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Abstract

We use the polynomial formulation of the holomorphic anomaly equations governing per-

turbative topological string theory to derive the free energies in a scaling limit to all orders in

perturbation theory for any Calabi-Yau threefold. The partition function in this limit satisfies

an Airy differential equation in a rescaled topological string coupling. One of the two solutions

of this equation gives the perturbative expansion and the other solution provides geometric hints

of the non-perturbative structure of topological string theory. Both solutions can be expanded

naturally around strong coupling.

∗alim@physics.harvard.edu
†yau@math.harvard.edu
‡jzhou@perimeterinstitute.ca

1

ar
X

iv
:1

50
6.

01
37

5v
1 

 [
he

p-
th

] 
 3

 J
un

 2
01

5



1 Introduction

The perturbative expansion of string theories is asymptotic [1, 2] which raises questions about

the non-perturbative completion and definition of these theories. It has been very fruitful to

address these questions within topological string theory which can be connected to Chern-

Simons theory and matrix models, see the excellent review [3] and references therein. The

lessons obtained from this study are expected to give general insights into string perturbation

theory.

Topological string theory is based on the nonlinear sigma model which maps the string

world-sheet into a target Calabi-Yau (CY) threefold. The topological string partition function

is given by a perturbative expansion in the topological string coupling λ, summing the free

energies F (g) over the world-sheet genera g:

Ztop = exp

∞∑
g=0

λ2g−2F (g) . (1.1)

The perturbative free energies F (g) satisfy the holomorphic anomaly equations of Bershadsky,

Cecotti, Ooguri and Vafa (BCOV) [4, 5] which are recursive differential equations. These were

solved using Feynman diagrams [5], which give F (g) the form:

F (g) =
∑

Γ∈∂Mg

1

|Aut(Γ)|
ω(Γ) + f (g) , (1.2)

where Mg is the Deligne-Mumford compactification of the moduli space of Riemann surfaces

of arithmetic genus g. The stratification of this moduli space can be captured by the decorated

dual graphs Γ of the Riemann surfaces. The first summand in the above equation is a summation

over the decorated graphs corresponding to the degenerate Riemann surfaces. The weight ω(Γ)

is given by the Feynman rules: for example, an edge in the dual graph corresponds to a node in

the degeneration and gives a propagator. The contribution to F (g) from the smooth Riemann

surfaces of arithmetic genus g is the holomorphic ambiguity f (g) which is fixed by boundary

conditions. The factors 1/|Aut(Γ)| in the above sum are universal constants coming from the

structure of Mg and are independent of the geometric data of the target CY threefold whose

information is encoded in the weights ω(Γ) obtained from the Feynman rules.

The Feynman diagrams become intractable at higher genus since their number grows rapidly.

It was shown that this simplifies significantly due to a polynomial structure of the higher genus

free energies in finitely many generators [6, 7]. The polynomial structure is non-trivial and

stems from further decomposing the vertices of the Feynman diagrams at higher genus into

simple expressions as well as from a differential ring structure of the generators. This leads to

the much milder polynomial growth of the number of terms at each genus. In this paper we

use this polynomial structure to determine at all genera the pieces of the free energies coming

from certain monomials at every genus g which include contributions from the most degenerate
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Riemann surfaces in ∂Mg. To select these terms in the full partition function we rescale

the polynomial generators as well as the topological string coupling such that only these terms

survive a scaling limit. We derive a modified Bessel differential equation in a rescaled topological

string coupling whose solution assembles these monomials at all genera. This solution allows us

furthermore to expand this piece of the partition function around strong coupling λ→∞. The

second linearly independent solution of the differential equation is non-perturbative at λ = 0

and provides geometric hints of non-perturbative topological strings.

Furthermore, a change of variables allows us to transform the differential equation into an

Airy differential equation. The latter is the hallmark of two dimensional topological gravity

studied using matrix models [8, 9] and appears in many discussions of non-perturbative phe-

nomena [3] and especially also in the recent definition of non-perturbative topological strings

on some non-compact CY manifolds given in Ref. [10]. It is surprising that the results of the

present work are universal for topological strings on any CY geometry which is subject to the

holomorphic anomaly equations even if there is no manifest relation to Chern Simons theory or

matrix models such as compact CY threefolds.

The polynomial structure of the higher genus free energies was already used in Ref. [6]

to determine in principle the coefficients of certain monomials in the generators at all genera

for the quintic. In a similar context, where the polynomial generators are realized as quasi

modular forms for a non-compact CY given by the canonical bundle over P1 × P1, this has

been addressed in Ref. [11]. The mirror curve of the latter geometry is related to the to the

matrix model description of ABJM theory [12] and has been used in Ref. [13] to obtain strong

coupling results. In Ref. [14] the all genus free energies for the matrix model are summed up in

a certain limit in the moduli space and the coefficients are related to the Airy function which

is very close in spirit to our work.1

The structure of this note is as follows. We review the polynomial structure of topological

strings in Sec. 2. In Sec. 3 we derive a differential equation which determines the partition

function in a limit to all genera and discuss its transformation into the Airy equation as well as

the strong coupling expansion of its solutions. We conclude with discussions in Section 4.

2 Polynomial structure of topological strings

In this section we review the polynomial formulation [6, 7] of the holomorphic anomaly equations

[5]. Let M be the moduli space of a Calabi-Yau threefold, which can be the moduli space of

complexified Kähler structures of a CY threefold Y or the moduli space of complex structures

of its mirror X. In the following we will use local complex coordinates zi , i = 1, . . . , n = dimM
and restrict to a one-dimensional slice of the moduli space by choosing a local coordinate z = z∗

such that C∗∗∗ defined below is non-zero and we set zi = 0 , i 6= ∗. We use ∂z := ∂
∂z , ∂z̄ := ∂

∂z̄ .

1We would like to thank Marcos Marino for pointing out this reference to us and its relation to our results.
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The function e−K gives a Hermitian metric on a line bundle L → M with connection Kz

and provides the Kähler potential for the Weil-Petersson metric on M, whose components and

Levi-Civita connection are given by Gzz̄ := ∂z∂z̄K ,Γzzz = Gzz̄∂zGzz̄ . The holomorphic Yukawa

couplings are: Czzz ∈ Γ
(
L2 ⊗ Sym3T ∗M

)
, the curvature is expressed as :

−R z
zz̄ z = [∂z̄, Dz]

z
z = ∂̄z̄Γ

z
zz = 2Gzz̄ − CzzzC

zz
z̄ , (2.1)

where Dz denotes the covariant derivative and C
zz
z̄ := e2KGzz̄Gzz̄C z̄z̄z̄. This data defines a

special Kähler manifold [15, 5].

We further introduce the objects Szz, Sz, S, which are non-holomorphic sections of L−2 ⊗
SymmTM with m = 2, 1, 0, respectively, and give local potentials for the non-holomorphic

Yukawa couplings:

∂z̄S
zz = C

zz
z̄ , ∂z̄S

z = Gzz̄S
zz, ∂z̄S = Gzz̄S

z. (2.2)

These are the propagators of the Feynman rules derived for F (g) in Ref. [5].

The topological string amplitudes at genus g with n insertions F (g)
n are defined in Ref. [5]

as non-holomorphic sections of the line bundles L2−2g over M. These are only non-vanishing

for (2g − 2 + n) > 0. They are related recursively in n by DzF (g)
n−1 = F (g)

n , as well as in g by

the holomorphic anomaly equation for g = 1 [4]

∂z̄F (1)
z =

1

2
CzzzC

zz
z̄ + (1− χ

24
)Gzz̄ , (2.3)

where χ is the Euler character of the CY threefold Y . As well as for g ≥ 2 [5]:

∂z̄F (g) =
1

2
C
zz
z̄

(
g−1∑
h=1

DzF (h)DzF (g−h) +DzDzF (g−1)

)
. (2.4)

It was shown in Refs. [6, 7] that for any CY threefold F (g)
n is a polynomial of degree 3g −

3 + n in the generators Szz, Sz, S,Kz where degrees 1, 2, 3, 1 were assigned to these generators

respectively. The purely holomorphic part of the construction as well as the coefficients of the

monomials are rational functions in the algebraic moduli. The recursive proof of this relies on

the differential ring structure of the generators. For the purpose of this work we will only need

the following [7]:

DzS
zz = 2Sz − Czzz(Szz)2 + hzzz , (2.5)

where hzzz denotes a holomorphic function which is fixed by a choice of Szz satisfying Eq. (2.2).

The expression for the curvature (2.1) can be integrated to:

Γzzz = 2Kz − CzzzSzz + szzz , (2.6)

with szzz a holomorphic function depending on the choice of Szz. We use this to write out the

following:

DzCzzz = ∂zCzzz − 3szzzCzzz − 4KzCzzz + 3C2
zzzS

zz . (2.7)
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The holomorphic anomaly equations split into two equations [7]:

∂F (g)

∂Szz
=

1

2

g−1∑
h=1

DzF (h)DzF (g−h) +
1

2
DzDzF (g−1),

0 =
∂F (g)

∂Kz
+ Sz

∂F (g)

∂S
+ Szz

∂F (g)

∂Sz
. (2.8)

3 All genus differential equation

We determine in the following the all genus coefficients of particular monomials appearing in the

polynomial formulation of the free energies F (g). To this end we derive a differential equation

in a rescaled topological string coupling for the partition function which can be transformed

into an Airy equation.

3.1 Scaling limit

In the polynomial expression of F (g) we consider the highest degree term in the generator Szz

which is a monomial of the form: f(z)(Szz)3g−3, where f(z) is a rational function of the modulus

z. From the Feynman diagram rules of Ref. [5] and the polynomial structure reviewed in Sec. 2

we know that it is of the form: f(z) = ag C
2g−2
zzz , ag ∈ Q.

The corresponding set of graphs in the Feynman diagrams includes in particular those special

graphs Γ which correspond to the most degenerate Riemann surfaces of arithmetic genus g and

of geometric genus 0. We denote this set byMg, cubic. A Riemann surface in this set is obtained

by gluing 2g− 2 genus zero Riemann surfaces, each one has three markings, along the markings

pairwise. The dual graph is obtained by gluing the cubic vertices along the half-edges. The

arithmetic genus is then the number of loops or equivalently the first Betti number of the dual

graph. Among the configurations inMg, these dual graphs have the largest possible number of

loops. The monomials we focus on furthermore receive contributions from further decomposing

the vertices which are given by higher genus amplitudes with insertions.

We introduce the total free energy, omitting g = 0, 1,

F(Szz, Sz, S,Kz; z, λ) =
∞∑
g=2

λ2g−2F (g)(Szz, Sz, S,Kz; z) . (3.1)

To select the terms ag C
2g−2
zzz (Szz)3g−3 from F we rescale the generators Szz as well as the

topological string coupling λ with ε in the following way: S̃zz = ε2/3Szz, λ̃ = λ
ε , and define:

Fs(λs) = lim
ε→0
F(S̃zz, Sz, S,Kz; z, λ̃) =

∞∑
g=2

agλ
2g−2
s , (3.2)

where we defined the rescaled coupling λ2
s = λ2C2

zzz(S
zz)3.
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3.2 Differential equation for all genus free energy

We will now use the holomorphic anomaly equations in their polynomial form (2.8) to derive

an equation governing the coefficients {ag} defined in Eq. (3.2).

Proposition 3.1. The all genus free energy in the scaling limit Fs satisfies the differential

equation:

θ2
λsFs + (θλsFs)2 + 2

(
1− 2

3λ2
s

)
θλsFs +

5

9
= 0 , θλs = λs

∂

∂λs
. (3.3)

Proof. We first introduce the notation:

F (g) = agC
2g−2
zzz (Szz)3g−3 + l.o.t. , g ≥ 2 , (3.4)

where we denote by l.o.t. all monomials which vanish in the partition function in the limit

described above. We obtain further from Eqs. (2.5, 2.7):

DzF (g) = (3g − 3)agC
2g−1
zzz (Szz)3g−2 + l.o.t. . (3.5)

At g = 1, the integration of Eq. (2.3) becomes:

F (1)
z := DzF (1) =

1

2
CzzzS

zz + l.o.t. . (3.6)

At g = 2, multiplying both sides of Eq. (2.8) by Szz fixes a2 = 5
24 . For g ≥ 3 the L.H.S. becomes:

Szz
∂F (g)

∂Szz
= ag(3g − 3)C2g−2

zzz (Szz)3g−3 + l.o.t. , (3.7)

and the R.H.S. is:

1

2

(
g−2∑
h=2

ahag−h(3h− 3)(3g − 3h− 3) + ag−1(3g − 6)(3g − 3)

)
C2g−2
zzz (Szz)3g−3 + l.o.t. . (3.8)

Eq. (3.3) is obtained from the summation:

∞∑
g=2

λ2g−2Szz
∂F (g)

∂Szz
=

∞∑
g=2

λ2g−2S
zz

2

(
g−1∑
h=1

DzF (h)DzF (g−h) +DzDzF (g−1)

)
. (3.9)

3.3 Modified Bessel equation

The equation for the partition function Ztop,s = expFs in the scaling limit becomes:
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Proposition 3.2. Ztop,s(λs) satisfies the following differential equation:((
θ 1

3λ2s

)2

−

((
1

3λ2
s

)2

+
1

9

))
λse

1/3λ2sZtop,s = 0 , θ 1

3λ2s

:=
1

3λ2
s

∂

∂
(

1
3λ2s

) . (3.10)

This is the modified Bessel differential equation in terms of the variable 1
3λ2s

and the general

solution in terms of the modified Bessel functions I1/3,K1/3 is given by:

Ztop,s =
e
− 1

3λ2s

λs

(
c1I 1

3

(
1

3λ2
s

)
+ c2K 1

3

(
1

3λ2
s

))
. (3.11)

Now we discuss the asymptotic behavior of the modified Bessel functions (see e.g., Ref. [16]).

If c1 = 0 the series around λs = 0 coming from K1/3 is trivial. If c1 6= 0, the asymptotic series

expansion around λs = 0 is independent of c2. This gives the sequence {ag}g≥2 up to a constant:

Fs =

(
− 1

3λ2
s

− lnλs

)
+

(
1

3λ2
s

+ lnλs +
5

24
λ2
s +

5

16
λ4
s +

1105

1152
λ6
s + · · ·

)
. (3.12)

The first two terms come from the prefactor in Eq. (3.11) and can be regarded as the contribution

of genus zero and genus one free energies to Fs while the rest from the modified Bessel function

part. We fix c1 = 1 and parameterize the general solution with an additional parameter ζ by:

Ztop,s =
e
− 1

3λ2s

λs

(
I 1

3

(
1

3λ2
s

)
+ ζK 1

3

(
1

3λ2
s

))
, ζ ∈ C . (3.13)

In particular ζ does not affect the perturbative expansion around λs = 0 but becomes relevant

away from this locus. It can be interpreted as giving a non-perturbative correction to the

perturbative series of topological string partition function.

3.4 Strong coupling expansion

Eq. (3.10) has two apparent singularities: the one at λs = 0 is an irregular singularity, while

the one at λs =∞ is a regular singularity. Expanding Ztop,s near λs =∞, we get

Ztop,s =
e
− 1

3λ2s

λs

((
1− π√

3
ζ

)
I1/3

(
1

3λ2
s

)
+

π√
3
ζI−1/3

(
1

3λ2
s

))
= 6−

1
3

(
1− π√

3
ζ

)
e
− 1

3λ2s λ
− 5

3
s

∞∑
n=0

(1
2

1
3λ2s

)2n

n!Γ(n+ 4
3)

(3.14)

+ 6
1
3

2π√
3
ζe
− 1

3λ2s λ
− 1

3
s

∞∑
n=0

(1
2

1
3λ2s

)2n

n!Γ(n+ 2
3)
.

Up to irrelevant factors, one has near λ =∞ the following:

Fs = − 1

3λ2
s

− 1

3
lnλs + 6−

2
3

1− π√
3
ζ

2π√
3
ζ

λ
− 4

3
s +O(λ−4

s ) . (3.15)
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3.5 Airy equation

We can further make the change of variables: z = (2λ2
s)
− 2

3 , v = 2−
1
3 e

1

3λ2s λ
1
3
s Ztop,s. Eq. (3.10)

then becomes the Airy equation: (
∂2
z − z

)
v(z) = 0 . (3.16)

This offers a more geometric picture of the non-analytic behavior of the modified Bessel func-

tions. Applying the Laplace transform, one obtains:

v(z) =
1

2πi

∫
γ
ezwe−

1
3
w3
dw . (3.17)

The integral contour γ on the w-plane has to be chosen such that the integrand vanishes at the

boundary. There are essentially three choices for them given by γi, i = 1, 2, 3, satisfying the

homology relation γ1 + γ2 + γ3 ∼ 0 as depicted in Fig. 1.

Figure 1: The contours γ1, γ2 and γ3 on the w−plane.

The Airy function Ai(z) as a solution to this equation corresponds to the modified Bessel

function K 1
3

and is given by:

Ai(z) =
1

π
√

3
z

1
2K 1

3

(
2

3
z

3
2

)
=

1

2πi

∫
−γ2

ezwe−
1
3
w3
dw . (3.18)

It has exponential decay as z →∞, arg z = 0 and is oscillating as z →∞, arg z = π. The other

independent solution is usually taken to be the function

Bi(z) =

√
z

3

(
I 1

3

(
2

3
z

3
2

)
+ I− 1

3

(
2

3
z

3
2

))
=

1

2πi

∫
iγ2+2iγ3

ezwe−
1
3
w3
dw . (3.19)

It has exponential growth as z →∞, arg z = 0 and is oscillating as z →∞, arg z = π. The same

integral would have different asymptotic series expansions as the phase of z changes, exhibiting

Stokes phenomena as discussed in e.g., Refs. [3, 17].
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The partition function can be written as:

Ztop,s = 2
1
3 e
− 1

3λ2s λ
− 1

3
s v

((
1

2λ2
s

) 2
3

)
. (3.20)

The integral over −γ2 gives Ai(z) and thus the purely non-perturbative part of Ztop,s, while the

integrals over the other two cycles γ1, γ3 are equivalent modulo the non-perturbative expressions

and contribute to the perturbative part of Ztop,s. Analytic continuation and exploring the non-

perturbative content can thus be realized via moving the integral contour as discussed in many

other contexts, such as in Ref. [17].

4 Conclusion and discussion

In this work we determined certain terms of the topological string free energies to all orders in

perturbation theory universally for any CY threefold. Using the polynomial formulation of the

holomorphic anomaly equations we derived an Airy equation in a rescaled topological string

coupling which has a solution encoding these terms. This solution admits a strong coupling

expansion which should be the analog of an expansion considered in Ref. [13] for ABJM theory

[12]. It would be exciting to develop a similar interpretation which can be attached to any CY

background.

A second linearly independent solution of the Airy equation does not contribute to the

perturbative expansion around λs = 0 but gives contributions away from this value. This is a

manifestation of a non-perturbative ambiguity attached to differential equations as it appears

in many other contexts, see Ref. [3]. This may offer geometric hints of the non-perturbative

structure of topological string theory. Indeed the Airy function appears in the recent work [10]

defining non-perturbative topological strings for some non-compact CY threefolds.

Differential equations in the parameters of a theory often suggest an underlying geometric

interpretation and perhaps a variation problem associated to it. Our results may provide the first

steps in this direction. It is perhaps suggestive to think about the topological string coupling λ

as a complex variable, paralleling the discussion of analytic continuation of Chern-Simons theory

[17]. Furthermore, the non-perturbative structure of topological strings was also addressed using

methods of trans-series and resurgence of differential equations, see e.g., Ref. [18] and references

therein. These methods were applied to the master anomaly equation which is not a differential

equation in the topological string coupling. Our results show that a differential equation in the

coupling can be deduced, giving further motivation to pursue this line of research.

The limit described in the paper seems to select only the cubic graphs or equivalently the

geometric genus zero contribution to the topological string partition function. The similarities

to Refs. [8, 9, 19] suggest to further study an associated integrable hierarchy structure of the

partition function. It is natural to expect, from examining the Feynman diagrams, that the

lower degree terms in the polynomial generator should correspond to Riemann surfaces with
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higher geometric genera. In this sense Ztop,s is really the classical part with respect to the loop

expansion in the parameter ε assigned to the geometric genus, and the full partition function

Ztop is its quantization. This parameter plays an analogous role as the equivariant parameter

in localization. The interpretation of this parameter in the A-model would have the effect

of reducing the equivariant localization to the stratum corresponding to the most degenerate

configurations in the moduli space of curves. It would be furthermore interesting to understand

a more direct physical meaning of the parameter ε. These questions will be addressed elsewhere.
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