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1 Introduction

In a graph G, for a subset S of the vertex set, the induced subgraph determined by

S has edge set consisting of all edges of G with both endpoints in S. The (edge)

boundary, denoted by ∂S consists of all edges containing one endpoint in S and one

endpoint not in S.

We consider the combinatorial Laplacian of a graph and an induced subgraph of

a graph. Using the classical matrix-tree theorem [8], the number of spanning trees

of a graph is proportional to the product of nonzero eigenvalues of the combinatorial

Laplacian. We will introduce the zeta function of a graph and derive its relation to

the heat kernel and the number of spanning trees of a graph.

In the second part of the paper, we will focus on the special case which involves

induced subgraphs of a lattice graph. We will show that for a connected induced

subgraph S of a 2-dimensional lattice graph, the number of spanning trees τ(S)

satisfies

cec1 |S|−c2|∂S| ≤ τ(S) ≤ c′ec1 |S|+c3 |∂S|2/|S| (1)

where the constants c1, c2 and c3 are universal contants depending only on the host

graph but independent of S.

This can be viewed as a discrete analog of the classical results of H. Weyl [10]

and McKean and Singer [9]. This paper is organized as follows. In Section 2, we
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state the relationship of the combinatorial Laplacian and the number of spanning

trees. In Section 3, we consider the heat kernel and the zeta function of a graph.

In Section 4, we focus on the heat kernel of a lattice graph. In Section 5, we prove

the main theorem by using the tools defined in preceding sections. For undefined

terminology, the reader is referred to [2] and [3].

2 The combinatorial Laplacian and spanning trees

We consider a graph G = (V,E) with vertex set V = V (G) and edge set E = E(G).

Let dv denote the degree of v in G. Here we assume G contains no multiple edges.

The combinatorial Laplacian L of G has rows and columns indexed by vertices of

G, defined as follows.

L(u, v) =




dv − lv if u = v
−1 if u and v are adjacent
0 otherwise

where lv denotes the number of loops at v.

For a function f : V → R, we have

Lf(v) =
∑
u∈V
u∼v

[f(v) − f(u)].

One of the fundamental theorems in combinatorics is the matrix-tree theorem

due to Kirchhoff [8] which states that the number of spanning trees in a graph is

equal to the determinant of any principal submatrix of the combinatorial Laplacian.

For a graph G, the combinatorial Laplacian has non-negative eigenvalues, 0 =

ρ0 ≤ ρ1 ≤ . . . ρn−1. The number of spanning trees, denoted by τ(G), can be related

to the eigenvalues of L as follows: (A proof can be found in [1]. For completeness,

we briefly describe the proof here).

Theorem 1 For a graph G on n vertices , the number of spanning trees τ(G) is :

τ(G) =
1
n

∏
i�=0

ρi.
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Proof: Suppose we consider the characteristic polynomial p(x) of the combinatorial

Laplacian L.

p(x) = det(L− xI).

The coefficient of the linear term is exactly

−
∏
i�=0

ρi.

On the other hand, the coefficient of the linear term of p(x) is −1 times the sum of

the determinant of n principal submatrix of L obtained by deleting the i-th row and

i-th column. By the matrix-tree theorem, the product
∏

i�=0 ρi is exactly n times

the number of spanning trees of G. �

3 The heat kernel and the zeta function

In a graph G, let S denote a finite connected induced subgraph of G. The combi-

natorial Laplacian LS restricted to S is just

LSf(v) =
∑
u∈S
u∼v

[f(v) − f(u)].

for a function f : S → R and a fixed v ∈ S.

Let k denote the maximum degree of G. For t ≥ 0, the heat kernel ht of an

induced graph S is defined by

ht =
∑

i

e−λitPi

= e−tLS/k

= I − t

k
LS +

t2

2!k2
L2

S − . . .

where

λi =
ρi

k

and Pi denotes the projection into the eigenspace associated with eigenvalue ρi of

LS. In particular, h0 = I, the identity matrix, and ht satisfies the heat equation

d ht

d t
= −1

k
LSht.
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The trace formula in its most general form is

∑
x

ht(x, x) =
∑

i

e−λit (2)

We define the trace function:

Tr (ht) =
∑

i

e−λit

For a connected induced subgraph S, we consider the ζ-function

ζ(s) =
∑
i�=0

1
λs

i

where λi ranges over all nonzero eigenvalues of 1
kLS .

Therefore we have

−ζ′(0) = log
∏
i�=0

λi. (3)

where log denotes the natural logarithm.

Here we relate the number of spanning trees to the zeta function of G (also see

[7]).

Theorem 2 For a connected induced subgraph S in a graph G with maximum degree

k, the number of spanning trees, denoted by τ(G), is equal to

τ(S) =
k|S|−1

|S| e−ζ′(0).

Proof: Using (3) and Theorem 1, we have

τ(S) =
1
|S|

∏
i�=0

ρi

=
k|S|−1

|S|
∏
i�=0

λi

=
k|S|−1

|S| e−ζ′(0).

�
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We consider

Tr∗(ht) =
∑
i�=0

e−λit.

Because of the fact that ∫ ∞

0

e−λttz−1dt =
Γ(z)
λz

we have the following:

Theorem 3

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1Tr∗(ht)dt (4)

We note that we also have the following Mellin inversion formula:

Tr∗(ht) =
1

2πi

∫
t−sΓ(s)ζ(s)ds

4 The heat kernel for a path

For the one-dimensional case, in an infinite path P , the vertices are labeled by

integers and x is adjacent to x + 1 and x − 1. The heat kernel of P has been

examined in [6] and here we state some facts that will be useful later.

The heat kernel Ht of P satisfies:

Ht(x, x) = lim
n→∞

1
n

n−1∑
j=0

e−tλj

= lim
n→∞

1
n

n−1∑
j=0

e−t(1−cos 2πj
n )

=
2
π

∫ π/2

0

e−2t sin2 ydy (5)

In general, the heat kernel Ht(x, y) of an infinite path satisfies

Ht(x, x + a) = lim
n→∞

1
n

n−1∑
j=0

e−tλje
2πija

n

=
2
π

∫ π/2

0

e−2t sin2 y+2iaydy

=
2
π

∫ π/2

0

e−2t sin2 y cos 2aydy (6)
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We also need the following fact (see [6]):

Ht(x, x + a) = Ht(x, x − a)

= (−1)ae−t
∑
k≥a

(
2k

k+a

)
k!

(
−t

2
)k

= e−t
∑
k≥a

(
a+2k

k

)
k!

(
t

2
)a+2k

The above equality can be used to show the following:

∑
a∈Z+

Ht(0, 2a + 1) =
1
2

∑
a odd

Ht(0, 2a + 1)

=
1
2
e−t

∑
k odd

(t)k

k!

= e−t 1
4
(et/2 − e−t/2)

=
1 − e−t

4
(7)

�

We will also use the following facts [2]:

d

d t
Ht(x, y) = −1

2
LHt(x, y) (8)

= −1
2

∑
x′∼x

(Ht(x, y) −Ht(x′, y)). (9)

Also, we have

H0(x, y) =
{

1 if x = y,
0 otherwise.

5 The heat kernel for lattice graphs

In this section, we consider the k-dimensional lattice graphs and their induced

subgraphs. We define the lattice graph P
(r)
n to be the cartesian product of k copies

of an n-cycle. The infinite lattice graph P (k) is just by taking the limit of P (r)
n as

n approaches infinity. In particular, for the 2−dimensional lattice graph p(2), each

vertex is labelled by (x, y), x, y ∈ Z. The vertex (x, y) is adjacent to (x+ 1, y), (x−
1, y), (x, y + 1) and (x, y − 1).
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In an infinite 2−dimensional lattice graph P (2), the heat kernel H(2)
t satisfies

H
(2)
t ((x, y), (x + a, y + b)) = Ht/2(x, x + a)Ht/2(y, y + b) (10)

where Ht is the heat kernel for an infinite path. In general, we have

H
(r)
t (x, x + a)) =

r∏
i=1

Ht/r(xi, xi + ai) (11)

where x = (x1, . . . , xr).

For certain induced subgraphs of the r−dimensional lattice graphs P (r), we

want to derive sharp estimates for the products of the nonzero eigenvalues of the

combinatorial Laplacian. To do so, we consider the heat kernel ht of an induced

subgraph S of P (r). From (4), we have

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1Tr∗ htdt

=
1

Γ(s)

∫ ∞

0

ts−1(
∑
x∈S

ht(x, x) − 1)dt

Of particular interest are subgraphs S whose trace can be estimated by using the

heat kernel of the lattice graph P (r). We define the function ζ0 as follows:

ζ0(s) =
1

Γ(s)

∫ ∞

0

ts−1H
(r)
t (x, x)dt

Using (5) and (11), we have

ζ0(s) =
1

Γ(s)
(
2
π

)r

∫ π/2

0

· · ·
∫ π/2

0

∫ ∞

0

ts−1e−22−r(sin2 x1+···+sin2 xr)dtdx1 · · · dxr

= (
2
π

)r

∫ π/2

0

· · ·
∫ π/2

0

1
(22−r(sin2 x1 + · · · + sin2 xr))s

dx1 · · · dxr

Therefore we have

ζ′0(0) = −(
2
π

)r

∫ π/2

0

· · ·
∫ π/2

0

log(22−r(sin2 x1 + · · · + sin2 xr))dx1 · · · dxr(12)

In particular, for the case of r = 2, we have

ζ′0(0) = −(
2
π

)2
∫ π/2

0

∫ π/2

0

log(sin2 x + sin2 y)dxdy

= 0.220050745 · · ·
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If ht can be approximated by H
(2)
t , then we can derive the following first-order

estimate :

τ(S) ≈ 4|S|−1e−ζ′
0(0)|S|

This has a similar flavor as the formula of H. Weyl [10] for bounded regions of R
k.

To derive such estimates in a precise manner, we will examine the difference of Ht

and h∗
t in the next section.

6 The heat kernel of an induced subgraph of the

lattice graph

Suppose S is an induced subgraph of the 2-dimensional lattice graph P (2). In order

to enumerate the number of spanning trees of S, We will first establish the relation

between the heat kernel of S and the heat kernel of P (2).

We start with the combinatorical Laplacian LS for the induced subgraph S

which acts on functions f : S → R as follows: For x in S, we have

LSf(x) =
∑
y∈S
y∼x

[f(x) − f(y)]

In this section, we denote the heat kernel of S by ht(x, y) = h(t, x, y) and the heat

kernel of P (r) by H
(2)
t (x, y) = H(t, x, y). From the definition, we have

d

d t
ht = −1

4
LSht,

d

d t
Ht = −1

4
LHt

We consider, for x, y ∈ S,
∫ t

0

d

d s

∑
z∈S

h(t− s, x, z)H(s, z, y)ds

=
∑
z∈S

[h(0, x, z) · H(t, z, y)− h(t, x, z) ·H(0, z, y)]

= H(t, x, y) − h(t, x, y).
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On the other hand, for fixed x and y in S, we have

H(t, x, y) − h(t, x, y)

=
∫ t

0

d

d s

∑
z∈S

h(t− s, x, z)H(s, z, y)ds

=
∫ t

0

∑
z∈S

(
d

d s
h(t− s, x, z) ·H(s, z, y) + h(t− s, x, z) · d

d s
H(s, z, y)]ds

=
∫ t

0

∑
z∈S

1
4

[LSh(t− s, x, z) ·H(s, z, y) − h(t− s, x, z) · LH(s, z, y)]ds

=
∫ t

0

1
4


 ∑

z,w∈S
z∼w

(h(t− s, x, z) − h(t− s, x, w)(H(s, z, y) − H(s, w, y)) −
∑
z∈S

h(t− s, x, z) · LH(s, z, y)


ds

= −1
4

∫ t

0

∑
z∈S,z′ �∈S

z∼z′

h(t− s, x, z)[H(s, z, y)− H(s, z′, y)]ds

Thus, we have

h = H + Q h (13)

where Q is defined as follows:

Qh(t, x, y) =
1
4

∫ t

0

∑
z∈S,z′ �∈S

z∼z′

h(t− s, x, z)[H(s, z, y)− H(s, z′, y)]ds

Thus we have

h = H + QH + Q2H + . . . + Qr−1H + Qrh.

We have proved the following:

Theorem 4 For a connected induced subgraph S in the 2-dimensional lattice graph,

the heat kernel h of S satisfies the following:

h = H + QH + Q2H + . . . + Qr−1H + Qrh

where

Qh(t, x, y) =
1
4

∫ t

0

∑
z∈S,z′ �∈S

z∼z′

h(t− s, x, z)[H(s, z, y)− H(s, z′, y)]ds
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As a consequence of Theorem 4, we also have the following useful fact:

Theorem 5 For a connected induced subgraph S in the 2-dimensional lattice graph,

the heat kernel H of the lattice graph satisfies the following:

1 −
∑
x∈S

H(t, x, y) =
1
4

∫ t

0

∑
z∈S,z′ �∈S

z∼z′

[H(s, z, y)− H(s, z′, y)]ds (14)

Proof: The proof follows from Theorem 4 (for the case of r = 1) and the fact that

∑
x∈S

h(t, x, y) = 1.

�

Using the definition of Q, (14) can be written as

1 =
∑
x∈S

H(t, x, y) + Q1(y)

and

1 =
1
|S|

∑
x,y∈S

(H(t, x, y) + QH(t, x, y) + . . . + QkH(t, x, y)) + Qk+11

where

Qk1 =
1
|S|

∑
y∈S

Qk1(y).

7 The heat kernel of a half plane

In this section, we consider a special induced subgraph of the 2-dimensional lattice

graph P (2). First, we consider a half plane F which is an induced subgraph of P (2)

with vertex set {v = (a, b) : a ≥ 0}.

We remark that from the definition of the combinatorial Laplacian in Section 2,

we see that for a graph G and a graph G′ that is resulted by adding a loop to G,

their combinatorial Laplacians are identical. An induced subgraph S of a regular

graph is not regular in general. We will often consider adding loops to vertices of

S which are adjacent to vertices not in S so that all the degrees are equal in the
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resulting graph. The closure of an induced subgraph S, denoted by Ŝ, is by adding

p loops to every vertex v in S which is incident to p edges in the edge boundary

∂S. Clearly, the closure of an induced subgraphs have the same heat kernel.

Our goal is to express the heat kernel of a half plane in terms of the heat kernel

of P (2).

Theorem 6 The heat kernel h̄ of the halfplane F satisfies, for vertices u and u of

F ,

h̄(t, u, v) = H(t, u, v) + H(t, u, v̄)

where v̄ is the mirrow image of the vertex v with respect to the line x = −1/2.

Proof: We note that

h̄(t, u, v) = e−t
∑
r≥0

wr(u, v)
tr

r!

where wr(u, v) denote the number of walks of length r from u to v in the closure the

half plane F. It suffices to show that we can have wr(u, v) = w′
r(u, v) + w”r(u, v̄)

where w′
r(u, v) is the number of walks of length r from u to v in P (2) and w”r(u, v̄)

is the number of walks of length r from u to v̄ in P (2).

We observe that a walk in the plane P (2) joining u to v corresponds to a walk in

F̂ by reflecting using the line x = −1/2. Namely, a walk which visits v̄ �∈ F shall be

mapped to the corresponding walk which visit v ∈ F . Furthermore, an edge from v

which crosses the line x = −1/2 is corresponding to a loop at v. A walk of length

r from u to v in P (2) is then mapped to a walk of the same length from v to v in

F̂ with an even number of loops. Also, a walk of length r from u to v in F̂ which

contains an odd number of loops is mapped to walks of length r from u to v̄ in P (2).

In fact, such correspondences give a bijection. Therefore, we have

h̄(t, u, v) = H(t, u, v) + H(t, u, v̄).

�
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We now define another operator Q as follows:

Qh(t, u, v) =
1
4

∫ t

0

∑
z∈F,z′ �∈F

z∼z′

h(t− s, u, z)[H(s, z, v)− H(s, z′, v)]ds (15)

Theorem 7 For two vertices x and y in he half plane F , we have

H(t, u, v̄) = QH(t, u, v) + Q2H(t, u, v) + . . .

where v̄ is the mirrow image of the vertex v with respect to the line x = −1/2.

Proof: The proof follows from Theorem 6, which says

h̄(t, x, y) − H(t, x, y) = H(t, x, ȳ).

Then we use Theorem 4 which states that

h̄(t, x, y) − H(t, x, y) = QH(t, x, y) + Q2H(t, x, y) + . . . .

�

Another consequence of (15) is the following:

Theorem 8

∑
a∈Z

+

v=(a,0)

Qf(t, v, v) =
1
4

∫ t

0

∑
x∈F

f(t− s, x, z0)[H(s, z0, v) − H(s, z′0, x)]ds

for z0 = (0, 0), z′0 = (−1, 0) and for any f .

Proof: We sum (15) over all vertices v in F .

∑
a∈Z

+

v=(a,0)

Qf(t, v, v) =
1
4

∫ t

0

∑
a∈Z

+

v=(a,0)

∑
z∈F,z′ �∈F

z∼z′

f(t− s, v, z)[H(s, z, v) − H(s, z′, v)]ds

=
1
4

∫ t

0

∑
x∈F

f(t− s, x, z)[H(s, z0, v) − H(s, z′0, x)]ds

�
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8 Bounding the number of spanning trees

Suppose S is an induced subgraph of the 2-dimensional lattice graph P (2). We will

prove the main theorem.

Theorem 9 For a connected induced subgraph S in the 2-dimensional lattice graph,

the number of spanning trees τ(S) of S satisfies:

1
|S| (4e

−α)|S|−1e−β|∂S|(1−1/|S|) ≤ τ(S) ≤ 1
|S|4

|S|−1e−α(|S|−|∂S|2/|S|)

where

α = −(
2
π

)2
∫ π/2

0

∫ π/2

0

log((sin2 x1 + sin2 x2))dx1dx2

≈ .2200507 . . .

β = − 1
2π

∫ π/2

0

(log sin2 x− log(1 + sin2 x))dx

≈ .44068679...

Proof: From Theorem 4, we have

h = H + QH + Q2H + . . . + Qr−1H + Qrh.

We consider the trace of h. For simplicity, we write

TrSHt =
∑
x∈S

QH(t, x, x).

We have

TrSQHt =
∑
x∈S

QHt(x, x)

=
∑

z∈S,z′ �∈S
z∼z′

1
4

∑
x∈S

∫ t

0

H(t− s, x, z)[H(s, z, x) − H(s, z′, x)]ds

≤
∑

z∈S,z′ �∈S
z∼z′

1
4

∑
x∈Fz

∫ t

0

H(t− s, x, z)[H(s, z, x) − H(s, z′, x)]ds

where Fz is the half plane consisting of all points closer to z than to z′. Thus, we

have

TrSQHt ≤ |∂S|
4

∑
x∈Fz

∫ t

0

H(t− s, x, z)[H(s, z, x) − H(s, z′, x)]ds

13



Using Theorem 8, we get

TrSQHt =
∑
x∈S

QH(t, x, x)

≤ |∂S|
∑

a∈Z
+

v=(a,0)

QH(t, v, v)

By repeatedly using Theorem 8, we have

TrSQ
jHt =

∑
x∈S

QjH(t, x, x)

≤ |∂S|
∑

a∈Z
+

v=(a,0)

QjH(t, v, v)

Summing over j, we have

∑
j≥1

TrSQ
jHt ≤ |∂S|

∑
a∈Z

+

v=(a,0)

∑
j≥1

QjH(t, v, v)

= |∂S|
∑

a∈Z
+

v=(a,0)

H(t, v, v̄) (16)

by using Theorem 7.

Then we have

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1(Tr(ht) − 1)dt

=
|S|
Γ(s)

∫ ∞

0

ts−1H(t, x, x)dt +
1

Γ(s)

∫ ∞

0

ts−1(TrSQHt + . . . + TrQrHt)

− 1
Γ(s)

∫ ∞

0

ts−1(1 −Qr+11)dt

= ζ0(s)|S| + ζ1(s) + ζ2(s)

From the previous section, we know that

ζ′0(0) = −(
2
π

)2
∫ π/2

0

∫ π/2

0

log(sin2 x + sin2 y)dxdy

= 0.220050745 · · ·

It suffices to estimate and bound ζ′1(0) and ζ′2(0). We will use the fact that for

differentiable functions f, g with f(0) = g(0), if f(x) ≤ g(x) for x ≥ 0, then

f ′(0) ≥ g′(0).
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ζ1(s) ≤ 1
Γ(s)

∫ ∞

0

ts−1 (TrS QHt + . . . ) dt

≤ |∂S|
Γ(s)

∫ ∞

0

ts−1
∑

a∈Z
+

v=(a,0)

H(t, v, v̄)dt

=
|∂S|
4Γ(s)

∫ ∞

0

ts−1 (1 − e−t)H(t/2, 0, 0)dt

by using (7). Therefore we have

ζ1(s) ≤ |∂S|
4Γ(s)

∫ ∞

0

ts−1(1 − e−t)
2
π

∫ π/2

0

e−t sin2 xdxdt

=
|∂S|
2π

∫ π/2

0

(
1

sin2s x
− 1

(1 + sin2 x)s
)dx

Consequently,

ζ′1(0) ≤ −|∂S|
2π

∫ π/2

0

(log sin2 x− log(1 + sin2 x))dx

= β|∂S|
≈ .44068679...|∂S| (17)

It remains to bound ζ2. From Theorem 4, we see that for any x ∈ S,

1 −Qr+11(x) =
∑
y∈S

H(x, y) +
r∑

j=1

∑
y∈S

QjH(t, x, y).

We also note that for x �= y,

lim
s→0

1
Γ(s)

∫ ∞

0

ts−1H(t, x, y)dt = 0

In fact, we have, in general,

lim
s→0

1
Γ(s)

∫ ∞

0

ts−1QjH(t, x, y)dt = 0

Therefore we have

lim
s→0

ζ2(0) =
1
n

(ζ0(0) + ζ1(0))
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Clearly, we have

ζ2(x) ≤ − 1
Γ(s)

∫ ∞

0

∑
j≥0

∑
x,y

H(t, x, y)dt

≤ − 1
|S| (ζ0(0) + ζ1(0)) − 1

Γ(s)

∫ ∞

0

∑
j≥0

∑
x �=y

H(t, x, y)dt

≤ − 1
|S| (ζ0(0)|S| + ζ1(0)).

Altogether, we have

ζ′(0) ≤ α(|S| − 1) + β|∂S|(1 − 1
|S| ).

This implies

τ(S) ≥ 1
|S| (4e

−α)|S|−1e−β|∂S|(1−1/|S|).

To upper bound τ(S), it is enough to lower bound ζ′(0). We consider

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1(Tr(ht) − 1)dt

≥ 1
Γ(s)

∫ ∞

0

ts−1(
∑
x∈S

H(t, x, x) − 1
|S|

∑
x,y∈S

H(t, x, y))dt

+
1

Γ(s)

∫ ∞

0

ts−1(
∑
r≥1

∑
x∈S

QrH(t, x, x) − 1
|S|

∑
x,y∈S

QrH(t, x, y))dt

≥ 1
Γ(s)

∫ ∞

0

ts−1
∑
x∈S

H(t, x, x) − 1
|S|

∑
x,y∈S

H(t, x, y)dt

= |S|ζ0(s) + ζ3(s)

where

ζ3(s) = − 1
Γ(s)

∫ ∞

0

ts−1 1
|S|

∑
x,y∈S

H(t, x, y)dt

We consider

F (t) =
∑

x,y∈S

H(t, x, y) − |∂S|2H(t, x, x).

We note that

d

d t
F (t) = −

∑
x∈S

∑
y∈S

1
4
LH(t, x, y) +

|∂S|2
4

LH(t, x, x)

= −1
4

∑
x∈S

∑
y∈S,y′ �∈S

y∼y′

(H(t, x, y) − H(t, x, y′)) +
|∂S|2

4
LH(t, x, x)
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and

d2

d t2
F (t) = − 1

16

∑
x∈S,x′ �∈S

x∼x′

∑
y∈S,y′ �∈S

y∼y′

(H(t, x, y) − H(t, x, y′) − (H(t, x′, y) − H(t, x′, y′))

−|∂S|2
16

L2H(t, x, x)

≤ 0

Therefore, we have

d

d t
F (t) ≤ lim

t→∞
d

d t
F (t) = 0.

Consequently,

F (t) ≤ lim
t→∞F (t) = 0

and

∑
x,y∈S

H(t, x, y)dt ≤ |∂S|2H(t, x, x).

This implies

ζ3(s) = − 1
Γ(s)

∫ ∞

0

ts−1 1
|S|

∑
x,y∈S

H(t, x, y)dt

≥ − 1
Γ(s)

∫ ∞

0

ts−1 |∂S|2
|S| H(t, x, x)dt

≥ − 1
Γ(s)

∫ ∞

0

ts−1 |∂S|2
|S| H(t, x, x)dt

Therefore we have

ζ3(s) ≥= − 1
Γ(s)

∫ ∞

0

ts−1 |∂S|2
|S| H(t, x, x)dx

and

ζ′3(0) ≥ −|∂S|2
|S| α

Therefore

τ(S) ≤ 1
|S|4

|S|−1e−α(|S|−|∂S|2/|S|).

This completes the proof of Theorem 3.
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We remark that the various constants in Theorem 9 can be improved by imposing

additional conditions on the induced subgraph S. For example, suppose that the

induced subgraph S consists of vertices within an area with boundary consisting of

horizontal and vertical line segments. If the boundary line segments are large, we

can derive sharper estimates for ζ′(0). In additional, various convexity conditions

[4, 5] can be explored. However, these further considerations will not be included

here.
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