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Abstract. Registration, which aims to find an optimal 1-1 correspondence between shapes, is
an important process in different research areas. Conformal mappings have been widely used to
obtain a diffeomorphism between shapes that minimizes angular distortion. Conformal registrations
are beneficial since it preserves the local geometry well. However, when landmark constraints are
enforced, conformal mappings generally do not exist. This motivates us to look for a unique landmark
matching quasi-conformal registration, which minimizes the conformality distortion. Under suitable
condition on the landmark constraints, a unique diffeomporphism, called the Teichmüller extremal
mapping between two surfaces can be obtained, which minimizes the maximal conformality distortion.
In this paper, we propose an efficient iterative algorithm, called the Quasi-conformal (QC) iterations,
to compute the Teichmüller mapping. The basic idea is to represent the set of diffeomorphisms
using Beltrami coefficients (BCs), and look for an optimal BC associated to the desired Teichmüller
mapping. The associated diffeomorphism can be efficiently reconstructed from the optimal BC
using the Linear Beltrami Solver(LBS). Using BCs to represent diffeomorphisms guarantees the
diffeomorphic property of the registration. Using our proposed method, the Teichmüller mapping can
be accurately and efficiently computed within 10 seconds. The obtained registration is guaranteed
to be bijective. The proposed algorithm can also be extended to compute Teichmüller mapping
with soft landmark constraints. We applied the proposed algorithm to real applications, such as
brain landmark matching registration, constrained texture mapping and human face registration.
Experimental results shows that our method is both effective and efficient in computing a non-
overlap landmark matching registration with least amount of conformality distortion.

Key words. Teichmüller extremal mapping, quasi-conformal mapping, Beltrami coefficient,
Linear Beltrami Solver, Landmark matching registration

1. Introduction. Registration refers to the process of finding an optimal one-
to-one correspondence between images or surfaces. It has been extensively applied
to different areas such as medical imaging, computer graphics and computer visions.
For example, in medical imaging, registration is always needed for statistical shape
analysis, morphometry and processing of signals on brain surfaces (e.g., denoising
or filtering). While in computer graphics, surface registration is needed for texture
mapping, which align each vertex to a position of the texture image, to improve the
visualization of the surface mesh. Developing an effective algorithm for registration
is therefore very important.

Conformal mappings have been widely used to obtain smooth 1-1 correspondences
between different domains that minimize angular distortions. Conformal mappings
are advantageous since it preserves the local geometry well. According to the con-
formal geometry, given two simply-connected domains, there always exists a unique
conformal mapping between them up to a Mobiüs transformation. However, the exis-
tence of conformal mappings cannot be guaranteed in general situations. For example,
conformal mapping between two multiply-connected domains usually does not exist.
Besides, in practical situation, obtaining a registration that matches landmark fea-
tures consistently are often required. When landmark constraints are enforced, the
existence of conformal mappings cannot be guaranteed. This motivates us to look for a
unique landmark-matching registration, which minimizes the conformality distortion
as much as possible.

Under suitable conditions on the landmark constraints, there exists a unique
quasi-conformal mapping, called the Teichmüller extremal mapping, which minimizes
the maximal conformality distortion. To compute this Teichmüller mapping, we pro-
pose in this paper an efficient and effective iterative algorithm, which is called the
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Quasi-conformal (QC) iterations. The basic idea is to represent the set of diffeomor-
phisms using Beltrami coefficients (BCs), and look for an optimal BC associated to
the desired Teichmüller mapping. The associated diffeomorphism can be efficiently
reconstructed from the optimal BC using the Linear Beltrami Solver(LBS). Given a
set of landmark constraints, the algorithm is able to determine an optimal 1-1 cor-
respondence (including the boundary correspondence in the case of open surfaces)
between shapes automatically, which minimizes the conformality distortion. Besides,
the proposed algorithm can also compute extremal mapping with soft landmark con-
straints. It becomes necessary when landmark features cannot be accurately located,
and hence it is better to compute registration with landmarks approximately (but
not exactly) matched. Another major advantage of using Teichmüller mappings for
landmark matching registrations is that the bijectity (1-1, onto) of the registrations
can be guaranteed. Obtaining a bijective landmark matching registration is gener-
ally difficult, especially when a large number of landmark constraints are enforced.
Using our proposed method, a bijective Teichmüller mapping can be accurately and
efficiently computed within 10 seconds. To test the effectiveness of our method, we
applied the proposed algorithm to real applications, such as brain registration, con-
strained texture mapping and human face registration. Experimental results shows
that our method is both effective and efficient in computing a non-overlap landmark
matching registration with least conformality distortion.

In short, the contributions of this paper are three-folded. Firstly, we propose an
efficient algorithm for obtaining the unique Teichmüller extremal mapping between
shapes with landmark constraints enforced. The mapping is guaranteed to be bi-
jective and minimizes the maximal conformality distortion. Secondly, we propose
an algorithm to compute Teichmüller extremal mapping with soft landmark con-
straints. Landmarks are not exactly matched, but less conformality distortion will be
introduced. Thirdly, we apply the proposed algorithms to real applications, namely,
constrained texture mapping, medical image registration and human face registration.

2. Previous work. In this section, we will introduce some previous works closely
related to our paper.

Surface parameterization and registration have been extensively studied, for which
different kinds of bijective surface maps have been proposed. Conformal registration,
which minimizes angular distortion, have been widely used to obtain a smooth 1-1
correspondence between surfaces [6, 7, 9, 3, 11, 8]. For example, Hurdal et al. [11] pro-
posed to compute the conformal parameterizations using circle packing and applied it
to registration of human brains. Gu et al. [7, 9, 8] proposed to compute the conformal
parameterizations of Riemann surfaces for registration using harmonic energy mini-
mization and holomorphic 1-forms. Later, the authors proposed the curvature flow
method to compute conformal parameterizations of high-genus surfaces onto their
universal covering spaces [32, 33, 34]. Conformal registration is advantageous for it
preserves the local geometry well.

Sometimes, deformations between objects might not not conformal. Instead, cer-
tain amount of angular distortion could be introduced. To tackle with this situation,
quasi-conformal mappings are proposed to obtain smooth 1-1 correspondence with
bounded conformality distortion. Lui et al. [18] proposes to compute quasi-conformal
registration between hippocampal surfaces which matches geometric quantities (such
as curvatures) as much as possible. A method called the Beltrami Holomorphic flow
is used to obtain the optimal Beltrami coefficient associated to the registration [17].
Beltrami coefficient has been applied to represent general surface homeomorphisms,
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which is comparatively easier to manipulate than 3D coordinate functions. Using
Beltrami representation, compression of surface maps has been proposed [16], which
can be applied for video compression [20]. Wei et al. [31] also proposes to compute
quasi-conformal mapping for feature matching face registration. The Beltrami coef-
ficient associated to a landmark points matching parameterization is approximated.
However, either exact landmark matching or the bijectivity of the mapping cannot
be guaranteed, especially when very large deformations occur. In order to compute
quasi-conformal mapping from the Beltrami coefficients effectively. Quasi-Yamabe
method is introduced, which applies the curvature flow method to compute the quasi-
conformal mapping [19]. The algorithm can deal with surfaces with general topolo-
gies. Later, quasi-conformal mapping, which minimizes the conformality distortion,
has been studied. Zorin et al. [36] proposes an algorithm to compute the extremal
quasi-conformal mapping between connected domains with given Dirichlet condition
defined on the whole boundaries. The extremal mapping is obtained by minimizing
a least square Beltrami energy, which is non-convex. The algorithm can obtain an
extremal mapping when initialization is carefully chosen. However, the convergence
to the global minimum cannot be guaranteed.

Most of the above registration algorithms using conformal and quasi-conformal
mappings cannot match feature landmarks, such as sulcal landmarks on the human
brains, consistently. To alleviate this issue, landmark-matching registration algo-
rithms are proposed by various research groups. Wang et al. [12, 15, 13, 14, 10, 35]
proposed to compute the optimized conformal parameterizations of brain surfaces by
minimizing a compounded energy [12, 15]. The obtained registration can obtain an
optimized conformal map that better aligns the features, however, landmarks cannot
be exactly matched. Besides, bijectivity cannot be ensured when large number of
landmark constraints are enforced. To solve this problem, smooth vector field has
also been applied to obtain surface registration. Lui et al. [13, 14] proposed the use
of vector fields to represent surface maps and reconstruct them through integral flow
equations. They obtained shape-based landmark matching harmonic maps by look-
ing for the best vector fields minimizing a shape energy. The use of vector fields to
compute the registration makes optimization easier, although it cannot describe all
surface maps. An advantage of this method is that exact landmark matching can be
guaranteed. Time dependent vector fields can also be used. For example, Joshi et
al. [10] proposed the generation of large deformation diffeomorphisms for landmark
point matching, where the registrations are generated as solutions to the transport
equation of time dependent vector fields. The time dependent vector fields facilitate
the optimization procedure, although it may not be a good representation of surface
maps since it requires more memory. The computational cost of the algorithm is also
expensive.

3. Mathematical Background. In this section, we describe some basic math-
ematical concepts related to our algorithms. For details, we refer the readers to
[5, 21, 22].

A surface S with a conformal structure is called a Riemann surface. Given two
Riemann surfaces M and N , a map f : M → N is conformal if it preserves the
surface metric up to a multiplicative factor called the conformal factor. An immediate
consequence is that every conformal map preserves angles. With the angle-preserving
property, a conformal map effectively preserves the local geometry of the surface
structure.

A generalization of conformal maps is the quasi-conformal maps, which are ori-
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Fig. 2.1. (A) shows a human face with circle packing texture. Under the conformal param-
eterization, infinitesimal circles are mapped to circles as shown in (B). Under quasi-conformal
parameterization, infinitesimal circles are mapped to ellipse as shown in (C). (D) illustrates how
the Beltrami coefficient measure the conformality distortion of a quasi-conformal map.

entation preserving homeomorphisms between Riemann surfaces with bounded con-
formality distortion, in the sense that their first order approximations takes small
circles to small ellipses of bounded eccentricity [5]. Mathematically, f : C → C is
quasi-conformal provided that it satisfies the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
. (3.1)

for some complex valued function µ satisfying ||µ||∞ < 1. µ is called the Beltrami
coefficient, which is a measure of non-conformality. In particular, the map f is con-
formal around a small neighborhood of p when µ(p) = 0. Infinitesimally, around a
point p, f may be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(3.2)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter
domain, f may be considered as a map composed of a translation to f(p) together
with a stretch map S(z) = z + µ(p)z, which is postcomposed by a multiplication of
fz(p), which is conformal. All the conformal distortion of S(z) is caused by µ(p).
S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p),
we can determine the angles of the directions of maximal magnification and shrinking
and the amount of them as well. Specifically, the angle of maximal magnification
is arg(µ(p))/2 with magnifying factor 1 + |µ(p)|; The angle of maximal shrinking is
the orthogonal angle (arg(µ(p)) − π)/2 with shrinking factor 1 − |µ(p)|. Thus, the
Beltrami coefficient µ gives us all the information about the properties of the map
(See Figure 3.3(D)).

The maximal dilation of φ is given by:

K(φ) =
1 + ||µφ||∞
1− ||µφ||∞

. (3.3)

Let f = u+
√
−1v. From the Beltrami equation (3.1),

µ(f) =
(ux − vy) +

√
−1 (vx + uy)

(ux + vy) +
√
−1(vx − uy)

(3.4)
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Fig. 3.1. Illustration of how Beltrami differential is defined on general Riemann surfaces.

Fig. 3.2. Illustration of quasi-conformal mapping between Riemann surfaces.

Let µ(f) = ρ+
√
−1 τ . We can write vx and vy as linear combinations of ux and

uy,

−vy = α1ux + α2uy;

vx = α2ux + α3uy.
(3.5)

where α1 =
(ρ−1)2+τ2

T

1−ρ2−τ2 ; α2 = − 2τ
1−ρ2−τ2 ; α3 = 1+2ρ+ρ2+τ2

1−ρ2−τ2 .
Similarly,

−uy = α1vx + α2vy;

ux = α2vx + α3vy.
(3.6)

Since ∇ ·
(
−vy
vx

)
= 0, we obtain

∇ ·
(
A

(
ux
uy

))
= 0 and ∇ ·

(
A

(
vx
vy

))
= 0 (3.7)
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Quasiconformal mapping between two Riemann surfaces R1 and R2 can also be
defined. Instead of the Beltrami coefficient, the Beltrami differential has to be used.

A Beltrami differential µ(z)dzdz on the Riemann surface R1 is an assignment to each
chart (Uα, φα) of an L∞ complex-valued function µα, defined on local parameter zα
such that

µα(zα)
dzα
dzα

= µβ(zβ)
dzβ
dzβ

, (3.8)

on the domain which is also covered by another chart (Uβ , φβ), where
dzβ
dzα

= d
dzα

φαβ
and φαβ = φβ ◦ φ−1α (See Figure 3.1).

An orientation preserving diffeomorphism f : R1 → R2 is called quasi-conformal

associated with µ(z)dzdz if for any chart (Uα, φα) on R1 and any chart (Vβ , ψβ) on R2,

the mapping fαβ := ψβ ◦ f ◦ f−1α is quasi-conformal associated with µα(zα)dzαdzα
(See

Figure 3.2.
Now, suppose R1 and R2 are open Riemann surfaces with the same topology. The

boundary dilation K1[φ] of φ is the infimum of the maximal dilation of ψ|U over all
quasi-conformal maps ψ isotopic to φ relative to the boundary and all neighborhoods
U of ∂R1.

In case R1 and R2 are simply-connected, conformal mapping between R1 and R2

always exists. However, conformal mapping may not exist between multiply-connected
domains. For example, there is generally no conformal mapping between two annuli
with different radii of inner circles. One might be interested in investigating extremal
quasiconformal mappings, which is extremal in the sense of minimizing the || · ||∞ over
all Beltrami differentials corresponding to quasi-conformal mappings between R1 and
R2. Extremal mapping always exists but need not be unique. More specifically, an
extremal quasi-conformal mapping can be defined mathematically as follows:

Definition 3.1. Let f : R1 → R2 be a quasi-conformal mapping between R1 and R2.
f is said to be an extremal mapping if for any quasi-conformal mapping h : R1 → R2

isotopic to φ relative to the boundary,

K(φ) ≤ K(ψ) (3.9)

It is uniquely extremal if the inequality (3.9) is strict.

Another kind of mapping, called the Teichmüller mapping, is closely related to
extremal mapping. Teichmüller mapping is defined as follows:

Definition 3.2. Let f : R1 → R2 be a quasi-conformal mapping. f is said to be a
Teichmüller mapping associated with ϕ : R1 → C if its associated Beltrami coefficient
is of the form:

µ(f) = k
ϕ

|ϕ|
(3.10)

for some constant k < 1 and ϕ 6= 0.

Extremal mapping is not unique for general cases. However, a Teichmüller map-
ping associated with a holomorphic function is the unique extremal mapping in its ho-
motopic class. The Strebel’s theorem explains the relationship bewtween Teichmüller
mapping and extremal mapping.
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Fig. 3.3. Difference between a general QC map and a Teichmüller map. (A) shows the original
textured mesh. It is mapped to another disk by a general QC map. Note that the distribution of the
norm of BC are spread out. (C) shows the Teichmüller map, whose BC norm is concentrated near
0.4.

Theorem 3.3 (Strebel’s theorem). Let f be an extremal quasi-conformal map-
ping with K(f) > 1. If K1[f ] < K(f), then f is a Teichmuller map associated with an
integrable holomorphic quadratic function on R1. Hence, f is also an unique extremal
mapping.

In particular, Teichmüller mapping and extremal mapping of the unit disk are
closely related.

Theorem 3.4. Let g : ∂D → ∂D be an orientation-preserving homeomorphism
of ∂D. Suppose further that h′(eiθ) 6= 0 and h′′(eiθ) is bounded. Then there is a
Teichmüller mapping f of finite norm that is the uniquely extremal extension of g to
D. That is, f : D→ D is an extremal mapping with f |∂D = g.

In other words, an extremal mapping of the unit disk with suitable boundary
condition is a Teichmüller mapping. It can thus be obtained by searching for an
optimal Beltrami coefficient whose maximal dilatation is the minimum, while its norm
is constant everywhere. It turns out that in most situations, extremal quasi-conformal
mapping is a Teichmüller mapping (even for domains with non-trivial topologies). In
some rare situations when an extremal mapping is not exactly a Teichmüller mapping,
one can get a Teichmüller mapping whose dilation is arbitrarily close to the extremal
dilation.

Theorem 3.5. Let F be a class of quasi-conformal mappings between the open
Riemann surfaces R1 and R2, which are homotopic modulo the boundary. Let K0

be the smallest maximal dilation of the mappings in F. Then there are Teichmüller
mappings in F, associated with a meromorphic function with at most one simple pole,
whose dilation is arbitrarily close to K0.

4. Mathematical Formulation. In this section, we give the mathematical for-
mulation for obtaining the Teichmüller extremal mapping with least conformality
distortion. We propose to use the Beltrami coefficient(BC) to represent the mapping,
instead of the commonly used representations by deformation fields or coordinate
functions. The diffeomorphic property of the registration can then be effectively con-
trolled. Our goal is to formulate the problem into a variational problem to obtain an
optimal BC, µ(f), associated to the desired extremal mapping f .
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Suppose D1 and D2 are two domains in the complex plane with the same topol-
ogy. D1 and D2 can either be simply-connected or multiply-connected. Suppose the
boundary condition of the desired extremal mapping f : D1 → D2 is known. De-
note it by f |∂D1 : ∂D1 → ∂D2 = g. The Teichmüller extremal mapping can be
mathematically described as follows:

∂f

∂z
= k

ϕ

|ϕ|
∂f

∂z
and f |∂D1 = g on ∂D1 (4.1)

for some constant k and holomorphic function ϕ : D1 → C.

Recall that a Teichmüller extremal mapping is extremal in the sense of minimizing
the || · ||∞ over all Beltrami differentials corresponding to quasiconformal mappings
in the Teichmüller equaivalence class. In other words, for any h : D1 → D2 satisfying
h|∂D1 = g, we have

||µ(f)||∞ ≤ ||µ(h)||∞ (4.2)

where µ(f) and µ(h) are the Beltrami coefficient of f and h respectively. Hence, our
original problem (4.1) can be formulated as a variational problem as follows:

f = argminf :D1→D2
E1(f)

:= argminf :D1→D2
{||µ(f)||∞ + ||∇ |µ(f)| ||22}

(4.3)

subject to:

• f |∂D1
= g (boundary condition);

• µ(f) = kϕϕ for some constant k and holomorphic function ϕ : D1 → C.

Theoretically, a diffeomorphism f is associated to a unique smooth BC µ(f) with
||µ(f)||∞ < 1. The Beltrami coefficient µ(f) measures the conformality distortion
of the map f . It can be considered as a unique representation of f . The first term
of the energy functional E1 aims to minimize the maximal conformality distortion
of the mapping. The second term minimizes the harmonic energy of |µ(f)|. Since a
Teichmüller map has a constant norm, minimizing the second term aims to obtain a
optimal BC whose norm is constant.

However, minimizing E1(f) with respect to the space of diffeomorphisms between
D1 and D2 is difficult.

f = argminf{||µ(f)||∞ + ||∇ |µ(f)| ||22}

= argminf ||
∂f/∂z

∂f/∂z
||∞ + ||∇ |∂f/∂z

∂f/∂z
| ||22

(4.4)

subject to f |∂D1 = g and µ(f) = kϕϕ for some constant k and holomorphic function
ϕ : D1 → C.

In order to minimize the above constrained minimization effectively, we propose
to reformulate the energy functional with respect to space of all Beltrami coefficients:

(ν, f) = argminν:D1→CE2(ν)

:= argminν:D1→C{||ν||∞ + ||∇ |ν| ||2}
(4.5)
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subject to:

• ν = µ(f) and ||ν||∞ < 1;
• ν = kϕϕ for some constant k and holomorphic function ϕ : D1 → C;

• f |∂D1
= g (boundary condition).

In other words, the minimization problem (4.3) is reformulated to be optimized
with respect to BCs, which are complex-valued functions defined on D1. Minimizing
the energy functional with respect to BCs is advantageous since the diffeomorphic
property of the mapping can be easily controlled. Every diffeomorphism is associated
to a smooth Beltrami coefficient µ(f). µ(f) measures the bijectivity (1-1 and onto)
of f . In fact, µ(f) is related to the Jacobian J(f) of f by the following formula:

|J(f)|2 = |∂f
∂z
|2(1− |µ(f)|2) (4.6)

Therefore, the map f is bijective if |µ(f)| is everywhere less than 1. When solving
the minimization problem (4.5), the bijectivity of the mapping in each iterations can
be ensured by enforcing ||ν||∞ < 1. Our goal is to look for an optimized smooth BC,
ν, such that its associated quasi-conformal map is our desired Teichmüller extremal
mapping.

The boundary condition in the variational problem (4.5) can be relaxed. The
Dirichlet condition defined on the whole boundary is not required. Also, interior
landmark constraints can be enforced. Our goal is to solve the variational problem
with these landmark constraints, which determine the optimal 1-1 correspondence
(including the boundary correspondence) automatically. In other words, the boundary
condition in the problem (4.5) can be reformulated as:

f(ai) = bi; f(pj) = qj ; for i = 1, ..., n; j = 1, ...,m (4.7)

where ai and bi are corresponding landmark points or curves defined on ∂D1 and
∂D2 respectively; and pj and qj are corresponding interior landmark points of curves
in D1 and D2 respectively. By optimizing the energy functional 4.5, an optimized
Teichmüller extremal mapping can be obtained, which matches landmark features
consistently while minimizing the maximal conformality distortion.

Note also that the above formulation is designed for extremal mapping of 2D con-
nected domains. However, it can easily be extended to simply-connected or multiply-
connected open surfaces. Let S1 and S2 be two connected open surfaces with the
same topology. We can conformally parameterize S1 and S2 by φ1 : S1 → D1 ⊂ C
and φ2 : S2 → D2 ⊂ C respectively. Then the extremal mapping f : S1 → S2 between
S1 and S2 induces an extremal mapping f̃ := φ2 ◦ f ◦ φ−11 : D1 → D2. All the above
formulation applies to f̃ . In other words, the computation of the extremal mapping
between connected surfaces embedded in R3 can be reduced to the computation of
the extremal mapping between the conformal domains in C.

In the subsequent section, we propose an algorithm, called the quasi-conformal
(QC) iteration to solve the above minimization problems (4.5).

5. Main Algorithm. In this section, we describe an iterative scheme, called
the quasi-conformal (QC) iteration, for solving the variational problem (4.5). The
QC iteration is based on the Linear Beltrami Solver(LBS). The LBS will firstly be
explained in detail. QC iteration will then be described.



10 Lok Ming Lui et al.

Practically speaking, 2D domains or surfaces in R3 are usually represented dis-
cretely by triangular meshes. Suppose K1 and K2 are two surface meshes with the
same topology representing S1 and S2. We define the set of vertices on K1 and K2

by V 1 = {v1i }ni=1 and V 2 = {v2i }ni=1 respectively. Similarly, we define the set of tri-
angular faces on K1 and K2 by F 1 = {T 1

j }mj=1 and F 2 = {T 2
j }mj=1. Our goal is to

look for a piecewise linear homeomorphism between K1 and K2 that approximates
the Teichmüller extremal mapping between S1 and S2.

5.1. Linear Beltrami Solver. Our goal is to look for an optimal Beltrami co-
efficient(BC) associated to the desired Teichmüller mapping. Every quasi-conformal
mapping is associated to a unique BC. Given a BC, it is important to have an algo-
rithm to reconstruct the associated quasi-conformal homeomorphism.

Suppose f : K1 → K2 is an orientation preserving piecewise linear homeomor-
phism between K1 and K2. We can assume K1 and K2 are both embedded in R2.
In case K1 and K2 are surface meshes in R3, we first parameterize them conformally
by φ1 : K1 → D1 ⊆ R2 and φ2 : K2 → D2 ⊆ R2. The composition of f with the
conformal parameterizations, f̃ := φ2 ◦ f ◦ φ−11 , is then an orientation preserving
piecewise linear homeomorphism between D1 and D2 embedded in R2. In this paper,
we assume the topology of the surface mesh is either a connected open surface or a
genus-0 closed surface. In other words, the conformal domain Di (i = 1, 2) can either
be a 2D rectangle, unit disk, punctual disk or unit sphere.

To compute the quasi-conformal mapping, the key idea is to discretize Equation
3.7 with two linear systems.

Given a map f = (u +
√
−1v) : K1 → K2, we can easily compute its associated

Beltrami coefficient µf , which is a complex-valued function defined on each triangular
faces of K1. To compute µf , we simply need to approximate the partial derivatives
at every face T . We denote them by Dxf(T ) = Dxu +

√
−1Dxv and Dyf(T ) =

Dyu+
√
−1Dyv respectively. Note that f is piecewise linear. The restriction of f on

each triangular face T can be written as:

f |T (x, y) =

(
aTx+ bT y + rT
cTx+ dT y + sT

)
(5.1)

Hence, Dxu(T ) = aT , Dyu(T ) = bT , Dxv(T ) = cT and Dyv(T ) = dT . Now, the
gradient ∇T f := (Dxf(T ), Dyf(T ))t on each face T can be computed by solving the
linear system: (

~v1 − ~v0
~v2 − ~v0

)
∇T f̃i =

(
f̃i(~v1)−f̃i(~v0)
|~v1−~v0|

f̃i(~v2)−f̃i(~v0)
|~v2−~v0|

)
, (5.2)

where [~v0, ~v1] and [~v0, ~v2] are two edges on T . By solving equation 5.2, aT , bT , cT and
dT can be obtained. The Beltrami coefficient µf (T ) of the triangular face T can then
be computed from the Beltrami equation 3.1 by:

µf (T ) =
(aT − dT ) +

√
−1(cT + bT )

(aT + dT ) +
√
−1(cT − bT )

, (5.3)

Equation 3.5 and 3.6 are both satisfied on every triangular faces. Let µf (T ) =
ρT +

√
−1 τT . The discrete versions of Equation 3.5 and 3.6 can be obtained.

−dT = α1(T )aT + α2(T )bT

cT = α2(T )aT + α3(T )bT
(5.4)
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and

−bT = α1(T )cT + α2(T )dT

aT = α2(T )cT + α3(T )dT
(5.5)

where: α1(T ) =
(ρT−1)2+τ2

T

1−ρ2T−τ2
T

; α2(T ) = − 2τT
1−ρ2T−τ2

T
; α3(T ) =

1+2ρT+ρ
2
T+τ

2
T

1−ρ2T−τ2
T

.

In order to discretize Equation 3.7, we need to introduce the discrete divergence.
The discrete divergence can be defined as follows. Let T = [vi, vj , vk] and wI = f(vI)
where I = i, j or k. Suppose vI = gI +

√
−1 hI and wI = sI +

√
−1 tI (I = i, j, k).

Using equation 5.2, aT , bT , cT and dT can be written as follows:

aT = ATi si +ATj sj +ATk sk; bT = BTi si +BTj sj +BTk sk;

cT = ATi ti +ATj tj +ATk tk; dT = BTi ti +BTj tj +BTk tk;
(5.6)

where:

ATi = (hj − hk)/Area(T ), ATj = (hk − hi)/Area(T ), ATk = (hi − hj)/Area(T );

BTi = (gk − gj)/Area(T ), BTj = (gi − gk)/Area(T ), BTk = (gj − gi)/Area(T );

(5.7)

Suppose ~V = (V1, V2) is a discrete vector field defined on every triangular faces.
For each vertex vi, let Ni be the collection of neighborhood faces attached to vi. We
define the discrete divergence Div of ~V as follows:

Div(~V )(vi) =
∑
T∈Ni

ATi V1(T ) +BTi V2(T ) (5.8)

By careful checking, one can prove that∑
T∈Ni

ATi bT =
∑
T∈Ni

BTi aT ;
∑
T∈Ni

ATi dT =
∑
T∈Ni

BTi cT . (5.9)

This gives,

Div

(
−Dyu
Dxu

)
= 0 and Div

(
−Dyv
Dxv

)
= 0 (5.10)

As a result, Equation (3.7) can be discretized:

Div

(
A

(
Dxu
Dyu

))
= 0 and Div

(
A

(
Dxv
Dyv

))
= 0 (5.11)

where A =

(
α1 α2

α2 α3

)
. This is equivalent to:

∑
T∈Ni

ATi [α1(T )aT + α2(T )bT ] +BTi [α2(T )aT + α3(T )bT ] = 0 (5.12)

∑
T∈Ni

ATi [α1(T )cT + α2(T )dT ] +BTi [α2(T )cT + α3(T )dT ] = 0 (5.13)
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Fig. 5.1. Illustration of how Beltrami representations for homeomorphisms between meshes can
be computed. (A) shows the case of a homeomorphism between simply-connected open meshes. The
two meshes are mapped to a unit square by harmonic parameterizations. (B) shows the case of a
homeomorphism between genus-0 closed surface meshes. The two meshes are parameterized onto a
triangle in R2, after cutting away a triangular face on each mesh.

for all vertices vi ∈ D. Note that aT and bT can be written as a linear combination of
the x-coordinates of the desired quasi-conformal map f . Hence, equation 5.12 gives
us the linear systems to solve for the x-coordinate function of f . Similarly, cT and
dT can also be written as a linear combination of the y-coordinates of the desired
quasi-conformal map f . Therefore, equation 5.13 gives us the linear systems to solve
for the y-coordinate function of f .

Besides, f has to satisfy certain constraints on the boundary. One common
situation is to give the Dirichlet condition on the whole boundary. That is, for any
vb ∈ ∂K1

f(vb) = wb ∈ ∂K2 (5.14)

Note that the Dirichlet condition is not required to be enforced on the whole
boundary. The proposed algorithm also allows free boundary condition. In the case
that K1 and K2 are rectangles, the desired quasi-conformal map should satisfy

f(0) = 0; f(1) = 1 f(i) = i f(1 + i) = 1 + i;

Re(f) = 0 on arc [0, i]; Re(f) = 1 on arc [1, 1 + i];

Imag(f) = 0 on arc [0, 1]; Imag(f) = 1 on arc [i, 1 + i]

(5.15)

When Ki (i = 1, 2) is an unit disk, we can parameterize it onto a domain Di,
which is a triangle with boundary vertices pi0, pi1 and pi2. pi0 is on the y-axis whereas pi1
and pi2 are on the x-axis. This can be done by removing a triangular face at the point 1
and map Ki to the upper half plane using a Mobiüs transformation: ψ(z) =

√
−1 1+z

1−z .
In this case, the desired quasi-conformal map f should satisfy

f(p10) = p20; f(p11) = p21 and Imag(f) = 0 on arc [p10, p
1
1]; (5.16)

When Ki (i = 1, 2) is a genus-0 closed surface mesh, we can again parameterize
it onto a domain Di, which is a triangle with boundary vertices pi0, pi1 and pi2. This
can be done by removing a triangular face at the north pole and map Ki to the 2D
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plane using stereographic projection. In this case, the desired quasi-conformal map f̃
should satisfy

f(p10) = p20; f(p11) = p21 and f(p12) = p22 (5.17)

Suppose landmark correspondences {pi}ni=1 ↔ {qi}ni=1 are enforced, one should
add this constraint to the linear system. Mathematically, it is described as f(pi) = qi
(i = 1, 2, ..., n).

Equations 5.12 and 5.13 together with the above boundary conditions give a non-
singular linear system to solve for f . The linear system is symmetric positive definite.
Hence, it can be solved effectively by the conjugate gradient method. We call this
algorithm the Linear Beltrami Solver(LBS). Given a Beltrami coefficient ν, we denote
the obtained quasi-conformal map from LBS by LBS(ν). If landmark constraints are
enforced, we denote it by LBSLM (ν).

We note that given an arbitrary Beltrami coefficient ν and arbitrary landmark
correspondences, a quasi-conformal mapping associated to ν might not exist. How-
ever, the Linear Beltrami Solver looks for the best quasi-conformal mapping whose
Beltrami coefficient closely resemble to ν.

5.2. Quasi-conformal(QC) iterations. With the Linear Beltrami Solver, one
can easily obtain the best quasi-conformal mapping associated with a given BC. In
order to obtain the extremal mapping f , our goal is to iteratively search for the
optimal BC associated to f . With the optimal BC, the desired extremal mapping f
can be easily reconstructed using the Linear Beltrami Solver.

Recall that our problem of computing the extremal mapping can be converted
into an optimization problem:

(ν, f) = argminν:D1→C{||ν||∞ + ||∇ν||2} (5.18)

subject to: (1) ν = µ(f) and ||ν||∞ < 1; (2) ν = kϕϕ for some constant k and

holomorphic function ϕ : D1 → C; and (3) f satisfies certain boundary condition
and/or landmark constraints. Note that the boundary condition in (3) can either be a
Dirichlet condition defined on the whole boundary or free boundary condition. In this
subsection, we introduce the Quasi-conformal(QC) iteration to solve the optimization
problem.

The QC iteration starts with an initial map f0 : D1 → D2 satisfying the given
boundary condition and landmark constraints. The initial map is chosen to be the
quasi-conformal mapping obtained from LBS associated to the BC µ0 = 0. In other
words,

f0 = LBSLM (µ0 := 0) (5.19)

Note that with the enforced landmark constraints, the Beltrami coefficient asso-
ciated to f0 might not be equal to ν0. The Linear Beltrami Solver simply look for
the best quasi-conformal mapping whose Beltrami coefficient resemble to ν as much
as possible. Let ν0 be the Beltrami coefficient associated to f0. This gives us a pair
(f0, ν0), for which ν0 = µ(f0).

Now, in order to minimize the energy function E2 satisfying condition (2), we
propose to perform a Laplace smooth L and averaging A on ν0. The Laplace smooth
L, which aims to minimize E2, is given by the following:

L(ν0)(T ) :=
∑

Ti∈Nbhd(T )

ν0(T ) /|Nbhd(T )| (5.20)
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where T is a triangular face of K1, Nbhd(T ) is the set of neighborhood faces of T
and |Nbhd(T )| is the number of neighborhood faces in the set Nbhd(T ). Set µ̃1(T ) =
L(ν0)(T ).

The averaging operator A is defined as follows:

µ1(T ) = A(µ̃1)(T ) := (

∑
T∈ all faces of K1

|µ̃1|(T )

No. of faces of K1
)
µ̃1(T )

|µ̃1(T )|
(5.21)

A aims to obtain an optimal ν satisfying the condition (3) in the optimization problem.
An updated quasi-conformal, f1 can then be obtained by LBS: f1 = LBSLM (µ1). And
an updated Beltrami coefficient, ν1 := µ(f1), can be computed. Thus, we get a new
pair (f1, ν1).

The procedure continues until the iteration converges. More specifically, given
the pair (fn, νn) obtained at the n iteration, we can obtain a new pair (fn+1, νn+1)
as follows:

µn+1 := A(L(νn));

fn+1 := LBSLM (µn+1);

νn+1 := µ(fn+1).

(5.22)

Consequently, we get a sequence of pair (fn, νn), which converges to the optimal
Beltrami coefficient associated to the extremal mapping or optimized Teichmüller
mapping. In practice, we stop the iteration when ||νn+1 − νn|| < ε.

We summarize the QC iteration as follows.

Algorithm 5.1 : (QC iteration for open surfaces)
Input : Triangular meshes: K1 and K2 and the desired boundary condition
Output : Optimal Beltrami coefficient ν and the extremal mapping f

1. Obtain the initial mapping f0 = LBSLM (µ0 := 0). Set ν0 = µ(f0);
2. Given νn, compute µn+1 := A(L(νn)); Compute fn+1 := LBSLM (µn+1) and

set νn+1 := µ(fn+1);
3. If ||νn+1 − νn|| ≥ ε, continue. Otherwise, stop the iteration.

The QC iteration can also be applied to the case when Di (i = 1, 2) is a unit
sphere. In other words, given a set of landmark constraints between the unit sphere,
our goal is to look for the Teichmüller extremal mapping f : D1 → D2. However,
special attention has to be paid in this case.

Denote the landmark correspondence by {pi}ni=1 ↔ {qi}ni=1. We can assume that
the north pole is fixed. If not, it can also be achieved by a Mobiüs transformation.
The LBS can be applied to unit spheres, by stereographically projecting Di onto a
big triangles in R2. However, numerical error near the north pole is inevitable. We
therefore propose an alternating scheme to fix this problem.

For the initial map, we add the vertices near the north pole {nj}mj=1 (z > 0.99) as
landmarks and fix all {nj}mj=1. We then compute the Teichmüller mapping f0 using
Algorithm 5.1. Numerical error will be introduced near the north pole. To fix it, in
our next step, we consider the vertices {sj}mj=1 near the south pole (z < −0.99) as
landmarks. The correspondence is given by: sj ↔ f1(sj). Rotate the south pole of Di

to the north pole by a Mobiüs transformation. We can again compute the Teichmüller
mapping f1 using Algorithm 5.1.

We continue this process until the iteration converges. More specifically, at the
n iteration where n is an even integer, we add vertices {sj}mj=1 around south pole
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Fig. 5.2. Example of the Teichmüller extremal mapping of the disk with fixed Dirichlet boundary
condition. (A) shows the boundary condition. (B) shows the energy and the sup-norm of the BC in
the QC iteration. (C) shows the obtained extremal mapping, visualized using the texture mapping.
(D) shows the histogram of the BC norm.

as landmarks. Set correspondence as: sj ↔ fn(sj). Rotate the south pole of Di to
the north pole by a Mobiüs transformation, and obtain the Teichmüller mapping fn+1

using Algorithm 5.1. When n is an odd integer, we add vertices {nj}mj=1 around north
pole as landmarks. Set correspondence as: nj ↔ fn(nj) and obtain the Teichmüller
mapping fn+1 using Algorithm 5.1. Set νn+1 = µ(fn).

This alternating process between the north pole and the south pole continues
until ||νn+1 − νn|| < ε.

When Di (i = 1, 2) is a unit disk, the LBS would also introduce numerical error
near 1. To fix it, the same alternating algorithm between 1 and -1 can be applied.

The detailed algorithm can be summarized as follows:

Algorithm 5.2 : (QC iteration for genus-0 closed surfaces)
Input : Triangular meshes: K1 and K2 and the desired boundary condition
Output : Optimal Beltrami coefficient ν and the extremal mapping f

1. Add vertices around north pole as landmarks and fix their positions. Obtain
the initial Teichmüller mapping f0 using Algorithm 5.1. Set ν0 = µ(f0);

2. Given fn and νn. When n is even, add vertices {sj}mj=1 around south pole
as landmarks. Set correspondence as: sj ↔ fn(sj). Rotate the south pole of
Di to the north pole. When n is odd, add vertices {sj}mj=1 around south pole
as landmarks. Set correspondence as: sj ↔ fn(sj). Obtain the Teichmüller
mapping fn+1 using Algorithm 5.1. Set νn+1 = µ(fn);;

3. If ||νn+1 − νn|| ≥ ε, continue. Otherwise, stop the iteration.

6. Numerical experiments. In this section, we evaluate our proposed algo-
rithm numerically by synthetic examples.
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Fig. 5.3. Another example of the Teichmüller extremal mapping of the disk with fixed Dirichlet
boundary condition. (A) shows the obtained extremal mapping, visualized using the texture mapping.
(B) shows the histogram of the

Fig. 5.4. Teichmüller extremal mapping of the disk with only 8 landmark points constraints
on the boundary. (A) shows the Teichmüller extremal mapping. (B) shows the histogram of the
BC norm. (C) shows the energy and the sup-norm of the BC in the QC iteration. (D) shows the
automatically obtained optimal boundary correspondence. (E) shows the histogram of the BC norm
under harmonic map with arc-length parameterized boundary condition. (F) shows the histogram of
the BC norm under the Teichmüller mapping with arc-length parameterized boundary condition.

6.1. Extremal mapping of simply-connected domains. In our first numer-
ical experiment, we test our method to compute the extremal mapping of the disk
with a given Dirichlet boundary condition. A Dirchlet condition on the whole bound-
ary is given as shown in Figure 5.2(A). Using the QC iteration, we iteratively obtain
the pair (fn, νn = µ(fn)). As shown in Figure 5.2(B), E2(fn, νn), ||νn||∞ and ||∇ν||2
all decrease as iteration increases. The resulting Teichmüller extremal mapping is as
shown in Figure 5.2(C), which is visualized using the texture mapping. Note that the
original texture is deformed under the extremal mapping. However, the dilations of
the ellipses deformed from the small circles are the same. It means the norm of the
BC is constant everywhere. The histogram of the norm of the BC is also shown in
Figure 5.2(D), which again demonstrates the norm of the BC is equal to a constant
k = 0.15016. The standard deviation of the BC norm is 0.0034373. Note that the
Dirichlet boundary condition can be of arbitrary shapes. Figure 5.3 shows the result
of finding the Teichmüller extremal mapping between the disk and the ameba with
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Fig. 6.1. Teichmüller extremal mapping of the annulus with fixed Dirichlet boundary condition.
(A) shows the boundary condition. (B) shows the energy and the sup-norm of the BC in the QC
iteration. (C) shows the obtained extremal mapping, visualized using the texture mapping. (D)
shows the histogram of the BC norm.

Fig. 6.2. Teichmüller extremal mapping of the multiply-connected domain containing three holes
with fixed Dirichlet boundary condition. (A) shows the Teichmüller mapping Dirichlet boundary
condition. (B) shows the histogram of the norm of the BC. (C) shows the energy, the sup-norm of
the BC and the L2 norm of the gradient of the nom of BC in the QC iteration.

given boundary conditions. The resultant norm of BC is also constant everywhere, as
demonstrated in Figure 5.3 (B).

Our algorithm also applies to situation when only a few landmark constraints are
enforced on the boundary (instead of the Dirichlet condition defined on the whole
boundary). In Figure 5.4, we test our algorithm to compute Teichmüller extremal
mapping of the disk with only 8 landmark points constraints on the boundary. (A)
shows the the Teichmüller extremal mapping. Again, the dilations of the ellipses
deformed from the small circles are the same, meaning that the norm of the BC
is constant everywhere. (B) shows the histogram of the BC norm. The norm k
of the BC is equal to 0.201. (C) shows the energy and the sup-norm of the BC
in the QC iteration. Our algorithm also automatically detect the optimal boundary
correspondence. (D) shows the obtained optimal boundary correspondence. (E) shows
the histogram of the BC norm under harmonic map with arc-length correspondence
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Fig. 6.3. Teichmüller extremal mapping of the multiply-connected domain containing six holes
with fixed Dirichlet boundary condition. (A) shows the Teichmüller mapping Dirichlet boundary
condition. (B) shows the histogram of the norm of the BC.

on the boundary. Note that the distribution of the conformality distortion is highly
non-uniform. (F) shows the histogram of the BC norm under the Teichmüller mapping
with arc-length parameterized boundary condition (of which the landmark constraints
are satisfied). Although a Teichmüller mapping can still be obtained, the norm of the
BC is equal to 0.23 which is higher than the case when only 8 points landmark
constraints are enforced. Hence, the obtained Teichmüller mapping is not extremal.

6.2. Extremal mapping of multiply-connected domains. Our method can
also be applied to multiply-connected domain. In Figure 6.1, we test our method
to compute the extremal mapping of an annulus with Dirichlet boundary condition.
The boundary condition is given in (B). Again, the energy functional E2 is decreasing
under the QC iteration. The extremal mapping is as shown in (C). The mapping is a
Teichmüller map, since the BC norm is constant everywhere as shown in (D).

Figure 6.2 and 6.3 show the results of finding the Teichmüller extremal map-
ping with 3 and 6 holes respectively. Figure 6.2 shows the Teichmüller map. The
corresponding BC norm, sup-norm of BC and the L2 norm of the gradient of the
norm of BC are shown in (B) and (C) respectively. Figure 6.3 demonstrates the re-
sult of a more complicated multiply-connected domain having 6 holes. These results
show that our algorithm can again compute the Teichmüller Extremal mapping of
multiply-connected domains efficiently and accurately.

6.3. Optimized Teichmüller mapping with interior landmark constraints.
Our algorithm can compute an optimized Teichmüller mapping with interior landmark
constraints enforced. Figure 6.4 shows the optimized Teichmüller mapping between
the disk with 25 interior landmark constraints enforced. (A) shows the 24 landmark
constraints. (B) shows the obtained Teichmüller mapping, visualized using the tex-
ture mapping. (C) shows the energy, the sup-norm of the BC and the L-2 norm of the
gradient of the BC in the QC iteration. Note that the sup-norm of the BC decreases
during the iteration, which illustrates the mapping converges to an optimal mapping
minimizing the conformality distortion. (D) shows the histogram of the norm of the
BC. The norm k of the BC is uniformly equal to 0.2. (E) shows the histogram of the
norm of BC with arc-length boundary correspondence enforced. The norm k of the
BC is equal to 0.28, which means the Teichmüller mapping is not an extremal one.

We have test our algorithm to compute the optimized Teichmüller mapping of the
disk with 3 interior landmark curves constraints enforced in Figure 6.5. (A) shows
the Teichmüller mapping with 3 landmark curves constraints enforced. (B) shows the
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Fig. 6.4. Teichmüller mapping between the disks with 24 interior landmark constraints enforced.
(A) shows the 24 landmark constraints. (B) shows the Teichmüller mapping. (C) shows the energy,
the sup-norm of the BC and the L-2 norm of the gradient of the BC in the QC iteration. (D)
shows the histogram of the norm of the BC. (E) shows the histogram of the BC norm under the
Teichmüller mapping with arc-length parameterized boundary condition.

energy, the sup-norm of the BC and the L-2 norm of the gradient of the BC in the
QC iteration. The energy is decreasing, indicating that the algorithm converges to
an optimized Teichmüller mapping. (C) shows the histogram of the norm of the BC.
The norm of the BC is accumulated at 0.53.

We also test our algorithm to the case when we only have the correspondence of
the interior landmarks. Figure 6.6 shows an example of finding Teichmüller extremal
mapping with 20 interior landmark points only. (A) shows the constraint of the
feature points. (B) shows the Teichmüller mapping. (C) shows the histogram of the
norm of the BC. It shows that even boundary condition is not provided, our algorithm
can still obtain both the Teichmüller extremal mapping which satisfies the landmark
constraints and the corresponding optimal boundary condition.

Our algorithm also applies to computing the optimized Teichmüller extremal map-
ping between the unit sphere with interior landmark constraints enforced. Figure 6.7
shows an example of Teichmüller extremal mapping with 10 interior landmark con-
straints enforced. (A) shows landmark constraints on the sphere. (B) shows the
Teichmüller mapping. (C) shows the energy, the sup-norm of the BC and the L-2
norm of the gradient of the BC in the QC iteration. Again, the energy is decreasing,
indicating that the algorithm converges to an optimized Teichmüller mapping. (D)
shows the histogram of the norm of the BC. The norm of the BC is concentrated near
0.21, meaning that the mapping is a Teichmüller mapping.

7. Applications. In this section, we apply our proposed algorithms for com-
puting landmark matching Teichmüller mappings to practical problems. More specif-
ically, we will consider the problems of computing brain landmark matching registra-
tions, constrained texture mappings and human face registrations.
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Fig. 6.5. Teichmüller mapping between the disks with 3 interior landmark curves constraints
enforced. (A) shows the Teichmüller mapping with 3 landmark curves constraints enforced. (B)
shows the energy, the sup-norm of the BC and the L-2 norm of the gradient of the BC in the QC
iteration. (C) shows the histogram of the norm of the BC.

Fig. 6.6. Teichmüller mapping between the disks with 20 interior landmark constraints en-
forced. (A) shows the 20 landmark constraints. (B) shows the Teichmüller mapping. (C) shows the
histogram of the norm of the BC.

7.1. Brain landmark matching registration. Landmark-based surface reg-
istrations are commonly applied for finding meaningful 1-1 correspondences between
human brain cortical surfaces. On cortical surfaces, sulcal landmarks can be labeled
either manually by neuroscientists or automatically based on various geometric quanti-
ties. The sulcal landmarks are important anatomical features. It is therefore desirable
to obtain a registration between the cortical surfaces with least geometric distortion,
which matches the sulcal landmarks as much as possible. Our algorithms for com-
puting landmark matching Teichmüller mappings can be applied. In Figure 7.1, we
apply our algorithm to compute the Teichmüller mapping between 2 different brain
surfaces with 3 corresponding landmarks labeled. (A) shows the corresponding sulcal
landmarks, indicated by different colors. (B) shows the obtained Teichmüller extremal
mapping with 3 landmark constraints enforced, visualized by the circle packing tex-
tures. The sulcal landmarks are exactly matched under the mapping. (C) shows the
histogram of the norm of the associated BC. The norm is a constant showing that the
obtained registration is indeed a Teichmüller mapping. We also test the method to
register cortical surfaces with more sulcal landmarks. In Figure 7.2, we compute the
Teichmüller extremal mapping between 2 brain surfaces with 6 corresponding sulcal
landmarks labeled. The obtained registration and the norm of its associated BC is
shown in (B) and (C) respectively. The landmarks are exactly matched. Again, the
norm of the BC is a constant, showing that the obtained registration is a Teichmüller
mapping which minimizes the conformality distortion.

7.2. Constrained texture mapping. Texture mapping is one of the major
photorealistic techniques in computer graphics to generate realistic and visually rich
3D surfaces [23, 24]. It is usually done by putting each surface mesh in correspondence
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Fig. 6.7. Teichmüller mapping between the spheres. (A) shows landmark constraints on the
sphere. (B) shows the Teichmüller mapping. (C) shows the energy, the sup-norm of the BC and
the L-2 norm of the gradient of the BC in the QC iteration. (D) shows the histogram of the norm
of the BC.

with a 2D image [2, 30, 28, 29, 27, 26, 25]. Such a correspondence between the surface
mesh and the image is called the texture mapping. Constrained texture mappings
are popularly used, in which the texture mappings are guided by landmark features
labeled interactively by users. Ideally, the texture mapping should have minimum
distortion, while matching the landmark points exactly. We apply our algorithms to
compute the landmark matching Teichmüller extremal mapping between the surface
mesh and the image, and use it as the texture mapping. In Figure 7.3, we map a cat
image onto the human face surface. (A) shows the corresponding landmark points
labeled manually on the human face and the texture image. The landmark matching
Teichmüller extremal mapping is computed, and is used as texture mapping to project
the cat image onto the human face surface. The textured surface is as shown in
(B). (C) shows the norm of the associated BC of the texture mapping. The norm
is approximately a constant. It means the texture mapping computed is indeed a
Teichmüller extremal mapping, which minimizes the conformality distortion.

In Figure 7.4, we further test our algorithm on a multiply-connected human face.
(A) and (B) shows the texture(tiger) image and a multiply-connected human face.
Corresponding landmark points are labeled manually on the texture image and the
surface mesh. In (C), the surface mesh is mapped to a multiply-connected domain in
2D by a Teichmüller extremal mapping matching the landmark points exactly. (D)
shows the textured surface. (E) shows the norm of the associated BC of the texture
mapping. The norm is approximately a constant, which means the texture mapping
computed is indeed a Teichmüller extremal mapping.

7.3. Human face registration. In face recognition, finding accurate spatial
correspondences between human faces is an a crucial process to compare and recog-
nize faces effectively. Corresponding features can be extracted on human face based on
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Fig. 7.1. (A) shows 2 brain surfaces with 3 corresponding landmarks. (B) shows the Te-
ichmüller extremal mapping with 3 landmark constraints enforced. (C) shows the histogram of the
norm of BC.

curvatures, such as high curvature points near nose tips and lips. Accurate face regis-
tration can then be obtained by computing a mapping that matches the corresponding
features. Landmark matching Teichmüller extremal mapping, which minimizes the
geometric distortion, can then be used. In Figure 7.5, we apply our algorithm to
compute the registration between a male and female human faces. The human faces
are both simply-connected open surfaces. Corresponding feature points are labeled
on both faces. The obtained Teichmüller mapping is obtained, which is visualized by
texture mapping. The corresponding features are exactly matched. (C) shows the
histogram of the norm of the BC, which is almost a constant. This demonstrates the
obtained registration is a Teichmüller mapping.

Our algorithm can also be applied to obtain registration between multiply-connected
human faces. Figure 7.6 shows two multiply-connected human faces. Corresponding
feature landmarks are labeled. Teichmüller extremal mapping matching the features
exactly is computed, as shown in (B). It is again visualized by texture mapping. (C)
shows the histogram of the norm of the BC. Again, it is almost a constant, which
demonstrates that obtained registration is a Teichmüller mapping minimizing the
conformality distortion.

8. Conclusion. We address the problem of computing Teichmüller extremal
mapping between surfaces, which minimizes the maximal conformality distortion.
The proposed algorithm can be applied to obtain a landmark matching registration
between surface meshes. Given a set of corresponding landmark points or curves
defined on both surfaces, a unique landmark matching quasi-conformal registration
can be obtained, which minimizes the conformality distortion. In this paper, we
propose an efficient iterative algorithm, called the Quasi-conformal (QC) iterations,
to compute the Teichmüller extremal mapping. The key idea is to represent the set
of diffeomorphisms by Beltrami coefficients (BCs). We then look for an optimal BC
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Fig. 7.2. (A) shows 2 brain surfaces with 6 corresponding landmarks. (B) shows the Te-
ichmüller extremal mapping with 6 landmark constraints enforced. (C) shows the histogram of the
norm of BC.

Fig. 7.3. (A) shows a human face and a texture image of a cat. Corresponding landmark points
are labeled on the surface and the texture image. We compute the Teichmüller extremal mapping
that matches the landmark points. The Teichmüller mapping is used as constrained texture mapping
to project the texture image onto the surface, as shown in (B). (C) shows the histogram of the norm
of BC.

associated to the desired Teichmüller mapping. The associated diffeomorphism can be
efficiently reconstructed from the optimal BC using the Linear Beltrami Solver(LBS).
Using our proposed method, the Teichmüller mapping can be accurately and efficiently
computed within 10 seconds. The obtained registration is guaranteed to be bijective.
Besides, Teichmüller mapping with soft landmark constraints can also be computed
using our proposed algorithm. It becomes useful when landmark features cannot be
accurately located, and hence it is better to compute registration with landmarks
approximately (but not exactly) matched. We applied the proposed algorithm to
real applications, such as brain landmark matching registration, constrained texture
mapping and human face registration. Experimental results shows that our method
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Fig. 7.4. (A) a texture image of a tiger. (B) shows a multiply-connected human face. Cor-
responding landmark points are labeled on the surface and the texture image. In (C), the surface
mesh is mapped to a multiply-connected domain in 2D by a Teichmüller extremal mapping matching
the landmark points exactly. The Teichmüller mapping is used as constrained texture mapping to
project the texture image onto the surface, as shown in (D). (E) shows the histogram of the norm
of BC.

Fig. 7.5. Teichmüller extremal mapping of the simply-connected domain with landmark point
constraints (A) shows the two faces with landmark point constraints. (B) shows the Teichmüller
extremal mapping of the two faces. The resultant mapping is illustrated by texture mapping. (C)
shows the histogram of the norm of BC.

is effective in computing a non-overlap landmark matching registration with least
amount of conformality distortion.
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