THE HARNACK ESTIMATE FOR THE RICCI FLOW ON A SURFACE – REVISITED*

RICHARD S. HAMILTON[†] AND SHING-TUNG YAU[‡]

The Harnack estimate for the Ricci flow on a surface of positive curvature 1. occurs in [H]. This was generalized to the case with some negative curvature by Ben Chow [C]. However, he introduced the global potential function φ solving

$$\Delta \varphi = R - r,$$

where R is the scalar curvature and r is the mean scalar curvature. Since this does not lend itself well to three dimensions, we rederive a Harnack estimate for surfaces with some negative curvature using only local quantities. The idea of use square root was used by the second author in [Y1] and [Y2] (note that an error of [Y1] is corrected in this paper).

THEOREM. 1.1. For any constants K and L we can find (positive) constants A, B, C and D with the following property. If we have any solution to the Ricci flow on a compact surface such that at the initial time t = 0 we have

$$R \ge 1 - K$$

and

$$\frac{1}{R+K}\frac{\partial R}{\partial t} - \frac{1}{\left(R+K\right)^2}\left|\nabla R\right|^2 \ge -L,$$

then for all $t \geq 0$ we have

$$\frac{1}{R+K}\frac{\partial R}{\partial t} - \frac{1}{\left(R+K\right)^2}\left|\nabla R\right|^2 + F\left(\frac{\left|\nabla R\right|^2}{\left(R+K\right)^2}, R+K\right) \ge 0,$$

where

$$F(X,Y) = A + \sqrt{2B(X+Y) + C} + D\log Y.$$

Proof. First note if $\sqrt{C} > L$ the inequality holds at t = 0, we only need to show it is preserved by the maximum principle. To simplify the notation we let

$$\Box = \frac{\partial}{\partial t} - \Delta$$

$$\Box = \frac{\partial}{\partial t} - \Delta$$

and

$$L = \log(R + K).$$

^{*}Received September 9, 1997; accepted for publication September 23, 1997.

[†]Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, U.S.A. (hamilton@math.ucsd.edu).

[‡]Department of Mathematics, Harvard University, Cambridge, MA 02138, U.S.A. (yau@math. harvard.edu) and Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong.

Note $R + K \ge 1$ so $L \ge 0$. We compute

$$\begin{split} & \Box R = R^2, \\ & \Box L = |\nabla L|^2 + e^L - 2K + K^2 e^{-L}, \\ & \Box e^L = e^{2L} - 2K e^L + K^2, \\ & \Box |\nabla L|^2 = 2\nabla L \cdot \nabla |\nabla L|^2 - 2 \left| \nabla^2 L \right|^2 + 2e^L \left| \nabla L \right|^2 - 2K^2 e^{-L} \left| \nabla L \right|^2, \\ & \Box \Delta L = 2\nabla L \cdot \nabla \Delta L + 2 \left| \nabla^2 L \right|^2 + \left(2e^L - K - K^2 e^{-L} \right) \Delta L \\ & + \left(2e^L - K + K^2 e^{-L} \right) \left| \nabla L \right|^2. \end{split}$$

We define the Harnack expression:

$$H = \Delta L + e^L.$$

Then we have

$$\Box H = 2\nabla L \cdot \nabla H + 2 \left| \nabla^2 L \right|^2 + \left(2e^L - K - K^2 e^{-L} \right) \Delta L + \left(-K + K^2 e^{-L} \right) \left| \nabla L \right|^2 + e^{2L} - 2Ke^L + K^2.$$

Let $X = |\nabla L|^2$ and $Y = e^L$ (note $Y \ge 1$). Then we have

$$\begin{aligned} \Box X &= 2\nabla L \cdot \nabla X - 2 \left| \nabla^2 L \right|^2 + 2XY - 2K^2 X/Y, \\ \Box Y &= 2\nabla L \cdot \nabla Y - 2XY + Y^2 - 2KY + K^2, \\ \Box H &= 2\nabla L \cdot \nabla H + 2 \left| \nabla^2 L \right|^2 + \left(2Y - K - K^2/Y \right) \Delta L \\ &+ \left(-K + K^2/Y \right) X + Y^2 - 2KY + K^2. \end{aligned}$$

Let
$$F = F(X, Y)$$
 so $\nabla F = F_X \nabla X + F_Y \nabla Y$. Then

$$\Box F = F_X \Box X + F_Y \Box Y - F_{XX} |\nabla X|^2 - 2F_{XY} \nabla X \cdot \nabla Y - F_{YY} |\nabla Y|^2.$$

Assume F is *concave*, i.e.

$$\nabla^2 F = \left(\begin{array}{cc} F_{XX} & F_{XY} \\ F_{XY} & F_{YY} \end{array}\right) \le 0.$$

Then

$$\Box F \ge F_X \Box X + F_Y \Box Y$$

and we get

$$\begin{split} \Box F &\geq 2\nabla L \cdot \nabla F + F_X \left[-2 \left| \nabla^2 L \right|^2 + 2e^L \left| \nabla L \right|^2 - 2K^2 e^{-L} \left| \nabla L \right|^2 \right] \\ &+ F_Y \left[-2e^L \left| \nabla L \right|^2 + e^{2L} - 2Ke^L + K^2 \right] \\ &= 2\nabla L \cdot \nabla F + F_X \left[-2 \left| \nabla^2 L \right|^2 + 2XY - 2K^2 X/Y \right] \\ &+ F_Y \left[-2XY + Y^2 - 2KY + K^2 \right]. \end{split}$$

Introduce the compensated Harnack expression

$$\tilde{H} = H + F = \Delta L + e^{L} + F\left(\left|\nabla L\right|^{2}, e^{L}\right),$$

where $X = |\nabla L|^2$ and $Y = e^L$. We compute

$$\begin{split} \Box \tilde{H} &\geq 2\nabla L \cdot \nabla \tilde{H} + 2 \left| \nabla^2 L \right|^2 + 2Y\Delta L + Y^2 - K \left(\Delta L + X + 2Y \right) \\ &+ K^2 \left(-\Delta L/Y + X/Y + 1 \right) + F_X \left[-2 \left| \nabla^2 L \right|^2 + 2XY - 2K^2 X/Y \right] \\ &+ F_Y \left[-2XY + Y^2 - 2KY + K^2 \right]. \end{split}$$

Thus we have

$$\begin{split} \Box \tilde{H} &\geq 2\nabla L \cdot \nabla \tilde{H} + 2(1 - F_X) \left| \nabla^2 L \right|^2 + 2Y\Delta L + 2XY(F_X - F_Y) \\ &+ Y^2(1 + F_Y) - K \left[\Delta L + X + 2Y(1 + F_Y) \right] \\ &+ K^2 \left[-\Delta L/Y + (1 - 2F_X)X/Y + (1 + F_Y) \right]. \end{split}$$

Use

$$2\left|\nabla^{2}L\right|^{2} \ge \left(\Delta L\right)^{2}$$

and assume $F_X \leq 1$ (which happens if $B \leq \sqrt{C}$). At $\tilde{H} = \min$, we have

 $\nabla \tilde{H}=0$

and at $\tilde{H} = 0$ we have

$$\Delta L = -\left(Y+F\right).$$

To keep $\tilde{H} \geq 0$ by the maximum principle we need

$$(1 - F_X) (Y + F)^2 - 2Y (Y + F) + 2XY (F_X - F_Y) + Y^2 (1 + F_Y) -K [X + Y + 2YF_Y - F] + K^2 [2 + F_Y + F/Y + (1 - 2F_X)X/Y] \geq 0.$$

If in addition $F_Y \ge 0$ and $F_X \le 1/2$ (which happens if $B \le \sqrt{C}/2$) we only need

$$(1 - F_X) F^2 - 2YFF_X + (Y^2 - 2XY) (F_Y - F_X) \geq K [X + Y + 2YF_Y - F].$$

Look for F(X, Y) in the form

$$F = A + \sqrt{2B(X + Y) + C} + D\log Y.$$

For ease write

$$Q = 2B (X + Y) + C,$$

$$F = A + \sqrt{Q} + D \log Y.$$

Compute

$$F_X = \frac{B}{\sqrt{Q}}, \ F_Y = \frac{B}{\sqrt{Q}} + \frac{D}{Y}, \ F_Y - F_X = \frac{D}{Y}.$$

We have

$$(1 - F_X) F^2 - 2YFF_X + (Y^2 - 2XY) (F_Y - F_X)$$

$$= \left(1 - \frac{B}{\sqrt{Q}}\right) \left(A + \sqrt{Q} + D\log Y\right)^2 - 2Y \left(A + \sqrt{Q} + D\log Y\right) \frac{B}{\sqrt{Q}}$$

$$+ Y (Y - 2X) \frac{D}{Y}$$

$$= 2 (B - D) X + DY + (C - 2AB) + (A - B) \sqrt{Q} + D\log Y \left(\sqrt{Q} - 2B\right)$$

$$+ (A + D\log Y) \left(\sqrt{Q} - \frac{2BY}{\sqrt{Q}}\right) + \left(1 - \frac{B}{\sqrt{Q}}\right) (A + D\log Y)^2$$

$$\ge 2 (B - D) X + DY,$$

provided $C \ge 2AB$, $A \ge B$, $C \ge 4B^2$ (so $\sqrt{Q} \ge 2B$), and using $\sqrt{Q} \ge 2BY/\sqrt{Q}$. On the other hand if $B \le \sqrt{C}/2$ then

$$2YF_Y = \frac{2BY}{\sqrt{Q}} + 2D \le A + \sqrt{Q} \le F$$

provided $A \ge 2D$ since $2BY \le Q$. Thus we now only need

 $2(B-D)X + DY \ge K(X+Y),$

which happens if

$$D \ge K$$
 and $2(B - D) \ge K$.

To summarize, we need

 $D \ge K,$ $B \ge D + \frac{1}{2}K,$ A > B and A > 2D,

$$C \ge L^2$$
, $C \ge 4B^2$ and $C \ge 2AB$,

all of which is easily done by choosing them in this order. This completes the proof. \Box

Acknowledgment. The authors wish to acknowledge the helps of Ben Chow and Sun Chin Chu in preparing for the manuscript.

REFERENCES

- [C] B. CHOW, The Ricci flow on the 2-sphere, J. Diff. Geom., 33(1991), 325-334.
- [H] R.S. HAMILTON, The Ricci flow on surfaces, Math. and Gen. Rel., Contemporary Mathematics 71(1988), 237-262.
- [Y1] S.T. YAU, On the harnack inequality of partial differential equations, Comm. Anal. Geom., 2 (1994).
- [Y2] S.T. YAU, Harnack inequality for non-self adjoint evolution equations, Math. Res. Letters, 2 (1995).