Lectures on Einstein Manifolds

Einstein Manifolds with Zero Ricci Curvature

S.-T. Yau

The original motivation for solving of the Einstein equation is to understand
space-time in the absence of matter; see the essay by Tod in this volume for an
overview of the mathematics of general relativity. The equation governs the manner
in which space-time is influenced by the sole force of gravity. As is well known,
singularities such as black holes can occur. The study of the vacuum Einstein
equations is a difficult problem in nonlinear hyperbolic systems; see the essay by
Christodoulou in this volume. Complete space-times with nontrivial gravitational
radiation are not well understood.

Many exact solutions of the stationary vacuum Einstein equation have been
found in the past, including the Schwarzschild solutions and Taub-NUT solutions.
It is remarkable that a so-called Wick rotation [29] can be performed on these
solutions to transform them into complete (positive-definite) Einstein manifolds
without singularities. The (Euclidean) Schwarzschild metric is particularly signif-
icant as it is a complete non-singular Ricci-flat metric which is not Kahler. (The
(Euclidean) Taub-NUT metric is Kahler. For more about these metrics, consult
the paper of Lapedes [48].) Wick rotation is obtained by replacing ¢ by it in suit-
able coordinates. Unfortunately there is no systematic theory of Wick rotations on
Einstein metrics.

Wick rotation does not work for compact Einstein manifolds. It is not hard
to show that up to torus fibrations, Ricci-flat compact manifolds have no contin-
uous group of symmetries. It is therefore difficult to construct such manifolds by
exploiting the symmetry group. In fact, for a long time, geometers believed that no
compact Ricci-flat manifolds existed beyond these flat space-forms. In particular, it
was a general belief that the conjecture of Calabi on Kéhler manifolds was too good
to be true, as it implied that the only obstruction for the existence of a Ricci-flat
Kahler metric comes from the cohomological condition of the vanishing of the first
Chern class. This conjecture of Calabi was in fact proved by the author in [90] in
1976.

On a compact Kahler manifold, the space of Kahler metrics with zero Ricci
curvature is then parameterized by those complex structures with zero first Chern
class and their Kéhler classes. (It is not known whether every compact Ricci-flat
metric on a Kahler manifold is Kéhler or not.) This moduli space has played an
important role in the effort to compactify string theory.

Until now, nobody has been able to find an explicit formula for any nontrivial
Ricci-flat metric on a compact Kéhler manifold. It is possible that the recent
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conjecture of Strominger-Yau-Zaslow [78] may solve this question. There are many
more explicit examples when the manifold is non-compact. Besides the Taub-NUT
space mentioned above, there are also metrics constructed by the twistor method
(see the essay by A. Dancer in this volume). Right after I settled the compact case,
I was interested in working out the general existence theorem for complete Ricci flat
Kéhler manifolds. In the International Congress in 1978 in Helsinki, I described a
basic conjecture on such manifolds. It is believed that if such a manifold has finite
topology, it must be the complement of a divisor D in a compact Kéhler manifold
M, and D is the anti-canonical divisor of M. (Anderson-Kronheimer-Lebrun [1]
have found examples of such manifolds with infinite topology.) I could prove some
special cases of this conjecture, for example the case of total space of holomorphic
bundles over Fano manifolds. (Such examples were worked out at the same time
by Calabi [12] using more explicit calculations.) More general cases were obtained
by Tian and myself, where we assume D supports a non-singular anti-canonical
divisor in a Fano manifold [83]. The geometry of the metric depends a lot on the
multiplicity of the anti-canonical divisor along D. If the multiplicity is one, D is
automatically a compact Kéhler manifold with trivial first Chern class. No extra
assumption is needed in this case and the volume growth of the metric is less than
quadratic growth. When the multiplicity is greater than one, we need to make the
assumption that there is a Kahler-Einstein metric on D (see the essay by Tian in
this volume for criteria for the existence of such a metric). The volume growth of
the Ricci-flat metric on the complement of D in this case behaves like standard
Euclidean space.

Our construction of such metrics on the complement of D goes as follows.

Let Q be a holomorphic n-form defined on the complement of D so that Q AQ
blows up along D. Then we want to find a complete K&hler metric g;; with bounded
curvature so that

det(gi)dzt A---Adz" AdzL A --- Ad2™
QnQ

is bounded from above and below by a constant. The idea is to perturb such a
metric g;; by the Hessian %552_7 of some function u so that g;; + Ef—j;‘z:j is bound_e:i
from above and below by a constant multiple of g;; and its volume form is A Q.
In this way, we know quite a bit about the Ricci-flat metric near D. We construct
9i7 by taking a Kéhler-Einstein metric on D and extending it in a neighborhood
of D to satisfy the above conditions. The existence of u is proved by carefully
estimating its C° norm, which in turn depends on a suitable estimate of Sobolev
inequality constants. It will be interesting to find precise asymptotic behavior of
the Ricci-flat metric near D. The parameterization of Kahler Ricci-flat metrics is
much more difficult than in the compact case. One has to put constraints on the
uniform behavior of the metrics near D. It has been known to experts for some
time that the Taub-NUT metric provides a family of complete Ricci-flat Kahler
metrics on C2. (See LeBrun [49] for an explication and also the essay by A. Dancer
in this volume.) Perhaps they are related to various compactifications of C? (and
the same may hold for more general quasi-projective manifolds).

There have been many attempts to find explicit constructions of Ricci-flat man-
ifolds. See the essays by M. Wang and A. Dancer in this volume for example. These
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constructions either use group actions to reduce the number of variables (includ-
ing the concept of a moment map) or build bundles over existing Kahler-Einstein
manifolds.

The existence of Ricci-flat metrics gives rise to a new tool to study Kéhler
manifolds with zero first Chern class (Calabi-Yau manifolds). For example, an
immediate corollary is that if for some element w in the Kahler cone of an n-
dimensional Calabi-Yau manifold M and if Co(M) Uw™ 2 = 0, then M is covered
by the flat torus. This was observed by the author at the time when the Calabi
Conjecture was solved. In the above statement, if we only assume w to be on
the boundary of the Kihler cone and C2(M) Uw™ 2 = 0, then depending on the
degeneracy of w, one should be able to make use of differential geometry to classify
those manifolds to be fiber spaces with generic fibers as lower-dimensional Calabi-
Yau manifolds. P. Wilson was able to study this problem using algebraic methods
in [87].

A very important consequence of the Ricci-flat metric is that any holomorphic
n-form is parallel with respect to the metric. Therefore if it is non-degenerate at
one point, it must be non-degenerate everywhere. In particular, a holomorphic
symplectic Kadhler manifold is automatically hyper-Kéhler, and it therefore admits
three compatible integrable complex structures. When the manifold has complex
two dimensions, a non-vanishing holomorphic two-form §2 will then be parallel and
a linear combination of 2, Q and the Kihler form then gives rise to a family
of parallel two-forms each of which in turn gives rise to an integrable complex
structure compatible with the same metric. This family of complex structures is
a very powerful tool in the study of hyper-kdhler manifolds. For example, a K3
surface may not have rational curves in general. But (see Bryan-Leung [10]) this
deformation will give rise to a complex structure which does contain rational curves.

The first general theory of Calabi-Yau manifolds was the study of two-dimensional
surfaces due to Piatetski-Shapiro and Shafarevich [67] (Burns-Rapoport [11] for the
case of Kahler manifolds). They found that the period map must be injective for
the moduli space of K3 surfaces. The question of surjectivity was done much later
and was due to Kulikov [47] and Pinkham-Persson [66]. Both of these papers are
deep works and require a great deal of algebraic machinery.

These theorems were drastically simplified by the observations of Todorov [84],
that the author’s existence theorem for Ricci-flat metric can be applied. The key
point is an observation of Hitchin [38] that the metric provides an S? family of
complex structures. This rational curve of complex structures provides a way to
move in the moduli space. (Much more rigorous and detailed treatments were
then given by Siu [76].) There were expectations to generalize these methods to
higher-dimensional Calabi-Yau manifolds. While this has not been carried out, the
famous theorem of Bogomolov [8] on the unobstructedness of holomorphic sym-
plectic Kéhler manifolds was generalized to general Calabi-Yau manifolds by Tian
[80] in his thesis and by Todorov [85] independently. This basic theorem played
an important role on the later development of Calabi-Yau manifolds. (The analog
of the formula for proving unobstructedness is being using by Kontsevich, Fukaya,
and others to construct higher products in their attempts to work out the algebraic
formulation of mirror symmetry [5, 25].)

Since the revolutions of string theory in theoretical physics, the theory of Kahler
manifolds with zero Ricci curvature (i.e. Calabi-Yau manifolds) has gone through
a vigorous change. The fundamental paper of Candelas, Horowitz, Strominger
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and Witten [14] studied the Kaluza-Klein model, where one wants to compact-
ify a ten-dimensional space-time to a four-dimensional space-time by using com-
pact six-dimensional manifolds with nontrivial parallel spinors. The final analysis
shows that the compactification is given by a Calabi-Yau manifold of three com-
plex dimensions. This famous paper immediately called for a great deal of work
on constructing such manifolds, especially those with Euler number equal to +6
and with nontrivial fundamental group. At the beginning, physicists thought that
there are only a couple of Calabi-Yau manifolds with three dimensions. During
the first major conference on string theory [91], the author described many ways
to construct these manifolds, and the physicists were rather surprised to find out
that there should be at least on the order of ten thousand such manifolds. The
author proposed to construct a large class of these manifolds by taking complete
intersections of hypersurfaces in products of weighted projective spaces. The first
important example is the complete intersection of two cubics in CP® x CP? and
a bidegree (1,1) hypersurface. This manifold has Euler number equal to —18. I
was able to find a group of order three which acts on it with no fixed point. The
quotient manifold then has Euler number —6 and non-trivial fundamental group.
Tian and the author [82] then found more examples in a similar way. The idea of
taking complete intersections in products of weighted projective spaces was soon
taken up by Candelas and his group to produce many examples for later study.
It was observed by B. Greene that all these constructions lead to manifolds with
the same topology. Greene and his coauthors even discussed the phenomenological
implication of those manifolds [2].

String  theory demands extensive calculations on the moduli
space of Calabi-Yau manifolds. Since the local Torelli theorem holds, the period of
the top-dimensional holomorphic form determines the local geometry of the moduli
space. It was observed by Tian [80] and the physicists that the K&hler potential
can be written as log ||©2||> where Q is a local holomorphic family of top-dimensional
holomorphic forms. The fact that the holomorphic n-form defines a sub-line bundle
of the (flat) bundle of n-dimensional cohomology classes gives a way to calculate
the Weil-Petersson geometry with extra data. The quotient of this flat bundle by
the line bundle describes the infinitesimal deformation of complex structures and
hence gives the tangent bundle of the moduli space.

Two groups studied this kind of geometry (Candelas et al [13] and Strominger
[77]). Strominger coined the name special geometry for it (he originally called it
Kahler geometry of restricted type and the author suggested changing it to special
geometry). Special geometry turns out to play an important role in later calcula-
tions of mirror symmetry.

The works of Gepner [28] and Greene-Vafa-Warner [34] show heuristically how
to attach a conformal field theory and a path integration to certain Calabi-Yau
manifolds. Soon after, Dixon [21] and Lerche-Vafa-Warner [50] made the predic-
tion of mirror symmetry, which asserts that for any Calabi-Yau manifold M, one
can associate another Calabi-Yau manifold M’ so that by going from M to the
mirror M', two three-point correlation functions (one associated to the complex
deformations and the other associated to the Kahler deformations) are mapped to
one another. The correlation function for complex deformations of M is simply the
natural triple product of H'(Tys) (this works since A3T is trivial). The correlation
function for Kéhler deformations is much more complicated. Besides the classical
topological cup product on H*(T};), one needs to add corrections due to integration
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over rational curves! B. Greene and the author called the last triple product the
quantum cup product during the first conference on mirror manifolds in 1990 in
Berkeley. Vafa called the cohomology arising from such a ring structure quantum
cohomology.

For the important example of the quintic in CP*, Greene-Plesser [33] demon-
strated the existence of the mirror based on arguments from conformal field the-
ory. Immediately afterwards, Candelas et al [15] carried out the complete detailed
calculation of the correlation functions based on the mirror statements. The iden-
tification of the special geometry on both the K&hler and the complex sides plays
an important role. The calculation of such an identification is a spectacular piece
of work in mathematics. It depends on studying the periods of holomorphic three-
forms which satisfy a Picard-Fuchs equation and on understanding the monodromy
associated to the degeneration of complex structure. This work of Candelas et al has
greatly influenced the development of Calabi-Yau manifolds in the past ten years.
In particular, it provides a beautiful formula to calculate the number of rational
curves (which needs to be defined suitably) on the quintic. Even the existence of
this formula was not expected in mathematics literature. Later developments due
to many mathematicians are all basically reinterpretations of Candelas’ formula in
various forms.

Candelas’ method of calculation was immediately carried out by many groups
of mathematicians when the complex deformation space is one-dimensional. When
the deformation space is multidimensional, the calculation requires a new method
and this was carried out independently by Hosono-Klemm-Thiesen-Yau [40] and
by Candelas-de la Ossa-Font-Katz-Morrison [16]. A further generalization was also
done by Hosono-Lian-Yau [41]. In the former paper the Frobenius method and the
hypergeometric system of Gelfand-Kapranov-Zelevinsky [26, 27] were extensively
used. The formal parameter in the Frobenius method was later replaced by the
hyperplane class in equivariant geometry. This gives the right interpretation of
Candelas’ formula in terms of equivariant geometry.

It makes sense to talk about the quantum cohomology ring structure for any
Kahler manifolds. For manifolds with positive first Chern class, the associativity of
quantum cohomology is sometimes enough to determine the instanton sum. This
statement comes from the WDVV equations, which are due to a group of physicists
(see [88, 23]). For these manifolds, mathematicians were able to exploit the asso-
ciativity of the quantum cohomology to calculate the instanton sums. The concept
of a Frobenius manifold was developed to understand these calculations, which in
turn led to formulas for counting curves in homogeneous manifolds. On the other
hand, it took a much longer time to actually prove the associativity of quantum
cohomology.

The first attempt to prove this associativity was due to Ruan-Tian [71]. First
of all, one needs to define the meaning of the instanton sum. Ruan [70] defined it
for symplectic manifolds when the curve has genus zero. Then Ruan-Tian [72] gen-
eralized it to curves of arbitrary genus. The definition is modeled after Donaldson’s
definition of his gauge invariants for four-dimensional manifolds. A basic ingredi-
ent is the compactness argument for pseudo-holomorphic curves essentially due to
Sacks-Uhlenbeck [73]. It was observed by Gromov [35] that pseudo-holomorphic
curves can be used to study the rigidity of symplectic manifolds. Ruan-Tian’s def-
inition and proof of associativity for quantum cohomology works only for pseudo-
holomorphic curves with respect to a generic choice of almost complex structure.

5



However integrable complex structures are far away from being generic, and there-
fore the instanton sum needs to be defined differently if we restrict ourselves to
projective manifolds only.

Based on the works of Sacks-Uhlenbeck [73], Gromov [35], Parker-Wolfson
[65] and others, Kontsevich [46] defined the concept of the compactification of
the moduli space of rational maps from pointed rational curves to a projective
manifold. When the projective manifold is a complete intersection in a certain
homogeneous space, there is a way to define a certain obstruction bundle over the
above compactified space. If the obstruction bundle has the same rank as the
moduli space of maps, we can take the Euler number of the bundle. In general,
however, one has to use the construction of the virtual cycle first done by Li-Tian
[51] to define such a number. For a generic choice of projective hypersurface, the
“number” of curves in a fixed topology can be defined in terms of these Euler
numbers. For the quintic, we get

Ki=) ngk™,
kld

where K is the Euler number and ng/; is the expected number of rational curves.
This formula, called the covering formula, was discovered by Candelas et al [17] and
rigorously justified by Aspinwall-Morrison [4] and Manin [59]. The number n; is a
projective invariant and should be called differently from the symplectic invariant
mentioned above. A natural name should be the Schubert invariant to honor the
fundamental work begun by Schubert a century ago.

In many important cases, Li-Tian [52] and Siebert [75] were able to prove
these Schubert invariants are the same as the one defined by Ruan-Tian-Gromov.
In particular, this demonstrates that the associativity law is valid for these Schubert
invariants.

Candelas’ formula for the quintic threefold is the following equation of formal
power series in T

ar 3 hfe S
&t LK = R

where T = %, K ; is the Euler number as above, and for i = 0,1,2,3,

d>0

- dH d>0 H (H + m)

The f; form a basis for the solution space of L(f) = 0, where L is the hypergeometric
differential operator
d., d
L—(dt) (5dt+1) (5 +4)

Many people have made serious attempts to prove this formula. Witten [88]
defined the concept of a linear sigma model, and Plesser-Morrison [62] made an
(unsuccessful) attempt to use-this concept to justify Candelas’ formula. How-
ever, they did demonstrate the importance of the linear sigma model. Soon after,
Kontsevich made a serious attempt to apply the Atiyah-Bott localization to prove
Candelas’ formula [46]. While he succeeded in computing the degree-four invariant
for the quintic, his formulation is too complicated to be carried out in general. It is
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important to note that the above H used in the Frobenius method (see [40]) is in-
terpreted as the equivariant hyperplane class. Following Kontsevich, Givental [30]
made another attempt, using ideas of Witten and others and introducing quantum
differential equations (these are just equations for determining a flat section of a
certain canonically defined connection). However, his claimed proof is not com-
plete. Finally, based on the works of Witten, Kontsevich, Li-Tian, and some new
ideas on the concept of Euler data, Lian-Liu-Yau [53] gave the first complete proof
of Candelas’ formula in 1997. Some six months after the publication of [53], two
works attempting to complete Givental’s program appeared. The first one was due
to Procesi et al [7] and the other one to Pandharipande [64]. The first paper did
not claim to prove Candelas’ formula in its final form, and the second used some
ideas of Lian-Liu-Yau.

While the work of Lian-Liu-Yau does not give a construction of the mirror man-
ifold, it does raise many interesting mathematical questions. One should interpret
this theory as a theory of characteristic classes or K-theory over a mapping-space
sigma model of algebraic manifolds. One advantage of such sigma models is that
they allow us to restrict the maps to those from curves of a fixed topology, resulting
in a finite-dimensional mapping space.

An important question involved in the theory of Lian-Liu-Yau is the following:
Given an algebraic bundle V over an algebraic manifold M and the stable moduli
space of maps M(g, k) from curves of genus g to M with homology class in k €
H,(M,Z), one can form a virtual bundle V over M(g, k) by looking at H°(C, f*V)—
HY(C, f*V), where f : C = M is amap in M(g, k). Given a theory of characteristic
classes, i.e. a map b from the ring of holomorphic vector bundles to homology classes
(which can be refined to algebraic cycles), one can then consider b(V) and consider
several numbers related to b(‘7) For example, we can evaluate b(V) over the Li-Tian
class [51], which was defined by Li-Tian as a virtual moduli cycle (and subsequently
understood by Behrend-Fantechi [6] using a somewhat different method), or we can
consider a product of b(V) with the Chern class of the tautological line bundle of
M(g, k) and then evaluate this product over the Li-Tian cycle. The method of
Lian-Liu-Yau can be used to compute these numbers for a large class of bundles
V and M. This class includes, for example, convex and concave bundles over toric
varieties or balloon manifolds. The computation of b(‘~/) can be considered as part
of the K-theory over sigma models of algebraic manifolds.

It is important to carry out the computations of Lian-Liu-Yau in the most
general possible setting. Equally important is to interpret the geometric meaning
of the numbers computed. When b is the Euler class and H!(C, f*V) = 0, the
number is interpreted to be related to the counting of the “number” of curves
of genus ¢g. This is how one computes the number of rational curves in a generic
quintic in CP*. In that case, one takes V to be the line bundle O(5) over CP*. When
V is O(-3) over CP?, we are dealing with numbers which arise in “local mirror
symmetry,” i.e. the “number” of rational curves in CP? embedded as a hypersurface
in a Calabi-Yau manifold (see the works of Vafa et al, e.g. [45], and the recent work
of Chiang-Klemm-Lian-Roth-Yau-Zaslow [18]). The set of all these characteristic
numbers over sigma models is very much related to the hypergeometric series of
Gelfand-Kapranov-Zelevinsky [26, 27]. It would be very interesting to understand
the internal structure of these numbers as a map from the K-groups of M.



When b is the Euler class, it is a remarkable theorem of Li-Tian that it is the
same as counting the number (up to sign) of pseudo-holomorphic curves of a generic
almost-complex structure compatible with the given symplectic structure. Using
the proof of Lian-Liu-Yau, one should be able to extend the methods of Li, Ruan
and Tian to show that the coefficients n4 of the generating function are integers.
This should have deep interest for both combinatoricists and number theorists. The
transformation from the hypergeometric series to the generating function is called
the mirror transformation. It is also a remarkable fact that by choosing the right
coordinates, the mirror transformation has a good g-expansion whose coefficients
are integers (as was computed experimentally by Hosono-Klemm-Thiesen-Yau [40]
and publicized by the authors). When the deformation of the mirror manifold is
one-dimensional, this integral condition was verified by Lian-Yau [57]. This is a
very important fact, as it was used by Lian-Yau to prove divisibility properties of
the number of rational curves. For example, it was proved that n;, the number
of rational curves in a quintic, is divisible by 125 in the case ¢ is not divisible
by 5. However, such integral properties of the mirror map are not known for the
multi-variable case and pose a challenging problem. Note that when the Calabi-Yau
manifold has one or two dimensions, the mirror map is related to the j-function.
In fact, Lian-Yau [54, 55, 56] observed that when the Calabi-Yau manifold is
the K3 surface or when the Calabi-Yau manifold contains a pencil of K3 surfaces,
the mirror map should be related to the automorphic form which appears in the
moonshine conjecture related to the monster group. In his Harvard thesis, Chuck
Doran made remarkable progress on this question, as he studied the Painlevé VI
equation and its algebraic solutions extensively [22].

Duality. conjectures in the recent progress of string theory have clear implica-
tions in number theory as was indicated by works of Moore-Witten [61]. Also G.
Moore has questions on the values of the mirror maps on certain special points
on the moduli space determined by a variational principle [60]. All these ques-
tions imply that a very rich structure of number theory is hidden in the theory of
mirror symmetries. Klemm-Lian-Roan-Yau [44] developed a generalization of the
Schwarzian equation for the mirror map. It was based on such equations that the
divisibility properties of number of rational curves were found.

While the theory of Lian-Liu-Yau is able to tackle many important questions in
enumerative geometry, it does not explain the geometric meaning of mirror mani-
folds. The construction of Strominger-Yau-Zaslow [78], however, does provide such
a framework. In a Calabi-Yau threefold, we look at the space of special Lagrangian
(real) tori in the manifold. The moduli space of pairs of such a torus coupled with
a U(1) connection over it has a natural complex structure. This is conjectured
to be the mirror manifold. Vafa [86] has recently extend the SYZ conjecture to
include vector bundles in the picture. While Gross [36, 37] and Hitchin [39] have
made significant progress on the SYZ conjecture, a full understanding of this the-
ory is still far away. Key missing ingredients are explicit constructions of special
Lagrangian submanifolds in general Calabi-Yau manifolds and holomorphic disks
whose boundaries lie on given Lagrangian submanifolds. In any case, the SYZ pic-
ture is likely to be correct and it will be very interesting to combine the rigorous
treatment of Lian-Liu-Yau with the picture of SYZ. It predicts a construction of a
Ricci-flat metric and hopefully can be carried out by understanding the instanton
corrections to the semi-flat metric.



Many years ago, Mukai [63] observed that the moduli space of SU(n) bundles
over a K3 surface has natural hyper-kahler structure. (This can be generalized to
other hyper-kéhler manifolds.) He introduced the concept of the Mukai transform,
which is clearly related to the above theories. Hopefully, a complete mathematical
theory encompassing all these ideas can be found soon.

Another important problem is to classify all three-dimensional Calabi-Yau man-
ifolds and those four-dimensional ones that are elliptic fiber spaces. A very much
related question is the understanding of construction of manifolds with G2 and
Spin(7) holonomy groups.

Only recently Joyce [42, 43] was able to construct non-trivial examples of
such manifolds (see Joyce’s essay in this volume). They were obtained by singular
perturbation which is similar to the construction of C. Taubes on self-dual SU(2)
connections over four-manifolds [79]. While these manifolds clearly play an impor-
tant role in the recent progress of string theory, their global structure is still hard
to be understood. How do we parameterize them? Are they related to Kahler man-
ifolds in a systematic way? How can we understand the moduli space of bundles
with special holonomy groups over these manifolds or Calabi-Yau manifolds?

A recent development of string theory demands that a given Calabi-Yau man-
ifold can be deformed to another. Since these manifolds may have different topol-
ogy, one must go through singular manifolds to achieve such a goal. One is also
allowed to identify manifolds which give rise to the same conformal field theory.
Aspinwall-Greene-Morrison [3] has studied the deformation of conformal field the-
ory of Calabi-Yau manifolds when these is a “flop” construction which changes the
topology of the manifolds. Greene-Morrison-Strominger [32] also discussed how
the quantum field theory changes when the manifold is deformed to acquire coni-
fold points. These theories demonstrate the possibility of good physical theories
even when the target space has singularities. This should mean that we can de-
velop a good geometric theory even when the manifolds acquire singularities. This
includes a good metric, a good Hodge theory, a good bundle theory, and a good
enumerative geometry on such singular manifolds. Such geometries should reflect
the quantum field theory mentioned above. In particular, one would like to see
new geometric quantities to capture the limit of the “quantum” geometry when a
smooth manifold approaches a singular one. Super-symmetric cycles which repre-
sent cycles collapsing to the singularities should play an important role in all these
discussions.

In the discussion of connecting different Calabi-Yau manifolds, a particularly
important process was suggested by M. Reid [68] (some initial ideas date back to
Clemens [20]). We can destroy the second cohomology of a Calabi-Yau manifold by
blowing down rational curves with negative normal bundle. There are theorems by
Clemens [19], Friedman [24] and Tian [81] on how to deform the complex structure
of the resulting singular manifold to that of a smooth complex manifold. These
manifolds need not be algebraic (although they are birational to such manifolds).
By passing through this kind of process, Reid suggests to connect all Calabi-Yau
three-folds together. It is a rather tempting conjecture. However, since the manifold
obtained by smoothing is not K&hler, a canonical Hermitian metric has to be defined
to account for properties similar to those given by the Ricci-flat metric. A Weil-
Petersson metric on the moduli space based on such canonical metrics would be
important because it should help to identify the mirror map.



A few years ago Zaslow and I [92] demonstrated the relation between count-
ing singular rational curves with nodes in a K3 surface and automorphic forms.
Motivated by the formula, G&ttsche [31] made the following conjecture for a more
general Kahler surface X:

Let C be a sufficiently ample divisor on X, and K be the canonical divisor.
Then the number of curves of genus g in |C| passing through r = —KC+g—x(Ox)
points is given by the coefficient of q%C(O_K ) in the following power series in ¢:
D%G,

K? nCK 7
Bl B2 (DG2) (A(D2G2))X(ox)/27

where D = qd%, (G is the Eisenstein series

Gala) = — o5 + S (Y D,

E>0 d|k

A is the discriminant
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k>0

and the B;(q) are certain universal power seéries.

Bryan-Leung [10] made the first step to give rigorous proof of the Yau-Zaslow
formula for K3 surfaces when the cohomology class is primitive. It is remarkable
that A.-K. Liu [58] was recently able to obtain the formula for general K&hler
surfaces. (Some special cases were obtained with T.-J. Li jointly.) Using the idea of
a family of Seiberg-Witten invariants, he is also able to study a similar question for
algebraic three-folds which are elliptic fiber spaces. It is rather mysterious that the
generating function for counting curves is related to automorphic forms. Perhaps
some generalized theory of those forms will be developed in the near future.

Coming back to the classification of Calabi-Yau manifolds, it may be interesting
to understand geometric cobordism among such manifolds. When do two Calabi-
Yau three-folds bound a seven-dimensional manifold with G2 holonomy? For G,-
manifolds, one can of course look for a Spin(7) manifold to be the total space.

Recent developments in string theory give rise to the following interesting ques-
tion. If a manifold M is a metric cone over a compact manifold N such that M has
special holonomy group, what conditions does this place on N? (See the chapter
in this volume by Boyer-Galicki for details.) In the interesting case when M is
Calabi-Yau, this is equivalent to N having an Einstein-Sasaki structure. Recently
Boyer-Galicki [9] have studied such structures, but do not seem to construct new
examples in real dimension 5.

Another interesting development in due to Sawon [74]. He uses techniques of
Rozansky-Witten [69] to develop relations between the Chern numbers of hyper-
kihler manifolds. In particular, if the real dimension is 8, Sawon finds an upper
bound of ¢4. The Chern numbers of any Kahler-Einstein manifold satisfy the in-
equality [89]

(=1)"2(n + 1)cP 3¢y > (=1)"nct.
Of course, for a Calabi-Yau n-fold (n > 3), this inequality is trivial, but perhaps
some of the relations developed by Sawon can be extended to more general Calabi-

Yau manifolds.
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