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Perfect state transfer on graphs with a potential

Mark Kempton∗ Gabor Lippner† Shing-Tung Yau‡

Abstract

In this paper we study quantum state transfer (also called quantum tunneling) on graphs when there
is a potential function on the vertex set. We present two main results. First, we show that for paths of
length greater than three, there is no potential on the vertices of the path for which perfect state transfer
between the endpoints can occur. In particular, this answers a question raised by Godsil in Section 20
of [8]. Second, we show that if a graph has two vertices that share a common neighborhood, then there is
a potential on the vertex set for which perfect state transfer will occur between those two vertices. This
gives numerous examples where perfect state transfer does not occur without the potential, but adding
a potential makes perfect state transfer possible. In addition, we investigate perfect state transfer on
graph products, which gives further examples where perfect state transfer can occur.

1 Introduction

Given a graph G, the discrete Schrödinger equation on G is given by

d

dt
ϕt = iHϕt (1)

where ϕt : V (G) → C is a function on the vertex set of G, and H is the graph Hamiltonian. Equation (1)
describes the evolution of the quantum state of a particle on the graph G with time. In this paper, we take
H = A − Q where A is the adjacency of G, and Q is a diagonal matrix whose entries represent energy at
each vertex. The matrix Q is called a potential on the graph. It is also common to take H = ∆−Q where
∆ is the graph Laplacian, but since we are allowing Q to be a general diagonal matrix, our results will still
apply to this case.

We will be studying solutions to (1) for which ϕ0 is a characteristic function for a single vertex (ϕ0(x) = 1
if x = u and 0 otherwise). That is, the quantum state of the particle completely concentrated at a single
vertex.

Definition 1.1. We say that there is perfect state transfer from vertex u to vertex v if there is some time
T at which the solution to (1) satisfies |ϕT (v)| = 1 and ϕT (x) = 0 for x 6= v.

In other words, perfect state transfer occurs when a particle starts at some specific vertex u, and after
quantum evolution for some time T , the quantum state of the particle is completely concentrated on a single
vertex v.

Remark 1.2. Equation (1) also arises naturally in a well-studied model of quantum communication. In
this model the nodes of the graph represents a collection of spin-1/2 particles (qubits), and edges represent
couplings between particles. Each particle has a ground state and an excited state, so the whole system is
modeled on (C2)⊗n. The system’s evolution is described by its Hamiltonian

HXX =
1

2

∑

(i,j)∈E(G)

XiXj + YiYj +
∑

i∈V (G)

Qi · Zi,
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where Xi, Yi, Zi are the standard Pauli matrices. The restriction of this system to the single-excitation
subspace, leads to equation (1). Perfect state transfer in this model corresponds to a starting state, where
only qubit u is excited, evolving to a terminal state where only qubit v is excited. Such an evolution has
applications to quantum communication by providing spin networks architectures through which quantum
information can be losslessly transmitted. See [10] for details, where certain constructions for networks with
edge-weights are described that have perfect state transfer. In this paper we focus on networks with uniform
couplings - that is where all the edge weights are equal and thus can be chosen to be 1.

There is a rapidly growing literature studying perfect state transfer on graphs when there is no potential,
i.e., in the case where Q = 0, so that H = A. See, for example, [1, 3, 4, 6, 7, 8, 9] for several results in
this case. It is apparent from this literature that perfect state transfer is a rather rare phenomenon, and
constructing examples when this occurs can be quite difficult. Our goal is to determine when adding a
potential to the vertices can make perfect state transfer occur. This is also investigated in [2] (where the
potential is referred to as an energy shift). While we are far from a complete answer to this question, we do
describe an infinite family of graphs where adding a potential makes perfect state transfer possible (and for
many graphs within this family, perfect state transfer does not occur without the potential), and we show
that there are graphs where adding a potential cannot help.

Paths: It has been shown in [8] that perfect state transfer does not occur between any vertices of any
path graph, except for the endpoints of a path on two vertices or of a path on three vertices. It has been
conjectured to be the case in [2], and subsequently raised as a question in [8], whether perfect state transfer
could be induced between the endpoints of a path of arbitrary length by placing a suitable potential on the
endpoints. This conjecture in [2] was based on numerical experiments. The authors gave specific values
of potential and corresponding times at which the strength of state transfer becomes very close to perfect.
Results in [11] implied that this conjecture is true asymptotically (as the value of potential at each endpoint
goes to infinity, the probability that tunneling occurs at some time goes to 1), and later an approximate
version of the conjecture was confirmed in [12]. In fact, [2] formulated an even bolder conjecture: that any
network can support perfect state transfer under a suitable potential.

Our first main result disproves both versions of the conjecture from [2]. In fact, we show in general that
given any potential on a path of length 4 or more, there is no time at which perfect state transfer occurs
between the endpoints.

Theorem 1.3. There is no potential Q that induces perfect state transfer between the endpoints of a path

of length at least 4.

A spectral characterization for perfect state transfer has long been known (see e.g. [10]). It consists of
a symmetry condition on the eigenvectors and a rationality and parity condition on the eigenvalues (see
Lemma 2.1 and Corollary 2.2 below, where we reproduce the characterization for the readers convenience).

The symmetry and rationality conditions have been used throughout the literature to prove impossibility
of perfect state transfer, but, to our knowledge, the parity condition hasn’t yet been put to work. Our main
contribution is exploiting the parity condition in a meaningful way - through a mod 2 reduction of matrices
and eigenvalues.

Theorem 1.3 is also interesting in light of the result in [5] which states that any n distinct real numbers
can be achieved as the spectrum of a symmetric Jacobi (tridiagonal) matrix. A natural question to ask to
extend this result is if it is possible to achieve any spectrum by varying only the main diagonal entries, and
holding all other entries fixed. Our result can then be interpreted as saying that there are sets of eigenvalues
(particularly, those needed as a necessary condition for perfect state transfer) that a Jacobi matrix cannot
achieve if we fix the off-diagonal entries at 1. In other words, varying only the diagonal entries of a symmetric
Jacobi matrix does not give enough freedom to achieve any possible set of eigenvalues.

Nodes with identical neighborhoods: Our other main result is that if a graph has two vertices, u and
v, that share the same neighborhood, then there exists a potential on the vertex set of the graph for which
perfect state transfer will occur between u and v at some time. This provides infinitely many graphs where
perfect state transfer can occur with some potential. For many of these graphs, perfect state transfer does
not occur without potential (consider stars, for example). Our proof again uses a rationality condition on the
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eigenvalues. In this case, we prove that having freedom on the diagonal gives enough genericity to achieve
the eigenvalues required. In [2], it is shown that for the complete graph, and the complete graph missing
one edge, there is a choice of a potential on the vertices that induces perfect state transfer. Our result is a
far reaching generalization of both of these cases.

Theorem 1.4. Let G be a graph on n+ 2 vertices with two vertices u and v that share the same neighbors,

and such that u 6∼ v. There is a potential Q : V (G) → R for which there is perfect state transfer between u
and v.

Theorem 1.4 is also interesting in light of the result of [9], which states that, without potential, there
are only finitely many connected graphs of maximum degree k in which perfect state transfer can occur, for
any given k. Our result shows that this is not true when we allow a potential. Indeed, given any maximum
degree k, simply choose any graph on any number of vertices with maximum degree k − 2, and then add
two vertices, attaching each of them to the same vertices (attaching them to at most k vertices). Then the
resulting graph has maximum degree k, and perfect state transfer occurs in the graph. Clearly there are
infinitely many connected graphs for which we can do this.

Graph products: In our final section, we will show that if we have two graphs in which perfect state
transfer occurs at the same time with some potential, then there is a potential that we can put on the
cartesian product of the two graphs for which perfect state transfer will also occur. From this, we can
construct more examples of graphs with potential where perfect state transfer occurs. In particular, taking
products can produce such examples that do not satisfy this condition that two vertices have the same
neighborhood.

2 Preliminaries

Given a graph G with n vertices let H = A − Q denote the graph Hamiltonian, where A is the adjacency
matrix, and Q = diag(Q1, · · · , Qn) a diagonal matrix with real entries. Let ϕ0 : V (G) → C be a complex-
valued function on the vertex set of G satisfying ||ϕ0||2 = 1. In [2], it is described how the adjacency matrix
describes the “XY” interaction of n spin-1/2 quantum particles. Using the adjacency matrix specifically
gives the “XY” Hamiltonian. Other Hamiltonians can be given, particularly by using the graph Laplacian.

Define
ϕt(x) = eitHϕ0(x)

and observe that ϕt is a solution of (1). We will denote U(t) = eitH . Note that the exponential of the matrix
is given by

U(t) = eitH =
∑

λ

eitλxxT

where the sum is taken over eigenvalues λ of H and v is the corresponding unit eigenvector. In particular,
note that

I = U(0) =
∑

λ

xxT . (2)

In addition, since H is symmetric, each λ above is real, and each x can be assumed to have all real entries.
Observe also that U(t) is a unitary matrix for all t, and therefore ||ϕt||2 = 1 for all t. If we let 1u denote the
indicator vector for vertex u, then it is evident that perfect state transfer from u to v, defined above, occurs
at time T if

U(T )1u = γ1v

for some γ ∈ C with |γ| = 1. Then clearly, perfect state transfer from u to v occurs at time T if and only if

|U(T )u,v| = 1.

Versions of the following lemma and corollary are used throughout the literature on perfect state transfer.
See for example [7]. We give a proof for completeness.
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Lemma 2.1. Let u, v be vertices of G, and H the Hamiltonian. Then perfect state transfer from u to v
occurs at some time if and only if the following two conditions are satisfied:

1. Every eigenvector x of H satisfies either x(u) = x(v) or x(u) = −x(v).
2. If {λi} are the eigenvalues for eigenvectors with x(u) = x(v), and {µj} are the eigenvalues for the

eigenvectors with x(u) = −x(v), and x(u) and x(v) are non-zero, then there exists some time T such

that

eiTλ1 = eiTλi = −eiTµj

for all i, j.

Proof. Let {xi} be a set of orthonormal eigenvectors of H , and {λi} the corresponding eigenvalues. Then
we can write

U(t) =

n
∑

i=1

eitλixix
T
i .

( ⇐= ) Since

U(t)u,v =

n
∑

i=1

eitλixi(u)xi(v)

then if conditions 1 and 2 are satisfied, we get

U(T )u,v = eiTλ1

n
∑

i=1

xi(u)
2 = eiTλ1

by (2). Therefore |U(T )u,v| = 1, so perfect state transfer occurs from u to v at time T .
( =⇒ ) Assuming perfect state transfer occurs from u to v at time T , we have U(T )1u = γ1v and hence

xTk U(T )1u = γxTk 1v for any k, and therefore, by the above, since the xi are orthonormal,

eiTλkxTk 1u = γxTk 1v

which implies that
xk(u) = e−iTλkγxk(v).

Since |e−iTλkγ| = 1, and the xi are real vectors, we see that e−iTλkγ = ±1, which gives condition 1.
Now, relabel the eigenvalues so that λi and µj are as in the statement of condition 2. Then we have

U(T )u,v =
∑

λi

eiTλixi(u)
2 −

∑

µj

eiTµjxj(u)
2.

By assumption, we have that |U(T )u,v| = 1. By (2), we have that
∑

xi(u)
2 = 1, then the only way for this

sum to have modulus 1 is for the phase of each of the eiTλi for which xi(u) 6= 0 to line up to point in the
same direction, and each of the and eiTµj for which xj(u) 6= 0 to line up to point in the opposite direction.
This gives condition 2.

Corollary 2.2. Using the notation of Lemma 2.1, if perfect state transfer occurs from u to v, then

λi − λj
λk − λℓ

∈ Q

and
λi − µj

λk − λℓ
=

odd

even

for all i, j, k, ℓ.

Here, odd/even is used to indicate a rational number whose numerator is odd and denominator is even.
Also, note that the statement of the corollary with the role of µ and λ reversed is clearly true as well.

One further observation to make here is that adding any multiple of the identity to H simply shifts each
eigenvalue by the same amount, keeping the same eigenvectors. Therefore this does not affect the conditions
of Lemma 2.1. Therefore, the potential can be scaled by any constant shift at each vertex, and this will not
affect whether or not perfect state transfer is possible, or the time at which it occurs.
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3 Potential on paths

In this section, we will be investigating state transfer on paths. It is known from [8] that without a potential,
perfect state transfer can only occur on a path of length 2 or 3, and not for longer paths. As mentioned in
the introduction, it was conjectured in [8] that potential could be put on the endpoints of longer paths to
make perfect state transfer occur. We will show that this is false, and indeed, perfect state transfer on a
path of length greater than 3 is impossible with any potential on the path.

Remark 3.1. If there is perfect state transfer on a path, then by Lemma 2 of [10] the potential has to be
symmetric around the center of the path. Henceforth we will restrict to such symmetric potentials.

Our first result will be to completely characterize potentials on P3, the path of length 3, for which perfect
state transfer occurs. We will then prove Theorem 1.3 in two parts (see Theorems 3.4 and 3.8, treating odd
and even length paths separately.

We remark that for the path of length 2, P2, it is easy to see that perfect state transfer will occur with
any symmetric potential, since a symmetric potential is constant, so simply translates the potential by a
constant amount. It is also easy to see that if the potential is not symmetric (in this case, meaning the
values on the two vertices are distinct), then the eigenvectors will not have the form required from Lemma
2.1, and so perfect state transfer is impossible.

We will begin with some observations concerning the characteristic polynomials of paths. Let

pn(x;Q1, Q2, ..., Qn) = det(xIn −Hn)

be the characteristic polynomial of the Hamiltonian, Hn = An + ·diag(Q1, Q2, . . . , Qn), of the n-vertex path
with potential at each vertex. Let L2n = p2n(x;Q1, ...Qn, Qn, ..., Q1) be the characteristic polynomial for
the Hamiltonian with symmetric potential, and likewise, L2n+1 = p2n+1(x;Q1, ..., Qn, Qn+1, Qn, ..., Q1).

Lemma 3.2. We have the following identities for pn and Ln:

pn(x;Q1, ..., Qn) = (x−Qn) · pn−1(x;Q1, ..., Qn−1)− pn−2(x;Q1, ..., Qn−2) (3)

L2n = (pn + pn−1)(pn − pn−1) (4)

L2n+1 = pn(pn+1 − pn−1) (5)

Furthermore, in each of the above factorizations, the roots of the first factor correspond to eigenvectors

f for which f(1) = −f(n) 6= 0, and the roots in the second factor correspond to eigenvectors f with f(1) =
f(n) 6= 0.

Proof. The first follows from direct expansion of the determinant, expanding along the last row.
For the second, suppose we have



















Q1 1 0
1 Q2 1
0 1 Q3

. . .

Qn−1 1
1 Qn + 1





































a1
a2
a3
...

an−1

an



















= λ



















a1
a2
a3
...

an−1

an



















. (6)

For ease of notation, let a = (a1, ..., an)
T and we will use ā to denote the “reversal” of a, that is, ā =

(an, ..., a1)
T . Then direct computation shows that

Hn

[

a
ā

]

= λ

[

a
ā

]

.

In addition, the characteristic equation of the matrix on the left in (6) is pn − pn−1.
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In a similar manner, if we have


















Q1 1 0
1 Q2 1
0 1 Q3

. . .

Qn−1 1
1 Qn − 1





































a1
a2
a3
...

an−1

an



















= λ



















a1
a2
a3
...

an−1

an



















(7)

then

Hn

[

a
−ā

]

= λ

[

a
−ā

]

.

and the characteristic equation of the matrix on the left in (7) is pn + pn−1. This gives the second equation
of the lemma.

For L2n+1, if we have



















Q1 1 0
1 Q2 1
0 1 Q3

. . .

Qn 1
2 Qn+1









































a1
a2
a3
...

an−1

an
an+1























= λ























a1
a2
a3
...

an−1

an
an+1























(8)

then

Hn





a
an+1

ā



 = λ





a
an+1

ā



 .

The characteristic equation of the matrix on the left in (8) is pn+1 − pn−1.
Finally, if we have



















Q1 1 0
1 Q2 1
0 1 Q3

. . .

Qn−1 1
1 Qn





































a1
a2
a3
...

an−1

an



















= λ



















a1
a2
a3
...

an−1

an



















(9)

then

Hn





a
0
−ā



 = λ





a
0
−ā



 .

and the characteristic equation of the matrix on the left in (9) is pn.
Finally, it is clear from above that the eigenvectors we found satisfy f(1) = f(n) or f(1) = −f(n)

respectively. Furthermore, straightforward computation shows that if f(1) = 0, then f(x) = x for all x, thus
f(1) and f(n) are non-zero. This gives the lemma.

3.1 State transfer on P3.

In this section we will characterize every possible potential on P3 for which perfect state transfer can occur,
up to scaling by an additive constant. Note that it is clear that if we have an asymmetric potential on
P3, then the eigenvectors will not have the required form of Lemma 2.1, so we assume that we have equal
potential at each endpoint. By adding a multiple of the identity, we can assume, without loss of generality,
that this value is 0, so we will simply assume the potential on the midpoint is Q.
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Theorem 3.3. Let G = P3, the path on 3 vertices, let u, v be the endpoints of the path, and let Q =
diag(0, q, 0). Then there is perfect state transfer from u to v if and only if there exist integers k and ℓ of

opposite parity such that

(k2 − ℓ2)q2 = 8ℓ2.

When this is the case, perfect state transfer occurs at time

t =
2πk

√

q2 + 8
.

Proof. We have

H =





0 1 0
1 q 1
0 1 0



 .

Observe that




0 1 0
1 q 1
0 1 0









1
0
−1



 =





0
0
0



 .

Let

µ =
q ±

√

q2 + 8

2

and observe that




0 1 0
1 q 1
0 1 0









1
µ
1



 = µ





1
µ
1



 .

We have thus found all three eigenvalues of H , with 0 corresponding to an eigenvector whose entries at the
endpoints are opposite, and the others whose eigenvectors are constant on the endpoints. Then by Lemma
2.1, perfect state transfer between u and v happens if and only if

eit
√

q2+8/2 = e−it
√

q2+8/2 = −e−itq/2

The first equality implies that we must have

t =
2πk

√

q2 + 8

for some integer k, which further implies, from the second equality, the following two cases. If k is even, then
kq/
√

q2 + 8 must be an odd integer, and if k is odd, then kq/
√

q2 + 8 must be an even integer. Therefore,
if there is an integer ℓ of opposite parity to k such that

(k2 − ℓ2)q2 = 8ℓ2

then we have perfect state transfer at time

t =
2πk

√

q2 + 8
.

We remark that given any integer ℓ, then any choice of k > ℓ of opposite parity yields a value of the
potential q for which perfect state transfer occurs, namely

q =

√

8ℓ2

k2 − ℓ2
.

At this value of q, we see the value of t from above at which state transfer occurs becomes

t =
2π√
8

√

k2 − ℓ2.
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This has a remarkable consequence. Unless q = 0, we see that

q · t ≥ 2π
√
ℓ2 ≥ 2π,

in other words, q and t cannot be small at the same time. Small values of the potential require long waiting
times before tunneling first occurs. It is an interesting open question if this is a phenomenon for general
graphs with potential for which tunneling occurs.

We remark that the relationship between q and t seen above is consistent with with the relationship
expected based on numerical evidence given in [2].

3.2 Even length paths

Theorem 3.4. Let G = P2n, the path on 2n ≥ 4 vertices, let u, v be the endpoints of the path, and let

Q = diag(Q1, . . . , Qn, Qn, . . . , Q1) be any symmetric potential. Then perfect state transfer cannot occur

from u to v for any values of the Qi’s.

Proof. Let H+ = An + diag(Q1, . . . , Qn−1, Qn + 1) and H− = An + diag(Q1, . . . , Qn−1, Qn − 1). Let
λi : i = 1, . . . , n and µj : j = 1, . . . , n denote the eigenvalues of H+ and H− respectively. By Lemma 3.2 we
know that these correspond to symmetric and anti-symmetric eigenvectors.

Assume there is perfect state transfer at some time t. Then by Corollary 2.2, the ratios of type (λi −
µj)/(λk − λl) have to be equal to some odd/even fraction.

Claim 3.5. λi − λj , µi − µj , λi − µj are all rational.

Proof. By the ratio condition we know that (λi−µj)/(λ1−λ2) has to be rational for any i, j. Then the sum

n
∑

i,j=1

λi − µj

λ1 − λ2
=

n

λ1 − λ2





n
∑

i=1

λi −
n
∑

j=1

µj



 = (TrH+ − TrH−)
n

λ1 − λ2
=

2n

λ1 − λ2

is rational, and so λ1 −λ2 is also rational. From this, the rationality of all other such differences follow from
the ratio condition.

Corollary 3.6. We can assume that all eigenvalues of H2n are rational.

Proof. As an immediate consequence of Claim 3.5, there is a real number α such that λi −α and µj −α are
rational for all i, j ∈ {1, 2, . . . , n}. Then the eigenvalues of the matrix H ′

2n = H2n − αIn are rational and
satisfy the ratio-conditions. Furthermore the potential is still symmetric. So if there was tunneling for H2n

then there is also tunneling for H ′
2n.

From now on we are going to use this assumption without further warning.

Claim 3.7. All the Qi’s are also rational.

Proof. We proceed by a descending induction from Qn to Q1. Suppose we’ve already shown that
Qn, Qn−1, . . . , Qn−k+1 are rational. (Here we also include the case where nothing was shown yet as k = 0.)
Let us look at

Tr(H2k+2
+ −H2k+2

− ) =
n
∑

i=1

λ2k+2
i − µ2k+2

i ∈ Q,

and observe that Tr(H2k+2
+ − H2k+2

− ) = (4k + 4)Qn−k+ an integer coefficient polynomial in
Qn−k+1, Qn−k+2, . . . , Qn. Then, by induction, Qn−k has to be rational.

To see why the trace expression is indeed what we claim it is, write the jth diagonal entry of H2k+2
±

as sum of weighted cycles of length 2k + 2 starting and returning to the jth node of the path. For such a
weighted cycle to have different weights in H+ and H−, the cycle has to pass through the loop on the nth
node. Thus j ≥ n− k. Thus Tr(H2k+2

+ −H2k+2
− ) will not depend on Q1, . . . , Qn−k−1. If such a cycle further

passes through the loop edge on vertex n− k, then it has to consist of all edges between n− k and n exactly
once in both directions as well as the two loops at n− k and n respectively. There are 2 such cycles for any

8



starting point n−k ≤ j ≤ n. These together contribute (4k+4)Qn−k to Tr(H2k+2
+ −H2k+2

− ), and everything
else as an integer-weighted linear combinations of monomials depending only on the higher Q’s. From this
the observation follows.

Introducing a further shift in the potential we can now assume that Qn = 0.
Let us write Qi = ai/K where ai,K ∈ Z and (K, a1, a2, . . . , an) = 1. Then the rational numbers

K · λi,K · µj are eigenvalues of the integer matrices HH± = K ·H±, so they have to be integers themselves.
Let us write li = K · λi and mj = K · µj .

By the ratio condition we see that for any i1, i2, j1, j2:

li1 − li2 =
even

odd
lj1 − lj2 = even,

hence all li’s have the same parity. Similarly all mj ’s have the same parity.
First suppose all li’s and all mj ’s are odd. Then, using that s3 ≡ s mod 8 for odd s, we get mod 8 that

2K = Tr(HH+ −HH−) =
∑

li −mi ≡
∑

l3i −m3
i = Tr(HH 3

+ −HH 3
−) = 8K3 ≡ 0,

hence 2K is divisible by 8, thus K is divisible by 4. But then
∏

li = DetHH+ is even, which contradicts
that all the li’s are odd.

Next observe that
∏

li −
∏

mj = DetHH+ −DetHH− = (KDn−1 −K2Dn−2)− (−KDn−1 −K2Dn−2) = 2KDn−1

is even, where Dj = Det(K(Aj + diag(Q1, . . . , Qj))). This means that neither the li’s have to have the same
parity as the mj ’s (remember they all have the same parity within each group) and thus they all have to be
even.

Finally observe that this implies that K has to be even as well. Assume for a contradiction that K is
odd. Since all l’s and m’s are even, we get that 2KDn−1 and 2K2Dn−2 are both divisible by 2n. If K is odd
and n ≥ 2 then in fact Dn−1 and Dn−2 both have to be even. However from this we get by a induction that
any Dn−j is even (j = 1, 2, . . . , n), which is impossible as D0 = 1. The induction follows from the recursive
formula

Dj+2 = aj+2Dj+1 −K2Dj.

Hence if Dj+2 and Dj+1 are even, but K is odd, then Dj must also be even.
So far we have shown that if there is tunneling then all the li’s have to be even and K has to be even.

The final contradiction will arise from examining the characteristic polynomial P (x) =
∏n

i=1(x− li) of HH+.
Considering P (x) over the field F2 it reduces to xn since all the li’s are even. At the same time if we
first consider HH+ mod 2, we get the diagonal matrix with entries a1, a2, . . . , an−1, 0, so the roots of its
characteristic polynomial (which has to coincide with P (x) mod 2) are a1, a2, . . . , an−1, 0. In particular,
because of unique factorization over F2, it follows that all the ai’s are even. This, however, contradicts that
(K, a1, . . . , an−1) = 1.

3.3 Odd length paths

Theorem 3.8. Let G = P2n+1, the path on 2n + 1 ≥ 5 vertices, let u, v be the endpoints of the path, and

let Q = diag(Q1, . . . , Qn, Qn+1, Qn, . . . , Q1) be any symmetric potential. Then perfect state transfer cannot

occur from u to v for any value of the Qi’s.

Proof. First of all, by shifting the potential, we can assume that Qn+1 = 0. Let Hs and Ha denote the
matrices on the left hand side of (8) and (9) respectively. That is, Ha = An+1+diag(Q1, . . . , Qn, 0), and Hs

is obtained from An+diag(Q1, . . . , Qn) by replacing the 1 in the last row by 2. Let us denote by λ1, . . . , λn+1

and µ1, . . . , µn the eigenvalues of Ha and Hs respectively.
Assume there is perfect state transfer at some time t. Again by Corollary 2.2, the ratios of type (λi −

µj)/(λk − λl) have to be equal to some odd/even fraction.

Claim 3.9. λi − λj , µi − µj , λi − µj are all rational multiples of Q = Q1 + · · ·+Qn.

9



Proof. By the ratio condition we know that (λi−µj)/(λ1−λ2) has to be rational for any i, j. Then the sum

n
∑

i,j=1

λi − µj

λ1 − λ2
=

1

λ1 − λ2



n
n
∑

i=1

λi − (n+ 1)
n
∑

j=1

µj



 =
1

λ1 − λ2
(nTrHs − (n+ 1)TrHa) =

−Q
λ1 − λ2

is rational, and so λ1 − λ2 is a rational multiple of Q. From this the rationality of all other such differences
follow from the ratio condition.

Claim 3.10. Each λi and each µj is a rational multiple of Q.

Proof.

Q = TrHa =

n
∑

i=1

µi = nµ1 +

n
∑

i=1

µi − µ1 = nµ1 + rQ

for some r ∈ Q. Hence µ1 = (1− r)/n ·Q. The same for the rest of the eigenvalues follows from the previous
claim.

Claim 3.11. Q2 is rational.

Proof. The following sum is rational multiple of Q2 by Claim 3.9:

n+1
∑

i=1

λ2i −
n
∑

j=1

µ2
j = TrH2

s − TrH2
a =

n
∑

i=1

Q2
i + 2n+ 2−

n
∑

j=1

Q2
i − (2n− 2) = 4.

So Q2 has to be rational itself.

Claim 3.12. Each Qi is a rational multiple of Q.

Proof. This proceeds exactly as the proof of Claim 3.7. Successively considering TrH2j+1
s − TrH2j+1

a for
j = 1, 2, . . . we find that a rational multiple of Q is equal to a rational linear combination of terms already
shown to be a rational multiple of Q and a non-zero rational multiple of Qn+1−j . This implies, by induction
on j, that Qn+1−j has to be a rational multiple of Q itself.

Note: we exploit at each step that Q2 is rational, hence any odd power of Q is a rational multiple of
Q.

Since Q2 ∈ Q and all Qis are rational multiples of Q, we can let Qi = ai/K ·
√

a/b where a, b ∈ Z

are square free coprime integers, and K, ai ∈ Z such that (K, a1, . . . , an) = 1. It can be also assumed that
(K, a) = 1, since otherwise K, a, b could be replaced by K/p, a/p, pb for any prime p|(K, a).

Further let li = K
√
abλi ∈ Q and mj = K

√
abµj ∈ Q. Then then lis are eigenvalues of the matrix

HH s =
√
abK ·Hs and mjs are the eigenvalues of HH a =

√
abK ·Ha. It is easy to see that the characteristic

polynomials of both of these matrices are monic and have integer coefficients, so all lis and mjs are in fact
integers. Furthermore by the ratio condition

li − lj = (l1 −m1)
even

odd
= even, (10)

so all the li’s have the same parity, and similarly all the mj ’s have the same parity.
Let us further write li = 2αi(2si + 1) and mj = 2βj(2tj + 1) where αi, βj ∈ Z≥0, si, tj ∈ Z. Let

A = max{α1, . . . , αn+1} and β = max{β1, . . . , βn}.
Claim 3.13.

1. If A = B then every αi = A and every βj = A.

2. If A < B then every αi = A and every βj ≥ B ≥ A+ 1.

3. If A > B then every βj = B and every αj ≥ A ≥ B + 1.
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Proof. This follows simply from the ratio condition (10): We can assume that α1 = A and β1 = B. Applying
(10) with j = 1 we get that 2min{A,B}+1 divides li − lj , so αi ≥ min{A,B} and if A ≥ B + 1 then actually
αi ≥ B + 1. The reverse cases follow similarly.

Claim 3.14. In fact A = B is impossible in the previous claim.

Proof. Suppose A = B. Then

0 = TrHH s − TrHH a =
n+1
∑

1

li −
n
∑

1

mj = 2A

(

n+1
∑

1

2si + 1−
n
∑

1

2tj + 1

)

= 2A · odd,

a clear contradiction.

Claim 3.15. All the lis are even.

Proof.
n+1
∏

i=1

li = Det(HH s) = 2K2abDn−1

is even, where Dk = Det(K
√
ab ·Ak + a · diag(a1, . . . , ak)). Since all lis have the same parity, they must all

be even.

Claim 3.16. The characteristic polynomial of HH s mod 2 is x times the characteristic polynomial of HH a

mod 2. Hence all the mjs are also even.

Proof. The first part is obvious from expanding the determinant defining the characteristic polynomial of
HH s. The second part follows from the unique factorization of polynomials mod 2.

Claim 3.17. K2ab must be even.

Proof. Since all the mjs are even, their product, Dn, is even. Assume K2ab is odd. Then, since all the ljs
are even and their product is 2K2abDn−1, it follows that Dn−1 is even. Then by induction all the Dks are
even: Dk+2 = aak+2Dk+1 −K2abDk. If Dk+2 and Dk+1 are even, then so is Dk. This implies that D0 = 1
is also even, a contradiction.

Claim 3.18. K is odd, and hence exactly one of a and b are even.

Proof. Suppose K is even. Then by the (K, a) = 1 assumption a is odd. Then the characteristic polynomial
of HH a mod 2 is equal to the characteristic polynomial of its diagonal mod 2. (Since all terms involving
off-diagonal elements will be even.) So the roots of the characteristic polynomial mod 2 are equal to the
diagonal elements mod 2. This means, since all mjs are even, that all aais have to be even, implying that
all ais have to be even. But this contradicts (K, a1, . . . , an) = 1.

At this point we have 2n|
∏n

1 mj = Dn and 2n+1|
∏n+1

1 li = 2K2abDn−1 and thus (since a, b are square-
free) 2n−1|Dn−1.

Then we obtain recursively that 2k|Dk from the formula

Dk+2 = aak+2Dk+1 −K2abDk,

since the K2ab can only absorb a singe factor of 2. However, if there is any k ≤ n − 1 for which 2k+1|Dk,
then we have 2k+1 divides both Dk and Dk+1 so 2k|Dk−1 and then inductively 2j+1|Dj for any j ≤ k. In
particular 2|D0 = 1 which is a contradiction.

This implies that for all k ≤ n − 2 the values aak+2 must be odd, otherwise we would get 2k+1|Dk and
a contradiction. This means that in fact a is odd and all ai has to be odd for i ≥ 3. But this yields a
contradiction: again looking at the characteristic polynomial of HH a mod 2: all its roots should be even,
but it coincides with the characteristic polynomial of just the diagonal mod 2 which apparently has at least
one odd root (since n ≥ 2 in the statement of the theorem).
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4 Vertices with identical neighborhoods

Let G be a graph on n+ 2 vertices with two vertices u and v that share the same neighbors, and such that
u 6∼ v. The goal of this section is to investigate tunneling from u to v. In particular we show the following
result.

Theorem 1.4. There is a potential Q : V (G) → R for which there is perfect state transfer between u and v.

The strategy of our proof is a perturbation argument. We find a suitable initial choice of the potential
and show that in its neighborhood there is a dense set of potentials satisfying the theorem. This is made
possible because the number of parameters turns out to be the same as the number of conditions to be
satisfied.

Proof. By Lemma 2.1 we need to find a potential for which the Hamiltonian satisfies two conditions.
First we show that if Q(u) = Q(v) then the first condition is automatically satisfied. It is easy to see

that for such a potential H has an eigenvalue λ0 = Q(u) = Q(v), such that the corresponding eigenvector
φ0 satisfies φ0(u) = −φ0(v) and φ0(x) = 0 for x 6= u, v. By a diagonal shift, we can assume without loss of
generality that Q(u) = Q(v) = 0 so that λ0 = 0. Let λ1 ≤ λ2 ≤ · · · ≤ λn+1 denote the other eigenvalues,
and φ1, ..., φn+1 the corresponding orthonormal set of eigenvectors of H . Since each φj must be orthogonal
to φ0 for j = 1, ..., n+ 1, then we immediately see that φj(u) = φj(v) for j = 1, ..., n+ 1.

Definition 4.1. Let us say that a potential Q is good if Q(u) = Q(v) = 0 and all the eigenvalues of H are
simple. Let Q denote the set of good potentials. It is clear that Q can be viewed as an open subset of Rn.

So far we have shown that if Q ∈ Q then the first condition of Lemma 2.1 is satisfied.
In particular we see that there is only a single eigenvalue of the second type, so to satisfy the second

condition all we need to ensure is existence of a time t such that eiλj t = −1 for each j. That is, we must
have tλj is an odd multiple of π for each j = 2, ..., n.

By Lemma 4.2 (see below) there is a potential Q0 such that the total derivative of the map Φ : Q → Rn

defined by

Φ(Q) :=

(

λ1
λn+1

, . . . ,
λn
λn+1

)

is invertible at Q0. Since the set of points in Rn whose coordinates are all odd/odd rational numbers is
dense, the inverse function theorem guarantees the existence of a potential Q ∈ Q close to Q0 such that

Φ(Q) =

(

2p1 + 1

2q + 1
, . . . ,

2pn + 1

2q + 1

)

where q, p1, . . . , pn ∈ Z. For this potential t = π(2q + 1)/λn+1 is a good choice of t.

Lemma 4.2. There is a potential Q0 ∈ Q such that the total derivative of the map Φ defined in (4) is

invertible.

Before we prove this lemma, we need to make some preparations. Let us denote the vertices in V (G) \
{u, v} by 1, 2, . . . , n. For any potential Q ∈ Q let us write Qi = Q(i). We know that 0 is an eigenvalue of the
Hamiltonian corresponding to the potential Q, so we can write its characteristic polynomial as 2x · F (x,Q)
where F is a polynomial in x and the Qjs. By some abuse of notation we are going to use the following
shorthands for derivatives of F : we let F ′(x,Q) = ∂xF (x,Q) and Fj(x,Q) = ∂Qj

F (x,Q).

Lemma 4.3. The set Q is non-empty.

Proof. Take the values of Q to be large, distinct real numbers. Then H can be thought of as a small
perturbation of a diagonal matrix, and the lemma becomes clear.

The following claim is a variant of the implicit function theorem.

Claim 4.4. For Q ∈ Q the eigenvalues λi depend smoothly in the potential near Q, and we have

∂jλi(Q) := ∂Qj
λi(Q) =

Fj(λi(Q), Q)

F ′(λi(Q), Q)
.
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4.1 The proof of Lemma 4.2

We proceed in a straightforward manner. First we compute formally the total derivative matrix DΦ of Φ
at a potential Q ∈ Q. Then we express detDΦ as the product of a non-zero term and a polynomial in the
values of the potential. Then we show that this polynomial is not identically zero, and thus there is a choice
of Q for which DΦ is invertible.

Step 1: computing the total derivative. Let us compute

(DΦ)i,j = ∂j
λi
λn+1

=
(∂jλi)λn+1 − λi∂jλn+1

λ2n+1

.

We can multiply each element of DΦ by λn+1, since that doesn’t change whether detDΦ is zero. Let us
next append an n+ 1st row to this matrix whose jth element is ∂jλn+1 and an n+ 1st column in which all
elements are 0 except for the last one which is λn+1. This still does not change whether the determinant is
0. Finally, for each i = 1, . . . , n, add λi/λn+1 times the last row to the ith row. This does not change the
determinant.

Now we have arrived at an (n+ 1)× (n+ 1) matrix M̃ , whose determinant is zero if and only if detDΦ
was zero, and whose entries are

M̃i,j =

{

∂jλi : j ≤ n
λi : j = n+ 1

Our goal is to show that det M̃ 6= 0. By Claim 4.4 we have ∂jλi = Fj(λi, Q)/F ′(λi, Q). The denominator is

non-zero because of the assumption that H has simple eigenvalues. Thus we can multiply the ith row of M̃
by F ′(λi, Q) without changing whether the determinant is 0. Let M denote the matrix obtained this way.
Thus

Mi,j =

{

Fj(λi, Q) : j ≤ n
λiF

′(λi, Q) : j = n+ 1
(11)

So it suffices to show that detM 6= 0 for some choice of Q ∈ Q.

Step 2: expressing detM as a polynomial in Q. Let us first consider detM as a polynomial in
the variables λ1, . . . , λn+1, Q1, . . . , Qn. As such, it is clearly alternating in the λis, so by the fundamen-
tal theorem of alternating polynomials, it can be written as a product of a polynomial symmetric in the
λis and Λ =

∏

i<k(λk − λi). By the simple eigenvalue assumption Λ 6= 0, so it suffices to show that
P (λ1, . . . , λn+1, Q1, . . . , Qn) = detM/Λ 6= 0.

Notice that the various elementary symmetric polynomials of the λis are exactly the coefficients of the
polynomial F (x,Q), hence are themselves polynomials in the Qjs. Substituting the appropriate expressions
into P we get a new polynomial T (Q1, . . . , Qn) whose value coincides with P (λ1, . . . , λn+1, Q1, . . . , Qn) =
detM/Λ.

Thus it suffices to show that T (Q1, . . . , Qn) 6= 0 for some choice of Q ∈ Q. Since Q is a non-empty
open set, this is equivalent to showing that T is not the identically 0 polynomial. We are going to show this
by expressing fairly explicitly the highest degree term in T . This will be done in multiple steps. First we
compute the top degree parts of P and then analyze what happens after the substitution.

Step 3: computing the top degree parts of the polynomial P . Let us start by examining the
polynomial F (x,Q). After applying Gaussian elimination to the row and column corresponding to u in the
Hamiltonian, we get that

F (x,Q) = det



















x/2 wT

Q1 + x
Q2 + x ?

w
. . .

? Qn−1 + x
Qn + x



















(12)
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where w is a 0-1 vector having 1s exactly at the neighbors of u and v. Let W denote the set of neighbors
of u. So wj = 1 ↔ j ∈W . Let E denote the set of edges of G not incident to u or v. The degree of F as an
element of Q[x,Q1, . . . , Qn] is n+ 1.

Definition 4.5. For any polynomial J of (hypothetical) degree d let us denote by Jc its degree d − c
homogeneous part. Since we will not consider powers of polynomials, this should not lead to confusion.

It is clear from (11) and (12) that the degree of Fj is n, so detM has degree n2 + n + 1. Then P has
degree n2 + n+ 1− n(n+ 1)/2 = n(n+ 1)/2 + 1. Using the above notation, it is clear from (12) that

F 0(x,Q) = x/2

n
∏

j=1

(x+Qj),

F 1 = 0, and

F 2(x,Q) = −
∑

(ab)∈E(G)

x/2
∏

s6=a,b

(x+Qs)−
∑

a∈W

∏

s6=a

(x+Qs). (13)

Then the entries of M also naturally split according to their homogeneous degrees. However, we are
interested in computing the homogeneous parts of detM . For this reason, let us introduce the following
matrices: M0 is the matrix consisting of the top degree part of each entry of M .

M0
i,j =

{

F 0
j (λi, Q) = λi/2

∏

s6=j(λi +Qs) : j ≤ n

λi · (F 0)′(λi, Q) = λ2i /2
∑

j

∏

s6=j(λi +Qs) + λi
∏

(λi +Qj) : j = n+ 1
(14)

Then clearly (detM)0 = det(M0). Since F 1 = 0, the same will hold for all its derivatives and hence for
all entries of M . Thus it also holds for the determinant: (detM)1 = 0. Next we compute (detM)2. This
is obtained by keeping the top degree part from each entry in M except for the entries in a single column,
where we replace them by the second highest degree part. So for any 1 ≤ k ≤ n+1 we introduce the matrix
M2(k) that has entries

M
2(k)
i,j =







M0
i,j : j 6= k

F 2
j (λi, Q) : j = k ≤ n
λi · (F 2)′(λi, Q) : j = k = n+ 1

(15)

Using this notation we get, by the multi-linearity of the determinant as a function of columns, that

(detM)2 =

n+1
∑

k=1

detM2(k). (16)

It is clear that detM0, as well as all the detM2(k)s are alternating in the λis, so they are all divisible by Λ.
Thus we get that the top degree parts of the polynomial P = detM/Λ are

P 0 =
detM0

Λ
; P 1 = 0; and P 2 =

∑

k detM
2(k)

Λ
. (17)

Both P 0 and P 2 are symmetric in the λis.

Step 4: the substitution. Finally, let us consider what happens when we substitute the coefficients of
F (x,Q) in place of the elementary symmetric polynomials in the λis. Let us write

F (x,Q) = xn+1 +
n+1
∑

k=1

(−1)kSk(Q)xn+1−k

where Sk ∈ Q[Q1, . . . , Qn]. Then, since the λis are exactly the roots of F (x,Q), we get that

σk(λ1, . . . , λn+1) = Sk(Q)

14



where σk is the kth elementary symmetric polynomial. Furthermore, it follows from a careful but straight-
forward examination of (12) that

S0
k =

(−1)k

2
σk(Q1, . . . , Qn), (18)

S1
k = (−1)k+1

∑

a∈W

σk−1(Q1, . . . , Qa−1, Qa+1, . . . , Qn). (19)

Note that in particular we have
S0
n+1 = S1

n+1 = 0, (20)

since the n+ 1st (respectively the nth) symmetric polynomial of n (respectively n− 1) variables is 0.
To analyze the substitution, let us denote the space of polynomials symmetric in the λis by

Qsym[λ1, . . . , λn+1, Q1, . . . , Qn], and define the map

Ψ : Qsym[λ1, . . . , λn+1, Q1, . . . , Qn] → Q[Q1, . . . , Qn]

σk(λ1, . . . , λn+1) · J(Q) 7→ Sk · J(Q).

As P had degree n(n+1)/2+1, we consider T = Ψ(P ) as a hypothetical degree n(n+1)/2+1 polynomial
as well, (where the leading coefficient may be 0). Equation (14) shows that M0

i,j is divisible by λi for all j.

Hence detM0 is divisible by
∏

λi. Thus P 0 is also divisible by
∏

λi. Let us write P 0 =
∏

λi · R where R
has degree n(n+ 1)/2− n. Then Ψ(P 0) = Ψ(

∏

λi) ·Ψ(R) = Sn+1Ψ(R).

Claim 4.6. T 0 = T 1 = 0.

Proof. From (20) we see that Sn+1 has actual degree at most n − 1, and thus Ψ(P 0) has actual degree at
most n(n+ 1)/2− 1, so it does not contribute to T 0 and T 1. On the other hand we have seen that P 1 = 0,
and for any c ≥ 2 the actual degree of Ψ(P c) is also at most n(n+ 1)/2− 1, so none of these contribute to
T 0 and T 1. The claim follows.

Step 5: expressing T 2 as a linear combination. In this step we study the dependence of T 2 = T 2
G on

the graph G. For any 1 ≤ a ≤ n let Ga be the graph on u, v, 1, 2, . . . , n that has only two edges: (ua) and
(va). To this graph we can associate the polynomial T 2

Ga
analogously to the definition of T 2

G. The goal of
this step is to show the following.

Lemma 4.7. Let W denote the set of neighbors of u in G. Then

T 2
G =

∑

w∈W

T 2
Ga
.

Proof. Let us introduce

Ψ0 : Qsym[λ1, . . . , λn+1, Q1, . . . , Qn] → Q[Q1, . . . , Qn]

σk(λ1, . . . , λn+1) · J(Q) 7→ S0
k · J(Q).

Claim 4.8. The map Ψ0 is independent of the original graph, since by (18) none of the S0
ks depend on the

actual graph structure.

Claim 4.9. For any polynomial J ∈ Qsym[λ1, . . . , λn+1, Q1, . . . , Qn] we have

(Ψ(J))0 = Ψ0(J0).

Proof. Since the degree of Sk is equal to the degree of σk(λ1, . . . , λn+1), the map Ψ does not increase the
homogeneous degree, and since the degree of Sk − S0

k is strictly less than k, we get that Ψ − Ψ0 strictly
decreases the homogeneous degree. Thus the top degree part of Ψ(J) has to coincide with Ψ0(J0).
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We can write P = P 0 + P 2 +
∑

c>2 P
c =

∏

λi · R+ P 2 +
∑

c>2 P
c. Then

T = Ψ(P ) = Ψ(
∏

λi ·R) + Ψ(P 2) +
∑

c>2

Ψ(P c) = Sn+1Ψ(R) + Ψ(P 2) +
∑

c>2

Ψ(P c).

Clearly
∑

c>2Ψ(P c) does not contribute to T 2. We have seen that S0
n+1 = S1

n+1 = 0 so the actual degree of
Sn+1 is at most n− 1, hence by Claim 4.9 the contribution of Sn+1Ψ(R) to T 2 is exactly S2

n+1Ψ
0(R0) and

again by Claim 4.9 the contribution of Ψ(P 2) to T 2 is exactly Ψ0(P 2). Thus we get that

T 2 = S2
n+1Ψ

0(R0) + Ψ0(P 2) (21)

Let us first study the first term of this expression. We have seen that P 0 doesn’t depend on the graph, and
hence R0 doesn’t either. Ψ0 is also independent of the graph. We know that Sn is equal (up to sign) to the
constant term of F (x,Q), that is simply F (0, Q). From (12) it is easily seen by expanding the determinant
that

S2
n+1 = (−1)n

∑

a∈W

∏

s6=a

Qs.

Next, let us look at the second term of (21). According to (16)

P 2 =
(detM)2

Λ
=

∑n+1
k=1 detM

2(k)

Λ
.

It can be immediately seen from (15) that each entry in the ith row ofM2(n+1) is divisible by λi, hence
∏

λi
divides detM2(n+1), thus Ψ0(detM2(n+1)/Λ) = 0.

For k ≤ n let us further decompose M2(k) according to (13) and (15). Let us write F 2(a,b)(x,Q) =
−x/2∏s6=a,b(x+Qs) and F

2(a)(x,Q) = −∏s6=a(x+Qs). Then

F 2(x,Q) =
∑

(ab)∈E(G)

F 2(a,b)(x,Q) +
∑

a∈W

F 2(a)(x,Q).

Define M2(k)(a,b) to be the matrix that coincides with M0 in all columns except the kth, and whose entries

in the kth column are F
2(a,b)
k (λi, Q). Similarly let M2(k)(a) be the matrix that coincides with M0 in all but

the kth column, where the entries are F
2(a)
k (λi, Q). Thus

M2(k) =
∑

(a,b)∈E(G)

M2(k)(a,b) +
∑

a∈W

M2(k)(a),

and since these matrices only differ in their kth column, we get

detM2(k) =
∑

(a,b)∈E(G)

detM2(k)(a,b) +
∑

a∈W

detM2(k)(a),

and thus

Ψ0

(

detM2(k)

Λ

)

=
∑

(a,b)∈E(G)

Ψ0

(

detM2(k)(a,b)

Λ

)

+
∑

a∈W

Ψ0

(

detM2(k)(a)

Λ

)

.

Note, however, that since F 2(a,b)(x,Q) is divisible by x, so is F
2(a,b)
j (x,Q), so each entry in the ith row

of M2(k)(a,b) is divisible by λi for k ≤ n. This means that detM2(k)(a,b) is divisible by
∏

λi, hence
Ψ0(detM2(k)(a,b)/Λ) = 0.

Putting together everything we get that

T 2 = (−1)n
∑

a∈W

∏

s6=a

Qs ·Ψ0(R0) +
n
∑

k=1

∑

a∈W

Ψ0

(

detM2(k)(a)

Λ

)

=

=
∑

a∈W





n
∑

k=1

Ψ0

(

detM2(k)(a)

Λ

)

+ (−1)n
∏

s6=a

Qs ·Ψ0(R0)



 (22)
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We have seen that Ψ0 and R0 are independent of the graph. From the explicit form of F 2(a)(x,Q) =
−
∏

s6=a(x +Qs) we see that it is also independent of the graph. Then the same follows for the polynomial

detM2(k)(a). This implies that

T 2
Ga

=

n
∑

k=1

Ψ0

(

detM2(k)(a)

Λ

)

+ (−1)n
∏

s6=a

Qs ·Ψ0(R0),

and thus
T 2 = T 2

G =
∑

a∈W

T 2
Ga
. (23)

Step 6: computing T 2
Ga

. The proof of Lemma 4.2 will be complete once we compute T 2
Ga

and show that
the sum in (23) cannot be zero.

However, computing T 2
Ga

is easy since we can explicitly compute the dependence of the λis on the Qis.
Let us now use M to denote MGa

. This dependence is rather simple and allows for a direct computation of
Mi,j , and through that TGa

. We will focus on a = n without loss of generality.

From (12) we see that FG1
(x,Q) = 1/2 · (x2 +Qnx− 2)

∏n−1
i=1 (x+Qi). The roots of this polynomial are

λi = −Qi for i = 1, . . . , n− 1, and λn/n+1 = (−Qn ±
√

Q2
n + 8)/2. Thus for j < n

Mi,j = Fj(λi, Q) =

{

0 : i 6= j
1/2(Q2

i −QnQi − 2)
∏

s6=i(Qs −Qi) : i = j

Similarly

Mn,n = Fn(λn, Q) =1/2 · λn
n−1
∏

i=1

(λn +Qi)

Mn+1,n = Fn(λn+1, Q) =1/2 · λn+1

n−1
∏

i=1

(λn+1 +Qi)

Mn,n+1 = λnF
′(λn, Q) =1/2 · λn(2λn +Qn)

n−1
∏

i=1

(λn +Qi)

Mn+1,n+1 = λn+1F
′(λn+1, Q) =1/2 · λn+1(2λn+1 +Qn)

n−1
∏

i=1

(λn+1 +Qi)

Mn,nMn+1,n+1 −Mn,n+1Mn+1,n =1/2 · λnλn+1(λn+1 − λn)
n−1
∏

i=1

(λn +Qi)(λn+1 +Qi)

A simple computation, using liberally that λi = −Qi for i ≤ n− 1, then yields

detM =

n−1
∏

i=1

Fi(λi, Q) · (Mn,nMn+1,n+1 −Mn,n+1Mn+1,n) =

=
λnλn+1(λn+1 − λn)

2n+1

n−1
∏

i=1

(Q2
i −QnQi − 2)

∏

1≤i<j<n

(λj − λi)(Qj −Qi)

n−1
∏

i=1

(λn − λi)(λn+1 − λi) =

= Λ
λnλn+1

2n+1

n−1
∏

i=1

(Q2
i −QnQi − 2)

∏

1≤i<j<n

(Qj −Qi).

Thus, since λnλn+1 = 2, we get

T = Ψ

(

detM

Λ

)

=
1

2n

n−1
∏

i=1

(Q2
i −QiQn − 2)

∏

1≤i<j<n

(Qj −Qi)
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This polynomial should have degree n(n+ 1)/2 + 1 but as we have seen, its actual degree is n(n+ 1)/2− 1,
so

T 2
Ga

=
±1

2n
1

Qa

n
∏

i=1

Qi

∏

1≤i<j≤n

(Qj −Qi).

Hence

T 2
G =

∑

a∈W

±1

Qa

n
∏

i=1

Qi

∏

1≤i<j≤n

(Qj −Qi),

and this is clearly not 0. This completes the proof of Lemma 4.2.

5 Graph Products

Let G1✷G2 denote the cartesian product of graphs G1 and G2, that is, V (G1✷G2) = V (G1) × V (G2) and
E(G1✷G2) = {{(u, v), (x, y)} : u = x and u ∼ y or v = y and u ∼ x}. It is well known that the adjacency
matrix for the cartesian product is given by

A(G1✷G2) = A(G1)⊗ I + I ⊗A(G2)

where ⊗ denotes the Kronecker product of matrices. A well-known fact about Kronecker products that will
be of use to us is that

(A⊗B)(C ⊗D) = AC ⊗BD (24)

for any matrices A,B,C,D for which the products are defined. An immediate consequence is the well-known
fact that if λ is an eigenvalue of A(G1) with eigenvector φ and µ and eigenvalue of A(G2) with eigenvector
ψ, then λ+ µ is an eigenvalue of A(G1✷G2) with eigenvector φ⊗ ψ.

In [8], it is shown that if perfect state transfer without potential occurs on G1 and G2 at the same time,
then it occurs for the product. In this section, we will show that the same holds in the presence of a potential.
Our proof is essentially the same as in [8], the only thing that needing to be decided is how to define the
potential on the product.

Theorem 5.1. Let G1, G2 be graphs with potentials and Q1, Q2 respectively. Then if perfect state transfer

occurs from u to v at time t in G1, and from x to y at the same time t in G2, the we have perfect tunneling from

(u, x) to (v, y) at the same time t in the graph product G1✷G2 with the potential Q given by Q((u, x), (u, x)) =
Q1(u, u) +Q2(x, x).

Proof. Let H1 = A(G1)−Q1 and H2 = A(G2)−Q2 be the Hamiltonians, and denote by H = A(G1✷G2)−Q
the Hamiltonian for the product, with Q defined as in the statement of the theorem. Note that it is clear
that Q = Q1 ⊗ I + I ⊗ Q2, and we observed above that A(G1✷G2) = A(G1) ⊗ I + I ⊗ A(G2), so that
H = H1 ⊗ I + I ⊗ H2. Thus, the eigenvalues and eigenvectors of H are given by the eigenvalues and
eigenvectors of H1 and H2 in the same way as the adjacency matrix. Define U1(t) = eitH1 , U2(t) = eitH2 ,
and U(t) = eitH .

Lemma 5.2. U(t) = U1(t)⊗ U2(t).

Proof. As observed above, the eigenvalues of H are all numbers of the form λ + µ where λ ranges over the
eigenvalues of H1 and µ the eigenvalues of H2. Let φλ denote the eigenvector of H1 for λ, and ψµ the
eigenvector of H2 for µ. Then φλ ⊗ ψµ is the eigenvector of H for λ + µ. Then by properties of Kronecker
products, we have

U(t) =
∑

λ,µ

eit(λ+µ)φλ ⊗ ψµ

=
∑

λ,µ

(

eitλφλ
)

⊗
(

eitµψµ

)

=

(

∑

λ

eitλφλ

)

⊗
(

∑

µ

eitµψµ

)

= U1(t)⊗ U2(t)
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which gives the lemma.

With this, we can finish the proof of the theorem. Since we are assuming perfect state transfer from u
to v at time t in G1, and from x to y in G2 at the same time, we have

U1(t)1u = γ11v

U2(t)1x = γ21y

where |γi| = 1. Finally, it is clear that 1(u,x) = 1u ⊗ 1x. Thus, letting γ = γ1γ2 (so |γ| = 1), we see from
Lemma 5.2 and (24) that

U(t)1(u,v) = (U1(t)⊗ U2(t)) (1u ⊗ 1x)

= U1(t)1u ⊗ U2(t)1x

= γ11v ⊗ γ21y

= γ1(v,y).

This completes the proof of the theorem.

In the previous section, we saw that perfect state transfer occurs in graph which have two vertices that
share identical neighborhoods. This condition is somewhat restrictive, and it is natural to ask if we can
produce other examples that do not satisfy this restriction. Indeed we can, using Theorem 5.1, if we take
the cartesian product of a graph (with its potential) with itself, then it is possible that the two vertices
between which tunneling occurs do not share a neighborhood. Indeed, taking the product of P3 with itself
any number of times gives such an example.
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