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Abstract

We suggest that exotic sphere fibrations can be mapped to band topologies in condensed matter

systems. These fibrations can correspond to geometric phases of two double bands or state vector

bases with second Chern numbers m+ n and −n respectively. They can be related to topological

insulators, magneto-electric effects, and photonic crystals with special edge states. We also consider

time-reversal symmetry breaking perturbations of topological insulator, and heterostructures of

topological insulators with normal insulators and with superconductors. We consider periodic

TI/NI/TI/NI′ heterostuctures, and periodic TI/SC/TI/SC′ heterostuctures. They also give rise to

models of Weyl semimetals which have thermal and electrical transports.
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I. INTRODUCTION

In this article, we propose to realize the exotic spheres as the geometric phases in con-

densed matter systems. We suggest that the exotic sphere fibration can be realized as the

geometric phases in condensed matter systems, cold atomic or molecular systems.

The topological description of the quantum states of matter gives a new method in

describing the condensed matter. Condensed matter systems with band structures that

have nontrivial topological properties give a new type of materials with properties that are

robust under certain perturbations. There are many interesting topological properties for

example the appearance of edge states and the existence of gapless surface states.

The topological insulator has a bulk gap, while it has topologically protected edge states

on the boundary of the topological insulator. Thus, the topological insulator is an insulator

in the bulk while has gapless edge states on the boundary of the topological insulator.

The 3D topological insulators have been shown in materials for example,1–4 Bi2Te3, Bi2Se3,

Sb2Te3, Bi1−xSbx. The 2D topological insulators have been observed in HgTe quantum

wells.5,6

For the 3D topological insulators, the topologically protected surface state realizes itself

by the non-trivial spin texture on the surface band of the topological insulator. The topo-

logical surface state is protected by time-reversal symmetry. The existence of odd number

of or single surface Dirac point is robust in the presence of nonmagnetic impurities, and

other time-reversal symmetry preserving perturbations. The difference between topological

insulator and normal insulator can be distinguished by a Z2 invariant.
7–9 The 3D topological

insulators can be described10 by topological field theory with a θ variable. Due to the time

reversal symmetry, θ takes values of 0 or π, modulo 2π. The θ term gives magnetoelectric ef-

fects, with magnetoelectric polarization in the materials.10,11 The spin polarization of surface

band and magnetoelectric polarization of the materials, can be experimentally measured.

In early days of differential topology, John Milnor constructed a seven dimensional com-

pact space called exotic sphere. The space he constructed has the property that it has a

continuous one to one map to the round sphere, and yet it cannot be mapped to the round

sphere smoothly. There are 28 Milnor exotic spheres that are mutually distinct from each

other. The construction was based on distinct bundles over the four dimensional manifold.

Bundles over four dimensional manifold may be used to describe geometric phases in con-
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densed matter and atomic systems. It is interesting to see whether one can build the Milnor

exotic spheres into the theory of condensed matter and atomic systems. It is also nice to

connect subjects in mathematics to subjects in theoretical physics.

In this paper, we suggest that exotic sphere fibrations can be mapped to band topologies

in condensed matter systems. These fibrations can be mapped to geometric phases of two

double bands or state vector bases with their associated second Chern numbers. They can be

related to topological insulators, magneto-electric effects, and photonic crystals with special

edge states, among other aspects. It is nice to understand the physics of topological insulator

in the situations when it is placed adjacent to other kinds of materials. We also consider

time-reversal symmetry breaking perturbations of topological insulator, and heterostructures

of topological insulators with normal insulators and with superconductors.

The organization of this article is as follows. In section II, we discuss that exotic sphere

fibrations can be related to band topologies in condensed matter systems. These fibrations

can be mapped to geometric phases of two double bands or state vector bases with the

second Chern numbers m + n and −n respectively. In section III, we discuss their rela-

tion to topological insulators, and magneto-electric effects. In section IV, we also discuss

their relation to photonic crystals with special edge states. In section V, we consider time-

reversal symmetry breaking perturbations of topological insulator, and heterostructures of

topological insulators with normal insulators, and periodic TI/NI/TI/NI′ heterostuctures.

In section VI, we consider heterostructures of topological insulators with superconductors,

and periodic TI/SC/TI/SC′ heterostuctures. These structures also give rise to models of

Weyl semimetals which have thermal and electrical transports. In section VII, we also sug-

gest relevance to other possible materials such as cold atom systems and semiconductor

systems.

II. GEOMETRIC PHASES OF TWO DOUBLE BANDS OR STATE VECTOR

BASES AND RELATED TOPOLOGIES

One of the interesting types of fiber bundles are 3-sphere bundles over 4-sphere. Such

fibrations can be constructed by patching two R4 ×S3 and identify their overlapping region

by a diffeomorphism. One can divide S4 into three regions: a north patch R4
(1); a middle

patch [−ǫ, ǫ]×S3; and a south patch R4
(2). The R

4
(1)×S3 can be parametrized by a quaternion
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u and a unit norm quaternion v, in which the u belongs to the R4
(1) and the v belongs to

the S3. Similarly, the R4
(2) × S3 can be parametrized by a quaternion u′ and a unit norm

quaternion v′. The transition function is defined on the middle patch, and it is

u′ =
u

‖u‖2
, v′ =

um(unvu−n)

‖u‖m =
un+m(v)u−n

‖u‖m . (1)

‖u‖ denotes the norm of the quaternion u, while ‖v′‖ =‖v‖ = 1. Such fibrations can be

classified by two integers (n +m,−n).
The fibration of S3 over S4 can be characterized by the map from the middle patch S3

to the structure group SO(4) which corresponds to the rotational symmetry of the S3 fiber.

This map is characterized by homotopy group π3(SO(4)) ∼= Z ⊕ Z, where π3(SU(2)) ∼= Z,

and so(4) = su(2)(1) × su(2)(2). This fibration is characterized by two integers, which

correspond to (n+m,−n). The two integers n+m and −n correspond to the second Chern

numbers of the su(2)(1) and su(2)(2). This may be viewed as

c
(1)
2 =

1

8π2

∫

(trF (1) ∧ F (1)) = n+m, (2)

c
(2)
2 =

1

8π2

∫

(trF (2) ∧ F (2)) = −n, (3)

and the integration is on the four dimensional base manifold.

This can be interpreted as n + m instantons of the su(2)(1) gauge fields, and n anti-

instantons of the su(2)(2) gauge fields. This can also be viewed as m instantons of su(2)(1),

plus n pairs of su(2)(1) instanton and su(2)(2) anti-instanton. For m = 1, different n are

in different diffeomorphism classes, but in the same homeomorphism class. The standard

sphere corresponds to n = 0, m = 1, which also corresponds to one instanton of su(2)(1) on

S4. For n > 0, m = 1, it is the exotic sphere, and it also corresponds to n + 1 instantons

of su(2)(1), and n anti-instantons of su(2)(2). The case for m = 2, and other general m, are

also very interesting.

We propose to realize exotic sphere fibrations (2, 3) by geometric phases in condensed

matter systems, cold atomic systems or molecular systems. These exotic fibrations can be

mapped to band structures of those systems with nontrivial band topologies in the systems.

We start with wavefunction
∣

∣ψI
〉

, where I labels bands in band structure, or labels state

vector bases, and define gauge field associated with the geometric phase in parameter space,

A(1)ij
a = −i

〈

ψi({ξa})
∣

∣ ∂ξa
∣

∣ψj({ξa})
〉

, (4)
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A(2)αβ
a = −i 〈ψα({ξa})| ∂ξa

∣

∣ψβ({ξa})
〉

, (5)

where i, j, α, β label different bands, or state vector bases. ξa are parameters for the wave-

functions. The i, j labels a double band and takes values 1 or 2. The α, β labels a dif-

ferent double band and takes values 1 or 2. We have written the states in orthonormal

basis. When the two bands are degenerate or almost degenerate, the geometric phase be-

comes a non-abelian matrix-valued quantity. ξa are the coordinates on the parameter space.

(ξ1, ξ2, ξ3, ξ4) parametrize four dimensional manifold. Since there are two su(2) gauge fields,

the band structure is such that there are four occupied bands, and there are two su(2) gauge

fields associated with the two double bands in the parameter space. The two bands in the

double band will be degenerate at some points of the parameter space, the ξ space.

The four-parameter space can be momentum space, or it can be momentum space to-

gether with extra parameters, or it can be other parameters in the model. It is good to

embed a three dimensional experimental system into a four dimensional parameter space.

For example, the four dimensional parameter space (ξ1, ξ2, ξ3, ξ4) can be three dimensional

momentum space (k1, k2, k3) with an additional parameter ξ4. ξ4 can be a parameter in the

model Hamiltonian or the effective model of the experimental system. ξ4 can also be k4, or

ω, or a parameter in the model Hamiltonian. It can also be two dimensional momentum

space (k1, k2) with additional parameters ξ4, ξ3. It can also be real space, together with

additional parameters.

The geometric phase is sometimes also called the holonomy. Under the adiabatic evolution

along a closed path in the parameter space, the state vector will come back to itself up to

an extra unitary phase factor, given by the integration of path ordered exponential of the

Berry holonomy along that path.

We look for experimental quantities that can be realized from the structures of (2, 3).

The field strengthes are

F
(1)ij
ab = −i

〈

∂aψ
i
∣

∣∂bψ
j
〉

+ i
〈

∂bψ
i
∣

∣∂aψ
j
〉

+ i
〈

ψi
∣

∣∂aψ
l
〉 〈

ψl
∣

∣∂bψ
j
〉

− i
〈

ψi
∣

∣∂bψ
l
〉 〈

ψl
∣

∣∂aψ
j
〉

,

(6)

F
(2)̂ı̂
ab = −i

〈

∂aψ
ı̂
∣

∣∂bψ
̂
〉

+ i
〈

∂bψ
ı̂
∣

∣∂aψ
̂
〉

+ i
〈

ψ ı̂
∣

∣

∣
∂aψ

l̂
〉 〈

ψ l̂
∣

∣∂bψ
̂
〉

− i
〈

ψ ı̂
∣

∣

∣
∂bψ

l̂
〉〈

ψ l̂
∣

∣∂aψ
̂
〉

,

(7)

a, b label the parameter space, and i, j label the state vector bases or bands. The bracket

denotes the inner product of wavefunctions in the Hilbert space. One interesting situation
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is when ξa = ka, a = 1, 2, 3, and ξ4 is an additional parameter, and this correspond to the

momentum space of 3D materials. Summation of the scripts are assumed in the notations.

Moreover, there are second Chern numbers c
(1)
2 , c

(2)
2 of these two gauge fields,

c
(1)
2 =

1

8π2

∫

(trF (1) ∧ F (1)) =
1

32π2

∫

d4ξ ǫabcd(trF
(1)
ab F

(1)
cd ), (8)

c
(2)
2 =

1

8π2

∫

(trF (2) ∧ F (2)) =
1

32π2

∫

d4ξ ǫabcd(trF
(2)
ab F

(2)
cd ), (9)

where the integration is on the parameter space (ξ1, ξ2, ξ3, ξ4) and d
4ξ = dξ1dξ2dξ3dξ4. The

second Chern numbers are

c
(1)
2 = n+m, c

(2)
2 = −n. (10)

The non-trivial Chern numbers correspond to the non-trivial topology of the band structure.

It is an S3 fibration of four-sphere. The su(2) fibration on the 4d parameter space realizes

a higher dimensional manifold. The (8, 9) can also be interpreted as four-form magnetic

monopole fluxes on the parameter space.

Realization and interpretation of the two su(2)’s and the parameter space can be diverse,

in condensed matter and atomic systems. This type of fibration are still abstract. It can be

mapped to band structures in different possible systems. It has relevance to both electron

band structures and photon band structures. It is possible to have this band structure in

certain synthesized materials. The Chern numbers may correspond to the number of edge

states. One of the most interesting situation is m = 1. To exhibit c
(1)
2 = n + 1, c

(2)
2 = −n,

the material may have n + 1 right chiral edge states and n left chiral edge states. In the

context of photonic crystals, it may have n+1 uni-directional right-moving edge states, and

n uni-directional left-moving edge states. These topological quantum numbers may manifest

themselves in terms of the number of edge states, and may contribute to conductivities and

transport properties of the materials.

In the situation that the fourth parameter ξ4 can be integrated out, the expressions can

be reduced to Chern-Simons integrals, because of the relation,

ǫdabc∇d[A
a
ij∇bA

c
ji + i

2

3
Aa

ilA
b
ljA

c
ji] =

1

4
ǫabcd(trF

abF cd). (11)

Therefore the reduced integration keeps the information of the four dimensional integral. In

the case of momentum space (ka, kb, kc) plus ξ4, the integration after reducing on ξ4 is over

the Brillouin zone.
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The four dimensional topological insulator can be characterized by Z invariant. In 4D it

may be characterized by c2 ∈ Z. So here the system with Z⊕Z invariant may be mapped to

doubled topological insulators in four spatial dimensions. Upon a reduction on the fourth

parameter ξ4, the system becomes a doubled three dimensional topological insulators. The

three dimensional topological insulator have been characterized by Z2 invariant.7–9 The ele-

ments of Z2 correspond to odd number or even number of Dirac points, which is related to

the global property of the Brillouin zone.7–9 The odd class are topological insulators, and

the even class are normal insulators.

The fibration may be related to axion electrodynamics. An effective axion term can be

induced in several ways10,11 in three spatial dimensions and one time dimension. Similarly,

in four spatial dimensions, there are effective Chern-Simons action that can be induced10 in

four spatial dimensions and one time dimension. The Chern-Simons term Aκǫ
κµνλρ∂µAν∂λAρ

is the one-loop effective term arising from integrating the fermion loop and the coefficient is

given by the second Chern number in the momentum space of the fermion. Up on reduction

on κ = x4 direction, Aκ becomes θ̂ field.

In three spatial dimensions and one time dimension, the systems can effectively have

axion term, or θ term, and have magneto-electric effects,

S =
e2

16πh
(c

(1)
2 + c

(2)
2 )

∫

dtd3x(θ̂ǫµνλρ∂µAν∂λAρ), (12)

θ = (c
(1)
2 + c

(2)
2 )θ̂ = mθ̂, (13)

where Aµ(x) is real space gauge field. When the system has time-reversal symmetry, the

time-reversal symmetry and gauge symmetry require that θ = mπ, where m is an integer.

This term is proportional to E ·B, and thus this will give magneto-electric polarization of

the material.

If we consider the interface between two materials with different θ̂, in which case there

is θ̂1 for one material extending along z < 0, and θ̂2 for the other material extending along

z > 0. There is a jump θ̂1 − θ̂2 = ∆θ̂ across the two sides of the interface. The time-

reversal symmetry can be broken on this interface.10,11 We can use the integration by parts

(θ̂)∂zAx∂tAy = −Ax[(∂z θ̂)∂tAy] up to total derivatives. Since Ax is coupled to the current
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jx via Axjx, then at the interface we have that the induced current is

jx = σxyEy, (14)

jx = j(1)x + j(2)x , j(1)x = σ(1)
xyEy, j(2)x = σ(2)

xyEy. (15)

j(1)x =
e2

h

(θ̂1 − θ̂2)

2π
Eyc

(1)
2 = (n +m)

e2

h

(θ̂1 − θ̂2)

2π
Ey, (16)

j(2)x =
e2

h

(θ̂1 − θ̂2)

2π
Eyc

(2)
2 = −ne

2

h

(θ̂1 − θ̂2)

2π
Ey. (17)

The two conductivities have opposite signs. From the expression of the second Chern num-

bers, the conductance can be expressed as

σ(1)
xy =

1

4π2

∫

d3k[
〈

ψi
∣

∣∂µψ
j
〉 〈

∂νψ
j
∣

∣∂λψ
i
〉

+
2

3

〈

ψi
∣

∣∂µψ
j
〉 〈

ψj
∣

∣∂νψ
l
〉 〈

ψl
∣

∣∂λψ
i
〉

]
e2

h

(θ̂1 − θ̂2)

2π
ǫµνλ,

σ(2)
xy =

1

4π2

∫

d3k[〈ψα
∣

∣∂µψ
β
〉 〈

∂νψ
β |∂λψα〉+ 2

3
〈ψα

∣

∣∂µψ
β
〉 〈

ψβ |∂νψγ〉 〈ψγ |∂λψα〉]e
2

h

(θ̂1 − θ̂2)

2π
ǫµνλ,

(18)

where
∫

d3k =
∫

dkxdkydkz, and where there is summation in the i, j, α, β labels of different

occupied bands. The integration of the second Chern class over I × BZ reduces to the

integration of two Chern-Simons forms on BZ.

The fibration is also related to band touching phenomena. There are nontrivial topological

structures of occupied bands. There are also other unoccupied bands. We can diagonalize

the Hamiltonian in the system, and it can take the form

H(k) = E1(k)
∑

i=1,2

|i,k〉 〈i,k|+ E2(k)
∑

α=1,2

|α,k〉 〈α,k|+
∑

γ

Eγ(k) |γ,k〉 〈γ,k| . (19)

We have that E1, E2 are energy eigenvalues of the two double bands. Those are occupied

bands. We have written it in orthonormal basis. Eγ correspond to other unoccupied bands.

The second Chern numbers of the occupied bands are n +m,−n respectively. We propose

that there may exist band structures with associated geometric phase that realize the exotic

spheres.

When we tune the parameters in the model describing the material, the band structures

can be deformed and changed. As long as there is no band touching that occurs during the

tuning, the individual Chern number of each band remain unchanged, since it is topologically

invariant. If when tuning the parameters, the band touching happens, then the Chern

numbers of two bands that touch can change their individual Chern numbers. In these
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situations, when tuning the parameters, the two bands first touch and then split. If we view

the geometric phase gauge field as a fiber bundle over the parameter space, for example the

three dimensional momentum space plus an additional parameter, then the transferring of

Chern numbers during band-touching is a topology change of that fiber bundle. The base

space is the parameter space, and the fiber is the geometric phase gauge field. The Chern

number of the band may correspond to the number of edge states.

Consider the effective Hamiltonian of the two double bands,

H(k;ξ) =

(

E1(k;ξ) + E2(k;ξ)

2

)

I4×4 −
(

E1(k;ξ)−E2(k;ξ)

2

)

~Γ · ~ω(k;ξ), (20)

where we write it in terms of 4× 4 Hamiltonian H(k;ξ), and where ~ω · ~ω = 1, and Γ denotes

Gamma matrices and ξ here denotes a parameter in the model Hamiltonian, for example

spin-orbit coupling. If the band touching happens at a point near (k̂; ξ̂), we draw a surface

Σ3 enclosing that point. The Chern number transfer between the two bands is therefore

n̂ =
1

8π2

∫

Σ3

〈~ω |~ωd~ω ∧ d~ω ∧ d~ω〉 . (21)

This is the Chern number that is transferred between the two bands.

Starting from the state corresponding to c
(1)
2 = n + m, c

(2)
2 = −n, we can tune the

parameters in the model, for example, the spin-orbit coupling, or strain, or magnetic field,

so as to change the band structure to make the band touching point between the two

bands happen. The two bands then split by tuning these parameters. When the bands

touch and then split, they transfer Chern number ∆c2 = n̂, and then the state becomes

c
(1)
2 = n′ +m, c

(2)
2 = −n′, in which n′ = n+ n̂. From the point of view of instantons on the

base space of the exotic sphere fibration, this transition between the two bands correspond

to the transfer of n̂ instantons between the two su(2) gauge fields. This also corresponds

to the topological change transition between exotic sphere fibrations with different n. The

same procedure of band touching and Chern number transfer can be performed many times.

This generates different fibrations with c
(1)
2 = n + m, c

(2)
2 = −n, and exotic spheres with

c
(1)
2 = n + 1, c

(2)
2 = −n. The change of Chern numbers can be mapped to the topology

change of the fiber bundle. These transitions may relate different n with fixed m.

Those states with fixed m = 1, fixed n belong to the same diffeomorphism class, and

they may correspond to the situations that the topology of the band structure does not

change, and in particular without band touching and Chern number transfer. Those with
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fixed m = 1, but different n, are in the same homeomorphism class, but for different n (mod

28) are not in the same diffeomorphism class, and they may be non-adiabatically connected

by band touchings.

Those with different m are not in the same homeomorphism class and may not be non-

adiabatically connected. Since the two bands touch and split, the total Chern numbers of

the two occupied bands, which is m, is topologically invariant and a conserved quantity of

the total system. There are changes of the individual Chern numbers of each band, and

there is a Chern number transfer between the two bands.

Many electron systems can be described by effective Hamiltonian that is quadratic in

the Fermi field. In some situations there may contain terms that are quartic in the Fermi

field. The quartic terms can give radiative loop corrections to the quadratic terms. In some

situations that a mean field theory can be applied, and quartic term may be substituted by

a quadratic term by a mean field approximation.

The system may be related to diverse systems, for example, topological insulators, quan-

tum hall systems, models of Weyl semimetals, semiconductors, photonic crystals, and cold

atom systems.

III. THEORETICAL DOUBLED TOPOLOGICAL INSULATOR MODEL

The 3D topological insulator materials include for example the Bi2Te3, Bi2Se3,

Sb2Te3, and Bi1−xSbx (for example Bi0.9Sb0.1). The alloy Bi0.9Sb0.1 has five Fermi crossing

points, and its theoretical model is more complicated than the situations of Bi2Te3, Bi2Se3,

Sb2Te3, which have a single Dirac point. The topological insulator materials can be known

by measuring whether there is odd or even number of Dirac points, which is related to the

global property of the Brillouin zone.

The 3D Topological Insulator materials, for example1–3 Bi2Te3, Bi2Se3, Sb2Te3, can be

described by a simplified effective 4 × 4 model Hamiltonian, near the level-crossing point.

They have large bulk gap of order (1 ∼ 3)×10−1 eV. The model with Se1-Bi1-Se2-Bi1′-Se1′

crystal structure have been studied in detail.2 For example, for a Bi2Se3 crystal, in the

effective model of the four band model, the basis of the state vector is

|P1+z , ↑〉, |P2−z , ↑〉, |P1+z , ↓〉, |P2−z , ↓〉 (22)
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where P1+z , P2
−
z are two p orbitals in the situations in a Bi2Se3 crystal. Near the level-

crossing point, the two bands touch each other. In this effective model, the four basis are

from two orbitals and two spins. Let’s abstract the state vector into

|+, ↑〉 , |−, ↑〉 , |+, ↓〉 , |−, ↓〉 . (23)

We may introduce another su(2) pseudospin space, in which we enlarge the 4× 4 model

Hamiltonian and 4 vector into 8× 8 model Hamiltonian and 8 vector

|+, 1, ↑〉 , |−, 1, ↑〉 , |+, 1, ↓〉 , |−, 1, ↓〉 , |+, 2, ↑〉 , |−, 2, ↑〉 , |+, 2, ↓〉 , |−, 2, ↓〉 . (24)

The pseudospin refers to the labels 1 and 2 in (24). There are potentially many different

kinds of 3D topological insulator materials. It is in principle possible in the future to consider

Interpenetrating Lattices of two topological insulator materials, or Interpenetrating Lattices

of one topological insulator and one normal insulator material experimentally. Here, we only

discuss it theoretically. The model Hamiltonian of the 8× 8 model can be described as

H(k) = ǫ0(k,ξ)I8×8+





g(k,ξ) 0

0 −g(k,ξ)



⊗I4×4+





d(1)(k,ξ)n
(1)
a (k,ξ) 0

0 d(2)(k,ξ)n
(2)
a (k,ξ)



⊗Γa.

(25)

n
(1)
a (k,ξ) and n

(2)
a (k,ξ) are unit-norm vectors mapped from (k,ξ) space. It is a 8× 8 model,

doubled from 4× 4 model.10 The model is analogous to doubled topological insulators, and

have two second Chern numbers

c
(1)
2 =

3

8π2

∫

d3kdξǫabcden(1)
a ∂k1n

(1)
b ∂k2n

(1)
c ∂k3n

(1)
d ∂ξn

(1)
e = m+ n, (26)

c
(2)
2 =

3

8π2

∫

d3kdξǫabcden(2)
a ∂k1n

(2)
b ∂k2n

(2)
c ∂k3n

(2)
d ∂ξn

(2)
e = −n. (27)

These integral representations also give the second Chern numbers.

In that case, the boundary states may compose of m+n right chiral fermion modes, and

n left chiral fermion modes. The Hamiltonian density of these states in momentum space

may be expressed as

H(k) =
∑

i=1,...,m+n

~viψ
†
i(σ · k)ψi +

∑

j=1,...,n

~vjψ
†
j(−σ · k)ψj . (28)

In general this fibration (8, 9) may be mapped to m + n right chiral modes, and n left

chiral modes. The total helicity number is m.
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It can be realized in Interpenetrating Lattices of two kinds of insulator materials. In

the context of topological insulators in three spatial dimensions, the situation with the odd

number of edge states is topologically robust. Since one can perform perturbations to the

system and a pair of Dirac cones can be coupled and then gapped after re-diagonalization of

the Hamiltonian. For the odd number of Dirac cones, such perturbations will always leave

at least one Dirac cone un-gapped.

For m = 2, it can be realized in Interpenetrating Lattices of two kinds of topological

insulator materials. For m = 1, it can be realized in Interpenetrating Lattices of one kind

of topological insulator material, and one kind of normal insulator material.

Because of the u(1) symmetry, the electric current in the system is exactly conserved

current. Similar to the discussion in section II, the electric charge current is

j(1)x =
e2

h

(θ̂
(1)

1 − θ̂2)

2π
c
(1)
2 Ey, (29)

j(2)x =
e2

h

(θ̂
(2)

1 − θ̂2)

2π
c
(2)
2 Ey, (30)

at the interface between the Interpenetrating Lattices of the two materials with θ̂
(1)

1 , θ̂
(2)

1

respectively, and another material with θ̂2.

In the context of Interpenetrating Lattices, the enlargement from 4 × 4 to 8 × 8 is due

to two types of interweaving lattice site L(1), L(2). Measurement associated with particular

sublattice L(1) or L(2) selects the corresponding Chern number.

IV. PHOTONIC CRYSTALS

We may connect these fibrations to electron band and photon band. The photonic bands

are parallel and similar to electronic bands. Photonic crystal with bulk band-gap, and

gapless edge modes are in some aspects similar to topological insulator. It can have several

bulk band-gaps. It may have special edge states. Since the material has bulk band-gap for

the photon, it will forbid the bulk transmission of the photons in certain range of frequencies,

for example ω2 < ω < ω1. There can be surface band that are within the band-gap region

of the bulk bands.

There are many ways to engineer photon bands in photonic crystals, and there are typ-

ically many closely-spaced bands. So there are many possibilities to have several Chern

12



numbers. There are Dirac points near band touching points. The photon bands also have

geometric phases. The 2D photonic crystals can be made by periodic array of cylinders

of dielectric medium, with lattice structure in x, y directions. The geometric phase of 2D

photonic crystal can be defined and its first Chern number is given by integration of the field

strength of the Berry phase gauge field in the 2D momentum space (kx, ky), for example.12

The 3D photonic crystals (PhC) and 2D photonic crystals (PhC) have a difference that

the 2D photonic crystals have extra translational symmetry in z direction. The 3D photonic

crystals can be made by 3D periodic arrays (or lattices) of dielectric spheres, or alternatively

by 3D periodic arrays (lattices) of air holes in dielectric medium, or by 3D meshes of dielectric

medium. There can be a limit that the lattice spacing along z direction is much smaller

than the lattice spacings in x, y directions, and under such limit it cross over to 2D system.

One can also define a conductivity of edge modes of photons in 3D.

The band topology can be realized also in three dimensional photonic crystals. The

geometric phase can also be similarly expressed

Aa
ij(k) = Im









(

ui(k), B̃
−1(ωj(k))∇kauj(k)

)

√

(

ui(k), B̃−1(ωi(k))ui(k)
)(

uj(k), B̃−1(ωj(k))uj(k)
)









. (31)

Aa
αβ(k) = Im









(

uα(k), B̃
−1(ωβ(k))∇kauβ(k)

)

√

(

uα(k), B̃−1(ωα(k))uα(k)
)(

uβ(k), B̃−1(ωβ(k))uβ(k)
)









. (32)

The round bracket denotes contraction of spatial components of the field variables.12 Here

we include non-abelian geometric phases. The i, j labels a double band and takes values 1 or

2. The α, β labels a different double band and takes values 1 or 2. We have assumed almost

degeneracy ωi ≃ ωj, and ωα ≃ ωβ. We assume that there are two almost doubly degenerate

bands in the band structure.

B−1(r, ω) is an 6× 6 block-diagonal permittivity-permeability tensor

B−1(r, ω) =





ǫab(r, ω) 0

0 µab(r, ω)



 . (33)

B̃−1(ω) has taken into account frequency dependence,12

B̃−1(r, ω) = B−1(r, ω) + ω∂ωB
−1(r, ω). (34)
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The ǫab(r, ω), µab(r, ω) are 3 × 3 permittivity tensor and permeability tensor, and they

generally have off-diagonal components. B̃−1(ω(k)) is a nontrivial tensor due to the dielectric

medium, and they have frequency dependence.12

The ui(k, r)e
ik·r is the Bloch state of the 6-component complex vector (Ẽi(k, r), H̃i(k, r)),

of the electromagnetic fields of the normal mode with momentum vector k and frequency

ωi(k).

One can define a Chern-Simons integral,

I =
1

4π

∫

dkxdkydkzǫabc[Aa
ij∇kbAc

ji + i
2

3
Aa

ilAb
ljAc

ji]. (35)

The integral is in the 3D momentum space (kx, ky, kz) of the 3D photonic crystal, and

summation of the scripts are assumed in the notations.

Because of the relation,

ǫdabc∇d[Aa
ij∇bAc

ji + i
2

3
Aa

ilAb
ljAc

ji] =
1

4
ǫabcd(trF

abF cd) (36)

the four dimensional integral of

1

4

∫

dξadξbdξcdξd ǫabcd(trF
abF cd) (37)

can be reduced to three dimensional integral of

∫

dξadξbdξc[Aa
ij∇bAc

ji + i
2

3
Aa

ilAb
ljAc

ji]. (38)

Therefore the Chern-Simons integral has the information of the four dimensional integral

that is associated with the c2.

For particularly engineered 3D photonic crystals, there could be two second Chern num-

bers c
(1)
2 , c

(2)
2 , whose values may correspond to the numbers of right-moving and left-moving

boundary states. This type of band structure can also be realized in Interpenetrating Lat-

tices of two photonic crystal materials PhC and PhC′, experimentally. In the latter case,

c
(1)
2 , c

(2)
2 correspond to the two materials respectively. The Chern numbers may correspond

to the number of boundary states, or uni-directional one-way propagating states on the

boundary. This is independent of boson or fermion statistics. Photons can have right cir-

cular polarization and left circular polarization. In this context, the photon’s left or right

polarization pattern of the boundary photon states would be interesting physical observable.
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There can be a limit that the lattice spacing along z direction is much smaller than the

lattice spacings in x, y directions, and the 3D system can crossover to the 2D system. The

crossover relation between 3D TI and 2D TI in some aspects may be similar to the relation

between 3D PhC and 2D PhC.

V. HETEROSTRUCTURE OF TI/NI/TI/NI′

In this section we discuss heterostructures of periodic units of TI/NI/TI/NI′ materials.

The periodic heterostructure of TI/NI has been devised.13,14 The TI/NI stands for Topo-

logical Insulator/Normal Insulator. In periodic TI/NI model,13,14 there are two kinds of

interfaces, NI/TI and TI/NI. In the periodic TI/NI/TI/NI′ model, there are four kinds of

surfaces, NI/TI, TI/NI′, NI′/TI, TI/NI. These materials are arranged along the z direction

layer by layer, from top to bottom direction. Here we make the normal insulators NI and

NI′ on the two sides of the same topological insulator to be different. The difference of NI

and NI′ introduces another su(2) space, the ρ-space. We make the parameters of two kinds

of TI/NI, TI/NI′ junctions to be different, so in each periodic unit, there are four materials.

There is experimental method to make the heights of two normal insulators to be the same,

while making the tunnelings of the surface electrons across the two kinds of normal insula-

tors to be different. This type of structure can be experimentally performed by many layers

of periodic heterostructure of thin films.

In each periodic unit, there are TI, NI, TI, NI′ structures. There are surface electrons in

upper surface and lower surface of the TI materials (in x, y directions). The model Hamilto-

nians are built from the states on the interfaces, from the surface states of TI’s. Adding the

normal insulator materials can perturb the surface Hamiltonian by adding tunneling terms.

The periodic structure is along the z direction. The periodic structure then make the states

become bulk states of the engineered structure.

The model Hamiltonian is

H =
∑

k⊥,i,j

[(~vF τ
z(ẑ × σ) · k⊥ +∆sτ

x + bzσ
z + bxσ

x)(δi,2j + δi,2j+1)

+
1

2
τ+(∆1δi,2j+1 +∆2δi,2j) +

1

2
τ−(∆1δi,2j +∆2δi,2j+1)

]

c†k⊥i(ck⊥2j+1 + ck⊥2j). (39)

This is generalized from the model Hamiltonian of the TI/NI model with two structures

in each periodic unit.13 τx, τ y, τ z are Pauli matrices, which act on the pseudospin space of
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upper and lower surfaces, and τ+ = τx + iτ y, τ− = τx − iτ y. The k⊥ is the momentum in

x, y directions. The i and 2j, 2j + 1 label different topological insulator layers. The Hamil-

tonian (39) can describe the periodic structure of topological insulators stacked together

with normal insulators NI and NI′ in between, separating the topological insulators. The

bzσ
z + bxσ

x term in (39) describes spin splitting of the surface states, that can be induced

by doping each TI layer with magnetic impurities. ∆s describes the tunneling between the

two surfaces of the same topological insulator. ∆1 and ∆2 describe the tunneling between

the surfaces of two nearby topological insulators through the material in the middle, which

are the NI and NI′ respectively. The ∆1 and ∆2 parameters have different sizes, and can be

the same under the limit ∆2/∆1 → 1. The spacing of the periodic structure is d, and the

total number of the periodic units is N. The parameters for TI materials are surface Fermi

velocity vF , bz , bx and tunneling ∆s. The parameters for NI materials are the tunnelings

∆1,∆2. The bzσ
z + bxσ

x is a time-reversal symmetry breaking term.

There are several differences between the configurations here and the configurations in

previous discussion.13,14 In the configurations there,13,14 there are two structures, the topo-

logical insulator and normal insulator in each unit. Here, there are four structures in each

periodic unit, the TI, NI, TI, NI′. Here, we turn on the magnetic term in both z and x

directions.

Making a Fourier transformation along the z direction,

c†k⊥,l =
1√
N

∑

kz

c†ke
−ikzld, (40)

where N is the total number of the periodic units, the 3D momentum-space Hamiltonian is

a 8× 8 Hamiltonian,

H =
∑

k

c†kH(k)ck, (41)

H(k) =














ε+bzσ
z+bxσ

x ∆sIσ 0 ∆2e
ikzdIσ

∆sIσ −ε+ bzσ
z+bxσ

x ∆1Iσ 0

0 ∆1Iσ ε+bzσ
z+bxσ

x ∆sIσ

∆2e
−ikzdIσ 0 ∆sIσ −ε+ bzσ

z+bxσ
x















, (42)

where ε = ~vF (ẑ×σ)·k. The Hamiltonian here is 8 × 8. Because another su(2) ρ-space is
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introduced when ∆2 6= ∆1, the Hamiltonian is enlarged from 4× 4 to 8× 8.

We introduce a su(2) space, ρ-space, where ρx, ρy, ρz are Pauli matrices. The Hamiltonian

can be expressed as

H(k) = [~vF τ
z ⊗ (ẑ × σ) · k+∆sτ

x ⊗ Iσ + Iτ ⊗ (bzσ
z + bxσ

x)]⊗ Iρ

+
1

2
[τ+∆1 + τ−∆2e

ikzd]ρ+
1

2
⊗ Iσ +

1

2
[τ−∆1 + τ+∆2e

−ikzd]ρ−
1

2
⊗ Iσ, (43)

where ρ+ = ρx + iρy, ρ− = ρx − iρy, and Iρ is the identity in ρ-space.

In the special case, when bx = 0, making the transformation τ± → τ±σz, σ± → σ±τ z, we

find

H(k) = [~vF (ẑ × σ) · k + bzσ
z] Iτ ⊗ Iρ + σzΣ, (44)

Σ = [∆sτ
x ⊗ Iρ +

1

2
τ+(∆1ρ

+ +∆2e
−ikzdρ−)

1

2
+

1

2
τ−(∆1ρ

− +∆2e
ikzdρ+)

1

2
]. (45)

Σ does not contain σ, but only τ , ρ operators, so it commutes with

[~vF (ẑ × σ) · k+ bzσ
z] Iτ⊗Iρ, and commutes with the Hamiltonian, we can replace it

by its eigenvalues, Σ±. We find

±Σ± =

±
(

1

2
(∆2

1 +∆2
2) + ∆2

s ∓
√

1

4
(∆2

1 −∆2
2)

2 + (∆2
1 +∆2

2)∆
2
s + 2∆2

s∆1∆2 cos(kzd)

) 1

2

,(46)

and

H±± = ~vF (ẑ × σ) · k+ bzσ
z ± Σ±σ

z. (47)

The first ± and second ± subscripts in H±± in (47) denote the ± in front of Σ±, and the

subscript of Σ±, respectively.

The energy eigenvalues are

E = ±
√

~2v2Fk
2
⊥ + (bz ± Σ±)2, (48)

where ±Σ± is in (46).

The Weyl node happens at, for example, when bz−Σ− = 0. For simplicity, we now denote

bz as b. The locations are

kz =
2π

d
± k0, (49)

k0 =
2

d
arccos(∓ 1

2
√
∆1∆2∆s

[b4 − 2(∆2
1 +∆2

2 + 2∆2
s)b

2 + 4(∆1∆2 +∆2
s)

2]
1

2 ). (50)
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This state is very similar to a wave-packet of electrons whose kz centers around the particular

value 2π
d
± k0. In this situation, the Weyl nodes are centered around (kx, ky, kz) = (0, 0, 2π

d
±

k0). So this means that the material only allows the transmission of the state with prescribed

range of momentum. The limit ∆2/∆1 → 1 reduces to previous discussion,13,14 in which case

both ∆1,∆2 equal to ∆d.

The expansion around the band touching point bz − Σ− = 0 gives

H−− = ~vF (ẑ × σ) · k± ~v0kzσ
z (51)

= ~vF (σ
xky − σykx)± ~v0σ

zkz (52)

where we redefined kz − (2π
d
− k0) → kz, and where

~v0 =
∆2

s∆1∆2
d
2b
sin(k0d)

∆2
s − b2 + 1

2
(∆2

1 +∆2
2)
. (53)

Near the Weyl points, the dispersion is

E(k) = ±~

√

v2F (k
2
x + k2y) + v20k

2
z . (54)

This is a Weyl fermion in three spatial dimensions, as described in (52). This Weyl fermion

is half of the components of a Dirac fermion. These Weyl fermions come in pairs, around

kz =2π
d

± k0. The two Weyl fermions are separated in the k space and have opposite

helicities. The heterostructure of topological insulators and normal insulators thus become

Weyl semimetals.

If ∆2/∆1 → 1, the above reduces to

Σ± =

√

∆2
1 +∆2

s ∓ 2∆s∆1 cos(
1

2
kzd), (55)

The branches with different signs can be understood as a phase shift in 1
2
kzd → 1

2
kzd+π. The

period when ∆2 6= ∆1 is 2π
d
, and when ∆2/∆1 → 1 is enhanced to 4π

d
= 2π

d/2
. When taking

the ∆2/∆1 → 1 limit, ∆1 = ∆2 = ∆d,

∆2
1 +∆2

s − b2 = 2∆s∆1 cos(
1

2
k0d), (56)

~v0 = ∆s∆1
d

2b
sin(

1

2
k0d) (57)

which reduces to previous discussion13,14 in the ∆2/∆1 → 1 limit.
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When we tune the parameters b or the tunnelings, the band touching occurred and the

transition13 between insulators and Weyl semimetals is closely related to the topology change

of the band structure on the parameter space.

There is another limit ∆2/∆1 → 0 limit, in which the tunneling across the NI′ material

is taken to zero, so this is the limit when there is TI/NI/TI heterojunction.

The doping with magnetic impurities can be experimentally performed in, for example,16

by for example Mn doped Bi2Se3. These heterostructures can be experimentally made by

using topological insulator thin films, which have been demonstrated in experiments.17

These models of Weyl semimetals have bulk gapless modes at particular momentum

vectors, near the above Weyl nodes, and these modes with the particular momentum vectors

near the Weyl nodes conduct electric current as well as thermal current. These materials

have electrical conductivity and thermal conductivity which can be measured and useful.

VI. HETEROSTRUCTURE OF TI/SC/TI/SC′

One can also replace the normal insulator materials discussed in the last section with

superconductors (SC), and consider TI/SC/TI/SC′ heterostructures. One can also consider

the model by changing the NI to superconductor (SC), and construct the model corre-

sponding to TI/SC/TI/SC′ heterostructure. The superconductors can introduce couplings

between opposite spins within the same surfaces (for both upper surface and lower surface),

|∆|eiϕc†k↑c
†
−k↓+h.c.. The parameters for SC and SC′ are slightly different.

Now the Hamiltonian is further enlarged by a κ-space. The su(2) κ-space is due to

particle-hole symmetry. The size or dimension of the state vector is doubled due to particle-

hole symmetry. The periodic TI/SC model has been considered.15 The surface Hamiltonian

of each surface is further perturbed by a superconducting pairing term.

We again transform the Hamiltonian to momentum space via (40). We then make the

transformation τ± → τ±σz, σ± → σ±τ z. The size of the Hamiltonian is 16 × 16. For

TI/SC/TI/SC′ heterostructure, the model Hamiltonian in momentum space is

H =
∑

k;̂ı,̂=±,±

c†kı̂Hı̂̂ck̂ +
∑

k;̂ı=̂=±,±

(|∆|eiϕc†kı̂↑c
†
−k̂↓ + h.c.) (58)

where the second term is superconducting pairing term with ∆ = |∆|eiϕ. Hı̂̂ is the Hamil-

tonian without adding the superconducting term, and ı̂, ̂ denote four blocks corresponding
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to ±,± in (47).

These four eigenvalues of Hı̂̂ correspond to sectors of τ z, ρz = ±1,±1,

H±± = ~vF (ẑ × σ) · k+ (bz ± Σ±)σ
z (59)

with the eigenvalues

(bz ± Σ±)

= b±
(

1

2
(∆2

1 +∆2
2) + ∆2

s ∓
√

1

4
(∆1 −∆2)2 + (∆2

1 +∆2
2)∆

2
s + 2∆2

s∆1∆2 cos(kzd)

) 1

2

.

(60)

When adding the superconducting term, the 4× 4 Hamiltonians are

H∆
i=±± =

1

2

∑

k

ψ†
k,i(~vF (ẑ × σ) · k Iκ + σz[(bz ± Σ±)Iκ +

1

2
(|∆|eiϕκ+ + |∆|e−iϕκ−)])ψk,i

(61)

where the basis is ψk,i = (cki↑, cki↓, c
†
−ki↓, c

†
−ki↑), i = (±,±). The superscript ∆ in H∆

i=±±

denotes including the superconducting term. The first ± and second ± subscripts in H∆
i=±±

in (61) denote τ z, ρz = ±1,±1. There are four blocks corresponding to (±,±). The bzσ
z term

is a deformation of the quadratic term, and is due to the doping of magnetic impurities in

the TI. κx, κy, κz are Pauli matrices, and κ+ = κx+ iκy, κ− = κx− iκy. The superconducting
term was from a quartic term, and after a mean field treatment it becomes a quadratic term

in the Hamiltonian.

For example, for τ z, ρz = −1,−1,

H∆
−− =

1

2

∑

k

ψ†
k,−−(~vF (ẑ × σ) · k Iκ + σz[(bz − Σ−)Iκ +

1

2
(|∆|eiϕκ+ + |∆|e−iϕκ−)])ψk,−−.

(62)

In the matrix form in κ-space,

H∆
i=±±(k) =





[~vF (ẑ × σ) · k+ (bz ± Σ±)σ
z] |∆|eiϕσz

|∆|e−iϕσz [~vF (ẑ × σ) · k+ (bz ± Σ±)σ
z]



 . (63)

The Hamiltonian in (63) can be diagonalized in κ-space. When it is diagonalized in

κ-space, this is given by a transformation

H =
1

2

∑

k;i,j=(±,±)

ψ̃
†

i,kH
∆
ij ψ̃j,k, (64)
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with the basis of state vector

(ψ̃+,k, ψ̃
†

+,(−k), ψ̃−,k, ψ̃
†

−,(−k)),

where15

ψ̃+,k =
1√
2
e−

1

2
iϕcki↑ +

1√
2
e

1

2
iϕc†−ki↓, (65)

ψ̃−,k = − i√
2
e−

1

2
iϕcki↑ +

i√
2
e

1

2
iϕc†−ki↓, (66)

It can again be diagonalized in κ-space. For τ z, ρz = −1,−1, for κz = ±1,

H∆±
−− = ~vF (ẑ × σ) · k+ σz(bz − Σ− ± |∆|), (67)

where the superscript ± in H∆±
−− denotes κz = ±1, and ±|∆| in (67) correspond to κz = ±1.

Similarly for the four sectors τ z, ρz = ±1,±1,

H∆±
±± = ~vF (ẑ × σ) · k+ σz(bz ± Σ± ± |∆|). (68)

|∆| effectively shifts bz ± Ξ±. The eigenvalue is

E(k) = ±
√

~2v2Fk
2
⊥ + (bz ± Σ± ± |∆|)2. (69)

where bz ± Σ± are in (60).

The Bogoliubov-Weyl nodes near the band touching points are located at for example

bz − Σ± ± |∆| = 0. For bz − Σ− ± |∆| = 0, they are

kz =
2π

d
± k∆0 , (70)

k∆0 =
2

d
arccos(∓ 1

2
√
∆1∆2∆s

[(b± |∆|)4 − 2(∆2
1 +∆2

2 + 2∆2
s)(b± |∆|)2 + 4(∆1∆2 +∆2

s)
2]

1

2 )

(71)

and the Fermi velocity is

~v0 =
∆2

s∆1∆2
d
2b
sin(k0d)

∆2
s − (b± |∆|)2 + 1

2
(∆2

1 +∆2
2)
. (72)

We have thus found the energy eigenvalues, the locations of Weyl nodes, and the Fermi

velocity near the node.

Interestingly, Weyl superconducting phases can also be realized by triplet pairing

phases.18,19
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VII. OTHER RELEVANT MATERIALS AND DISCUSSION

The su(2) geometric phase with two Chern numbers may occur also in other condensed

matter systems or atomic and molecular systems. There are related discussions in other

possible situations.20–22 The Semiconductor model includes at least light hole (LH) and heavy

hole (HH) bands. If both LH and HH are doubly degenerate, they can also exhibit su(2)

geometric phases with two Chern numbers, in the d-space. There are related discussions20,21

to these aspects. It is possible to exhibit general value of Chern numbers, by for example

multilayer heterostructures of particular semiconductors.

The cold atomic system with cold atom of a larger total angular momentum of F = 3/2,

can also exhibit su(2) geometric phase in the parameter space of paring condensates, for

example.22 It may also be relevant to Interpenetrating Lattices of two optical lattices of cold

atom systems.

It may be interesting to see whether these fibrations can be realized concretely in these

experimental settings.
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