
THE SMITH CONJECTURE 

The Equivariant Loop Theorem for 
Three-Dimensional Manifolds and a Review of the 
Existence Theorems for Minimal Surfaces 

Shing- Tung Yau* and William H. Meeks, Ill 

Department of Mathematics lnstituto Mathematica Pura e Aplicada 
Stanford University 
Stanford, California 

Rio d e  Janeiro, Brazil 

The details of this chapter appeared in Meeks and Yau [4,5]. The equi- 
variant loop theorem that is needed in settling the Smith conjecture can be 
described as follows. 

Let G be finite group acting smoothly on a compact three-dimensional 
manifold M. Let S = Ll  S j  be a union of components of dM such that 
g ( S )  = S for all g E G. For all j ,  we have the inclusion i j :  S j  -+ M. Let K j  c 
nI(Sj) be the kernel of (ij)*: nl(Sj) -+ n , (M) .  The equivariant version of the 
loop theorem says that there are a finite number of properly embedded 
disks D ,  , . . . , D,  in M which satisfy the following properties: 

K ,  is the normal subgroup of nl(Sj) generated by the boundary 
circles doi, which lie in S j .  

(1) 

* This author’s work was supported by National Science Foundation grant MCS 79-12938. 
Present address: Institute for Advanced Study. School of Mathematics. Princeton University, 
Princeton, New Jersey. 

153 
Copyright @ 1984 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 
ISBN 0-12-506980-4 



154 Shing-Tung Yau and William H. Meeks, 111 

(2) or Di = 

The major point here is that our solution to the loop theorem respects 
the action of the group G in a suitable manner. The classical proof of Papa- 
kyriakopoulos, Whitehead and Shapiro, and Stallings does not seem to be 
readily generalizable to cover this case. 

Our proof can be sketched in the following manner. We put a metric on 
M so that the group G acts isometrically and so that d M  is convex with respect 
to the outward normal. Then with respect to this metric, we demonstrate 
the existence of an immersed disk D, in M whose boundary dD, represents 
a nontrivial element in n,(S) and whose area is minimal among all such disks. 
Partially using the classical topological methods developed in Papakyria- 
kopoulos [S], Shapiro and Whitehead [ 111, and Stallings, [ 121 and partially 
using the properties of minimal surfaces, we show that D ,  is embedded. 

If the smallest normal subgroup of z,(S) containing [dD,] is not equal to 
n(S), then we minimize the area of all disks whose boundary curve is an 
element in z,(S), which does not belong to this group. In this way, we con- 
struct another embedded minimal disk D,. Continuing this process, we 
obtain embedded disks D,,  D,, . . . . This process has to stop because there 
is only a finite number of pairwise disjoint Jordan curves that are not isotopic 
to each other. 

Having constructed D [, . . . , D,, we can prove (2) by using the minimality 
of the disks. The point is that when two minimal disks intersect nontrivially 
along a Jordan arc or a closed Jordan curve they must intersect transversally 
except at finite number of points. One can then prove that this is in contra- 
diction to the minimality of the area by cutting the disks and deforming along 
their intersection curve. In this way we prove that two minimal disks with the 
properties described above are either equal or disjoint. Sinceg is an isometry, 
it is clear that if D is a minimal disk, then g ( D )  has similar properties. Property 
(2) follows easily from this remark. 

Up to now, the argument sketched above was described in detail in 
Meeks and Yau [4]. For the rest of this chapter, we review some of the exist- 
ence theorems for minimal surfaces that may be useful to the study of the 
topology of three-dimensional manifolds. For that reason. we generalize 
some of these classical theorems to a somewhat more general category. 

For any y E G and 1 I i ,  i '  I k ,  either Di n g(D,,) = 

dDi,). 

1. Morrey's Solution for the Plateau Problem in a General 
Riemannian Manifold 

Let Rf be a complete m-dimensional manifold that is homogeneously 
regular in the following sense of Morrey [7] : There exists a constant C > 0 
such that for each point ?I E M ,  there exists a bi-Lipschitz homeomorphism 
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of a neighborhood of x onto the unit ball in R" with Lipschitz constants less 
than C. By Nash's isometric embedding theorem, we can assume that hrl is a 
properly embedded submanifold of a higher-dimensional euclidean space 
R". Let X be a compact Riemann surface with boundary dX. Let f ' :  1 -, M 
be a smooth map and 9 be the family of maps y :  X + A4 so that the energy 
of cj is 

THEOREM 1 (Morrey). 
inf{E(g)ly E F}, m r f  ~ i n y  sirchf" is smooth. 

There exists LI mup f b  E 3 slid1 that E(.fb) = 

Pronf: Let yi  be a sequence in 3 so that limi+m E(gJ  = inf{E(g)Ig E 9}. 
Then, since gi I dE = f for  each i and E(gJ has an upper bound independent 
of i ,  a subsequence of yi converges weakly in the Hilbert space of vector 
valued mappings y from 1 into R" with yldC = .f' and 11y112 = Jzlg12 + 
JrIVgI2 < x .  We may assume the subsequence is [y,} itself and the weak 
limit is yo .  I t  is easy to check that go E P. As E(y,) 5 limi+x E(yi), E(go)  = 

inf{E(y)(cg E 3;. It remains to check that go is smooth. 
Let x be a point in the interior of X. Let B,(I') be disks of radius I' around x. 

Then we assert that for some constant CI > 0, 

lVgol I ar J IV8Ol2 (1.2) s 2  & ( r )  i B x l r l  

for r smaller than some positive constant independent of CI.  

If the length of y,(i?B,(r)) is greater than l/c, where c is the Lipschitz 
constant that appears in the definition of homogeneous regularity of M ,  then 

and (1.2) follows by choosing u = 2nc2 [,I V ~ J ,  1 2 .  
If the length ofg,(dB,(r)) is smaller than l/c, we can assume that the image 

of i?B,(r) under go lies in the unit ball in the coordinate system that appeared 
in the definition of homogeneous regularity. Then we define a map from 
B,(r)  into this unit ball by requiring each component of the map to be 
harmonic (with respect to the coordinate system) and its restriction on dB,(r) 
to be given by go I dB,(r). Call this map h. We can define a new map ij, E 9 
by requiring that = yo on X\ B,(r.) and i j ,  = h on B.y(r). 

Since y, minimizes the energy in 3, it is clear that 

(1.4) 
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Because go I dB,(r) = h I dB,(v), it suffices to prove (1.2) by demonstrating 
that 

(VhI2 2 ar J lV,llr),F!PO,h 1 2 .  (1.5) 5 t l ( x . r l  i B ( x . r )  

However, this last inequality follows easily by expanding each coordinate 

Therefore, inequality (1.2) is proved and we can rewrite it as 
of h in Fourier series. 

By integrating. we find that 

where 0 I I’ < R and B,(R) is a fixed ball around x. 
As Sex(,, I Vgo12 is bounded. (1.7) measures how SEX( , )  IVgOl2 decays when 

I’ + 0. A calculus lemma of Morrey [7] then shows that go is Hdlder contin- 
uous at s with constants that depend only on a and R-”“SB,,R,I VgOl2. 

Therefore go is continuous in the interior of C. By using the fact that 
go I dZ is Lipschitz, one can use an argument similar to that given before to 
prove that go is Holder continuous near 8C. 

The Holder continuity of go guarantees that the image of a suitable disk 
B,(r) of any point ?c E E lies in a coordinate neighborhood of M .  Using the 
coordinate system and the fact that yo minimizes energy in 3, go must 
satisfy the variational equation 

where xi,’ hij dx‘ dx’ is the metric tensor of M .  
Since we are dealing with vector-valued functions, a difference-quotient 

argument (see Morrey [7]) can be used to prove the higher differentiability 
of go. This completes the proof of Theorem 1. H 

In order to state the second theorem, one needs to introduce some termin- 
ology. Let Z and C’ be two not necessarily connected surfaces. LetJ’: dC + M 
andj ’ :  ax‘ + M be smooth diffeomorphisms, each mapping onto the same 
disjoint union of Jordan curves in M .  Then we say that (C,, f ’ )  > (C’ , j ’ )  if 
C‘ can be obtained from 1 by surgery on a collection of disjoint, simple, 
closed curves in the interior of Z (i.e., cut along the curve and sew 
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back disks in neighborhoods defined as “ homogeneously regular manifolds.”) 
andf‘ is the same asf’up to reparametrization of dC. (If C is oriented, we can 
require this reparametrization to preserve the orientation.) 

For each pair (C, j ’ ) ,  let 9(Z, f )  be the family of all maps g: C -+ M so that 
for some conformal structure on C, f x l  Vg l 2  < 00 and g 1 dC = .f‘ up to re- 
parametrization. Let A(C, f ’ )  be the infimum of all f lr I Vg 1 2 ,  where V is 
taken with respect to some conformal structure over C and gldC is equal to 
j’  up to reparametrization. Using the existence of isothermal coordinates 
on a surface, one verifies that A(C,f  ) is simply the infimum of the area of all 
possible maps g :  X -+ M so that g ldC is equal to f u p  to reparametrization. 

THEOREM 2. Suppose jbr each ( X ’ , f ’ )  < (C,J‘), that A(C’ , , f” )  > A(C,  j ’ ) .  
Then there exists a conformal strzicture over C and a smooth conjormal map 
go: C + M whose area is eqiiul to A(& j’). 

Prooj: First, we fix a conformal structure on C and we minimize the 
energy E(g) over all maps g : C --f M ,  so that g I dC = f’up to a reparametriza- 
tion. Let gi be a minimizing sequence. By Theorem 1, we can assume that 
each gi is harmonic, and for the latter purpose we may assume that the choice 
of the conformal structure gives rise to Iimidm E(gi) < A@’, j”) whenever 

Each gi satisfies the equation for harmonicity. Hence the (standard) 
arguments in Theorem 1 of Meeks and Yau [ S ]  show that we may assume gi 
converges smoothly on compact subsets of the interior of C, to a smooth 
harmonic map gb . 

We are now going to prove that gb is continuous in a neighborhood of 
dC and is equal to f’ 131 up to reparametrization. There are two cases to be 
discussed. If C is not the disk, we proceed as follows. 

Let x be an arbitrary point on a component o of dC. Then, by using the 
argument of Lebesgue (see the proof of Theorem 1 in [ 5 ] ) ,  we can find a 
number 0 < r2 < ri  < r so that the length of gi(dB,(r) n C) is not greater 
than J;3.nE(.4i)(log r ) - ’ ’2 .  Since E(gi)  is uniformly bounded, the last number 
is arbitrarily small when r is small enough. When r is small, the arc B,(r) n o 
is either mapped to an arc of f(o) with length small, compared with r, 
or  mapped to the complement of such an arc onf(o). If the former case occurs 
for all x E G, then g i  is equicontinuous on G and the replacement arguments 
in Theorem 1 show that gb is Holder continuous near dZ. If the latter case 
occurs, both gj(dB,(r) n C) and gj(o)\gi(Bx(r) n G) have small length and 
hence bound a disk with small area. We can form a new surface C‘ by putting 
two new disks with gj(B,(r) n C) and g,(C)\gj(B,(r) n C) together, respec- 
tively. In this way, we form a new pair (X‘, f ‘ )  with an area close to the area 
of g i .  This gives a contradiction to A ( C , j ’ )  < A(C’;j’’) .  

(C’9.f’) < (C,f’). 
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In case C is a disk, one has to fix the points 1, - 1, and f l  on the unit 
circle and then fix the points g,(l), gj( - I), and g j ( J z )  in.f’(o). One can 
make this assumption because any three distinct points on the unit circle 
can be mapped to the other three by a conformal automorphism of C and 
the total energy is invariant under conformal parametrization. With this 
assumption, the maps g j  always map small arcs to small arcs and hence are 
equicontinuous. Therefore. gb is Holder continuous in a neighborhood of dC. 

Now we change the conformal structures over C. The treatment here is the 
same as the one in Schoen and Yau [lo]. We only treat the case when C is 
not the disk or the annulus. By doubling C and putting the PoincarC metric 
on the doubled Riemann surface, we can assume that C admits a PoincarC 
metric whose boundary consists of geodesics. The space of conformal 
structures over Z can be identified with the space of these metrics. For each 
fixed conformal structure LI), which satisfies the assumption mentioned in 
the beginning of the proof, we can choose a map gu by the procedure men- 
tioned above and the energy of this map defines a lower semicontinuous 
function over the space of conformal structures. However, the last space 
is noncompact. Hence, in order to prove that the lower semicontinuous 
function has a minimum, we demonstrate that it is proper. (Strictly speaking, 
we have to study on the Teichmuller space instead of the moduli space. The 
method in [lo] can be used to overcome this problem.) This follows because 
a sequence of conformal structure tends to infinity iff for each of these con- 
formal structures there exists an embedded closed geodesic or a geodesic arc 
joining the boundaries whose length with respect to the Poincare metric 
tends to zero. If the length of the image of these curves under gw is bounded 
away from zero, then the arguments in [lo] demonstrate that the energy of 
go tends to infinity. Otherwise, the length of the image of the geodesics 
tends to zero (these geodesics must be closed geodesics because the curves 
inf‘(8C) are fixed in M ) .  Hence, eventually the image of the geodesics bound 
a disk with small area and the arguments used above show that we will 
violate the condition A(Z, f )  < A(C’, j”) .  

In conclusion, we have found a conformal structure on C and a map 
go: C -+ M such that E(go) = A(C,f’)  and g,ldZ = , / ‘up to reparametriza- 
tion. Furthermore. the arguments also showed that go is smooth in the in- 
terior of Z and Holder continuous in a neighborhood of dC. The arguments 
of Hildebrandt [2] then show that go is in fact smooth in a neighborhood of 
8Z. This finishes the proof of Theorem 2. 

Remark. In Hildebrandt [2] a proof of the theorem of Lewy and Morrey 
was also given. The proof states that if M is real analytic and if the image 
curves ,f’(dC) are real analytic, then the minimal surface constructed in 
Theorem 2 must be real analytic. The proof consists of estimating the deriva- 
tives of yo carefully and proving the convergence of the Taylor series of go. 
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2. The Existence Theorem for Manifolds with Boundary 

In this section we extend Theorem 2 to the case in which M is allowed to 
have boundary d M .  We say M is homogeneously regular if M is a subdomain 
of another homogeneously regular manifold N that has no boundary. 

THEOREM 3. Let M be a three-dimensional, homogeneozrsly regulur mani- 
f o l d  whose boundary dM has nonnegative ineun curvature with respect to the 
o[itward normal. Let C be a compact stryf’uce with boiindary and j ’ :  Z -+ M 
be n smooth map so tharf‘: aC + M is an embe(liling. Suppose that A ( Z , f ’ )  < 
A(C’,,f”)jbr all ( Z ’ , f ’ )  < ( Z , f ) .  (See the definitions in Section 1.) Then there 
exists a conformal strzrcture over C and a conformal map g: C - M so that 
g I dX is equal tof’up to reparanietrizution of ax and the area qf’g is not greater 
than the area of’uny map with the sunie property. 

Proof: First we notice that in case M is compact and d M  has nonnegative 
mean curvature with respect to the outward normal, then Theorem 3 is valid. 
Furthermore, the same theorem remains valid if M is the intersection of a 
finite number of compact domains of the above form, This was carried out in 
Meeks and Yau [ti]. 

In general, let Ri be an increasing sequence of compact, smooth domains 
in M such that M = U:lQZj,dM = uz, (aMnR,) ,  and U X E n i B x ( l )  c 
Ri+ for all i. Then for each i, we can change the metric in R,\Qi- so that 
dRi has nonnegative mean curvature with respect to the outward normal. 
By the remark in the last paragraph, we can then find a conformal structure 
oi over C and a conformai map gi:Ci + Ri that minimizes area with respect 
to the changed metric on R i .  

We claim that for i large enough. we may assume that wi = coif = . . . and 
g. , = g .  , + 

For each j I i - 2 and x E gi(C) n Rj, let B,(1) be the ball with center 
x and radius 1 in N. Then, as B,(l) c Rip and the metric on Qi-  is un- 
changed, there is a bi-Lipschitz diffeomorphism cp of B,(1) to R“ whose 
Lipschitz constant is not greater than a constant C. (This comes from the 
definition of homogeneous regularity of N . )  

We are going to bound the area of g i ( X )  n B,( 1) from below by a positive 
constant that is independent of x and i. Hence, we may assume that gi(C) n 
B,(1) minimizes area in B,(l) instead of minimizing area in B x ( l )  n Ri.  
For almost every 0 < r 5 1, we may assume that B,(r) n q,(C) is a disjoint 
union of Jorden curves ol(r), . . . , ok(r). Let Di(r)  be the minimal disk in R” 
whose boundary is given by q(oi(r)). Then the area of q- ‘ (Di(r))  is not greater 
than C2A,(Di(r)), where Ae(Di(r ) )  is the euclidean area of Di(r) .  Since gi(C) n 
B,(l) minimizes area in B,(1), the area of go(C) n B,(r) is not greater than 

= . . . . This claim clearly implies the theorem. 
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the sum of the areas of p-'(Di(r)) ,  and hence not greater than 
A 

C2 1 Ae(Di(r)). 
i =  1 

By the isoperimetric inequality for minimal surfaces in R", ( 1/44Ae(Di(r)) is 
not greater then the square of the euclidean length of cp(gi(r)). Hence the area 
A(g,(X) n B,(r)) is not greater than 47rC4E2(gi(C) n dBx(r)), where C(gi(C) n 
dB,(r)) is the length of gi (Z)  n dB,(r). 

Since lVrl 5 1 on gi(Z) when r is restricted to gi(C), the coarea formula 
[l] shows that 

By integrating this inequality, we obtain 

for0 < r I 1. 

In particular, A(gi(C) n B,(l)) 2 ($ C 2 ) -  '. Without loss of generality, 
we may assume a(gi(C)) c R,. If gi(C) n (Rj\Rj- # 0, then we can find 
points xl, . . . , xICj- with x k  E g,(C) n ( f & k - l \ R 2 k - 2 )  (Here [ ( j  - 1)/2] is 
the largest integer less than ( j  - 1)/2). The balls BX1(1), Bx2(l), . . . are disjoint 
and hence the area of gi(C) is not less than C,A(g,(C) A Bxk( 1)) 2 ( ( j  - 1)/2) 
(A C 2 ) - ' .  This implies j I 2 + 2J;f C2A(C,.f') and that gj(C) lies in a 
fixed compact set of M .  This finishes the proof of Theorem 3. 

3. Existence of Closed Minimal Surfaces 

In this section we shall record the existence of incompressible, closed, 
minimal surfaces in a three-dimensional homogeneous regular manifold 
M (possibly with boundary). If M is compact, without boundary, this was 
proved independently by Sacks and Uhlenbeck [9] and Schoen and Yau [lo]. 

THEOREM 4. Let C be a compact sirrjace without boundary. L e t f ' :  C -+ M 
be a snzoorh map, so tharJ',: n l (C)  + n , ( M )  is injective andf'is not homotopic 
ro the slim of'two spheres and a map nhich can be dejbrmed offujevery cnmpacr 
subset oj 'M. I f a M  has nonnegative mean ctrrvature with respect ro the otrtword 
normal, rhen there exists a confbrmal strircture on C and a conformal m a p  
g: X + M .  so that g*In,(C) = J'* Inl(C) and the area of'g is not greater rhen 
the area of'trny mapfrom Z to M that is homotopic to g .  
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Proof: First, we treat the following special case. Assume that A4 has no 
boundary and that for any point .Y E M there is a contractible neighborhood 
a, of x with d(x, X2,) + m when x tends to infinity. (In this case, we do not 
need tHe assumption that fcannot be homotopic to infinity.) 

We minimize, for each conformal structure over C, the energies of maps 
whose action on nl(Z) is the same as,/: Thus let w be any conformal structure 
over C. Then we can find a sequence of smooth maps gl, g 2 ,  . . . whose action 
on nr(C) is the same as j and Iimidm, E(g , )  is the infinmum of the energies of 
such maps. By following the same procedure as in [lo], we can produce a 
harmonic map go with minimal energy in our class if we can prove that for 
some y E M ,  there exists c > 0 and L > 0 such that the set {x E C Jd(yi(x),y) i 
L }  has measure greater thane. (This is true because after isometric embedding 
of M into R" and applying the Poincare inequality for vector-valued functions 
over 1, we can estimate the L2-norm of g, in terms of e, L, and the energy of 
g i .  Then we can take a weak convergent subsequence of g i  and proceed as in 

If the last statement were wrong, then by passing to a sequence of gi, we 
DO].) 

may assume that for some ci -, 0 and Li + 8x the measure of 

{X 6 l4gi(x),y) Li) 

is less than ci. Assume X # RP2 and fix an annulus region [0, a] x S' in 
C so thatf'((0) x S ' )  is homotopically nontrivial in M .  By Fubincs theorem, 
we can find [0, a] x {t) in [0, u]  x S' so that, except for a set of measure 
bi in [0, a ]  x {z }  with Si  4 0 ,  d(gi( t ,  T), y )  > Li.  By assumption, there exists 
contractible domain containing y,(t, t) so that rl(gi(t, t), JST,,. J tends to 
infinity uniformly as d(gi ( t ,  t), y) > Li and i + x. Since y i ( { t }  x S ' )  is 
homotopically nontrivial, its length L(gi(( t}  x S')) tends to infinity uni- 
formly also. Therefore r; L(gi( { t }  x S ' ) )  dt -, co. Because the energy of 
g i over [0, a ]  x S' is dominated from below by {l: L(g,({t} x S')) d t } 2  up to 
a constant independent of i, E(gi) -+ a. This is a contradiction. 

If C is RP2, one can proceed as follows. Let U(X) be the unit tangent bundle 
of C and let '3 be the two-dimensional surface that parametrizes the set of all 
closed geodesics in C. Since the measure of {x E C I d(gi(x), y) I L , }  is less 
than E , ,  the measure of the closed geodesics that pass through 

{x E C Id(qi(*x), y) I Li) 

is small compared with ei. We can consider I Vg, l 2  as a function over U @ ) ,  
which fibers over %. Hence, E(yi) can be obtained by integrating IVgi12 over 
the closed geodesics first and then over W. As above, if there is a point x on the 
closed geodesic so that d(gi(x) ,  y )  > L, ,  then the integral is dominated from 
below by Lz. This also gives a contradiction and we have proved the existence 
of 9Co. 
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As in [lo], we have to change the conformal structures and minimize 
E(g,) to achieve a map with minimal area. This can be done in exactly the 
same way as in [lo]. This proves the theorem in the special case described 
above. 

By using the method of [4] and [ 6 ] ,  we see that Theorem 4 also holds if 
M is compact with nonnegative mean curvature with respect to the outward 
normal. 

For the general case, we proceed as in Theorem 3. We construct an in- 
creasing sequence of compact domains Ri in M so that M = u,E Ri and 
UxERiB,( l )  c !2i+l. For each Ri, we construct a metric so that dRi has 
nonnegative mean curvature with respect to the outward normal and the 
metric coincide with the original one on R i - l .  We may also assume that 

We can then minimize area in Ri and obtain q i: 1 -, Ri, which is homotopic 
tofup  to the connected sum of two spheres. By the topological assumption 
on,/; we may find a point xi E C so that limi, yi(xi) exists. This fact and the 
arguments provided in the proof of Theorem 3 then imply that g i ( l )  stays in 
a fixed compact set of M .  This finishes the proof of Theorem 4. 

Let R be doniuin in R3 thut hus nonnegutive meun curuutiwe 
with respect to the oirtwuni normul. Then there exists no compact, inconzpressihle 
szrrlace with nontrir iul , f i~nt lcn~e~~tul  groirp in R. 

.f'(Z) = Ql. 

COROLLARY. 

Proof: Let C be the compact, incompressible surface with nontrivial 
fundamental group in R. Then we can choose a two-dimensional sphere S 
(with positive mean curvature) in R3 that encloses X. The domain R n S 
becomes a compact manifold with nonnegative mean curvature with respect 
to the outward normal. Hence we can minimize the area of C within R n S 
and obtain a compact minimal surface in R3. (The previous theorem applies, 
by smoothing, even if R n S has corners [6].) Since R3 has no compact mini- 
mal surface, this is a contradiction. m 

By using some topological arguments, one can then derive the following. 

COROLLARY. Let X be a properly enzbeddetl minimul cylinder in R3. Then 
C is isotopic to the catenoid. 

4. Existence of the Free Boundary Value Problem for Minimal Surfaces 

By using the arguments of the above sections and [ S ] ,  we can generalize 
Theorem 1 of [S] in the following way. 

Let M be a three-dimensional, homogeneously regular manifold whose 
boundary (7M has nonnegative mean curvature with respect to the outward 
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normal. Let C be a compact surface with boundary and let Fz be the family 
of smooth mapsf : E + M so that j’(dE) c a M ,  so that ,f is not homotopic 
re1 8C to a map whose image is in iiM and so that there is a fixed compact 
set K c M that meets the image of every map 9 :  C + M homotopic, as a 
map of pairs, to f: Let A be the infimum of the area of the maps in .FX. We 
say that C’ < C if C’ can be obtained by surgery along a simple closed curve 
or a Jordan arc of 1 which disconnects C. 

THEOREM 5. Let M be a tlzree-dimen.sioiza1, humoyeneoi~sly regirlar 
manijold whose boundary has nonneyativr mean cirrvatirre with respect to the 
oirtward normal. Let C be a compact siiuace with A ,  < Az , jor  any C‘ < C. 
Then we can find a conformal striictiare over C and a smooth conformal map 
f ’ ~  9, so that the urea o j f i s  eqirul to A, .  
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