Redundant Via Insertion with Wire Bending

Kuang-Yao Lee, Shing-Tung Lin and Ting-Chi Wang

Department of Computer Science National Tsing Hua University Hsinchu, Taiwan

Outline

Preliminaries Problem definition Minimum-weight maximum independent set formulation 0-1 integer linear program based approach Experimental results Conclusion

Redundant via

Enable a single via failure to be tolerated
 Improve the chip yield and reliability

Feasible double via

Wire bending

Create more feasible double viasImprove the insertion rate

Insertion rate = 50%

Insertion rate = 100%

 d_1

 d_2

 V_1

05

 V_2

Wire bending (cont'd) The wires are allowed to be bent A bending window of pre-defined size is given

Double via insertion with wire bending (DVI/WB)

Input

A routed design and a set of via-related design rules

Goal

- 1. To replace as many single vias with double vias as possible
- 2. Minimize the wirelength increase due to wire bending

Constraints

- Each single via either remains unchanged or is replaced by a double via
- After via replacement and wire bending, no design rule is violated

Enhanced conflict graph

An undirected vertex-weighted graph constructed from a detailed routing solution

Vertex

- a feasible double via
- Edge
 - cannot be inserted simultaneously

Enhanced conflict graph

Each vertex is associated with a weight The amount of wirelength increase caused by inserting the corresponding double via

Theorem

The DVI/WB problem can be formulated as that of finding a minimum-weight maximum independent set (mWMIS) from the enhanced conflict graph

[Lee et al., ICCAD'06]

- Sweep-line-like approach
- Cannot consider wire bending

Speed-up – Pre-selection

Adapted from [Lee et al, ISPD'08]

No external edge

Having the minimum weight among the vertices coming from the same single via

Speed-up – Connected components [Lee et al, ISPD'08] – Divide into smaller 0-1 ILP problems

Overall approach

1. Pre-selection

Overall approach

Overall approach (cont'd)

21

Experiment setup

 Linux based machine with 2.4GHz processor and 2GB memory
 Adopted Ip_solve as our 0-1 ILP solver

Circuit	#Nets	#I/Os	#Vias	#M-Layers
C1	4309	20	24594	5
C2	5252	211	41157	5
C3	18157	85	127059	5
C4	17692	415	151912	5
C5	44720	99	357386	5

Experimental results – Effectiveness of wire bending

Circuit	w/o wire bending				with wire bending			
	#A-vias	V	E	T(s)	#A-vias	V	E	T(s)
C1	19796	43246	36714	22	20664	53504	64083	27
C2	31464	67312	54376	32	33174	90541	114497	41
C3	99142	215647	179307	120	104356	284072	357643	157
C4	112076	220538	159691	131	119795	302904	371024	184
C5	276032	574142	444754	442	296323	804268	1025320	731
Normalized	1	1	1	1	1.06	1.33	2.09	1.36

Experimental results – # of inserted double vias

Circuit	01ILP–DVI*		01ILP-DVI/WB			
	#DVI	T(s)	#DVI	#WB	T(s)	
C1	19754	3.23	20567	835	3.37	
C2	31411	3.30	33101	1720	3.54	
C3	98888	3.81	103934	5146	4.87	
C4	111657	3.87	119256	7798	5.19	
C5	275437	5.14	295383 20256		13.62	
Normalized	1	1	1.06	-	1.18	

*[Lee et al., ISPD'08]

Experimental results -Wirelength increase

Circuit	ECG +	01ILP-DV	/ *	01ILP-DVI/WB			
	WL(μ m)	Rate(%)	T(s)	WL(μ m)	Rate(%)	T(s)	
C1	3.22E+03	0.32	3.30	9.96E+02	0.10	3.37	
C2	8.21E+03	0.39	3.43	2.12E+03	0.10	3.54	
C 3	2.47E+04	0.39	4.42	6.30E+03	0.10	4.87	
C4	3.11E+04	0.32	4.41	9.79E+03	0.10	5.19	
C 5	9.27E+04	0.36	9.02	2.57E+04	0.10	13.62	
Normalized	1	-	1	0.28	-	1.22	
*[Lee et al., ISPD'08]25							

Conclusions

- We studied the DVI/WB problem and formulated it as a mWMIS on the enhanced conflict graph
- We proposed an efficient 0-1 ILP based approach to solve the mWMIS problem
- The experimental results were shown to support our approach

Wire bending

