# Absence of Zero Energy States in Reduced SU(N) 3d Supersymmetric Yang Mills Theory 

Jens Hoppe<br>Theoretische Physik, ETH Hönggerberg<br>CH-8093 Zürich<br>Shing-Tung Yau<br>Mathematics Department, Harvard University<br>Cambridge, MA 02139


#### Abstract

For the $\mathrm{SU}(\mathrm{N})$ invariant supersymmetric matrix model related to membranes in 4 space-time dimensions we argue that $\langle\Psi, \chi\rangle=0$ for the previously obtained solution of $Q \chi=0, Q^{\dagger} \Psi=0$.


In a series of 3 short papers [1] it was recently shown how to obtain, for a certain class of supersymmetric matrix models, solutions of $Q \psi=0$ resp. $Q^{\dagger} \psi=0$. The models of interest [2] are $\mathrm{SU}(\mathrm{N})$ gauge-invariant and can be formulated with either 2, 3, 5 or 9 times $\left(N^{2}-1\right) \cdot 2$ bosonic degrees of freedom. This letter mainly concerns the first case, $d=2$ (corresponding to membranes in 4 space-time dimensions [3], and to $2+1$ dimensional (Susy) Yang-Mills theory with spatially constant fields [3]), while our method can also be applied to the other cases. For different approaches to the problem see [4],[5],[6], [7].
The supercharges of the model are given by

$$
\begin{align*}
Q & =i q_{a} \lambda_{a}+2 \partial_{a} \frac{\partial}{\partial \lambda_{a}}=: M_{a} \lambda_{a}+D_{a} \partial_{\lambda_{a}} \\
Q^{\dagger} & =-i q_{a} \frac{\partial}{\partial \lambda_{a}}-2 \bar{\partial}_{a} \lambda_{a}=: M_{a}^{\dagger} \partial_{\lambda_{a}}+D_{a}^{\dagger} \lambda_{a} \tag{1}
\end{align*}
$$

where $\partial_{a}=\frac{\partial}{\partial z_{a}}, z_{a} \in \mathbb{C}, a=1 \cdots N^{2}-1, q_{a}:=\frac{i}{2} f_{a b c} z_{b} \bar{z}_{c}$ ( $f_{a b c}$ being totally antisymmetric, real, structure constants of $\mathrm{SU}(\mathrm{N}))$ and $\lambda_{a}\left(\frac{\partial}{\partial \lambda_{a}}\right)$ being fermionic creation (annihilation) operators satisfying $\left\{\lambda_{a}, \frac{\partial}{\partial \lambda_{b}}\right\}=\delta_{a b},\left\{\lambda_{a}, \lambda_{b}\right\}=0=\left\{\frac{\partial}{\partial \lambda_{a}}, \frac{\partial}{\partial \lambda_{b}}\right\}$. In $\mathcal{H}_{+}$, the Hilbert-space of SU(N)-invariant square-integrable wavefunctions

$$
\begin{equation*}
\Psi=\psi+\frac{1}{2} \psi_{a b} \lambda_{a} \lambda_{b}+\cdots+\frac{1}{\Lambda!} \psi_{a_{1} \cdots a_{\Lambda}} \lambda_{a_{1}} \cdots \lambda_{a_{\Lambda}}, \tag{2}
\end{equation*}
$$

$\Lambda:=N^{2}-1$ (even) the general solution of

$$
\begin{equation*}
Q^{\dagger} \Psi=0, Q \chi=0 \tag{3}
\end{equation*}
$$

was shown [1] to be of the form

$$
\begin{align*}
\Psi & =(\mathbf{I}-A)^{-1} \Psi^{(h)} \\
\chi & =(\mathbf{I}-B)^{-1} \chi^{[h]} \tag{4}
\end{align*}
$$

with

$$
\begin{align*}
A:=\left(I^{\dagger} \cdot \lambda\right)\left(D^{\dagger} \cdot \lambda\right), B & =\left(I \cdot \partial_{\lambda}\right)\left(D \cdot \partial_{\lambda}\right) \\
I_{a}: & =i \frac{q_{a}}{q^{2}} \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\left(M^{\dagger} \cdot \partial_{\lambda}\right) \Psi^{(h)}=0,(M \cdot \lambda) \chi^{[h]}=0 . \tag{6}
\end{equation*}
$$

As

$$
\begin{equation*}
\Psi=\Psi^{(h)}+A \Psi, \chi=\chi^{[h]}+B \chi, \tag{7}
\end{equation*}
$$

and (from (3))

$$
\begin{align*}
A \Psi & =-\left(I^{\dagger} \cdot \lambda\right)\left(M^{\dagger} \partial_{\lambda}\right) \Psi=\frac{q_{a} q_{b}}{q^{2}} \lambda_{a} \partial_{\lambda_{b}} \Psi \in \mathcal{H}_{+}  \tag{8}\\
B \chi & =-\left(I \cdot \partial_{\lambda}\right)(M \cdot \lambda) \chi=\chi-\frac{q_{a} q_{b}}{q^{2}} \lambda_{a} \partial_{\lambda_{b}} \chi \in \mathcal{H}_{+}
\end{align*}
$$

one can see that $\Psi^{(h)}$, resp. $\chi^{[h]}$, have to be elements of $\mathcal{H}_{+}$. The scalar product of any two solutions of (3) is therefore

$$
\begin{align*}
\langle\Psi, \chi\rangle & =\left\langle(\mathbf{I}-A)^{-1} \Psi^{(h)},(\mathbf{I}-B)^{-1} \chi^{[h]}\right\rangle \\
& =\left\langle\left(\mathbf{I}-B^{\dagger}\right)^{-1}(\mathbf{I}-A)^{-1} \Psi^{(h)}, \chi^{[h]}\right\rangle \\
& =\left\langle(\mathbf{I}-C)^{-1} \Psi^{(h)}, \chi^{[h]}\right\rangle \tag{9}
\end{align*}
$$

with

$$
\begin{equation*}
C:=A+B^{\dagger}=\left\{I^{\dagger} \cdot \lambda, D^{\dagger} \cdot \lambda\right\} \tag{10}
\end{equation*}
$$

As $H_{M}:=\left\{M \cdot \lambda, M^{\dagger} \cdot \partial_{\lambda}\right\}=q^{2}>0,(6)$ implies

$$
\begin{equation*}
\Psi^{(h)}=\left(M^{\dagger} \cdot \partial_{\lambda}\right) \Psi_{-}^{(h)}, \chi^{[h]}=(M \cdot \lambda) \chi_{-}^{[h]} \tag{11}
\end{equation*}
$$

for some $\Psi_{-}^{(h)}, \chi_{-}^{[h]}$.
Furthermore, $C$ commutes with $M^{\dagger} \cdot \partial_{\lambda}$ (between $\mathrm{SU}(\mathrm{N})$ invariant states), as

$$
\begin{equation*}
\left[M^{\dagger} \cdot \partial_{\lambda},\left\{I^{\dagger} \cdot \lambda, D^{\dagger} \cdot \lambda\right\}\right]=-\left[I^{\dagger} \cdot \lambda,\left\{D^{\dagger} \cdot \lambda, M^{\dagger} \cdot \partial_{\lambda}\right\}\right]-\left[D^{\dagger} \cdot \lambda,\left\{M^{\dagger} \cdot \partial_{\lambda}, I^{\dagger} \cdot \lambda\right\}\right] \tag{12}
\end{equation*}
$$

and $\left\{D^{\dagger} \cdot \lambda, M^{\dagger} \cdot \partial_{\lambda}\right\}=-i z_{a} J_{a}$,

$$
\begin{equation*}
J_{a}:=-i f_{a b c}\left(z_{b} \partial_{c}+\bar{z}_{b} \bar{\partial}_{c}+\lambda_{b} \partial_{\lambda_{c}}\right) \tag{13}
\end{equation*}
$$

One therefore has

$$
\begin{equation*}
\langle\Psi, \chi\rangle=\left\langle\left(M^{\dagger} \cdot \partial_{\lambda}\right)(1-C)^{-1} \Psi_{-}^{(h)},(M \cdot \lambda) \chi_{-}^{[h]}\right\rangle=0 \tag{14}
\end{equation*}
$$

showing that $Q^{\dagger} \Psi=0=Q \Psi$ implies $\Psi \equiv 0$ (in $\mathcal{H}_{+}$). The same holds in $\mathcal{H}_{-}$(as the extra-conditions $D^{\dagger} \cdot \lambda \psi_{a_{1}}^{(h)} \cdots a_{a_{\Lambda-1}} \lambda_{a_{1}} \cdots \lambda_{a_{\Lambda-1}}=0,\left(D \cdot \partial_{\lambda}\right) \chi_{a}^{[h]} \lambda_{a}=0$, are automatically satisfied for $\mathrm{SU}(\mathrm{N})$-invariant states, due to (11)).
Let us close with a remark on $\mathrm{d}=9$ : in order to prove the existence of a zero-energy state for the supersymmetric matrix model related to membranes in 11 space-time dimensions it is sufficient to show that for one particular solution of $Q^{\dagger} \Psi=0$, and one particular solution of $Q \chi=0$, one has $\langle\Psi, \chi\rangle \neq 0$.
Note added: Due to the singularity at $q=0$ the above argument is not yet complete.

## References

[1 ] J. Hoppe; hep-th/9709132/9709217/9711033.
[2 ] J. Goldstone, J. Hoppe; unpublished (resp. [3]).
M. Baake, P. Reinicke, V. Rittenberg; Journal of Math. Physics 26 (1985) 1070.
M. Claudson, M. Halpern; Nuclear Physics B 250 (1985) 689.
R. Flume; Annals of Physics 164 (1985) 189.
J. Hoppe; in "Constraint's Theory and Relativistic Dynamics", World Scientific 1987.
B. de Wit, J. Hoppe, H. Nicolai; Nuclear Physics B305 (1988) 545.
T. Banks, W. Fischler, S.H. Shenker, L. Susskind; hep-th/9610043.
[3 ] J. Hoppe; "Quantum Theory of a Massless Relativistic Surface", MIT Ph.D Thesis 1982.
[4 ] J. Fröhlich, J. Hoppe; hep-th/9701119.
[5 ] P. Yi; hep-th/9704098.
[6 ] S. Sethi, M. Stern; hep-th/9705046.
[7] M. Porrati, A. Rozenberg; hep-th/9708119.

