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Abstract In this note, we prove the sharp Davies–Gaffney–Grigor’yan Lemma for
minimal heat kernels on graphs.

1 Introduction

The Davies–Gaffney–Grigor’yan Lemma (DGG Lemma for short) is a powerful tool
in geometric analysis that leads to strong heat kernel estimates and hasmany important
applications. On manifolds one writes it in the form

Communicated by Thomas Schick.

F.B. was partially supported by the Alexander von Humboldt foundation. S.T.Y. acknowledges support by
the University of Pennsylvania/Air Force Office of Scientific Research grant “Geometry and Topology of
Complex Networks”, Award #561009/FA9550-13-1-0097 and NSF DMS 1308244 Nonlinear Analysis on
Sympletic, Complex Manifolds, General Relativity, and graph. B.H. was supported by NSFC, Grant no.
11401106.

B Bobo Hua
bobohua@fudan.edu.cn

Frank Bauer
fbauer@math.harvard.edu

Shing-Tung Yau
yau@math.harvard.edu

1 Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138,
USA

2 Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany

3 School of Mathematical Sciences, LMNS, Fudan University, Shanghai 200433, China

4 Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-017-1529-z&domain=pdf
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Lemma 1.1 (Davies–Gaffney–Grigor’yan) Let M be a complete Riemannian mani-
fold and pt (x, y) the minimal heat kernel on M. For any two measurable subsets B1
and B2 of M and t > 0, we have

∫
B1

∫
B2

pt (x, y)dvol(x)dvol(y) ≤ √
vol(B1)vol(B2) exp

(
−λt − d2(B1, B2)

4t

)
,

(1)
whereλ is the greatest lower bound, i.e. the bottom, of the �2-spectrumof the Laplacian
on M and d(B1, B2) = infx1∈B1,x2∈B2 d(x1, x2) the distance between B1 and B2.

While it would be desireable to obtain a DGG Lemma on graphs, it is known that
it fails to be true in this setting. This already follows from the explicit calculation of
the heat kernel on the lattice Z by Pang [21]. More generally, a result of Coulhon and
Sikora [5] implies in the graph case that the DGG Lemma is equivalent to the finite
propagation speed property of the wave equation. However, Friedman and Tillich [9,
pp.249] showed that for graphs the wave equation does not have the finite propagation
speed property.

Still the situation is not totally hopeless since all obstructions appear when time
t is small compared to the distance d. In fact, it was recently shown in [16] that for
small time heat kernels on graphs behave roughly like td in which d denotes the
combinatorial distance, whereas for large time one expects they behave similarly to
heat kernels on manifolds.

In a previous publication [3, Theorem 1.1] we were able to prove a version of the
DGG Lemma on graphs and used it to prove, for the first time, heat kernel estimates
for graphs with negative curvature lower bounds. However the previous DGG Lemma
was not sharp in the following sense: On one hand, we only obtained the estimate as
exp

(− 1
2λt

)
for the term involving the bottom of the spectrum λ which is not optimal

due to the factor 1/2. On the other hand, for technical reasons we had to re-scale and
shift time which resulted in a weak version of Gaussian type estimate even for large
times.

In this note, we adopt another proof-strategy, initiated by Coulhon and Sikora [5],
to resolve these problems and derive a sharp version of the DGG Lemma. Moreover,
this approach allows us to extend the DGG Lemma to the far-reaching setting, i.e. for
unbounded Laplacians on infinite graphs equipped with intrinsic metrics. For precise
definitions and the terminology used, we refer to Sect. 2.

In particular we prove:

Theorem 1.1 (Functional formulation of DGG Lemma on graphs) Let (V, μ,m) be
a weighted graph with an intrinsic metric ρ with finite jump size s > 0. Let A, B be
two subsets in V and f, g ∈ �2m with supp f ⊂ A, suppg ⊂ B, then

|〈et� f, g〉| ≤ e−λt−ζs (t,ρ(A,B))‖ f ‖�2m
‖g‖�2m

,

where λ is the bottom of the �2-spectrum of Laplacian and

ζs(t, r) = 1

s2

(
rs · arcsinhrs

t
−

√
t2 + r2s2 + t

)
, t > 0, r ≥ 0.
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For any subsets A, B in V, by setting f = 1A and g = 1B (as characteristic
functions), we get

Corollary 1.1 (DGG Lemma on graphs) Under the same assumptions as above

∑
y∈B

∑
x∈A

mxmy pt (x, y) ≤ √
m(A)m(B)e−λt−ζs (t,ρ(A,B)), (2)

where pt (x, y) is the minimal heat kernel of the graph.

The function ζs(t, r), for s = 1, appeared already in a number of publications in
the graph setting, see for example [6,7,21]. For the sharpness of our DGG Lemma, we
refer to Sect. 5. It is not difficult to see that for large time, i.e. t 	 r, ζ1(t, r) behaves
like r2

2t . Hence for large time the DGG Lemma yields the Gaussian type estimate for

the heat kernel in form of exp
(
− d2(B1,B2)

2t

)
. At first glance, it seems that we gain a

factor two in the Gaussian exponent compared to the Riemannian case, which sounds
absurd. In fact, it is not contradictory because a natural choice of distance functions,
to satisfy the condition s = 1, is the combinatorial distance and in order to make it
an intrinsic metric, one usually needs to re-normalize the physical Laplacian � to a
so-called normalized Laplacian, such as 1

2� in the case of the lattice Z, which finally
results in a scaling change.

The DGG Lemma has various applications for heat kernel estimates. Among many,
on manifolds combining it with the Harnack inequality, obtained by the gradient
estimate technique, one derives pointwise heat kernel upper bound estimates in term
of the curvature bounds [19,20]. For the counterpart on graphs, we refer to [2] and [3,
Theorem 1.2]. In particular, along the same lines one gets the sharp decay estimates
involving the bottom of the Laplacian spectrum, i.e. exp(−λt), using this new DGG
Lemma. Moreover, as a direct application, it yields the Davies’ heat kernel estimate,
[6, Theorem 10], by setting A = {x}, B = {y}, for x, y ∈ V .

Corollary 1.2 (Davies) For a weighted graph (V, μ,m) with the normalized Lapla-
cian,

pt (x, y) ≤ 1√
mxmy

exp(−λt − ζ1(t, d(x, y))),

where d is the combinatorial distance.

2 Setting and definitions

2.1 Weighted graphs

We recall basic definitions for weighted graphs. Let V be a countable discrete space
serving as the set of vertices of a graph, μ : V × V � (x, y) �→ μxy ∈ [0,∞) be an
(edge) weight function satisfying

• μxy = μyx , ∀x, y ∈ V,
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• ∑
y∈V μxy < ∞, ∀x ∈ V,

and m : V � x �→ mx ∈ (0,∞) be a measure on V of full support. These induce a
combinatorial (undirect) graph structure (V, E)with the set of vertices V and the set of
edges E such that for x, y ∈ V, {x, y} ∈ E if and only if μxy > 0, in symbols x ∼ y.
We refer to a triple (V, μ,m) a weighted graph with the underlying graph (V, E).

Note that (V, E) is not necessarily locally finite and possibly possesses self-loops. We
denote by d the combinatorial distance on it.

Given a weighted graph (V,m, μ), one can associate it with a Dirichlet form, see
[15]. We denote by C(V ) the set of real functions on V and by Cc(V ) the set of real
functions with finite support. On the measure space (V,m) we write �2(V,m), or
simply �2m, for the space of �2-summable functions w.r.t. the measure m. It becomes
a Hilbert space if we equip it with an �2-inner product

〈 f, g〉 :=
∑
x∈V

f (x)g(x)mx , ∀ f, g ∈ �2m .

The �2 norm of a function f ∈ �2m is given by ‖ f ‖�2m
:= √〈 f, f 〉.Define the quadratic

form Q̃ : C(V ) → [0,∞] given by

Q̃( f ) := 1

2

∑
x,y∈V

μxy | f (x) − f (y)|2, ∀ f ∈ C(V ).

The Dirichlet form Q on �2m is defined as the completion of Q̃|Cc(V ), the restriction
of Q̃ on Cc(V ), under the norm

‖ · ‖ := ‖ · ‖�2m
+ Q̃(·).

We call the generator associated to Q the Laplacian and denote it by �. In case that
the underlying graph (V, E) is locally finite,Cc(V ) lies in the domain of the generator
and the Laplacian acts as, see [14],

� f (x) = 1

mx

∑
y∈V

μxy( f (y) − f (x)) ∀ f ∈ Cc(V ).

The boundedness of the Laplacian, as a linear operator on �2m, strongly depends on
the choice of the measure m. We call it the normalized Laplacian if we set mx =∑

y∈V μxy for all x ∈ V, and the physical Laplacian if m ≡ 1. The former is always

a bounded operator on �2m while the latter is possibly not.
In order to deal with unbounded Laplacians, it is often crucial to use so-called

intrinsic metrics introduced in [8].

Definition 2.1 (Pseudo metric/intrinsic metric/jump size) A pseudo metric ρ is a
symmetric function, ρ : V × V → [0,∞), with zero diagonal which satisfies the
triangle inequality. A pseudo metric ρ on V is called intrinsic if

∑
y∈V μxyρ

2(x, y) ≤
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mx ,∀x ∈ V . The jumps size s of a pseudo metric ρ is given by s := sup{ρ(x, y) |
x, y ∈ V, x ∼ y} ∈ [0,∞].

By the definition, one easily checks that the combinatorial distance d is an intrinsic
metric for the normalized Laplacian. For anyweighted graph, one can always construct
an intrinsic metric on it, see e.g. [12,13].

Definition 2.2 (Lipschitz function) We say that a function f : V → R is Lipschitz
w.r.t. the (intrinsic)metric ρ if | f (x)− f (y)| ≤ κρ(x, y) for all x, y ∈ V .Theminimal
constant κ such that the above inequality holds is called the Lipschitz constant of f .

Definition 2.3 (Solution of the Dirichlet heat equation)We say u : [0,∞)× V → R

solves the Dirichlet heat equation on the finite subset � ⊂ V if

⎧⎨
⎩

∂
∂t u(t, x) = ��u(t, x), x ∈ �, t ≥ 0,
u(0, x) = f (x), x ∈ �,

u(t, x) = 0, x ∈ V \ �, t ≥ 0.

where �� denotes the Laplacian with Dirichlet boundary condition, called Dirichlet
Laplacian, on �, see e.g. [1,4].

3 Integral maximum principle

Throughout the rest of the paper we always assume that (V, μ,m) is a weighted graph
with an intrinsic metric ρ and finite jump size s > 0. We begin with a simple lemma.
For any f ∈ C(V ) and x, y ∈ V, we denote by ∇xy f := f (y) − f (x) the difference
of f between x and y. By direct calculation, we have the following lemma.

Lemma 3.1 For two functions f, g ∈ C(V ) and x, y ∈ V,

(a) ∇xy( f g) = f (x)∇xyg + g(y)∇xy f = f (x)∇xyg + g(x)∇xy f + ∇xy f ∇xyg

(b) ∇xye f = (e
1
2 f (x) + e

1
2 f (y))∇xye

1
2 f

(c) |∇xy( f e
1
2 g)|2 − ∇xy f ∇xy( f eg) = f (x) f (y)|∇xye

1
2 g|2.

We first state the integral maximum principle for Dirichlet Laplacians on finite
subsets of a graph and extend it later to the whole graph. On Riemannian manifolds
the integral maximum principle was introduced by Grigor’yan [10].

Lemma 3.2 Let ω be a Lipschitz function on V with Lipschitz constant κ and assume
that f : [0,∞)×V → R solves the Dirichlet heat equation on a finite subset� ⊂ V .
Then the function

exp

(
2λ1(�)t − 2

s2

(
cosh

(κs

2

)
− 1

)
t

)
E�(t)

is nonincreasing in t ∈ [0,∞), where E�(t) := ∑
x∈� mx f 2(t, x)eω(x) and λ1(�)

is the first eigenvalue of Dirichlet Laplacian on �.
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Proof Since f solves the Dirichlet heat equation on �, f (t, x) = 0 for any x ∈
V \ � and t ≥ 0, together with Green’s formula (see e.g. [14, Proposition 3.2], [11,
Lemma 4.7] or [22, Lemma 2.4]) we obtain

E ′
�(t) =

∑
x∈V

mx2 f (t, x)(�� f (t, x))eω(x) = −
∑
x,y∈V

μxy∇xy f ∇xy( f e
ω)

= −
∑
x,y∈V

μxy |∇xy( f e
1
2ω)|2 +

∑
x,y∈V

μxy(|∇xy( f e
1
2ω)|2 − ∇xy f ∇xy( f e

ω)),

(3)

where we added zero in the last line. The first sum on the r.h.s. can be controlled from
above by the Reighley quotient characterization of λ1(�)

−
∑
x,y∈V

μxy |∇xy( f e
1
2ω)|2 ≤ −2λ1(�)

∑
x∈�

mx f (t, x)
2eω(x).

Applying Lemma 3.1 (c), the second sum on the r.h.s. is given by

∑
x,y∈�

μxy f (t, x) f (t, y)|∇xye
1
2ω|2

= 2
∑
x,y∈�

μxy f (t, x) f (t, y)e
1
2 (ω(x)+ω(y))

(
cosh

ω(y) − ω(x)

2
− 1

)

≤
∑
x,y∈�

μxy( f
2(t, x)eω(x) + f 2(t, y)eω(y))

(
cosh

ω(y) − ω(x)

2
− 1

)

= 2
∑
x,y∈�

μxy f
2(t, x)eω(x)

(
cosh

ω(y) − ω(x)

2
− 1

)
, (4)

where the last equality follows from the symmetry of the equation in x and y. Now
we claim that for any neighbors x ∼ y,

cosh
ω(y) − ω(x)

2
− 1 ≤ ρ(x, y)2

1

s2

(
cosh

κs

2
− 1

)
.

It suffices to consider x, y ∈ V such that ρ(x, y) > 0, otherwise it reduces to a trivial
equation by the Lipschitz property of ω. The claim follows from

cosh
ω(y) − ω(x)

2
− 1 ≤ cosh

κρ(x, y)

2
− 1 ≤ ρ(x, y)2

1

s2

(
cosh

κs

2
− 1

)
,

where we have used the monotonicity of the cosh function in the first, and the mono-
tonicity of the function

t �→ 1

t2

(
cosh

κt

2
− 1

)
, t > 0,
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in the second inequality. Together with (4) our claim implies that the second sum on
the r.h.s. of (3) can eventually be estimated from above by

2
∑
x,y∈�

μxy f
2(t, x)eω(x)ρ(x, y)2

1

s2

(
cosh

κs

2
− 1

)

≤ 2

s2

(
cosh

κs

2
− 1

) ∑
x∈�

mx f
2(t, x)eω(x),

where we used that ρ is an intrinsic metric. Combining everything, we get for any
t ≥ 0,

E ′
�(t) ≤

(
−2λ1(�) + 2

s2

(
cosh

κs

2
− 1

))
E�(t),

which implies the lemma. ��

By a standard exhaustion argument, see e.g. [19, Corollary 13.2], [3, Section 3] or
[14], we obtain the integral maximum principle on the whole graph.

Lemma 3.3 (Integral maximum principle) Let ω be a Lipschitz function on V with
Lipschitz constant κ and f (t, x) := et� f0(x) for some f0 ∈ �2m . Then the function

exp

(
2λt − 2

s2

(
cosh

(κs

2

)
− 1

)
t

)
E(t)

is nonincreasing in t ∈ [0,∞), where E(t) := ∑
x∈V mx f 2(t, x)eω(x) and λ is the

bottom of the �2-spectrum of Laplacian �.

Remark 3.1 Although it is possible that E(t) = ∞ for some t ≥ 0, the monotonicity
still holds.

4 Proof of the main theorem

Proof of Theorem 1.1 Denote r = ρ(A, B). For any κ > 0,we set ω(x) =
κρ(x, A),∀x ∈ V . Then ω is a Lipschitz function with Lipschitz constant at most
κ and for any h ∈ C(V )

eκr
∑
x∈B

mxh
2(x) ≤

∑
x∈B

mxh
2(x)eω(x).

For f ∈ �2m with supp f ⊂ A, let f (t, x) = et� f (x). Then the above inequality
for h(·) = f (t, ·) and Lemma 3.3 yield
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∑
x∈B

mx f
2(t, x) ≤ e−κr E(t) ≤ exp

(
−2λt + 2

s2

(
cosh

κs

2
− 1

)
t − κr

)
E(0)

= exp

(
2(−λt + 1

s2

(
cosh

κs

2
− 1

)
t − κ

2
r)

) ∑
x∈A

mx f
2(x),

where we used that supp f ⊂ A and ω(x) = 0 for x ∈ A. Since this estimate is true
for all κ > 0, we can choose, for fixed s, t > 0 and r ≥ 0, κ such that the r.h.s. attains
its minimum. One easily checks that ζs(t, r), defined in the introduction, is equal to

− inf
κ>0

(
1

s2

(
cosh

κs

2
− 1

)
t − κ

2
r

)
.

Hence

∑
x∈B

mx f
2(t, x) ≤ e2(−λt−ζs (t,r))

∑
x∈A

mx f
2(x).

That is, for all f ∈ �2m with supp f ⊂ A

sup
0 �=g∈�2m
suppg⊂B

|〈et� f, g〉|2
‖g‖2

�2m

=
∑
x∈B

mx |et� f (x)|2 ≤ e2(−λt−ζs (t,r))‖ f ‖2
�2m

.

This proves the theorem. ��

5 Sharpness of the results

The sharpness of the term e−ζs (t,ρ(A,B)) in (2) in our DGG Lemma can be seen from
Pang’s result [21, Theorem 3.5].

Example 5.1 (Pang) Let Z be the unweighted standard one-dimensional lattice, i.e.
an infinite line with each edge of weight one. For any x, y ∈ Z, set d = d(x, y). The
heat kernel for the normalized Laplacian satisfies, for some C > 1,

C−1d− 1
2 e−ζ1(t,d) ≤ pt (x, y) ≤ Cd− 1

2 e−ζ1(t,d), for 0 < t ≤ d

C−1t−
1
2 e−ζ1(t,d) ≤ pt (x, y) ≤ Ct−

1
2 e−ζ1(t,d), for d ≤ t.

The sharpness of the term e−λt in (2) follows from the long timeheat kernel behavior,
i.e. the exponential decay related to the bottom of the �2 spectrum of Laplacian, which
was first proved by Li [18] on Riemannian manifolds and extended to graphs with
unbounded Laplacians by Keller et al [17, Corollary 5.6].

Theorem 5.1 Let (V, μ,m) be a weighted graph. Then the minimal heat kernel sat-
isfies
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lim
t→∞

log pt (x, y)

t
= −λ,

where λ is the bottom of the �2 spectrum of Laplacian.
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