
scans.

1 Introduction

In the computational analysis of brain anatomy, volumetric measures of struc-
ture identified on 3D MRI have been used to study group differences in brain
structure and also to predict diagnosis [1]. Recent work has also used shape-
based features [2] to analyze surface changes. In research studies that analyze
brain morphometry, many shape analysis methods have been proposed, such as
spherical harmonic analysis (SPHARM) [3], medial representations (M-reps) [4],
and minimum description length approaches [5], etc.; these methods may be ap-
plied to analyze shape changes or abnormalities in subcortical brain structures.
Even so, a stable method to compute transformation-invariant shape descriptors
would be highly advantageous in this research field. Here we propose a novel
and intrinsic method to compute surface Teichmiiller space coordinates (shape
indices) and we apply it to study brain morphometry in Alzheimers disease (AD)
and HIV/AIDS. The computed Teichmiiller space coordinates are based on the
surface conformal structure and can be accurately computed using the Yamabe
flow method.

There are extensive research on brain surface conformal parameterization [6—
11]. All surfaces may be classified by the conformal equivalence relation. If there
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exists a conformal map between two surfaces, then they are conformally equiv-
alent. Any two conformally equivalent surfaces have the same conformal invari-
ants and the same Teichmiiller space coordinates. By computing and studying
Teichmiiller space coordinates and their statistical behavior, we can provide a
promising approach to describe local changes or abnormalities in anatomical
morphometry due to disease or development.

In this work, only genus-zero surfaces with three boundaries are considered.
With the discrete surface Ricci flow method [10] (also called the discrete Yam-
abe flow), we conformally projected the surfaces to the hyperbolic plane and
isometrically embedded them in the Poincaré disk. The proposed Teichmiiller
space coordinates are the lengths of a special set of geodesics under this spe-
cial hyperbolic metric and can index and compare general surfaces. To the best
of our knowledge, it is the first work to apply the Teichmiiller space theory to
brain morphometry research. For the cerebral cortex surface, first, we converted
a closed 3D surface model of the cerebral cortex into a multiple-boundary surface
by cutting it along selected anatomical landmark curves. Secondly, we confor-
mally parameterized each cortical surface using the Yamabe flow method. Next,
we computed the Teichmiiller space coordinates - the lengths of three boundaries
(geodesics) on the hyperbolic space - as a 3 x 1 feature vector. This measure is
invariant in the hyperbolic plane under conformal transformations of the original

surface, and is the same for surfaces that differ at most by a rigid motion.
We tested our algorithm on cortical and lateral ventricular surfaces extracted

from 3D anatomical brain MRI scans. We tested our algorithms on brain lon-
gitudinal data to demonstrate the stability of our proposed Teichmiiller space
coordinate features. Finally, we used a nearest-neighbor classifier together with
our feature vector on the lateral ventricular surface data from a group of 11
HIV/AIDS individuals and a group of 8 matched healthy control subjects. Our
classifier achieved a 100% accuracy rate and outperformed a nearest neighbor
classifier based on lateral ventricle volumes, which achieved an overall 68.42%
accuracy rate on the same dataset.

2 Computational Algorithms

This section briefly introduces the computational algorithms in the current work.
The theoretic background and definitions were abbreviated due to the page limit.
For details, we refer readers to [12] for algebraic topology and [13] for differential
geometry.

In this work, only genus-zero surfaces with three boundaries are considered,
which are also called as topological pants. Let (S, g) be a pair of topological pants
with a Riemannian metric g, with three boundaries S = v; + 72 + 3. Let g
be the uniformization metric of S, such that the Gaussian curvature is equal to
—1 at every interior point, and the boundaries are geodesics. If the length of
the boundary ~; is I; under the uniformization metric, then (l1,ls,l3) are the
Teichmiiller coordinates of S in the Teichmiiller space of all conformal classes of
a pair of pants. Namely, if two surface share the same Teichmiiller coordinates,
they can be conformally mapped to each other.
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Figure 1(a) illustrates a pair of pants with the hyperbolic metric and its
embedding in Poincaré disk, such that the three boundaries, v;, are geodesics.
The 7; are the shortest geodesics connecting v;,vx, so 7; is orthogonal to both
v; and 7. The «; are divided to two segments with equal lengths by 7;, 7. 71, T2
and 73 split the surface to two identical hyperbolic hexagons, with edge lengths
L, 13, %, 71, B, 7. Furthermore, all the internal angles are right angles. The
lengths of 71,72, 73 are determined by 71,72, vs. For the mapping in Figure 1(a)
to be made, the pair of pants can have any geometry, as long as it has the
topology shown. It helps us to study general brain anatomical structures.

In practice, most surfaces are approximated by discrete triangular meshes.
Let M be a two-dimensional simplicial complex. We denote the set of vertices,
edges and faces by V, E, F' respectively. We call the ith vertex v;; edge [v;, v;] runs
from v; to v;; and the face [v;, v, vg] has its vertices sorted counter-clockwise.
Figure 1(b) shows the hyperbolic triangle, and its associated edge lengths I;, y;,
corner angles #; and conformal factors u;.

A discrete metric is a function | : E — RT, such that triangle inequality
holds on every face, which represents the edge lengths. In this work, we assume
all faces are hyperbolic triangles. The discrete curvature K : V. — R is defined
as the angle deficit, i.e., 2 minus the surrounding corner angles for an interior
vertex, and m minus the surrounding corner angles for a boundary vertex.

Discrete conformal deformation. Suppose the mesh is embedded in R3, so
it has the induced Euclidean metric. We use l?j to denote the initial induced
Euclidean metric on edge [v;, v;].

Let u : V — R be the discrete conformal factor. The discrete conformal met-
ric deformation, shown in Figure 1(b), is defined as sinh(%) = €% sinh(% )e%.
The discrete Yamabe flow is defined as d(;"'
at the vertex v;.

Let u = (uq,us, - -, uy,) be the conformal factor vector, where n is the number
of vertices, and ug = (0,0,---,0). Then the discrete hyperbolic Yamabe energy
is defined as E(u) = f:) Yo Kidu,.

The differential 1-form w = Z?:l K;du; is closed. We use ¢, to denote

cosh(yg). By direct computation, it can be shown that on each triangle, ggi_ =
J
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It is easy to see that g{f? = 88}5?', which implies dw = 0. The discrete hy-
g s

perbolic Yamabe energy is convex. The unique global minimum corresponds
to the hyperbolic metric with zero vertex curvatures. This requires us to com-
pute the Hessian matrix of the energy. The explicit form is given as follows:
990, _ 7A20i0jck7c?7ci+ci¢:j+cickfcjfck
u; (cj+1)(ck+1) ’

The Hessian matrix (h;;) of the hyperbolic Yamabe energy can be computed
explicitly. Let [v;, v;] be an edge, connecting two faces [v;, v, vg] and [v;, v;, v].

. . a67F  96Y 67
Then the edge weight is defined as h;; = 5 + 5= also for hy; = Zj kB
J J ? %
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where the summation goes through all faces surrounding v;, [v;,v;,vx]. The
discrete hyperbolic energy can be directly optimized using Newton’s method.

Because the energy is convex, the optimization process is stable.
Given the mesh M, a conformal factor vector u is admissible if the deformed

metric satisfies the triangle inequality on each face. The space of all admissible
conformal factors is not convex. In practice, the step length in Newton’s method
needs to be adjusted. Once the triangle inequality no longer holds on a face,
then an edge swap needs to be performed.

3 Experimental Results

We applied our shape analysis to various anatomical surfaces extracted from 3D
MRI scans of the brain. In this paper, the segmentations are regarded as given,
and result from automated and manual segmentations detailed in other prior
works, e.g. Thompson et al. [14, 15].

3.1 Feature Stability Study with Longitudinal Brain Imaging Data

To validate the feasibility and efficiency of our proposed shape index, we compute
and compare our shape index on a longitudinal brain imaging dataset [14]. The
data set consists of a total of 15 pairs of cortex hemisphere surfaces of individuals
with Alzheimer’s disease (AD). They were scanned at 2 time points about 2 years
apart [14]. AD is characterized by gradual tissue loss throughout the brain; the
overall hemisphere volume decreases by around 1 percent per year but it is not

known how much change there is in the overall cortical surface shape.
We selected a group of 3 landmark curves per hemisphere: the Central Sul-

cus, Superior Temporal Sulcus, and Primary Intermediate Sulcus. After we cut
a cortical surface open along the selected landmark curves, a cortical surface
becomes topologically equivalent to an open boundary genus-2 surface,which is
topologically equivalent to the topological pant surface (Figure 1(a)). Figure 1
(c)-(e) illustrate a right hemisphere cortical surface and its embedding in the
Poincaré disk. The three boundaries are labeled as 7; and two shortest geodesics

that connect boundaries are labeled as ;.
We computed the obtained feature vector for two surfaces, for both the left

and right sides of the brain, extracted from the same subject scanned at two
different times. For each of 15 subjects, we treated left and right hemisphere
brain surfaces equivalently at both time-points, computing shape feature vectors
(T1;,T2;),i=1,...,30, where T1; and T'2; each is a 3 x 1 vector. We calculated
the L? norm of the shape difference for a given cortex hemisphere over time,
d; = \/Z?=1(T1i,j —1T12,;,)%,i = 1,...,30. For comparison, we also computed
the L? norm of each feature vector, l,,,,m = 1,...,60. The ratio of the median
(d;) and the median of (I,,) was 0.76%. Although this was a relatively small
data set, considerable shape differences were found between different cortical
hemispheres. The relatively small difference over time demonstrated the relative
stability and efficiency of our proposed feature vector for brain morphometry
research.
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3.2 Studying Lateral Ventricular Surface Morphometry

The lateral ventricles - fluid-filled structures deep in the brain - are often enlarged
in disease and can provide sensitive measures of disease progression [15-18]. Ven-
tricular changes reflect atrophy in surrounding structures; however, the concave
shape, complex branching topology and narrowness of the inferior and posterior
horns have made automatic analysis more difficult. To model the lateral ventricu-
lar surface, we introduced three cuts on each ventricle (topology optimization), in
which several horns are joined together at the ventricular ”atrium” or ”trigone”
. After modeling the topology in this way, a lateral ventricular surface, in each
hemisphere, becomes an open boundary surface with 3 boundaries, a topological

pant surface (Figure 1(a)).
Figure 1 (f)-(h) illustrates how to compute Teichmiiller space coordinates for

a lateral ventricle. In Panel (f) and (g), 1, 72, and 3 are labeled boundaries and
71 and 7o are the shortest geodesics between boundaries. Panel (h) illustrates
the surface with the hyperbolic metric that is isometrically flattened onto the
Poincaré disk. When we make the topological change, we make sure each new
boundary has the same Euclidean length across different surface. As a result,
the lengths of each boundary under the Poincaré disk metric are valid metrics

for studying lateral ventricular surface morphometry.
In our experiments, we compared ventricular surface models extracted from

3D brain MRI scans of 11 individuals with HIV/AIDS and 8 control subjects.
The data was from a prior work [15]. The data collection, MRI image pro-
cessing and surface construction were done then. We assume the surface data
are given in our current work. We automatically perform topology optimiza-
tion on each ventricular surface and compute their lengths in the Poincaré
disk by the Yamabe flow method. For each pair of ventricular surfaces, we ob-
tained a 6 x 1 vector, t = (¢1,t,...t), which consists of 3 boundary lengths
for the left ventricular surface and 3 boundary lengths for right ventricular
surface. Given this Teichmiiller space coordinate based feature vector, we ap-
ply a nearest neighbor classifier based on the Mahalanobis distance, d(t) =

V(= pr) TS5t = pr) =\ /(¢ — ) TSt - per, ), where g, , iy, , T, and
X1, are the feature vector mean and covariance for the two groups, respectively.
We classify ¢ based on the sign of the distance of d(t), i.e., the subject that is
closer to one group mean is classified into that group. For this data set, we per-
formed a leave-one-out test. Our classifier successfully classified all 19 subjects
to the correct group and achieved a 100% accuracy rate.

For comparison, we also tested a nearest neighbor classifier associated with
a volume feature vector. For each pair of ventricular surface, we measure their
volumes, (v;,v,). We also use a nearest neighbor classifier based on the Maha-
lanobis distance. We classify v based on the sign of the distance, i. e., the subject
that is closer to one group mean is classified into that group. In the same data
set, we performed a leave-one-out test. The classifier based on the simple vol-
ume measurement successfully classified only 13 out of 19 subjects to the correct
group and achieved a 68.42% accuracy rate.
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The new Teichmiiller space shape descriptor requires more validation on other
data sets. However, these experimental results suggest that (1) ventricular sur-
face morphometry is altered in HIV/AIDS; (2) volume measures are not suffi-
cient to distinguish HIV patients from controls; and (3) our Teichmiiller space
feature vector can be used to classify control and patient subjects. Our ongoing
work is studying the correlation between the proposed feature vector and clinical
measures (e.g., future decline) in an Alzheimer’s Disease data set [18].

4 Discussion

An important step in our algorithm is the topology change, i.e. we cut open
surfaces along certain curves. It turns a closed surface into a genus-zero open
boundary surface that is topologically equivalent to the topological pant surface
in Figure 1(a). In our work, they have strong clinical motivations. In modeling the
brain’s lateral ventricles (which split in a Y-shape), the anatomical motivation is
that we introduce cuts at the ends of the anterior, posterior, and inferior horns,
which join at the ventricular “atrium” or “trigone” (the center of the Y-shape).
The cuts - where the 3 horns join - are automatically located. For the cortical
surface, we select landmark curves that consistently appear in all subjects. An
automatic algorithm can locate the landmarks as inputs for the cortex work.
There are at least two benefits for us to make topology change. First, the cutting
boundaries serve as landmark curves for a consistent comparison across surfaces.
Secondly, with the introduced artificial cuts, it is possible for us to compute
a global conformal parameterization from the entire surface to the hyperbolic
space. In the hyperbolic space, we can conveniently compute shape index that
continuously depends on the original surface conformal structure. In some sense,
it is similar to Fast Fourier Transform (FFT) for signal processing. Our work
can discriminate surface structures by computing a valid shape index from the

hyperbolic conformal parameterization.
Our algorithm is based on solving elliptic partial differential equations, so

the computation is stable. The computation is also insensitive to the surface
triangular mesh quality so it is robust to the digitization errors in the 3D sur-
face reconstruction. Overall, it provides an intrinsic and stable way to compute
surface conformal structure based shape index for further morphometry study.
For a genus zero surface, if we cut along three individual curves on a surface, we
achieve a genus-zero surface with three boundaries. The shape index consists of
the geodesic lengths (7;,7 = 1 — 3) under the hyperbolic metric in the Poincaré
disk. The boundaries are clinically motivated and easy to find automatically; the
shape feature is purely determined by the major anatomical features, which are
easily identified and consistent across surfaces. For both applications, the shape
index is determined by the overall shape so it is not very sensitive to changes in
a small neighborhood. Any closed anatomical structure surfaces can be modeled
in this way and becomes a topologically equivalent to a topological pant surface.
Even we only consider the topological pant surface here, our method is general
and can handle all arbitrary topology surfaces with negative Euler numbers. In
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future, we will explore more general surface applications and compare it with
other shape-based surface measures.
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Fig.1: (a) shows a pair of hyperbolic pants. (b) shows conformal deformation of a
hyperbolic triangle. (c)-(e) illustrate how to compute the shape index on a right hemi-
sphere cortical surface with 3 selected landmarks. (f)-(h) illustrate how to compute
the shape index on a left ventricular surface. When using it as a feature vector for
shape classification, a nearest neighbor classifier achieved a 100% accuracy classifica-
tion in distinguishing 11 HIV/AIDS individuals from 8 healthy control subjects (versus

68

% accuracy for volume measures). The shape index also detected genetic influences

more powerfully than volumetric measures in a set of lateral ventricle surfaces from 76
identical twins and 56 same-sex fraternal twins than volume measures.



