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Abstract: We define a notion of stability for chiral ring of four dimensional N = 1 theory

by introducing test chiral rings and generalized a maximization. We conjecture that a chiral

ring is the chiral ring of a superconformal field theory if and only if it is stable. We then

study N = 1 field theory derived from D3 branes probing a three-fold singularity X, and

show that the K stability which implies the existence of Ricci-flat conic metric on X is

equivalent to the stability of chiral ring of the corresponding field theory.
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1 Introduction

The chiral ring of a four dimensional N = 1 theory plays a crucial role in understanding

the dynamics of the theory. In particular, the chiral ring can be used to determine the

structure of the moduli space of vacua and the phase structure [1]. Moreover, the chiral

ring structure seems to be still quite important even if the theory has a unique vacua [2, 3].

However, little is known about the general structure of the chiral ring of N = 1 theory.

The purpose of this paper is to study the chiral ring of a superconformal field theory

(SCFT). We ask the following question: when is a chiral ring R the chiral ring of a SCFT?

An obvious necessary condition is that the chiral ring has to be graded, since for a SCFT

there is always a U(1)R symmetry which acts non-trivially on all of the chiral operators.

In particular, we really should start with a polarized chiral ring (R, ζ) and ask whether it

is a chiral ring of a SCFT with U(1)R symmetry ζ. On the other hand, It is also known

that the existence of a grading is not sufficient.

A second motivation for asking above question is the following: in many studies of

supersymmetric field theory we start with an asymptotically free gauge theory T and

assume that it flows to a SCFT T0 at a certain point of the moduli space (often the most
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singular point). We can compute the chiral ring R of the theory T , and let us denote by

R0 the chiral ring of T0. Many interesting quantities of the SCFT T0 can be computed if

R = R0. For example, we can use a maximization to determine the U(1)R symmetry [4]

of T0. In general, however, R0 can differ from R, for example:

(a) It is believed that the chiral ring R of N = 1 SU(Nc) SQCD with 3
2Nc < Nf < 3Nc

is the chiral ring R0 of the SCFT at the origin of the moduli space [5, 6];

(b) If Nc < Nf ≤ 3
2Nc, the chiral ring R of SQCD is not the chiral ring R0 of the SCFT

at the origin, as the mesons become free at the SCFT point [5, 6];

(c) A trivial example is a chiral scalar φ with cubic superpotential, and the chiral ring

R of this theory is generated by the ideal φ2 = 0. However, the superpotential is

marginally irrelevant at SCFT point, and the IR SCFT is free so its chiral ring R0

is free generated by operator φ and is different from R.

From above examples, we learn that the possible reasons for R failing to be the chiral ring

of a SCFT are:

• Some operators hit the unitarity bound and become free at SCFT point, and this

also modifies the chiral ring.

• Certain superpotential term is irrelevant at the SCFT point, and we should not

impose the constraint from superpotential for chiral operators of SCFT T0
1;

• There might be some other unknown dynamics that would lead to different chiral

ring for SCFT. We do not have a systematical way to detect them.

We can learn several interesting lessons from the above examples. Firstly R0 has more

symmetries than R. Namely, there is a new symmetry generator acting on O alone if O

hits unitarity bound and becomes free; If a superpotential term formed by an operator

O becomes irrelevant, there could be a new symmetry acting on this operator O alone.

Secondly, R0 either leads to higher central charge a 2, or the same central charge as

evidenced by example (c), but no less central charge.

Motivated by above examples, we introduce a notion of stability on chiral ring to

characterize whether R = R0 and this notion also gives a method to define the chiral ring

of a SCFT. The definition involves two basic elements: test chiral ring and generalized a

maximization.

Let’s first discuss the test chiral ring. From above examples, if the chiral ring R fails

to be the chiral ring of a SCFT, there is an associated different chiral ring R0: R0 can be

derived by forgetting some of the superpotential terms if R is derived from a quiver gauge

theory, etc. More generally R0 should have more symmetries, and it should satisfy certain

continuity condition with respect to R. Based on those observations, we propose:

1Notice that we can not ignore such superpotential term for T as it could be relevant at other vacua,

and they are called dangerously irrelevant operator in [7].
2This does not violate the a theorem, as R is not the chiral ring of a SCFT.
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Definition 1.1 A test chiral ring R0 can be derived from R by using a symmetry generator

η on R and taking a flat limit.

Let’s discuss more precisely what this definition means. Assume that the chiral ring R is

given by

R =
C[x0, x1, . . . , xn]

I
, (1.1)

here xi, i = 0, . . . , n are the generators of chiral ring and I = (f1, f2, . . . , fm) is the ideal

which gives the chiral ring relation among the generators. Now consider a one parameter

subgroup η(t) of Cn+1 and define its action on the elements of idea I as

f(t) = λ(t) · f = f(λ(t) · (x0, x1, . . . , xn)). (1.2)

So we have a family of rings Rt = C[x0,x1,...,xn]
It

parameterized by t. The flat limit I0 =

limt→0It is defined as follows. We can decompose any f ∈ I as f = f1 + . . . + fk into

elements in distinct weight spaces for the C∗ action η on C[x0, ..., xn]. Let us write in(f)

for the element fi with the smallest weight, which we can think of as the ”initial term” of

f . Then I0 is the ideal generated by the set of initial terms {in(f)|f ∈ I}. The test chiral

ring is defined as R0 =
C[x0,x1,...,xn]

I0
.

The test chiral ring has the following crucial proerties: a) The flat limit is the same if

we use the symmetry generator sη with s > 0; b) R0 is invariant with respect to symmetries

of R and η; c): The Hilbert series of R and R0 are the same for the symmetries of R,

this is the continuity condition on test configuration. Using above procedure, we can get

infinite number of test chiral rings. The criteria for determining whether a test chiral ring

R0 destabilizes a polarized ring (R, ζ) is

Definition 1.2 A test chiral ring R0 destabilizes (R, ζ) if R0 gives no less central charge

a with respect to the space of possible U(1)R symmetries aζ + sη, s ≥ 0.

It is crucial that s ≥ 0 so we have the same test chiral ring using the symmetry generator

sη on R. Now we state the definition of stable chiral ring:

Definition 1.3 A polarized chiral ring (R, ζ) is called stable if there is no destabilizing

test chiral ring.

This definition can be thought of as the generalized a maximization procedure. For

the original a maximization procedure [4], we do not change the chiral ring, namely we

only use the symmetry generator of R to generate the test chiral ring, and the flat limit

R0 is the same as R. The hidden assumption in this process is that the ring R is already

the ring of a SCFT, and we would like to determine the correct U(1)R symmetry.

Once we define the notion of stability of chiral ring, we would like to state the main

conjecture of this paper:

Conjecture 1.1 A polarized chiral ring (R, ζ) is the chiral ring of a SCFT if and only if

it is stable.
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This conjecture answers the question when a chiral ring can be that of a SCFT. We would

like to test the above conjecture for general class of N = 1 theories. However, we face

several difficulties. First, it is usually not easy to derive the full chiral ring of a theory,

and so examples are in short supply. Secondly, we do not know how to characterize the

U(1)R like symmetry from the chiral ring itself. Thirdly, it is not known how to determine

the trial central charge a(ζ) for a symmetry ζ from the chiral ring itself. However, these

problems are solved for a class of models arising from string theory. Precisely, it is possible

to determine the exact chiral ring for N = 1 theories derived from N D3 branes probing

a three dimensional singularity [8]: the 3d singularity can be defined by an affine variety

X with coordinate ring HX := C[x1, . . . , xn]/I, which determines the chiral ring R of field

theory. We can characterize U(1)R like symmetries by requiring the top form Ω 3 on X

having charge two. In the large N limit, the central charge can be computed from the

Hilbert series of X [9–11].

We would like to determine whether the chiral ring (R, ζ) of above field theory model

is stable or not. Assuming our conjecture relating stability of chiral ring and SCFT, the

stability of the chiral ring of these models has the following geometric consequence: If the

chiral ring is stable, then according to AdS/CFT dictionary [12–14], in the large N limit

the IR SCFT is dual to type IIB string theory on AdS5 × L5 [8, 15], where L5 is a five

manifold, defined as the link of a 3d singularity X, which carries a Sasaki-Einstein (SE)

metric. The U(1)R symmetry ζ is identified with the Reeb vector field on L5. In other

words, the stability of the chiral ring is equivalent to the existence of Sasaki-Einstein metric

on L5, or equivalently the existence of a Ricci-flat conic metric on X.

The existence of Sasaki-Einstein metrics has been studied extensively recently in

mathematics literature. Briefly, in the setting of Fano Kähler manifolds, the Yau-Tian-

Donaldson conjecture predicted that the existence of Kähler-Einstein metrics with positive

scalar curvature is equivalent to the algebro-geometric notion of K-stability [16] which is

an improvement of the original conjecture of Yau [17]. This conjecture was recently proved

by Chen-Donaldson-Sun [18–20]. In our more general context, a notion of K-stability and

it’s implications for the existence of Sasaki-Einstein metrics was studied by the first author

and Székelyhidi in [21, 22]. The notion of K-stability involves constructions of so called test

configurations X and the criteria for determining whether X destabilizes X is determined

by the sign of the so-called Donaldson-Futaki invariant. One of major point of this paper is

to provide an interpretation of the Donaldson-Futaki invariant as a version of generalized

a maximization:

Theroem 1.1 The K-stability of the affine variety X is equivalent to the stability of the

chiral ring of the corresponding field theory.

The paper is organized as follows: section two reviews some basic facts about N = 1

chiral ring; section three studies theory engineered using D3 brane probing certain three

dimensional singularity X, and K-stability of X is interpreted as the generalized a max-

imization procedure introduced above; section four discusses some physical consequences

from K stability; finally, a conclusion is given in section five.

3The existence of such form puts restriction on the singularity type.
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2 Generality of chiral ring

Consider a four dimensional N = 1 supersymmetric field theories. A chiral operator Oi is

defined as an operator annihilated by supercharges Q̄α̇, and is defined modulo cohomology

of Q̄α̇: Oi ∼ Oi + [Q̄α̇, χ] [1]. Chiral operators have some interesting properties:

• The sum of two chiral operators is still a chiral operator, and the product of two

chiral operators is still a chiral operator.

• There is an identity operator.

• The expectation value of a product of chiral operators are independent of their posi-

tions, and they have the simple OPE structure OiOj =
∑

Ck
ijOk with Ck

ij constant.

These properties imply that the chiral operators form a commutative ring with an identity.

To solve a N = 1 theory, one would like to determine the full set of chiral operators.

That is, one would like to find the generators and relations determining the chiral ring.

For example, for SU(N) gauge theory with an adjoint matter field Φ, the generators of

single trace chiral operators are: Tr(Φk), Tr(WαΦ
k), and Tr(WαW

αΦk), the full chiral

ring relations are determined in [1]. The chiral ring relations usually are much harder to

determine. Typically, we have the following classical chiral ring relations;

• Chiral ring relations come from the finite size of matrices, and we have Caley-

Hamilton equation for a matrix. For example, for a chiral field in the adjoint repre-

sentation of gauge group SU(N), the chiral operators Tr(φi), i > N can be expressed

in terms of Tr(φj) with j ≤ N .

• Chiral ring relations come from the constraints of the superpotential. For example,

consider N = 4 SU(N) gauge theory: this theory has three chiral fields X,Y,Z,

and a superpotential W = TrXY Z − TrXZY . The F -term equations from the

superpotential are

[X,Y ] = [Y,Z] = [Z,X] = 0, (2.1)

and so the matrices X,Y,Z commute, which lead to chiral ring relations of the type

Tr(XY Z) = Tr(XZY ) and so on.

These classical chiral ring relations can be modified by quantum effects such as instantons,

Konishi anomalies and strongly coupled dynamics, and we have the quantum chiral ring.

The determination of the generators of chiral ring and the quantum chiral ring relation is a

central task in the study of supersymmetric gauge theory. Let’s assume that the generators

of the chiral ring are x1, x2, . . . xs, and the chiral ring relations are generated by polynomial

relations, then the quantum chiral ring is isomorphic to

C[x1, x2, . . . , xs]/I, (2.2)

where C[x1, x2, . . . , xs] is ring of polynomials with complex coefficients, and I is the ideal

generated by the chiral ring relations. In general, the parameters of our theory such as the
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dynamically generated scale Λ and masses mi should be included into the generators and

relations of chiral ring. From now on, by the chiral ring we will always mean the quantum

chiral ring.

Example: Consider N = 1 SU(N) SQCD with Nf = N quarks Qi, Q̃j , the space of

chiral operators are

Mij = QiQ̃j ,

B = ǫα1α2...αN
Qα1

1 . . . QαN

N ,

B̃ = ǫα1α2...αN
Q̃α1

1 . . . Q̃αN

N . (2.3)

The classical chiral ring relation is Det(M)−BB̃ = 0, but quantum mechanically, the ring

relation is changed to

f = Det(M)−BB̃ − Λ2Nc = 0. (2.4)

Here Λ is the dynamical scale of the theory. The chiral ring is then C[M,B, B̃,Λ]/f [6].

We are interested in the chiral ring of a SCFT. The N = 1 SCFT has a distinguished

U(1)R symmetry, and the scaling dimension of a chiral operator are related to its U(1)R
charge by

D(O) =
3

2
R(O). (2.5)

In general, it is not easy to determine the U(1)R symmetry of a SCFT. Intriligator and

Wecht found a remarkable a-maximization procedure to determine the R-symmetry [4].

Namely, they predicted that the correct R-symmetry maximizes the central charge a.

One usually defines a SCFT as the IR limit of a UV quiver gauge theory, and the

U(1)R symmetry of IR SCFT can be determined as follows: First, find all the anomaly free

U(1) symmetries in the UV and define a trial R symmetry U(1)trial =
∑

I sIFI . Second,

compute the trial central charge using the formula

atrial(sI) =
3

32
(3Tr(R3

trial)− Tr(Rtrial)). (2.6)

The true U(1)R symmetry is found by maximizing the central charge and this will fix the

coefficients sI . A crucial assumption of above procedure is that all the symmetries for the

IR SCFT are manifest in the UV description! However, this is often not the case. For

example, two possible scenarios are

• The violation of unitarity bound: if a gauge invariant operatorO violates the unitarity

bound after doing a-maximization, it is argued that this field becomes free [5], and

that there is an accidental U(1) symmetry acting on this operator O only.

• Even if there is no violation of unitarity bound, accidental symmetry is still possible

as a result of some unknown dynamical effect.

Example: Let’s illustrate the above point by an example. Consider N = 1 SU(Nc)

SQCD with Nf fundamental flavors. There is an unique U(1)R type symmetry such that

the quarks Q and antiquarks Q̃ have the following charges

RQ = RQ̃ =
Nf −Nc

Nf

. (2.7)

– 6 –



We require Nf > Nc so that the R charge is positive. The mesons has R charge R(M) =

2
Nf−Nc

Nf
, and baryons an anti-baryons have R charge R(B) = R(B̃) =

Nc(Nf−Nc)
Nf

. So

using this candidate U(1)R symmetry for the IR SCFT, we have ∆(M) = 3
2R(M) < 1 if

Nc < Nf < 3
2Nc and it is argued that these mesons become free in the IR [5]. The baryons

do not violate the unitarity bound, however, it becomes free if Nf = Nc + 1 as we can see

it from Seiberg dual description [23].

In fact, the appearance of accidental symmetry implies that the chiral ring of the IR

SCFT is different from the UV theory, which means that the chiral ring of UV theory

is not stable. Since it is difficult to detect the appearance of accidental symmetry, it is

also difficult to tell whether the UV chiral ring is stable or not. In the next section, we

will consider a class of N = 1 models where we will relate the stability of chiral ring to a

problem in geometry.

3 K-stability and stability of chiral ring

3.1 The chiral ring, Hilbert series and the central charge a

Consider a N = 1 theory on world volume of N D3 branes probing a graded three dimen-

sional normal, Kawamata log-terminal (klt), Gorenstein singularity X, (see figure. 1). The

3d singularity is defined by an affine ring

HX = C[x1, x2, . . . , xr]/I, (3.1)

here C[x1, x2, . . . , xr] is the polynomial ring and I is an ideal. Let’s explain the meaning

for various terms characterizing our singularity: normal means that the codimension of

the singular locus P of X is no less than two; graded means that there is at least one C∗

action on X; Gorenstein means that the canonical sheaf KX is a line bundle and one has

a non-vanishing top form Ω on X/P ; Kawamata log-terminal can be characterized that

the volume form Ω ∧ Ω has finite mass near the singularities of X (see [22]).

We have the following map between the properties of the ring X and field theory,

• The automorphism group G of X gives the (complexified) anomaly free symmetries

of the field theory, and the possible U(1)R symmetry ζ is a subgroup of G.

• The coordinate ring of the vacua moduli space is described as the coordinate ring of

the variety MN = XN/SN . In the large N limit, the single trace operators parame-

terizing M∞ can be identified as the ring elements of X 4: namely the holomorphic

functions on X give the chiral scalar operators of the field theory in the large N limit.

So X essentially determines the nontrivial part of the chiral ring 5.

4Notice that in the large N limit the ring structure of X is not the chiral ring structure of the field

theory. In the large N limit, the chiral ring structure is trivial, namely the product of two single trace

operator defines the multiple trace operators.
5There are other types of scalar chiral operators which do not get expectation value, and also chiral

Baryonic operators. These operators seem not affect the stability issue of our model.
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• X has a canonical (3, 0) form Ω, and it has charge 2 under the possible U(1)R
symmetry ζ:

[Ω] = 2, (3.2)

(in fact, this condition is equivalent X being klt). We also require that the U(1)R
charge of the coordinates xi is positive.

X

L

D3

Figure 1. One can engineer four dimensional N = 1 theories using D3 brane probing three

dimensional klt Gorenstein singularity X . For the singularity X , one can define a link L which is

a five dimensional Sasakian manifold.

Consider a possible U(1)R symmetry ζ which is realized as an automorphism of X.

The trial central charge a(ζ) (of order N2) of the field theory can be computed from the

Hilbert series of the ring X [9–11, 24]. The Hilbert series of X with respect to ζ is defined

by

Hilb(X, ζ, t) =
∑

(dimHα)t
α; (3.3)

Here Hα is the subspace of ring HX with charge α under the action ζ. The Hilbert series

has a Laurent series expansion around t = 1 obtained by setting t = e−s and expanding

Hilb(X, ζ, e−s) =
a0(ζ)

s3
+

a1(ζ)

s2
+ . . . (3.4)

The coefficients (a0(ζ), a1(ζ)) have following properties:

• a0 is proportional to the volume of the link L5 of the singularity, and the trial central

charge a(ζ) (order N2 term) is related to a0 as

a(ζ) =
27N2

32

1

a0(ζ)
. (3.5)

• a0 = a1 which is due to the condition that Ω has charge 2.

• a0 is convex function of the symmetry generators [11].
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For the singularity X, one can define a 5 dimensional link L5 with Sasakian structure

[25]. If there is a Sasaki-Einstein metric on the link L5, one can find the true U(1)R sym-

metry by minimizing a0, and the field theory central charge is given by the formula (3.5).

In the large N limit, the SCFT on D3 branes is dual to Type IIB string theory on the

following geometry

AdS5 × L5. (3.6)

The existence of the SE metric on L5 is also equivalent to the existence of a Ricci-flat conic

metric on X.

Example: Consider the conifold singularity defined by the principal ideal f(z) =

z20 + z21 + z22 + z23 = 0, and it is known that the link L5 is the manifold T 1,1 and has a

Sasaki-Einstein metric. There is a C∗ action ζ on this singularity f(λqizi) = λf(zi) with

weights (12 ,
1
2 ,

1
2 ,

1
2). The canonical three form is Ω = dz0∧dz1∧dz2∧dz3

dF
. Ω has charge 1 under

the symmetry ζ, so the possible U(1)R symmetry is actually ζ
′

= 2ζ in order to ensure Ω

has charge two. The Hilbert series of X with respect to symmetry generator ζ
′

is

Hilb(t) =
(1− t2)

(1− t)4
|t=e−s =

2

s3
+

2

s2
+ . . . (3.7)

Using formula 3.5, We find that the central charge is equal to a = 27
64N

2 which agrees with

the result derived from field theory [8].

3.2 K Stability and generalized a-maximization

Now thel question is whether the link L5 has Sasaki-Einstein metric. This question is

reduced to studying the K-stability of the ring X [21, 22]. On the other hand, X essentially

determines the chiral ring of the field theory, and if the chiral ring of the field theory is

stable, i.e. it is a chiral ring of a SCFT, the field theory is dual to type IIB string theory on

the background AdS5 × L5, where L5 has a Sasaki-Einstein metric. From this AdS/CFT

correspondence, one can see that K-stability should be equivalent to the stability of the

chiral ring of field theory defined in introduction. In this subsection, we will discuss two

crucial ingredients of K-stability; test configuration and the Donaldson-Futaki invariant.

We will also give a physical interpretation of these two elements and show that K-stability

is equivalent to the stability of the chiral ring.

3.2.1 Test configurations

Let’s first describe the definition of a test configuration arising in K stability, which actually

motivates our definition of test chiral ring in the introduction. In the K-stability context,

one constructs a test configuration by constructing a flat family π : X → C (for a simple

illustration of flat and non-flat family, see figure. 2.). This flat family is generated by a

one dimensional symmetry generator η, and for t 6= 0, the ring HXt corresponding to the

fiber Xt = π−1(t) is isomorphic to the original ring HX . At t = 0, the ring degenerates

into a different ring which we call HX0
, and it is also called central fibre.

The flat limit is a quite common concept in algebraic geometry, but its definition is

quite involved and we do not want to give a detailed introduction here. For the interested
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reader, see section 6 of [26]. Here, we just want to point out several important features of

the flat family constructed above.

(a) The Hilbert series is not changed if we use the same symmetry generator for the new

ring HX0
. In particular, X0 has the same dimension as X.

(b) The maximal torus in the automorphism group of the central fibre X0 has one more

dimensional symmetry generated by η, unless X0
∼= X.

We require that the degeneration is normal (which implies that the codimension of the

singular locus is not less than two). The new singularity X0 is still Gorenstein and klt and,

in the non-trivial case, possesses an extra one-dimensional symmetry.

t = 0

< x 2 − t>

flat family

t = 0

< tx− t>

Non−flat family

Figure 2. Left: A flat family of rings. At t 6= 0, there are two points and the configuration

degenerates into one point at t = 0, which is the central fibre of this flat limit. Right: A non-flat

family of rings. At t 6= 0, the ring is zero dimensional, but at t = 0, the ring is one dimensional.

Example: Consider the ring X defined by the ideal x2+y2+z2+wk = 0, and consider

a C
∗ action η which acts only on coordinate w with the action η(w) = tw. We then get a

family of rings parametrized by the coordinate t:

x2 + y2 + z2 + tkwk = 0. (3.8)

The flat limit of this family over t = 0 is found (in this case) by keeping the terms with

lowest order. The central fiber of this test configuration is then cut out by the equation

x2 + y2 + z2 = 0 (3.9)

Notice that lη with l > 0 gives the same degeneration limit X0. On the other hand lη with

l < 0 gives a different degeneration limit– we get the ring generated by the ideal wk = 0,

which is not normal!

3.2.2 Futaki invariant and generalized a-maximization

Now let’s start with a ring X with symmetry ζ and we also choose the generators ti, i =

1, . . . , n for the Lie algebra t of the maximal torus in the automorphism group G of X. Let

us write ζ =
∑n

i=1 ζiti, and we may as well assume that ζ minimizes the volume over all the

possible U(1)R symmetries parametrized by t. Consider a test configuration X generated
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by a symmetry generator η and let X0 denote the central fibre. We would like to determine

whether or not X0 destabilizes X. The crucial ingredient is the Donaldson-Futaki invariant

defined in [16].

The ring (X0, ζ, η) is still Gorenstein and klt, and has a at least two dimensional

symmetry group generated by ζ and η. There is only one dimensional possible U(1)R
symmetry as we need to impose following two conditions

(a) The charge on the coordinates xi is positive

(b) The (3, 0) form has charge 2.

The second condition can be fixed by computing the Hilbert series of X0 with respect to

symmetry generator and imposing the condition a0 = a1. This one dimensional candidate

U(1)R symmetry can be parameterized as

ζ(ǫ) = ζ + ǫ(η − aζ). (3.10)

Notice that we require ǫ > 0 so that the central fibre is the same as the original one if

we use the symmetry ǫ(η − aζ) to generate the test configuration. Substitute the above

parameterization into the equation a0 = a1 and expand it to first order in ǫ, we have

a0(ζ+ ǫ(η−aζ)) = a1(ζ+ ǫ(η−aζ)) → a0(ζ)+ ǫ(η−aζ) ·a
′

0 = a1(ζ)+ ǫ(η−aζ) ·a
′

1. (3.11)

Here a
′

0 and a
′

1 are the vectors defined by the derivative dai(~x)
d~x

|~x=ζ , and ~x =
∑n

i=1 siti+ bη.

Using the result a0(ζ) = a1(ζ), we have

a =
η · (a

′

0 − a
′

1)

ζ · (a
′

0 − a
′

1)
=

η · (a
′

1 − a
′

0)

a0
=

1

a0(ζ)
(
da1(ζ + ǫη)

dǫ
−

da0(ζ + ǫη)

dǫ
)|ǫ=0. (3.12)

We also use the fact ζ · a
′

0 = 3a0(ζ), ζ · a
′

1 = 2a1(ζ) = 2a0(ζ). Now the Futaki invariant is

defined to be

F (X, ζ, η) = Dǫa0(ζ(ǫ))|ǫ=0. (3.13)

This definition is not of the form of the original Futaki invariant defined in [16], however,

we will now show that our definition is equivalent to the original one (see also [22] for more

discussion). We have

F (X, ζ, η) = Dǫa0(ζ + ǫ(η − aζ)) = (η − aζ) · a
′

0

= Dǫa0(ζ + ǫη)−
η · (a

′

0 − a
′

1)

a0
Dǫa0(ζ + ǫζ)

= Dǫa0(ζ + ǫη) + 3a0(ζ)
η · (a

′

0 − a
′

1)

a0

= Dǫa0(ζ + ǫη) + 3a0(ζ)Dǫ
a1(ζ + ǫη)

a0(ζ + ǫη)
. (3.14)

We use the definition from first line to second line, and from second line to third line we

use the fact Dǫa0(ζ + ǫζ) = −3a0(ζ) (which can be found using the definition of Hilbert

series). The formula in the last line is precisely the Futaki invariant defined in [22]. Having

defined the Futaki invariant, we can now state the definition of K-stability.
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Theroem 3.1 A polarized ring (X, ζ) is stable if for any non-trivial test configuration

generated by the symmetry η, the Futaki invariant satisfies

F (X, ζ, η) > 0. (3.15)

And for the trivial test configuration, namely the central fibre X0 is the same as X, the

Futaki invariant satisfies

F (X, ζ, η) ≥ 0. (3.16)

We now provide a physical interpretation of the Futaki invariant F . Since a0 is inverse

proportional to the central charge of the coordinate ring of the central fiber, the Futaki

invariant is directly related to the maximization of the central charge. The shape of the

function a0 with respect to ǫ is drawn in figure. 3. F < 0 implies that a0(ǫ) is minimized at

ǫ > 0, and the new ring gives larger central charge a! When F = 0 and X0 is different from

X, the two ring gives the same central charge a, but the central fiberX0 has a strictly larger

symmetry group which then destabilizes X. When F > 0, the new ring gives less central

charge over the allowed space of symmetries (ǫ > 0). In summation, Futaki invariant is

actually implying generalized a-maximization. Namely, a test configuration X0 destabilizes

X if it gives no less central charge!

F>0

a0 a0

F<0F=0

a0

Figure 3. Three situations for Futaki invariant. F > 0: a0(ǫ) > a(0) for ǫ > 0; F = 0: the minima

of a0 is achieved at ǫ = 0; F < 0: the minima of a0 is achieved fro ǫ > 0. Notice that we only need

to look at a0 for ǫ > 0.

Example: Consider the ring X which is generated by the ideal x2+ y2+ z2+wk = 0,

this ring has a symmetry ζ with charge ( 2k
k+2 ,

2k
k+2 ,

2k
k+2 ,

4
k+2) on coordinates (x, y, z, w).

This symmetry is chosen such that the (3, 0) form Ω = dx∧dy∧dz∧dw
df

has charge two. The

Hilbert series for ζ is

Hilb(X, ζ, t) =
1− t

4k
k+2

(

1− t
4

k+2

)(

1− t
2k
k+2

)3 . (3.17)

Expand around t = 1, we find a0(ζ) = a1(ζ) =
(2+k)3

8k2
. Now consider the test configuration

generated by the symmetry η with charges (0, 0, 0, 1). In this case, the central fibre X0 is
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generated by the ideal x2 + y2 + z2 = 0. Using formula (3.12), the one parameter possible

U(1)R symmetry is

ζ(ǫ) = ζ + ǫ(η −
1

2
ζ). (3.18)

The Hilbert series with respect to above symmetry is

Hilb(X0, ζ(ǫ), t) =
1− t(1−

ǫ
2
) 4k
k+2

(1− t(1−
ǫ
2
) 2k
k+2 )3(1− t(1−

ǫ
2
) 4

k+2
+ǫ))

. (3.19)

Substituting t = exp(−s) and expand the Hilbert series around s = 0, we get

a0(ζ(ǫ)) = a1(ζ(ǫ)) =
2(k + 2)3

(ǫ− 2)2k2(ǫk + 4)
. (3.20)

The Futaki invariant is computed as

F = Dǫa0(ζ(ǫ))|ǫ=0 =
(4− k)(k + 2)3

32k2
. (3.21)

So F ≤ 0 for k ≥ 4. Since X0 is clearly not isomorphic to X, we conclude that X0

destabilizes X for k ≥ 4. A physical interpretation of this result will be given in the next

section.

3.2.3 Some discussions

Checking K-stability involves two steps. First, finding a test configuration and then com-

puting the Futaki invariant. While the computation of Futaki invariant is straightforward,

the set of possible test configurations is in principle infinite. Thus, in order to check K-

stability one needs to reducing the sets of possible test configurations. There are several

simplifications we can make

• The first simplification has already been used, namely we require that the central

fibre to be normal, Gorenstein and klt. This is simply due to the reason that the

central fibre should describe the chiral ring of a N = 1 field theory.

• Assume that the symmetry group of the ring X is G, then one only need to consider

the flat families generated by a symmetry which commutes with G [22, 27]. This fact

is quite useful for singularities with many symmetries. In particular, if the variety

has three dimensional symmetries (or in other words, X is toric), then there are

no non-trivial test configurations, and hence checking stability reduces to volume

minimization (or a-maximization).

4 Some physical consequences

4.1 a-maximization

Let’s assume that the ring X is stable and has more than one dimension worth of possible

U(1)R symmetry. The determination of U(1)R symmetry is solved by a-maximization

– 13 –



[4] or equivalently volume minimization [10, 11]. We now show that a-maximization can

be explained using K-stability. Consider a test configuration generated by the symmetry

vector η, and the central fibre X0 is the same as X. The Futaki invariant is

F = Dζa0(ζ + ǫη)|ǫ=0 = η · a
′

0(ζ), (4.1)

If F (X, ζ, η) > 0, the test configuration (X0, ζ, η) does not destabilize X. But, since η

preserves X, we can use the symmetry generator −η to generate a test configuration with

the same central fibre X, and the Futaki invariant now is F (X, ζ,−η) = −F (X, ζ, η) < 0

which will make the ring unstable. So K-stability implies that the symmetry generator has

to satisfy

a
′

0(ζ) = 0. (4.2)

Notice that since a0 is a convex function, the solution of above equation is the minimum,

and therefore the central charge a is maximized.

4.2 Unitarity bound

One can always generate a test chiral ring by using a symmetry acting on a single coordinate

x only. The central fibre X0 is a new ring with x free 6. The Futaki invariant is computed

in [21], and the answer is

F ∝ (dim(x)− 1), (4.3)

here we ignore a positive constant, and dim(x) is the scaling dimension of the chiral scalar

operator x. X is not destabilized by this particular test configuration if

dim(x) > 1. (4.4)

This is nothing but the unitarity bound on scalar operator represented by x.

4.3 Singularity with more than one dimensional symmetries

Consider a toric Gorenstein singularity, and the rank of symmetry group is 3. As we

discussed above, there is no non-trivial test configuration, and so toric singularity is stable

provided we choose the U(1)R symmetry which minimizes the volume. On the other hand,

the existence of Sasaki-Einstein metrics on the link of a toric singularity was established

using analytic methods in [28]. For the ring X with two dimensional symmetries, one only

needs to check finite number of test configurations, see [22].

Example: Consider the ring defined by the ideal x2 + y2+ zp+wq = 0. This ring has

a two dimensional symmetry group. One can characterize all the test chiral rings, and the

ring is proven to be stable if (p, q) satisfies the following condition [22]:

p < 2q and q < 2p. (4.5)

Notice that this is just the requirement of the unitarity bound on the operators represented

by z and w. However, as we will see later, the unitarity bound is not the only obstruction

which can appear, even in the case of hypersurface singularities.

6Mathematically such test configuration is generated by the so-called Rees algebra.
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4.4 Hypersurface singularity

Consider an isolated three-fold hypersurface singularity f : (C4, 0) → (C, 0) with a C∗

action ~ζ:

f(λwiqi) = λf(zi). (4.6)

Here all the charges wi are positive. The canonical three-form is

Ω =
dz0 ∧ dz1 ∧ dz2 ∧ dz3

dF
. (4.7)

This form has charge
∑

wi − 1, and the candidate U(1)R symmetry is found by requiring

Ω to have charge two:

(
∑

wi − 1)δ = 2 → δ =
2

∑

wi − 1
, (4.8)

and the candidate U(1)R symmetry is ζ
′

= δζ. To make the coordinate zi have positive r

charge, we require
∑

wi−1 > 0, which implies that the singularity is a rational Gorenstein

(and hence klt) singularity. Such rational hypersurface singularities have been classified by

Yau and Yu [29].

The Hilbert series of a hypersurface singularity is easy to compute. It takes the fol-

lowing form

Hilb(f, t, ζ
′

) =
1− tδ

(1− tw0δ)(1− tw1δ)(1 − tw2δ)(1− tw3δ)
. (4.9)

Now let’s consider a test configuration which is derived by using a one parameter trans-

formation η. For simplicity, let’s assume that the action ~η is diagonal on the coordinates

with charges (v1, v2, v3, v4). In the flat limit, we get a new polynomial f0 which does not

necessarily define an isolated singularity. f0 has two dimensional symmetries generated by

(ζ
′

, η), however, there is only a one dimensional symmetries which could be the possible

U(1)R symmetry. The one parameter symmetry group can be parameterized as

η(ǫ) = ζ
′

+ ǫ(η − aζ
′

), (4.10)

and a can be computed using the formula 3.12. The Futaki invariant can be computed

using formula 3, and we have

F (f, ζ
′

, η) = Dǫa0(ζ(ǫ))|ǫ=0 =

− [(v4w1w2w3(w1 + w2 + w3 − 2w4 − 1) + v3w1w2w4(w1 + w2 +w4 − 2w3 − 1)+

v2w1w3w4(w1 + w3 +w4 − 2w2 − 1) + v1w2w3w4(w2 + w3 + w4 − 2w1 − 1). (4.11)

In the following, we are going to use this formula to test whether a hypersurface singularity

is stable or not.

4.4.1 Irrelevance of superpotential term

Recall that we have already studied the singularity

f = z20 + z21 + z22 + z2k3 , (4.12)
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from K-stability perspective, and we showed that this ring is unstable for k ≥ 2. The

destabilizing configuration has the central fibre X0 = {z20 + z21 + z22 = 0}; see section 3.2.2.

Let’s interpret this result from field theory point of view. The quiver gauge theory

description is found in [30]; see figure 4 below. We have the following superpotential term:

A
1

A
2

B
2

B
1

1 2

N N

Figure 4. Quiver gauge theory description for D3 brane probing the singularity defined by z2
0
+

z2
1
+ z2

2
+ z2k

3
= 0. The superpotential is described in (4.13).

W = Tr(φ1(A1B1 +A2B2))− Tr(φ2(B1A1 +B2A2))− 2
Trφk+1

1

k + 1
+ 2

Trφk+1
2

k + 1
. (4.13)

The U(1)R charge is fixed such that the NSVZ β function is zero, and each term in super-

potential W has charge two:

1

2
[(R(A1)− 1) + (R(A2)− 1) + (R(B1)− 1) + (R(B2)− 1)] + (R(φ1)− 1) + 1 = 0,

1

2
[(R(A1)− 1) + (R(A2)− 1) + (R(B1)− 1) + (R(B2)− 1)] + (R(φ2)− 1) + 1 = 0,

R(A1) +R(B1) +R(φ1) = 2, R(A2) +R(B2) +R(φ1) = 2,

R(A1) +R(B1) +R(φ2) = 2, R(A2) +R(B2) +R(φ2) = 2,

R(φ1) = R(φ2) =
2

k + 1
. (4.14)

We can use symmetry or a maximization to find the following R charges: R(A1) = R(A2) =

R(B1) = R(B2) =
k

k+1 , R(φ1) = R(φ2) =
2

k+1 . The F -term relations from the superpo-

tential are:

∂W

∂A1
= 0 : B1φ1 − φ2B1 = 0,

∂W

∂B1
= 0 : φ1A1 −A1φ2 = 0,

∂W

∂A2
= 0 : B2φ1 − φ2B2 = 0,

∂W

∂B2
= 0 : φ1A2 −A2φ2 = 0,

∂W

∂φ1
= 0 : A1B1 +A2B2 − 2φk

1 = 0,

∂W

∂φ2
= 0 : B1A1 +B2A2 − 2φk

2 = 0.

(4.15)

– 16 –



The scalar chiral ring of this theory (which is related to the holomorphic functions on X)

is generated by the loops in the quiver subject to the above relations. The single trace

scalar chiral operators are generated by the simple loops, such as Tr(AiBj), and one can

order them by their U(1)R charge.

Consider the singularity X defined by the equation f = z20 + z21 + z22 + z2k3 , the unique

candidate U(1)R symmetry ζ
′

has charge ( 2k
k+1 ,

2k
k+1 ,

2k
k+1 ,

2
k+1) which is identified as the

field theory U(1)R charge. We can make a holomorphic change of coordinates to write f

as f = U2+V 2+(−W +Zk)(W +Zk). The holomorphic functions on X can be identified

with the field theory chiral operators as follows:

TrA1B2 = U, TrA2B1 = V,

TrA1B1 = −W + Zk, TrA2B2 = W + Zk.

Trφ1 = Z. (4.16)

It can be checked that the full set of scalar chiral operators of the field theory which can

get expectation value is captured by the ring X.

The properties of the IR SCFT can be derived as follows: The quiver without the

superpotential term Tr(φk+1
1 ) and Tr(φk+1

2 ) defines a four dimensional N = 2 SCFT T0,

and all of the elementary fields Ai, Bi, φi are free with U(1)R charge 2
3 . Our N = 1 theory

can be thought of as deforming N = 2 SCFT T0 by the superpotential terms involving the

adjoint chiral superfields φ1 and φ2. The scaling dimensions for the superpotential terms

O1 = Tr(φk+1
1 ) and O2 = Tr(φk+1

2 ) are ∆[Oi] = k+1, and so they are irrelevant for k > 2;

the IR SCFT is just the original SCFT T0. For k = 2, the superpotential term is marginally

irrelevant [31], and the IR SCFT is also the original SCFT T0.

We have used K stability to check that the ring is unstable for k ≥ 2, and the destabi-

lizing configuration has a central fibre X0 : f = z20 + z21 + z22 . It is interesting to note that

the IR SCFT (affine A1, N = 2 SCFT) associated with the ring X is actually described by

D3 branes probing the singularity X0. This fact supports our claim that the central fibre

X0 describes the possible chiral ring of the IR SCFT, and the result from K-stability is in

agreement with field theory result!

4.4.2 Further obstructions

The unstable example considered so far have been caused by the irrelevance of superpo-

tential terms or the violation of the unitarity bound. We now give an example where the

instability of the chiral ring is more subtle. Consider a singularity

f = z20 + z21 + zp2 + z2z
q
3 . (4.17)

The only possible U(1)R symmetry has charge ( pq
p+q−1 ,

pq
p+q−1 ,

2q
p+q−1 ,

2(p−1)
p+q−1). The scaling

dimensions of z2 and z3 are

[z2] =
3q

2(p + q − 1)
, [z3] = 3

(p− 1)

p+ q − 1
. (4.18)
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using the relation ∆(O) = 3
2R(O). The unitarity bound on the scalar operators implies

that [z2] > 1 and [z3] > 1, we find

p < 2q + 1 & q < 2p − 2. (4.19)

The unitarity bound can also be found using the test configuration generated by the sym-

metry acting on coordinate z2 and z3 only.

Consider a test configuration generated by the symmetry η with charge (0, 0, 1,−1/q).

We have the following family generated by η;

z20 + z21 + tpzp2 + z2z
q
3 = 0. (4.20)

The flat limit over t = 0 is described by the equation z20 + z21 + z2z
q
3 = 0. The Futaki

invariant can be computed using the formula 4.11:

F (X0, ζ, η) = −
(p+ q − 1)2

(

p2 − 2pq + q − 1
)

2(p − 1)2q2
. (4.21)

So the original ring is stable if

q(2p − 1)− (p2 − 1) > 0 → q >
p2 − 1

2p − 1
. (4.22)

This bound is stronger than the unitarity bound (4.19) for certain range of the parameters.

Let’s set p = 6, the unitarity bound from (4.19) implies that

5

2
< q < 10. (4.23)

The bound from (4.22) implies that

q > 34/11, (4.24)

which gives a stronger lower bound, i.e. q = 3 satisfies the unitarity bound, but is unstable

due to some other dynamical reason. The chiral ring of the IR SCFT is described by

z20 + z21 + z2z
q
3 = 0 for q = 3 which is also a three dimensional quotient singularity.

5 Conclusion

We introduce a notion of stability for N = 1 chiral rings, and conjecture that a chiral

ring is the chiral ring of a SCFT if and only if it is stable. We test our stability notion

for models engineered using D3 brane probing 3-fold singularity, and show that the notion

of K-stability for the existence of Ricci-flat conic metric is equivalent to the field theory

stability. This notion can be used to explain a-maximization, an operator becoming free

if it violates unitarily bound, and the irrelevance of superpotential terms, etc. In general,

our stability notion explains the consequences of accidental symmetries appearing in the

study of quiver gauge theory: the chiral ring of the IR SCFT is different form that of UV

theory if there are accidental symmetries. Accidental symmetries cause many problems in
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studying supersymmetric field theory with four supercharges [32, 33]. Our study shows

the importance of the chiral ring, and shows that the generalized notion of a-maximization

plays a key role. Similar notion of generalized a maximization idea has already been used

by Intriligator to settle some interesting IR phase questions [34]. It would be interesting

to use our stability notion to reconsider those models.

The stability notion proposed here can be generalized to three dimensional N = 2

theory. Although one does not have the central charge notion in this context, we may

replace it by the so-called F -function [35]. For the theory engineered by M2 branes probing

a four-fold singularity, one still has the notion of K-stability for the four-fold singularity

and much of the theory is similar. We leave the details to the interested reader. Similarly,

one can also define the a notion of stability for two dimensional (0, 2) theory, and we hope

that the accidental symmetry for (0, 2) theory studied in [36] can be put into the stability

framework.

There are some further questions about the stability of N = 1 chiral ring. Of crucial

importance is to understand the constraints on set of possible test chiral rings. At present,

unless a large symmetry group intervenes, there are infinite number of possible test rings,

and it seems computational impossible to check all of them, even in basic examples. It

would be nice to have some physical input which could shed some light on this issue. In

this paper, we only studied the models engineered using D3 brane, and it will be of great

interest to study other N = 1 theories.

Our primary focus has been on testing whether a chiral ring is the chiral ring of a

SCFT. If the chiral ring is unstable, it is important to determine the ring of IR SCFT.

Our study shows that the central fibre of the destabilizing test configuration should be

the candidate chiral ring of the IR SCFT, and it is interesting to determine the special

destabilizing test configuration which would give the chiral ring of IR SCFT. We hope to

come to this question in the future.
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[21] T. C. Collins and G. Székelyhidi, K-semistability for irregular sasakian manifolds, arXiv

preprint arXiv:1204.2230 (2012).
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