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Abstract: In this article, we study the small sphere limit of the Wang–Yau quasi-local
energy defined in Wang and Yau (Phys Rev Lett 102(2):021101, 2009, Commun Math
Phys 288(3):919–942, 2009). Given a point p in a spacetime N , we consider a canonical
family of surfaces approaching p along its future null cone and evaluate the limit of
the Wang–Yau quasi-local energy. The evaluation relies on solving an “optimal embed-
ding equation” whose solutions represent critical points of the quasi-local energy. For a
spacetime with matter fields, the scenario is similar to that of the large sphere limit found
in Chen et al. (Commun Math Phys 308(3):845–863, 2011). Namely, there is a natural
solution which is a local minimum, and the limit of its quasi-local energy recovers the
stress-energy tensor at p. For a vacuum spacetime, the quasi-local energy vanishes to
higher order and the solution of the optimal embedding equation is more complicated.
Nevertheless, we are able to show that there exists a solution that is a local minimum and
that the limit of its quasi-local energy is related to the Bel–Robinson tensor. Together
with earlier work (Chen et al. 2011), this completes the consistency verification of the
Wang–Yau quasi-local energy with all classical limits.

1. Introduction

In general relativity, a spacetime is a 4-manifold N with a Lorentzian metric gαβ satis-
fying the Einstein equation

Rαβ − R

2
gαβ = 8πTαβ,
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where Rαβ and R are the Ricci curvature and the scalar curvature of the metric gαβ ,
respectively. On the right hand side of the Einstein equation, Tαβ is the stress-energy
tensor of the matter field, a divergence free and symmetric 2-tensor. For most matter
fields, Tαβ satisfies the dominant energy condition. For a vacuum spacetime where
Tαβ = 0 (which implies Rαβ = 0), one way of measuring the gravitational energy is to
consider the Bel–Robinson tensor [2]

Qμναβ = W ρ σ
μ αWρνσβ + W ρ σ

μ β Wρνσα − 1

2
gμνW ρστ

α Wβρστ ,

where Wαβγ δ is the Weyl curvature tensor of the spacetime N . For a vacuum spacetime,
the Bel–Robinson tensor is a divergence free and totally symmetric 4-tensor which
also satisfies a certain positivity condition [9]. The stress-energy tensor and the Bel–
Robinson tensor are useful in studying the global structure of the maximal development
of the initial value problem in general relativity, see for example [3,9].

We recall that given a spacelike 2-surface � in a spacetime N , the Wang–Yau quasi-
local energy E(�, X, T0) is defined in [18,19] with respect to each pair (X, T0) of an
isometric embedding X of � into the Minkowski space R3,1 and a constant future time-
like unit vector T0 ∈ R

3,1. If the spacetime satisfies the dominant energy condition and
the pair (X, T0) is admissible (see [19,Definition 5.1]), it is proved that E(�, X, T0) ≥ 0.
The Wang–Yau quasi-local mass is defined to be the infimum of the quasi-local energy
among all admissible pairs (X, T0). The Euler–Lagrange equation for the critical points
of the quasi-local energy is derived in [19] and the solutions are referred to as the opti-
mal embeddings. The definition of the Wang–Yau quasi-local mass and the optimal
embedding equation are reviewed in more details in Sect. 2.

For a family of surfaces�r and a family of isometric embeddings Xr of�r intoR3,1,
the limit of E(�r , Xr , T0) is evaluated in [20, Theorem 2.1] under the compatibility
condition

lim
r→∞

|H0|
|H | = 1, (1.1)

where H and H0 are the mean curvature vectors of�r in N and the image of Xr inR3,1,
respectively. Under the compatibility condition, the limit of E(�r , Xr , T0) becomes a
linear function of T0.

The compatibility condition (1.1) holds naturally in the following situations:

• A family of surfaces approaching the spatial infinity of an asymptotically flat space-
time. The limit of the Wang–Yau quasi-local energy is evaluated in [20]. It is proved
that the limit of the quasi-local energy of the coordinate spheres of an asymptoti-
cally flat initial data is the linear function dual to theArnowitt–Deser–Misner (ADM)
energy-momentum vector [1].

• Afamily of surfaces approaching the null infinity of an asymptotically flat spacetime.
The limit of the Wang–Yau quasi-local energy is evaluated in [6] where the null
infinity is modeled using the Bondi coordinates. It is proved that the limit of the
quasi-local energy of the coordinate spheres is the linear function dual to the Bondi-
Trautman energy-momentum vector [4,17].

• A family of surfaces approaching a point p in a spacetime along the null cone of p.
This is the small sphere limit we study in this article. It is expected that the leading
term of the quasi-local energy recovers the stress-energy tensor in spacetimes with
matter fields and the Bel–Robinson tensor for vacuum spacetimes.
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In this article, we confirm the last expectation and thus complete the consistency
verification of the Wang–Yau energy with all classical limits. The setting for the small
sphere limit is as follows: Let p be a point in a spacetime N . Let C p be the future null
hypersurface generated by future null geodesics starting at p. Pick any future directed
timelike unit vector e0 at p. Using e0, we normalize a null vector L at p by

〈L , e0〉 = −1.

We consider the null geodesics of the normalized L and let r be the affine parameter of
these null geodesics. Let �r be the family of surfaces on C p defined by the level sets of
the affine parameter r . The inward null normal L of �r is normalized so that

〈L , L〉 = −1.

TheWang–Yau quasi-localmass is defined to be the infimumof the quasi-local energy
among all admissible pairs (X, T0). To evaluate the small sphere limit of the quasi-local
mass, we first need to understand the limit of the optimal embedding equation. For the
large sphere limit, the optimal embedding equation at infinity of an asymptotically flat
spacetime is solved in [6]. We computed the linearization of the optimal embedding
equation and obtained a unique optimal embedding which locally minimizes the energy.
It is observed that the invertibility of the linearized operator comes from the positivity of
the total energy. For the small sphere limit, we apply a similar approach to analyze the
optimal embedding equation. For a spacetime with matter fields, there is a unique choice
of the leading term of T0 such that the leading term of the optimal embedding equa-
tion is solvable. Moreover, the optimal embedding equation can be solved by iteration.
However, for a vacuum spacetime, the quasi-local energy vanishes to higher order and
the invertibility of the optimal embedding equation is more subtle. In fact, the leading
order term of the optimal embedding equation is solvable for any choice of T0 and the
obstruction to solve the optimal embedding equation only occurs in the third order term
of the optimal embedding equation.

The first main result of this article is the following theorem:

Theorem 1.1. Let �r be the above family of surfaces approaching p and with respect
to e0.

(1) For the isometric embeddings Xr of �r into R
3, the limit of the quasi-local energy

E(�r , Xr , T0) as r goes to 0 satisfies

lim
r→0

r−3E(�r , Xr , T0) = 4π

3
T (e0, T0),

where T (·, ·) is the stress-energy tensor at p
(2) Suppose T (e0, ·) is dual to a timelike vector V at p. There is a family of (Xr , T0(r))

which locally minimizes the energy of �r . Moreover, for this family of pairs, we
have

lim
r→0

r−3E(�r , Xr , T0(r)) = 4π

3

√−〈V, V 〉.

For a vacuum spacetime, the quasi-local energy vanishes to higher order. We proved
that the leading order term of the Wang–Yau quasi-local energy is of O(r5). In order to
describe the result in the vacuum case, we pick a local coordinate system (x0, x1, x2, x3)
near p such that e0 = ∂

∂x0
at p and denote by W̄0kmn the value of W (e0,

∂
∂xk , ∂

∂xm , ∂
∂xn )
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at p and by W̄0m0n the value of W (e0,
∂

∂xm , e0,
∂

∂xn ) at p, etc. From the definition of the
Bel–Robinson tensor, for T0 = (a0, a1, a2, a3), we have

Q(e0, e0, e0, T0) =
⎛

⎝1

2

∑

k,m,n

W̄ 2
0kmn +

∑

m,n

W̄ 2
0m0n

⎞

⎠ a0 + 2
∑

m,n,i

W̄0m0nW̄0minai .

We prove the following theorem:

Theorem 1.2. Let �r be the above family of surfaces approaching p and with respect
to e0. Suppose the stress-energy tensor vanishes in an open set in N containing p.

(1) For each observer T0, there is a pair (Xr (T0), T0) solving the leading order term
of the optimal embedding equation of �r (see Lemmas 6.1 and 6.3). For this pair
(Xr (T0), T0), we have

lim
r→0

r−5E(�r , Xr (T0), T0) = 1

90

[

Q(e0, e0, e0, T0) +

∑
m,n W̄ 2

0m0n

2a0

]

.

(2) Suppose Q(e0, e0, e0, ·) is dual to a timelike vector. Let P denote the set of (X, T0)
admitting a power series expansion given in Eq. (4.1). We have

inf
(X,T0)∈P

lim
r→0

r−5E(�r , X, T0) = inf
(a0,ai )∈H3

1

90

[

Q(e0, e0, e0, T0) +

∑
m,n W̄ 2

0m0n

2a0

]

.

whereH3 denotes the set of unit timelike future directed vector inR3,1. The infimum
is achieved by a unique (a0, ai ) ∈ H

3.

There have been many previous works [5,10,11,21] on evaluating the small sphere
limit of different notions of quasi-local energy. In Brown et al. [5], evaluated the small
sphere limit of the canonicalQLE (amodifiedBrown–York energy). InYu [21], evaluated
the small sphere limit of a modified Liu–Yau mass (with light cone reference embedding
instead of R3 reference). In both of the above papers, the family of physical surfaces
considered is the same as the one we use in this article. In Fan et al. [10], evaluated
the small sphere limit of the Brown–York mass and the Hawking mass, for surfaces
approaching a point in a totally geodesic hypersurface in a spacetime. See [16] for a
survey of different notions of quasi-local energy and their limiting behaviors.

When the stress-energy density Tαβ is non-vanishing at the point p, all the above small
sphere limits of different notions of quasi-local energy give the same result. Namely, the
leading order term is 4πr3

3 T (e0, e0). However, if the stress energy density vanishes near
p, then the above results give different answers, although all of them are of order O(r5)
and are related to the Bel–Robinson tensor. We compare our calculation with others in
the following:

1) In our case, the Lorentzian symmetry is recovered and our energy and momentum
components of the limits are computed from the same quasi-local energy expression.
By comparison, in the previous results, either there is only the energy component or the
momentum components come from a separate definition.

2) In our limit in a vacuum spacetime, the isometric embedding equation into R
3 is

explicitly solved and used to evaluate the limit. While the existence of such isometric
embedding is guaranteed by the solution of the Weyl problem by Nirenberg [14] and
Pogorelov [15], computing the embedding in terms of theWeyl curvatures at p is needed



Evaluating Small Sphere Limit 735

for the evaluation of the small sphere limit in a vacuum spacetime. This difficulty is
circumvented in several previous works by using the light cone reference instead.

In Sect. 3, we compute the expansion of the induced metric, the second fundamental
forms and the connection 1-form of the family of surfaces �r . Using this information,
we compute the non-vacuum small sphere limit of the Wang–Yau quasi-local energy in
Sect. 4. The rest of the paper is devoted to the small sphere limit in vacuum spacetimes.
In Sect. 5, we compute several functions, tensors, and integrals on S2 that will be used
repeatedly in later sections. InSect. 6, for eachobserver T0,we compute the O(r3) termof
the isometric embedding using the leading order termof the optimal embedding equation.
The isometric embeddings, which depends on the choice of T0, is denoted by Xr (T0).
In the next four sections, the quasi-local energy associated to the pair (Xr (T0), T0) is
computed. Sections 7, 8 and 9 are used to compute the three separate terms in the quasi-
local energy and these results are combined in Sect. 10 to evaluate E(�r , Xr (T0), T0).
In Sect. 11, we show that there is exactly one T0 that minimizes E(�r , Xr (T0), T0) and
study the optimal embedding equation in further details.

2. Review of the Wang–Yau Quasi-Local Mass

Let � be a closed embedded spacelike 2-surface in the spacetime N . We assume the
mean curvature vector H of � is spacelike. Let J be the reflection of H through the
future outgoing light cone in the normal bundle of �. The data used in the definition of
the Wang–Yau quasi-local energy is the triple (σ, |H |, αH ) on � where σ is the induced
metric, |H | is the norm of the mean curvature vector, and αH is the connection 1-form
of the normal bundle with respect to the mean curvature vector

αH (·) = 〈∇N
(·)

J

|H | ,
H

|H | 〉

where ∇N is the covariant derivative in N .
Given an isometric embedding X : � → R

3,1 and a future timelike unit vector T0
in R

3,1, suppose the projection X̂ of X (�) onto the orthogonal complement of T0 is
embedded, and denote the induced metric, the second fundamental form, and the mean
curvature of the image surface �̂ of X̂ by σ̂ab, ĥab, and Ĥ , respectively. The Wang–Yau
quasi-local energy E(�, X, T0) of � with respect to the pair (X, T0) is

E(�, X, T0) = 1

8π

∫

�̂

Ĥd�̂

+
1

8π

∫

�

[√
1 + |∇τ |2 cosh θ |H | + ∇τ · ∇θ − αH (∇τ)

]
d�,

where

θ = sinh−1(
−�τ

|H |√1 + |∇τ |2 ),

∇ and � are the gradient and Laplace operator of σ , respectively, and τ = −〈X, T0〉 is
considered as the time function on �.

If the spacetime satisfies the dominant energy condition,� bounds a spacelike hyper-
surface in N , and the pair (X, T0) is admissible, it is proved in [19] that E(�, X, T0) ≥ 0.
The Wang–Yau quasi-local mass is defined to be the infimum of the quasi-local energy
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E(�, X, T0) among all admissible pairs (X, T0). The Euler–Lagrange equation for a
critical point (X, T0) of the quasi-local energy is the elliptic equation

−(Ĥ σ̂ ab − σ̂ acσ̂ bd ĥcd)
∇b∇aτ

√
1 + |∇τ |2 + divσ (

∇τ
√
1 + |∇τ |2 cosh θ |H | − ∇θ − αH ) = 0

coupled with the isometric embedding equation for X . This Euler–Lagrange equation is
referred to as the optimal embedding equation and a solution is referred to as an optimal
embedding.

The corresponding data for the image of the isometric embedding in the Minkowski
space can be used to simplify the expression for the quasi-local energy and the optimal
embedding equation. Denote the norm of the mean curvature vector and the connection
1-form with respect to the mean curvature vector of X (�) in R

3,1 by |H0| and αH0 ,
respectively. We have the following identities relating the geometry of the image of the
isometric embedding X and the image surface �̂ of X̂ .

√
1 + |∇τ |2 Ĥ =

√
1 + |∇τ |2 cosh θ0|H0| − ∇τ · ∇θ0 − αH0(∇τ),

− (Ĥ σ̂ ab − σ̂ acσ̂ bd ĥcd)
∇b∇aτ

√
1 + |∇τ |2

+ divσ (
∇τ

√
1 + |∇τ |2 cosh θ0|H0| − ∇θ0 − αH0) = 0,

where

θ0 = sinh−1(
−�τ

|H0|
√
1 + |∇τ |2 ).

The first identity is derived in [19, Proposition 3.1]. The second identity simply states
that a surface inside R

3,1 is a critical point of the quasi-local energy with respect to
isometric embeddings of the surface back to R

3,1 with other time functions. This can
be proved by either the positivity of the Wang–Yau quasi-local energy or by a direct
computation [7].

We substitute these relations into the expression for E(�, X, T0) and the optimal
embedding equation and rewrite them in term of the following function f (In [8], we
denote this function by ρ.):

f =
√

|H0|2 + (�τ)2

1+|∇τ |2 −
√

|H |2 + (�τ)2

1+|∇τ |2√
1 + |∇τ |2 . (2.1)

The quasi-local energy becomes

E(�, X, T0)

= 1

8π

∫

�

[
f (1 + |∇τ |2) + �τ sinh−1(

f �τ

|H0||H | ) − αH0(∇τ) + αH (∇τ)

]
d�, (2.2)

and the optimal embedding equation becomes

divσ

(
f ∇τ − ∇[sinh−1(

f �τ

|H0||H | )] − αH0 + αH

)
= 0. (2.3)

In [6], we studied the large sphere limit of the optimal embedding equation using the
expression inEq. (2.3) and derived an iteration scheme tofind a solutionwhichminimizes
the energy. In later sections,we analyze the small limit of the optimal embedding equation
using the same expression.
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3. The Expansion of the Physical Data

Let �r be the family of surfaces approaching a point p in the spacetime N constructed
in the introduction. In this section, we compute the expansions of the induced metric,
the second fundamental forms and the connection 1-form of �r . The result here is
essentially the same as the expansions computed in [5] using the Newman-Penrose
formalism. However, the quantities are computed in a different frame to adapt to our
situation. This simplifies the computation in the later sections.

3.1. Leading order expansion in non-vacuum spacetimes. In this subsection, we com-
pute the expansion of the geometric quantities in terms of the affine parameter r . We
compute enough terms in the expansion in order to evaluate the small sphere limit of
the Wang–Yau quasi-local mass in spacetimes with matter fields. Expansions to higher
order in vacuum spacetimes are given in the next subsection.

We parametrize �r in the following way. Consider a smooth map

X : S2 × [0, ε) → N (3.1)

such that for each fixed point in S2, X (·, r), r ∈ [0, ε) is a null geodesic parametrized
by the affine parameter r , with X (·, 0) = p and ∂ X

∂r (·, 0) ∈ Tp N a null vector such that
〈 ∂ X

∂r (·, 0), e0〉 = −1. Let L = ∂ X
∂r be the null generator, ∇N

L L = 0. We also choose a
local coordinate system {ua}a=1,2 on S2 such that ∂a = ∂ X

∂ua , a = 1, 2 form a tangent
basis to �r . Let L be the null normal vector field along �r such that 〈L , L〉 = −1.
Denote

lab = 〈∇N
∂a

∂b, L〉
nab = 〈∇N

∂a
∂b, L〉

ηa = 〈∇N
L ∂a, L〉

for the second fundamental forms in the direction of L and L and the connection 1-form
in the null normal frame, respectively. We consider these as tensors on S2 that depend
on r and use the induced metric on �r , σab = 〈∂a, ∂b〉 to raise or lower indexes. Let ∇
and � be the covariant derivative and the Laplacian with respect to σ , respectively.

In particular, we have

∇N
∂a

L = −lc
a∂c − ηa L

∇N
∂a

∂b = γ c
ab∂c − lab L − nab L

∇N
∂a

L = −nc
a∂c + ηa L,

(3.2)

where γ c
ab are the Christoffel symbols of σab. Let

l̂ab = lab − 1

2
(σ cdlcd)σab

n̂ab = lab − 1

2
(σ cdlcd)σab

be the traceless part of lab and nab.
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The following identities for covariant derivatives are useful.

∇N
L ∂a = −lc

a∂c − ηa L

∇N
L L = −ηb∂b.

We first derive the following:

Lemma 3.1. The induced metric, the second fundamental forms and the connection
1-form satisfy the following differential equations:

∂rσab = −2lab (3.3)

∂r lab = RLabL − laclc
b (3.4)

∂r nab = RLabL − lc
bnac + ∇aηb − ηaηb (3.5)

∂rηa = RLaL L + lb
aηb (3.6)

∂r (σ
ablab) = 1

2
(σ ablab)

2 + l̂b
a l̂a

b + Ric(L , L) (3.7)

∂r (σ
abnab) = Ric(L , L) + RL L L L + labnab + divσ η − ηaηa . (3.8)

Ric and Rαβγ δ are the Ricci curvature and the full Riemannian curvature tensor of the
spacetime N, respectively.

Proof. Equation (3.3) follows from the definition of second fundamental form. For lab,

∂r lab = ∂r 〈∇N
∂a

∂b, L〉
= RLabL + 〈∇N

∂a
∇N

L ∂b, L〉
= RLabL − laclc

b.

We derive

∂r (σ
ablab) = lablab + Ric(L , L).

Equation (3.7) follows from the decomposition lablab = l̂abl̂ab + 1
2 (σ

ablab)
2. Indeed,

this is the Raychaudhuri equation.
For the connection 1-form, we have

∂rηa = ∂r 〈∇N
∂a

L , L〉
= RLaL L + lb

aηb.

For nab, we have

∂r nab = ∂r 〈∇N
∂a

∂b, L〉
= RLabL + 〈∇N

∂a
(∇N

L ∂b), L〉 + 〈∇N
∂a

∂b,∇N
L L〉

= RLabL − 〈∇N
∂a

(lc
b∂c + ηb L), L〉 − 〈∇N

∂a
∂b, η

c∂c〉
= RLabL − lc

bnac + ∇aηb − ηaηb

(3.9)

and

∂r (σ
abnab) = σ ab∂r nab + (∂rσ

ab)nab

= σ ab RLabL − labnab + divσ η − ηaηa + 2labnab

= Ric(L , L) + RL L L L + labnab + divσ η − ηaηa .

(3.10)
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In the rest of this subsection, we consider the expansions of geometric data as r → 0.
As we remarked, we consider σab, lab, nab, ηa as tensors on S2 × [0, ε), or tensors on
S2 that depend on the parameter r . We shall see below that they have the following
expansions.

σab = σ̃abr2 + O(r3)

lab = −σ̃abr + O(r2)

nab = 1

2
σ̃abr + O(r2)

ηa = 1

3
βar2 + O(r3)

where βa = limr→0 RLaL L is considered as a (0, 1) tensor on S2, σ̃ab denotes the
standard metric on unit S2. Let ∇̃ and �̃ be the covariant derivative and the Laplacian
with respect to σ̃ab, respectively.

We shall also consider the pull-back of tensors from the null hypersurface. For exam-
ple, we consider R(L , ·, L , L) as a tensor defined on C p and take its pull-back through
(3.1), which is then consider as a (0, 1) tenors on S2 that depends on r (or on S2×[0, ε)).
We shall abuse the notations and still denote the pull-back tensor by RLaL L . In particular,
RLabL , RLaL L , RL L L L are considered as r dependent (0, 2) tensor, (0, 1) tensor, and a
scalar function on S2, respectively, of the following orders

RLabL = O(r2), RLaL L = O(r) and RL L L L = O(1).

To describe their expansions, we first write down the expansions of L and ∂a . Let
x0, xi , i = 1, 2, 3 be a normal coordinates system at p such that the original future
timelike vector e0 ∈ Tp N is ∂

∂x0
. The parametrization (3.1) is given by

X (ua, r) = X0(ua, r)
∂

∂x0
+ Xi (ua, r)

∂

∂xi

with the following expansions:

X0(ua, r) = r + O(r2)

Xi (ua, r) = r X̃ i (ua) + O(r2),

where X̃ i (ua) are the three first eigenfunctions of the standard metric σ̃ab on S2. For
example, if we take the coordinates ua, a = 1, 2 to be the standard spherical coordinate
system θ, φ with σ̃ = dθ2 + sin2 θdφ2, then X̃1 = sin θ sin φ, X̃2 = sin θ cosφ, and
X̃3 = cos θ . In particular,

L = ∂ X

∂r
= ∂

∂x0
+ X̃ i (ua)

∂

∂xi
+ O(r)

∂a = ∂ X

∂ua
= r

∂ X̃ i

∂ua

∂

∂xi
+ O(r2), a = 1, 2.

(3.11)

We have the following expansions for the curvature tensor:

RLabL = r2 R̄LabL + O(r3)

RLaL L = r R̄LaL L + O(r2)

RL L L L = R̄L L L L + O(r),

(3.12)
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where R̄LabL , R̄LaL L and R̄L L L L correspond to the appropriate rescaled limit of the
respective tensors as r → 0. For example,

R̄LabL = lim
r→0

1

r2
RLabL = R(

∂

∂x0
+ X̃ i ∂

∂xi
,
∂ X̃ j

∂ua
,
∂ X̃ k

∂ub
,

∂

∂x0
+ X̃ l ∂

∂xl
)(p)

is considered as a (0, 2) tensor on the standard S2.

Lemma 3.2. We have the following expansions:

lab = −r σ̃ab +
2

3
r3 R̄LabL + O(r4) (3.13)

σab = r2σ̃ab − 1

3
r4 R̄LabL + O(r5) (3.14)

lc
a = −r−1δc

a +
1

3
r R̄LabL σ̃ bc + O(r2) (3.15)

ηa = 1

3
r2 R̄LaL L + O(r3). (3.16)

Proof. Suppose we have the expansions

σab = r2σ̃ab + r3σ (3)
ab + r4σ (4)

ab + O(r5)

ηa = r2η(2)
a + O(r3).

Using RLabL = r2 R̄LabL + O(r3) and Eq. (3.4), we conclude

lab = −r σ̃ab +
2

3
r3 R̄LabL + O(r4). (3.17)

From Eq. (3.3), this implies

σab = r2σ̃ab − r4

3
R̄LabL + O(r5). (3.18)

From Eq. (3.6) for η and expansion for lab, we derive

ηa = 1

3
r2 R̄LaL L + O(r3).

	

Next, we derive the expansion for the mean curvature in the direction of L and L .

Lemma 3.3. We have the following expansions for σ ablab and σ abnab

σ ablab = −2

r
+
1

3
r R̄ic(L , L) + O(r2), (3.19)

σ abnab = 1

r
+ r(σ abnab)

(1) + O(r2), (3.20)

where

(σ abnab)
(1) = 1

2
R̄L L L L +

1

2
¯Ric(L , L) +

1

12
R̄ic(L , L) +

1

6
∇̃a R̄LaL L .
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Proof. The expansion for σ ablab follows from the expansions for lab and σab. Equation
(3.5) for nab is equivalent to

r∂r (r
−1nab) = RLabL − (lc

b + r−1δc
b)nac + ∇aηb − ηaηb.

Since nab = 1
2r σ̃ab + O(r2), it follows that

r∂r (r
−1nab) = r2(R̄LabL − 1

6
R̄LabL + ∇̃aη

(2)
b ) + O(r3).

Integrating with respect to r , we obtain

nab = 1

2
r σ̃ab +

1

2
r3(∇̃aη

(2)
b + R̄LabL − 1

6
R̄LabL) + O(r4).

Using the expansion for σab again, we finish the proof of the lemma. 	

The term (σ abnab)

(1) can by further simplified by the following lemma.

Lemma 3.4.

∇̃b(R̄LbL L) = 3R̄L L L L + R̄ic(L , L) +
1

2
R̄ic(L , L).

Proof. For this, we go back to general �r and compute

σ ab(∂a(RLbL L) − γ c
ab RLcL L)

on�r . This term is of order 1
r and the leading coefficient is σ̃ ab∇̃a(R̄LbL L). On the other

hand, we use the Leibniz rule and derive

σ ab(∂a(RLbL L) − γ c
ab RLcL L)

= σ ab(∇N
a R)LbL L − (σ ablab)RL L L L − lbc RLbcL − σ abηa RLbL L + nbc RLbcL .

Leading terms of the O( 1r ) are the second, the third, and the fifth terms and the coefficient
is 3R̄L L L L + R̄ic(L , L). 	


In summary, we have the following expansions on the surfaces �r :

Lemma 3.5. We have the following expansions for the data (σ, |H |, divαH ) on S2:

σab = r2σ̃ab − 1

3
r4 R̄LabL + O(r5)

|H |2 = 4

r2
+ [4R̄L L L L +

8

3
R̄ic(L , L)] + O(r)

divσ αH = �̃

[
1

2
R̄L L L L +

1

6
R̄ic(L , L) +

1

3
R̄ic(L , L)

]

− R̄L L L L − 1

3
R̄ic(L , L) − 1

6
R̄ic(L , L) + O(r).

(3.21)

Proof. This follows from

|H |2 = −2(σ ablab) · (σ cdncd)

divαH = −1

2
� ln(−σ ablab) +

1

2
� ln(σ abnab) − divσ η,

(3.22)

the expansions of σ and η in Lemma 3.2 and the expansions of σ ablab and σ abnab in
Lemma 3.3. We also apply Lemma 3.4 to compute the divergence. 	
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3.2. Further expansions in vacuum spacetimes. In this subsection, we assume the space-
time is vacuum and compute the higher order terms in the expansions for the physical
data. Again, enough expansions are obtained to evaluate the leading term of the small
sphere limit of the Wang–Yau quasi-local mass in vacuum. In a vacuum spacetime,
the only non-vanishing components of the curvature tensor are the Weyl curvature
tensor. We decompose the Weyl curvature tensor at the point p using the null frame
{ea, L , L} following the notation of Christodoulou and Klainerman in [9] (our conven-
tion is 〈L , L〉 = −1 though):

αab = W̄aLbL

αab = W̄aLbL

βa = W̄aL L L

β
a

= W̄aL L L

ρ = W̄L L L L

σ = εabW̄abL L .

(3.23)

From the vacuum condition and the Bianchi equations, we obtain the following
relations:

W̄LabL = 1

2
σ̃abρ +

1

4
εabσ

W̄abcL = −εabεcdβd

W̄abcL = εabεcdβd

W̄abL L = 1

2
εabσ.

(3.24)

All α, α, β, β, ρ and σ are considered as tensors on S2 through the limiting process
described above and we compute the covariant derivatives of them with respect to the
standard metric σ̃ab.

Lemma 3.6.

∇̃cαab = (σ̃ca σ̃bd + σ̃cbσ̃ad + εcaεbd + εcbεad)βd

∇̃cαab = 1

2
(σ̃ca σ̃bd + σ̃cbσ̃ad + εcaεbd + εcbεad)βd

∇̃aβb = −3

4
σεab +

3

2
ρσ̃ab − 1

2
αab

∇̃aβ
b

= 3

8
σεab +

3

4
ρσ̃ab − αab

∇̃aρ = −βa − 2β
a

∇̃aσ = 2εab(β
b − 2βb).

(3.25)

Proof. All of them are defined as limiting quantities as r → 0 and we can represent
them in terms of the limiting frame as r → 0:
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L = ∂

∂x0
+ X̃ i ∂

∂xi

L = 1

2
(

∂

∂x0
− X̃ i ∂

∂xi
)

ea = (∇̃a X̃ i )
∂

∂xi
.

(3.26)

To compute the covariant derivative of αab, we expand

αab = ∇̃a X̃ i ∇̃b X̃k[W̄i0k0 + X̃ l W̄i0kl + X̃ j W̄i jk0 + X̃ j X̃ l W̄i jkl ]
and differentiate using the relations:

∇̃a∇̃a X̃ i = −σ̃ab X̃ i ,

3∑

i=1

X̃ i ∇̃a X̃ i = 0,

3∑

i=1

∇̃a X̃ i ∇̃b X̃ i = σ̃ab, ∇̃a X̃ i ∇̃a X̃ j = δi j − X̃ i X̃ j

where σ̃ab is used to raise or lower indexes. Note that all the Weyl curvature coefficients
are constants valued at p.

In effect, this is equivalent to differentiating W̄aLbL using the following relations:

∇̃a L = ea

∇̃a L = −1

2
ea

∇̃aeb = (L − 1

2
L)σ̃ab.

(3.27)

Therefore,

∇̃cαab = ∇̃cW̄aLbL

= W̄ (σ̃ca L, L , eb, L) + W̄ (ea, ec, eb, L) + W̄ (ea, L , σ̃cb L, L) + W̄ (ea, L , eb, ec)

= σ̃caβb + σ̃cbβa + W̄acbL + W̄bcaL .

Substituting (3.24) gives the desired formula. Other formulae can be derived similarly,
for example

∇̃aβb = ∇̃a W̄LbL L

= W̄abL L + W̄L L L L σ̃ab + W̄LbaL − 1

2
W̄LbLa

= −3

4
σεab +

3

2
ρσ̃ab − 1

2
αab.

	

Contracting with respect to σ̃ab and εab, we obtain the following formulae:
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Lemma 3.7.

∇̃aαab = 4βb, ε
ca∇cαab = 4εbdβd

∇̃aαab = 2β
b
, εca∇cαab = 2εbdβd

∇̃aβa = 3ρ, εab∇̃aβb = −3

2
σ

∇̃aβ
a

= 3

2
ρ, εab∇̃aβ

b
= 3

4
σ.

(3.28)

Proof. We apply the following two identities:

σ̃ ca(σ̃ca σ̃bd + σ̃cbσ̃ad + εcaεbd + εcbεad) = 4σbd

εca(σ̃ca σ̃bd + σ̃cbσ̃ad + εcaεbd + εcbεad) = 4εbd .

	

In particular, it follows that �̃ρ = −6ρ and �̃σ = −6σ . Moreover, we obtain the
following lemma from equations (3.25) and (3.28).

Lemma 3.8.

∇̃c|α|2 = 8αcbβ
b (3.29)

�̃|α|2 = 32|β|2 − 4|α|2 (3.30)

Proof. We compute

∇̃c|α|2 = 2(∇̃cαab)α
ab

= 2(σ̃ca σ̃bd + σ̃cbσ̃ad + εcaεbd + εcbεad)βdαab

= 8αcbβ
b.

Equation (3.30) follows from computing the divergences of the two sides of Eq. (3.29)
with the help of equations (3.25) and (3.28). 	

We obtain the following two identities.

Corollary 1.
∫

S2
|α|2d S2 = 8

∫

S2
|β|2d S2 (3.31)

∫

S2
X̃ i |α|2d S2 = 16

∫

S2
X̃ i |β|2d S2 (3.32)

Proof. Equation (3.31) follows from integrating Eq. (3.30) on S2 with the standard
metric. Similarly, Eq. (3.32) follows from multiplying Eq. (3.30) with X̃ i and then
integrating on S2. 	

Furthermore, the covariant derivative in the spacetime N at p in the direction of L is
denoted by the symbol D. For example,

Dαab = ∇N
L W (ea, L , eb, L)(p).

Dαab is also considered as a tensor on S2 through the limiting process and its covariant
derivatives with respect to the standard metric σ̃ab can be computed in the same manner.
Relations similar to Eq. (3.28) hold among D of the Weyl curvature components.
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Lemma 3.9.

∇̃a Dβa = 4Dρ

∇̃a D2βa = 5D2ρ

∇̃a(Dαab) = 5Dβb

∇̃a(D2αab) = 6D2βb

(3.33)

Proof. We compute

∇̃a Dβa = σ̃ ab∇̃a(∇N
L W̄LbL L)

= σ̃ ab∇a W̄LbL L + ∇N
L ∇̃a W̄LaL L

= 4∇N
L W̄L L L L .

Similarly,

∇̃a D2βa = σ̃ ab∇̃a(∇N
L ∇N

L W̄LbL L)

= σ̃ ab(∇N
a ∇N

L W̄LbL L + ∇N
L ∇N

a W̄LbL L + ∇N
L ∇N

L ∇̃a W̄LbL L)

= σ̃ ab(∇N
a ∇N

L − ∇N
L ∇N

a )W̄LbL L + 5∇N
L ∇N

L W̄L L L L .

It suffices to show that

σ̃ ab(∇N
a ∇N

L − ∇N
L ∇N

a )W̄LbL L = 0.

We compute

σ̃ ab(∇N
a ∇N

L − ∇N
L ∇N

a )W̄LbL L

= σ̃ ab(W̄aL LαW̄αbL L + W̄aLbαW̄LαL L + W̄aL LαW̄LbαL + W̄aL LαW̄LbLα)

= σ̃ ab(W̄aL LαW̄αbL L + W̄aLbαW̄LαL L)

= −σ̃ ab(W̄aL L L W̄LbL L) + W̄L L LαW̄LαL L

= σ̃ ab(−W̄aL L L W̄LbL L + W̄L L La W̄LbL L)

= 0.

The other two relations can be derived similarly. 	

Remark 1. It is also useful to evaluate the Weyl curvature tensor at the point p on

er = X̃ i ∂

∂xi
.

For example,

W̄rabr = W̄ (X̃ i ∂

∂xi
,
∂ X̃ j

∂ua
,
∂ X̃ k

∂ub
, X̃ l ∂

∂xl
).

Lemma 3.10. We have the following expansions for the Weyl curvature tensor:

WLaL L = rβa + r2Dβa +
1

2
r3D2βa + O(r4)

WL L L L = ρ + r Dρ + r2[1
2

D2ρ − 1

3
|β|2] + O(r3).

(3.34)
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Proof. We compute the expansion for WLaL L .

∂r WLaL L = ∇N
L WLaL L − lc

a WLcL L − ηbWLaLb. (3.35)

This is equivalent to

r∂r (r
−1WLaL L) = ∇N

L WLaL L − (lc
a + r−1δc

a)WLcL L − ηbWLaLb. (3.36)

Using the expansion of lc
a in Eq. (3.15) and the expansion of the curvature tensor in

Eq. (3.12), we have

−(lc
a + r−1δc

a)WLcL N − ηbWLaLb = O(r3). (3.37)

We differentiate ∇N
L WLaL L again and get

∂r (∇N
L WLaL L) = ∇N

L ∇N
L WLaL L − lc

a∇N
L WLcL L − ηb∇N

L WLaLb.

This is equivalent to

r∂r (r
−1(∇N

L W )LaL L) = r D2βa + O(r2).

Thus
∇N

L WLaL L = r Dβa + r2D2βa + O(r3). (3.38)

Using equations (3.37) and (3.38) in Eq. (3.36), we rewrite

r∂r (r
−1WLaL L) = r Dβa + r2D2βa + O(r3).

Integrating this equation, we obtain

WLaL L = rβa + r2Dβa +
1

2
r3D2βa + O(r4).

For WL L L L , we have

∂r WL L L L = ∇N
L WL L L L − 2WLaL Lηa . (3.39)

We compute

−2WLaL Lηa = −2

3
r |β|2 + O(r2)

and

∇N
L WL L L L = Dρ + r D2ρ + O(r2).

It follows that

WL L L L = ρ + r Dρ +
1

2
r2

(
D2ρ − 2

3
|β|2

)
+ O(r3).
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Lemma 3.11. We have the following expansions for σ ablab, σ abnab and ηa.

σ ablab = −2

r
+

1

45
r3|α|2 + O(r4) (3.40)

σ abnab = 1

r
+ r(σ abnab)

(1) + r2(σ abnab)
(2) + r3(σ abnab)

(3) + O(r4) (3.41)

and

ηa = r2

3
βa +

r3

4
Dβa + r4[ 1

10
D2βa − 1

45
αabβ

b] + O(r5), (3.42)

where

(σ abnab)
(1) = ρ

(σ abnab)
(2) = 2

3
Dρ

(σ abnab)
(3) = 3

8
D2ρ +

1

30
|α|2 − 11

45
|β|2.

(3.43)

Proof. We rewrite lab as

lab = −r σ̃ab − 2

3
r3αab + O(r4)

= (−r σ̃ab − 1

3
r3αab) − 1

3
r3αab + O(r4).

Hence, l̂ab, the traceless part of lab, is given by

l̂ab = −1

3
r3αab + O(r4). (3.44)

It follows that

σ ablab = −2

r
+

r3

45
|α|2 + O(r4). (3.45)

Next we compute ηa . Let

ηa = r2η(2)
a + r3η(3)

a + r4η(4)
a + O(r5).

From Lemma 3.4, we have

ηa = 1

3
r2βa + O(r3).

Equation (3.6) is equivalent to

r−1∂r (rηa) = WLaL L + (lb
a + r−1δb

a)ηb.

By Eq. (3.34), the right hand side can be expanded into

rβa + r2Dβa + r3[1
2

D2βa − 1

9
αabβ

b] + O(r4).

Integrating, we obtain

η(3)
a = 1

4
Dβa
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η(4)
a = 1

10
D2βa − 1

45
αabβ

b.

For nab, we start with Eq. (3.5). It is equivalent to

r∂r (r
−1nab) = WLabL − (lc

b + r−1δc
b)nac + ∇aηb − ηaηb.

The equation becomes

r∂r (r
−1nab) = r2[W̄LabL − 1

6
W̄LabL + ∇̃aη

(2)
b ] + O(r3)

= r2ρσ̃ab + O(r3).

Integrating, we obtain

nab = 1

2
r σ̃ab +

1

2
r3ρσ̃ab + O(r4).

Lastly, we deal with Eq. (3.8) for σ abnab. We decompose

labnab = labσ
acσ bdncd

= (lab +
σab

r
)σ acσ bd(ncd − σcd

2r
) +

1

2
r−1σ ablab − r−1σ abnab + r−2.

(3.46)

Thus Eq. (3.8) is equivalent to

r−1∂r (rσ abnab) = r−2 +
1

2
r−1σ ablab + (lab + r−1σ ab)(nab − 1

2
r−1σab)

−ηaηa + WL L L L + divσ η.

Notice that

lab + r−aσab = −1

3
r3αab + O(r4)

ncd − 1

2
r−1σcd = r3(

1

2
ρσ̃ab − 1

6
αab) + O(r4).

We have

r−1∂r (rσ abnab) = r2
[
1

15
|α|2 − 1

9
|β|2

]
+ divσ η + WL L L L + O(r3).

Integrating this equation, we obtain the expansion for σ abnab.

σ abnab = 1

r
+

r

2
[(ρ + (divσ η)(0)] + r2

3
[Dρ + (divσ η)(1)] + r3

4

[1
2
(D2ρ − 2

3
|β|2)

+ (divσ η)(2) − 1

9
|β|2 + 1

15
|α|2

]
+ O(r4).
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We compute

(divσ η)(0) = 1

3
∇̃a(βa) = ρ

(divσ η)(1) = 1

4
∇̃a Dβa = Dρ

(divσ η)(2) = 1

10
∇̃a(D2βa) − 2

15
∇̃a(αabβ

b)

= 1

2
D2ρ +

1

15
(|α|2 − 8|β|2).

(3.47)

Equation (3.47) follows from the expansion of η and the following expansion for γ c
ab:

γ c
ab = γ̃ c

ab + r2γ (2)c
ab + O(r3) (3.48)

where γ̃ c
ab is the Christoffel symbols for σ̃ab and γ

(2)c
ab = − 1

6 σ̃
cd(∇̃aαdb + ∇̃bαad −

∇̃dαab). 	


4. Small Sphere Limit of the Quasi-Local Energy in Spacetimes with Matters

Recall that the Einstein equation is

Rαβ − 1

2
Rgαβ = 8πTαβ.

For the small sphere limit of theWang–Yau quasi-local energy, we show that the leading
order term of the quasi-local energy is precisely the stress-energy density with the order
O(r3). This is true with respect to any isometric embeddings with time functions of
the order O(r3). Moreover, among such embeddings, there is a solution to the optimal
embedding equation when the observer is chosen correctly.

4.1. The optimal embedding equation. We study the optimal embedding equation to
determine the leading order of the time function. As in [6], we will restrict ourselves
to isometric embeddings close to the embedding into R

3. Namely, we suppose that the
embedding is given by X = (X0, X1, X2, X3) and an observer T0 with the following
expansion

X0 =
∞∑

i=2

X (i)
0 r i

Xk = r X̃k +
∞∑

i=3

X (i)
k r i

T0 = (a0,−ai ) +
∞∑

i=1

T (i)
0 r i .

(4.1)

where X (i)
0 , X (i)

k and T (i)
0 are independent of r .



750 P.-N. Chen, M.-T. Wang, S.-T. Yau

Let τ = −X · T0 be the time function. The optimal embedding equation is

div( f ∇τ) − �[sinh−1(
�τ f

|H ||H0| )] = divσ αH0 − divσ αH , (4.2)

where

f =
√

|H0|2 + (�τ)2

1+|∇τ |2 −
√

|H |2 + (�τ)2

1+|∇τ |2√
1 + |∇τ |2 .

Assuming Eq. (4.1) and using Lemma 3.5 for |H | and Lemma 4 of [6] for H0, we have

|H | = 2

r
+ O(r) and |H0| = 2

r
+ O(r). (4.3)

As a result, f = O(r) and

div( f ∇τ) − �[sinh−1(
�τ f

|H ||H0| )] = O(1).

From Lemma 3.5, we have divσ αH = O(1). For divαH0 , we use Lemma 5 of [6] to
conclude

divσ αH0 = 1

2
r−1�̃(�̃ + 2)X (2)

0 + O(1).

However, since all other terms in Eq. (4.2) are at most O(1), we conclude that

X0 =
∞∑

i=3

X (i)
0 r i

and

divσ αH0 = 1

2
�̃(�̃ + 2)X (3)

0 + O(r).

Remark 2. We can also deduce that X (2)
0 should vanish from the point of view of min-

imizing energy. Without loss of generality, we may assume X (2)
0 is perpendicular to

the kernel of the operator �̃(�̃ + 2), up to changing lower order terms in T0. Let X̂r
be the isometric embedding of �r into the R3. Following the discussion of [6] for the
second variation of the Wang–Yau quasi-local energy and the order of divσ αH above,
we conclude

E(�r , Xr , T0) = E(�r , X̂r , T0) +
r3

4

∫

S2
X (2)
0 �̃(�̃ + 2)X (2)

0 d S2 + O(r4),

where the second term is strictly positive unless X (2)
0 vanishes.
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From Eq. (4.3), it follows that

lim
r→0

|H |
|H0| = 1

andwe apply Theorem2.1 of [20] to evaluate the limit of the quasi-local energy. The limit
of the quasi-local energy is the linear function dual to the four-vector (e, p1, p2, p3)
where

e = 1

8π

∫

�r

(|H0| − |H |)d�r

pi = 1

8π

∫

�r

X i (divσ αH − divσ αH0)d�r .

Following the argument in [6], we show that the limit is independent of X (3)
0 as

follows. It is easy to see that e and pi are O(r3). Furthermore, |H0| is the same up to
an error of O(r3) for any isometric embedding with time functions of the order O(r3).
Hence the leading order term of e is independent of the isometric embedding. For pi ,
we have

1

8π

∫

�r

Xi (divσ αH − divσ αH0)d�r

= 1

8π

∫

�r

r X̃ i (divσ αH − 1

2
�̃(�̃ + 2)X (3)

0 )d�r + O(r4).

= 1

8π

∫

�r

X i (divσ αH )d�r + O(r4).

Hence it suffices to consider the isometric embedding into R
3 to evaluate the limit.

4.2. Small sphere limit.

Theorem 4.1. Let �r be the family of affine parameter r from p, normalized by the unit
timelike vector e0. For any family of isometric embedding Xr of �r into R

3,1 such that
X0 = O(r3), the limit of the quasi-local energy E(�r , Xr , T0) as r goes to 0 satisfies

lim
r→0

r−3E(�r , Xr , T0) = 4π

3
T (e0, T0).

Proof. From the previous subsection, it suffices to evaluate

e = 1

8π

∫

�r

(H0 − |H |)d�r

pi = 1

8π

∫

�r

X i divσ αH d�r .

where H0 is the mean curvature of the isometric embedding into R3.

Lemma 4.1. For the energy component of the limit, we have

1

8π

∫

�r

(H0 − |H |)d�r = 4

3
r3T (e0, e0) + O(r4).



752 P.-N. Chen, M.-T. Wang, S.-T. Yau

Proof. A similar equality is proved in [21]. Namely,

1

8π

∫

�r

(2
√

K − |H |)d�r = 4

3
r3T (e0, e0) + O(r4)

where K is the Gaussian curvature of �r . Using the Gauss equation for the image of the
isometric embedding into R

3, we conlcude that

2
√

K − H0 = O(r2).

This finishes the proof of the lemma. 	

Next we compute pi . Using the expansion for divσ αH from Lemma 3.5, we have

pi = r3
∫

S2

[
�̃[1

2
R̄L L L L +

1

6
R̄ic(L , L) +

1

3
R̄ic(L , L)]

− R̄L L L L − 1

3
R̄ic(L , L) − 1

6
R̄ic(L , L)

]
X̃ i d S2 + O(r4)

= r3
∫

S2

[
− 2R̄L L L L − R̄ic(L , L) − 1

2
R̄ic(L , L)

]
X̃ i d S2 + O(r4)

where we apply integration by parts for the last equality.
To evaluate the above integral, we switch to the orthogonal frame {e0, ei }. We have

∫

S2

[
− 2R̄L L L L − R̄ic(L , L) − 1

2
R̄ic(L , L)

]
X̃ i d S2 = −

∫

S2
R̄ic(e0, e j )X̃ j X̃ i d S2

= −4π

3
R̄ic(e0, ei ).

This finishes the proof since R̄ic(e0, ei ) = 8πT0i . 	

From the above theorem and Sect. 4 of [6], we conclude that the linearized optimal
embedding is invertible if T (e0, ·) is timelike. The second part of Theorem 1.1 now
follows from the first part and the results in Sect. 4 of [6] for the solution of the optimal
embedding equation. The only formal difference is that we have an expansion in r for
small r here, rather than an expansion in 1

r for r large.

Remark 3. A power series solution of the optimal embedding equation of the form (4.1)
can be obtained from the results of [6, Section 4]. To show that this converges to an
actual solution, we may solve the optimal embedding equation to a sufficiently higher
order so that the error is small enough to apply [13, Theorem 2.1] and [12, Theorem
5.1].

5. Functions and Integrations in Terms of the Weyl Curvature at p

When we compute the small sphere limit in vacuum spacetimes, there are several func-
tions, tensors and integrations on S2 which appear repeatedly. We compute these quan-
tities here for use in the later sections.
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We define the functions W0, Wi and Pk as follows:

W0 = X̃ i X̃ j W̄0i0 j = ρ

Wi = X̃ j X̃ k W̄0ki j = 1

2
(βb − 2βb)∇̃b X̃ i

Pk = 1

15
W̄0i0k X̃ i − 1

6
W0 X̃ k = − 1

30
(βa + 2βa)∇̃a X̃k − 1

10
ρ X̃ k

(5.1)

Wi are −6-eigenfunctions and Pk are −12-eigenfunctions of the standard Laplacian on
S2. Pk will appear in the solution of the optimal isometric embedding equation, Lemma
6.3.

Lemma 5.1. For Pj defined above, we have
∫

S2
W0∇̃ X̃ i · ∇̃ Pj d S2 = 4

∫

S2
W0 X̃ i Pj d S2.

Proof. Integrating by parts,
∫

S2
W0∇̃ X̃ i · ∇̃ Pj d S2 = −

∫

S2
∇̃(ρ∇̃ X̃ i )Pj d S2 = 2

∫

S2
W0 X̃ i Pj d S2

−
∫

S2
Pj ∇̃ X̃ i · ∇̃W0d S2.

Moreover,

∇̃ X̃ i · ∇̃W0 = 2W̄0m0n X̃m(δin − X̃n X̃ i )

= −2W0 X̃ i + 2W̄0m0i X̃m,

and
∫

S2 Pj X̃md S2 = 0. 	

We also introduce Ri j and S j which will appear in Lemma 7.1 later. From the expan-

sion of the induced metric σab, we derive

σ (0)ab = −1

3
αab and σ̃ abγ

(2)c
ab = −4

3
βc. (5.2)

Ri j and S j are defined as follows:

Ri j = −1

3
αab X̃ i

a X̃ j
b = σ (0)ab X̃ i

a X̃ j
b

S j = −4

3
βc X̃ j

c = σ̃ abγ
(2)c
ab X̃ j

c .

(5.3)

Lemma 5.2. Ri j and S j defined in (5.3) satisfy:

Ri j = 1

3
[2X̃ i X̃ k W̄0i0k + 2X̃ j X̃ k W̄0k0i + X̃ i X̃ j X̃ n(W̄0in j + W̄0 jni )

− 2W̄0i0 j − ρδi j − ρ X̃ i X̃ j − X̃n(W̄0in j + W̄0 jni )]
S j = 1

3
(−4W̄0 j0n X̃n + 4X̃ j W0 + 4W j ).



754 P.-N. Chen, M.-T. Wang, S.-T. Yau

Proof. Direct computations. 	

We need the following lemma for the integrals of products of spherical harmonic func-
tions.

Lemma 5.3.
∫

S2
X̃ i X̃ j d S2 = 4π

3
δi j

∫

S2
X̃ i X̃ j X̃ k X̃ ld S2 = 4π

15
�i jkl

∫

S2
X̃ i X̃ j X̃ k X̃ l X̃m X̃nd S2 = 4π

105
(δi j�klmn + δik� jlmn

+ δil� jkmn + δim� jkln + δin� jklm),

where �i jkl = δi jδkl + δikδ jl + δilδ jk .

Proof. We repeatedly use �̃X̃ i = −2Xi and ∇̃ X̃ i · ∇̃ X̃ j = δi j − X̃ i X̃ j to compute the
Laplacian of the integrand and then integrate by parts. For example, the integration of

�̃(X̃ i X̃ j ) = −6X̃ i X̃ j + 2δi j

gives the first formula. 	


6. The Optimal Isometric Embedding

Assuming Eq. (4.1) for the isometric embedding, we determine X (3)
0 and X (3)

i from the

optimal embedding equation in this section. We show that X (3)
i is determined purely

by the induced metric via the isometric embedding. However, for each T0, there is a
corresponding solution X (3)

0 of the leading order term of the optimal embedding equation
depending on the choice of T0. This is different from the non-vacuum case of the small
sphere limit or the large sphere limit, where only one choice of the T (0)

0 would allow the
leading order term of the optimal embedding equation to be solvable.

Lemma 6.1.

X (3)
i = −1

3
βc∇̃c X̃ i +

1

2
ρ X̃ i = 1

3
W̄0i0 j X̃ j +

1

3
W̄0k ji X̃ j X̃ k +

1

6
X̃ i X̃ j X̃ k W̄0 j0k

satisfies the linearized isometric embedding equation

∑

i

∂a X̃ i∂b X (3)
i + ∂b X̃ i∂a X (3)

i = 1

3
αab. (6.1)

Proof. To solve the linearized isometric embedding equation, we write

X (3)
i = N X̃i + Pa X̃ i

a .

Differentiating, we have

(X (3)
i )b = Nb X̃ i + N X̃i

b + ∇̃b Pa X̃ i
a − Pb X̃ i . (6.2)
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In terms of N and Pa , Eq. (6.1) is

2N σ̃ab + ∇̃a Pb + ∇̃b Pa = 1

3
αab. (6.3)

By (3.25), we check that N = 1
2ρ and Pa = − 1

3β
a satisfy the above equation. This

finishes the proof of the lemma. 	

Lemma 6.2. Let f be the function as defined in Eq. (2.1). We have

f = W0

a0 r + O(r2).

Proof.

f = |H0| − |H |
a0 + O(r2),

where

|H0| = 2

r
+ 2W0r + O(r2) and |H | = 2

r
+ W0r + O(r2)

from the result in [5]. 	

Lemma 6.3. For the observer T0 = (a0,−a1,−a2,−a3), the solution of the optimal
embedding equation gives

X (3)
0 = −1

3
W0 +

ai

a0 Pi .

Proof. We compute

div( f ∇τ) − �(sinh−1(
f �τ

|H ||H0| )) = ∇̃a( f (1)∇̃aτ (1)) − 1

4
�̃( f (1)�̃τ (1)) + O(r).

After simplification, the right hand side, up to a term of O(r) is −6 f (1)τ (1) + 2∇̃τ (1) ·
∇̃ f (1), or 60 ai

a0
Pi , by the definition of Pi in (5.1).

Setting the Ricci curvature to 0 in Lemma 3.5, we conclude

divσ αH = −4W0 + O(r).

Recall that

divσ αH0 = 1

2
�̃(�̃ + 2)X (3)

0 + O(r).

The top order term of the optimal isometric embedding equation is thus

1

2
�̃(�̃ + 2)X (3)

0 = −4W0 + 60
ai

a0 Pi .

The lemma follows since W0 is a −6-eigenfunction and Pi are −12-eigenfunctions. 	

Corollary 2. For any isometric embedding into R

3,1 with O(r3) time function, we have

|H0| = 2

r
+ 2W0r + O(r2).
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Remark 4. By Lemma 4 of [6], the result is the same for any isometric embedding into
R
3,1 with O(r3) time function. For the embedding into R3, this is computed in [5].

For each choice of T (0)
0 , we will compute 8π E(�r , Xr (T0), T0) which is given by

∫

�r

f (1+|∇τ |2)+(�τ) sinh−1(
f �τ

|H ||H0| )d�r+
∫

�r

τdivσ αH0d�r −
∫

�r

τdivσ αH d�r .

(6.4)
We evaluate the three integrals in the next three sections, respectively and put the results
together in Sect. 10. Then we minimize the energy among all T (0)

0 in Sect. 11.

7. The Energy Component

In this section, we evaluate the first integral in Eq. (6.4):
∫

�r

f (1 + |∇τ |2) + (�τ) sinh−1(
f �τ

|H ||H0| )d�r .

It suffices to evaluate
∫
�r

f [1 + |∇τ |2 + (�τ)2

|H ||H0| ]d�r since for x small,

sinh−1(x) = x + O(x3).

Denote the expansion of the physical data by

σab = r2σ̃ab + r4σ (4)
ab + r5σ (5)

ab + O(r6)

|H | = 2

r
+ rh(1) + r2h(2) + r3h(3) + O(r4)

αH = r2α(2)
H + r3α(3)

H + r4α(4)
H + O(r5).

Furthermore, for the embedding Xr (T0) from Sect. 6, we have

|H0| = 2

r
+ rh(1)

0 + r2h(2)
0 + r3h(3)

0 + O(r4)

αH0 = r2α(2)
H0

+ r3α(3)
H0

+ r4α(4)
H0

+ O(r5).

First we derive the following lemma.

Lemma 7.1.

|∇τ |2 =
∑

i j

ai a j (δi j − X̃ i X̃ j ) + g1r
2 + O(r3)

(�τ)2 = 4
∑

i j

ai a j (X̃ i X̃ j )r−2 + g2 + O(r),

where

g1 = ai a j (Ri j + 2∇̃ X̃ i ∇̃ X (3)
j ) + 2a0ai ∇̃ X̃ i ∇̃ X (3)

0

g2 = 4ai a j X̃ i (S j − �̃X (3)
j ) − 4a0ai X̃ i �̃X (3)

0 ,

and Ri j and S j are defined in Eq. (5.3).
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Proof. We have

τ =
∑

i

ai X̃ i r + (ai X (3)
i + a0X (3)

0 )r3 + O(r4)

since T0 = (a0,−ai ) + O(r). As a result,

|∇τ |2 =
∑

i j

ai a j (δi j − X̃ i X̃ j )

+ r2
[
σ (0)ab(ai X̃ i

a)(a j X̃ j
b) + 2(ai ∇̃ X̃ i )(a j ∇̃ X (3)

j + a0∇̃ X (3)
0 )

]
+ O(r3),

and the formula follows from equations (3.2), (3.23), and (5.3). Similarly,

(�τ)2 = 4
∑

i j

ai a j (X̃ i X̃ j )r−2 + 4(ai X̃ i )(a j σ̃ abγ
(2)c
ab X̃ j

c )

− 4(ai X̃ i )(a j �̃X (3)
j + a0�̃X (3)

0 ) + O(r),

where

4(ai X̃ i )(a j σ̃ abγ
(2)c
ab X̃ j

c ) − 4(ai X̃ i )(a j �̃X (3)
j + a0�̃X (3)

0 )

= 4ai a j X̃ i S j − 4(ai X̃ i )(a j �̃X (3)
j + a0�̃X (3)

0 )

= 4ai a j X̃ i (S j − �̃X (3)
j ) − 4a0ai X̃ i �̃X (3)

0 .

	

With the above lemma, we compute f (1 + |∇τ |2 + (�τ)2

|H ||H0| ).

Lemma 7.2.

f (1 + |∇τ |2 + (�τ)2

|H ||H0| )

= a0r(h(1)
0 − h(1)) + a0r2(h(2)

0 − h(2))

+ a0r3
[
(h(3)

0 − h(3)) +
(W0)(g1 +

g2
4 − 3

2W0
∑

i j ai a j X̃ i X̃ j )

2(a0)2

]
+ O(r4).

Proof. From Lemma 7.1, we have

1 + |∇τ |2 + (�τ)2

|H0|2 = (a0)2 + r2(g1 +
g2
4

− h(1)
0

∑

i j

ai a j X̃ i X̃ j ),

and thus

|H0|
√

1+|∇τ |2+ (�τ)2

|H0|2 =a0

[
2

r
+r(h(1)

0 +
g1 +

g2
4 − h(1)

0

∑
i j ai a j X̃ i X̃ j

(a0)2
)

]

+ O(r2).
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|H |
√
1 + |∇τ |2 + (�τ)2

|H |2 and 1 + |∇τ |2 + (�τ)2

|H0||H | can be computed similarly and f (1 +

|∇τ |2 + (�τ)2

|H ||H0| ) is equal to

(
4

r
+ (h(1)

0 + h(1))r)[(h(1)
0 − h(1))r + (h(2)

0 − h(2))r2 + (h(3)
0 − h(3))r3]

× 1 + |a|2 + r2[g1 + g2
4 − (h(1)

0 +h(1))

2

∑
i j ai a j X̃ i X̃ j ]

a0{ 4r + r [h(1)
0 + h(1) +

2g1+
g2
2 −2(h(1)

0 +h(1))
∑

i j ai a j X̃ i X̃ j

(a0)2
]}

.

Finally we plug in h(1)
0 = 2W0 and h(1) = W0. 	


Lemma 7.3.

lim
r→0

r−5
∫

�r

f (1 + |∇τ |2 + (�τ)2

|H ||H0| ) d�r

= a0
∫

S2
(h(3)

0 − h(3))d S2 − 3ai a j

4a0

∫

S2
W 2

0 X̃ i X̃ j d S2

+
ai a j

2a0

∫

S2
(W0)[Ri j + 2∇̃ X̃ i · ∇̃(X (3)

j + Pj ) + X̃ i (S j − �̃X (3)
j + 12Pj )]d S2.

Proof. For the volume form, we have d�r = r2d S2 + O(r5) from the expansion of
metric in Lemma 3.5. As a result, it suffices to use r2d S2 for the volume form.

For the mean curvature in R3,1,

|H0| = 2
√

K + O(r3)

since X0 = O(r3). Hence, using the result of [21], we conclude that for i = 1, 2

∫

S2
(h(i)

0 − h(i))d S2 = 0.

Thus

∫

S2
W0(g1 +

g2
4

)d S2 = ai a j
∫

S2
W0[Ri j + 2∇̃ X̃ i ∇̃(X (3)

j + Pj )

+ X̃ i (S j − �̃X (3)
j + 12Pj )]d S2

− ai a0
∫

S2
W0(

2

3
∇̃ X̃ i ∇̃W0 + 2X̃ i W0)d S2.

The second integral on the right hand side vanishes by parity. 	
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7.1. Computation of
∫
(h(3)

0 − h(3)). Suppose X is the isometric embedding of σ into
R
3,1 of the form

X0 = r3X (3)
0 + O(r4)

Xi = r X̃ i + r3X (3)
i + r4X (4)

i + r5X (5)
i + O(r6),

where X (3)
0 and X (3)

i are given by Lemma 6.1 and Lemma 6.3, respectively.
Let X ′ be the isometric embedding of σ into R3 where

(X0)
′ = 0

(Xi )
′ = r X̃ i + r3X

′(3)
i + r4X

′(4)
i + r5X

′(5)
i + O(r6).

Let A′ be the second fundamental form the embedding X ′ and Å
′
be its traceless part.

Å
′
ab = r3Å

′(3)
ab + O(r4)

Suppose the Gauss curvature K of σ has the following expansion:

2
√

K = 2

r
+ k(1)r + k(2)r2 + k(3)r3 + O(r4). (7.1)

We have

Proposition 7.1. The integral
∫

S2(h
(3)
0 − h(3))d S2 can be written as follows:

∫

S2
(h(3)

0 − h(3))d S2 = 1

2

∫

S2
|Å′(3)|2σ̃ d S2 +

∫
(k(3) − h(3))d S2 − 2

3

∫

S2
W 2

0 d S2

− 30
ai a j

(a0)2

∫

S2
Pi Pj d S2.

Proof. We first rewrite
∫

�r

(|H0| − |H |)d�r =
∫

�r

(|H0| − 2
√

K )d�r +
∫

�r

(2
√

K − |H |)d�r .

Using the result of [21], we have
∫

�r

(2
√

K − |H |)d�r = r5
∫

S2
(k(3) − h(3))d S2.

To evaluate
∫
�r

(|H0| − 2
√

K )d�r , recall that |H0|2 is given by

|H0|2 = −(�X0)
2 +

3∑

i=1

(�Xi )
2. (7.2)

Let H ′
0 be the mean curvature of X ′. Similarly, |H ′

0| is given by

|H ′
0|2 =

3∑

i=1

(�(Xi )
′)2. (7.3)
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The Gauss equation reads
4K = (H ′

0)
2 − 2|Å′|2. (7.4)

We compute from (7.2), (7.4), and (7.3) that

|H0|2 − 4K = 2|Å′|2 − (�X0)
2 +

3∑

i=1

(�Xi )
2 −

3∑

i=1

(�X ′
i )
2,

where

�X0 = �(r3X (3)
0 + O(r4)) = r�̃X (3)

0 + O(r2)

and

3∑

i=1

(�Xi )
2 −

3∑

i=1

(�(Xi )
′)2 =

3∑

i=1

�(Xi − X ′
i )�(Xi + X ′

i )

= −4r2 X̃ i �̃(X (5)
i − X

′(5)
i ) + O(r3).

As a result, we have
∫

S2
(h(3)

0 − h(3))d S2

= 1

2

∫

S2
|Å′(3)|2σ̃ d S2 − 1

4

∫

S2
(�̃X (3)

0 )2d S2 −
∫

S2
X̃ i �̃(X (5)

i − X
′(5)
i )d S2

+
∫

S2
(k(3) − h(3))d S2.

To evaluate the second last terms, we need

Lemma 7.4. If we choose X (3)
i = X

′(3)
i and X (4)

i = X
′(4)
i , X (5)

i and X
′(5)
i are related by

2∇̃ X̃ i · ∇̃(X (5)
i − X

′(5)
i ) = |∇̃ X (3)

0 |2.
Proof. This follows directly from the expansion of the metric and the isometric embed-
ding equation. 	

The proposition now follows from the expression of X (3)

0 in Lemma 6.3. 	


7.1.1. Computing
∫ |Å′(3)|2

σ̃
d S2. The notation in this subsubsection is slightly different

from before. Let X be the isometric embedding of σ into R3 where

X = r X̃ + r3X (3) + O(r4)

and

σ = r2σ̃ + r4σ (4)
ab + O(r5).

Let ν be the unit normal of X . Suppose

ν = X̃ + r2ν(2).
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We have

ν(2) = −〈X̃ , X (3)
a 〉σ̃ ab X̃b.

The second fundamental form hab of X has the following expansion

hab = r σ̃ab − r3〈X̃ , ∇̃a∇̃b X (3)〉 + O(r4).

The traceless part Åab of hab has the following expansion

Åab = r3Å
(3)
ab + O(r4).

Lemma 7.5.

Å
(3)
ab = (X̃ i

a X̃ j
b + X̃ i

b X̃ j
a )(−1

4
W0δi j − 1

2
W0i0 j ).

Proof. We compute

Å
(3)
ab = −〈X̃ , ∇̃a∇̃b X (3)〉 + 1

2
σ̃ab〈X̃ , �̃X (3)〉 − σ

(4)
ab .

A direct computation shows

〈X̃ , ∇̃a∇̃b X (3)〉 = (X̃ i
a X̃ j

b + X̃ i
b X̃ j

a )[1
2
δi j (−5

6
W0 +

2

3
Wk X̃k) +

1

6
(W̄0i0 j − 2X̃ k W̄0 jki )]

〈X̃ , �̃X (3)〉 = −2W0 +
4

3
Wk X̃k

σ
(4)
ab = 1

3
(X̃ i

a X̃ j
b + X̃ j

a X̃ i
b)(W0i0 j +

1

2
W0δi j + X̃ k W0ik j ).

Finally, we note that
∑

k Wk X̃k = 0. 	

This leads to the following.

Lemma 7.6.
∫

S2
|Å(3)|2σ̃ d S2 = 3

∫

S2
W 2

0 d S2.

Proof. Using Lemma 5.3, it is clear that
∫

S2
W 2

0 d S2 = 8π

15

∑

i j

W 2
0i0 j .

On the other hand,
∫

S2
|Å′(3)|2

σ̃
d S2

= 1

4

∫

S2
[σ̃abW0 + W̄0i0 j (X̃ i

a X̃ j
b + X̃ i

b X̃ j
a )]σ̃ acσ̃ bd [σ̃cd W0 + W̄0k0l (X̃k

c X̃l
d + X̃k

c X̃l
d )]d S2

= 1

4

∫

S2

[
2W 2

0 + 4W0(δ
kl − X̃k X̃l )W̄0k0l + 4W̄0i0 j W̄0k0l (δ

ik − X̃ i X̃ k)(δ jl − X̃ j X̃ l )
]
d S2

= 1

4

∫

S2

[
2W 2

0 +
4

3
W̄0i0 j W̄0i0 j

]
d S2

= 3
∫

S2
W 2
0 d S2.
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7.1.2. Computing
∫
(k(3) − h(3))d S2.

Lemma 7.7.
∫

S2
(k(3) − h(3))d S2 = −3

4

∫

S2
W 2

0 d S2 − 1

60

∫

S2
|α|2d S2 +

11

45

∫

S2
|β|2d S2. (7.5)

Proof. First we compute
∫

k(3)d S2. From Eq. (7.1), we have

K = 1

r2
+ k(1) + k(2)r + [k(3) +

(k(1))2

4
]r2 + O(r3).

We also have

d�r = (r2 − 1

180
r6|α|2)d S2 + O(r7)

from the expansion of σ ablab in Lemma 3.11. By the Gauss–Bonnet theorem∫
�r

K d�r = 4π . Collecting the O(r4) terms from the left hand side, we have

∫

S2
k(3) +

(k(1))2

4
d S2 = 1

180

∫

S2
|α|2d S2.

Furthermore, k(1) = 2W0. Hence
∫

S2
k(3)d S2 = −

∫

S2
W 2

0 d S2 +
1

180

∫

S2
|α|2d S2.

For h(3), we have

h(3) = (σ abnab)
(3) − 1

90
|α|2 − (σ abn(1)

ab )2

4
.

Using Lemmas 3.11 and 3.9, we conclude
∫

S2
(k(3) − h(3))d S2 = −3

4

∫

S2
W 2

0 d S2 +
1

60

∫

S2
|α|2d S2 −

∫

S2
(σ abnab)

(3)d S2

= −3

4

∫

S2
W 2

0 d S2 − 1

60

∫

S2
|α|2d S2 +

11

45

∫

S2
|β|2d S2.

(7.6)

	


8. Computing the Reference Hamiltonian

In this section, we compute the limit of the second integral in Eq. (6.4):
∫

�r

τdivσ αH0d�r .

For simplicity, we denote W̄0m0n by Dmn .
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Proposition 8.1.

lim
r→0

r−5
∫

�r

τdivσ αH0d�r = 4

3

∫

S2
a0W 2

0 d S2 − 10
ai a j

a0

∫

S2
X̃ i W0Pj d S2.

Proof. Weuse the optimal embedding equation for the image of the isometric embedding
of �r to compute the integral. The equation reads

divσ αH0 = −(Ĥ σ̂ ab−σ̂ acσ̂ bd ĥcd)
∇b∇aτ ′

√
1 + |∇τ ′|2 +divσ (

∇τ ′
√
1 + |∇τ ′|2 cosh θ0|H0|−∇θ0)

(8.1)
where

τ ′ = r3X (3)
0 + r4X (4)

0 + r5X (5)
0 + O(r6) and sinh θ0 = −�τ ′

|H0|
√
1 + |∇τ ′|2 .

It suffices to compute the expansion of divσ αH0 up to O(r3) error terms. For this purpose,
we can approximate

√
1 + |∇τ ′|2 by 1 and θ0 by −�τ ′

|H0| . We have

divαH0 = −[Ĥ σ̂ ab − σ̂ acσ̂ bd(
Ĥ

2
σcd + r3Å

′(3)
cd )]∇b∇aτ ′

+ divσ (|H0|∇τ ′) + �(
�τ ′

|H0| ) + O(r3).

Recall

|H0| = Ĥ + O(r2) = 2

r
+ 2W0r + O(r2).

We have

divσ αH0 = r3σ̂ acσ̂ bdÅ
′(3)
cd ∇b∇aτ ′ + (

1

r
+ W0r)�τ ′ + ∇H0∇τ ′

+
r

2
�[(1 − W0r2)�τ ′] + O(r3)

= 1

2
(r−2�)(r−2� + 2)(X (3)

0 + r X (4)
0 + r2X (5)

0 )

+ r2[σ̃ acσ̃ bdÅ
′(3)
cd ∇̃b∇̃a X (3)

0 + W0�̃X (3)
0 + 2∇̃W0∇̃ X (3)

0

− 1

2
�̃(W0�̃X (3)

0 )] + O(r3).

We compute
∫

�r

(ai X̃ i r + r3aα X (3)
α )divσ αH0d�r

=
∫

�r

(ai X̃ i r + r3aα X (3)
α )

{1
2
(r−2�)(r−2� + 2)(X (3)

0 + r X (4)
0 + r2X (5)

0 )

+ r2
[
Å

′(3)
ab ∇̃b∇̃a X (3)

0 + 2W0�̃X (3)
0 + 2∇̃W0∇̃ X (3)

0

− 1

2
(�̃ + 2)(W0�̃X (3)

0 )
]}

d�r + O(r6)
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= r5
∫

S2

−ai Si

2
�̃X (3)

0 +
1

2
aα X (3)

α �̃(�̃ + 2)X (3)
0 + ai X̃ i (Å

′(3)
ab ∇̃b∇̃a X (3)

0

+ 2W0�̃X (3)
0 + 2∇̃W0∇̃ X (3)

0 )d S2 + O(r6).

Using Lemmas 5.1, 5.2, 6.1 and 6.3,

∫

S2

−ai Si

2
�̃X (3)

0 d S2 =
∫

S2

1

3
(−4ai Din X̃n + 4ai W0 X̃ i + 4ai Wi )(−W0 + 6

a j Pj

a0 )d S2

= 8
ai a j

a0

∫

S2
W0 X̃ i Pj d S2 − 4

3
ai

∫

S2
Wi W0d S2,

∫

S2

1

2
aα X (3)

α �̃(�̃ + 2)X (3)
0 d S2 =

∫

S2
(
2

5
ai Din X̃n − 1

3
ai Wi − 1

3
a0W0)(−4W0 + 60

a j Pj

a0 )d S2

= 4

3

∫

S2
ai Wi W0d S2 +

4

3

∫

S2
a0W 2

0 d S2,

and

∫

S2
ai X̃ i (2W0�̃X (3)

0 + 2∇̃W0∇̃ X (3)
0 )d S2 = −2

ai a j

a0

∫

S2
W0∇̃ X̃ i ∇̃ Pj d S2

= −8
ai a j

a0

∫

S2
W0 X̃ i Pj d S2.

Finally, we compute
∫

ai X̃ i σ̃ acσ̃ bdÅ
′(3)
cd ∇̃b∇̃a X (3)

0 . From Lemma 6.3, we have

∫

S2
ai X̃ i Å

′(3)
ab ∇̃b∇̃a X (3)

0 d S2 = ai a j

a0

∫

S2
X̃ i Å

′(3)
ab ∇̃b∇̃a Pj d S2

= ai a j

a0

∫

S2
[∇̃b∇̃a X̃ i Å

′(3)
ab + 2∇̃a X̃ i ∇̃bÅ

′(3)
ab

+ X̃ i ∇̃b∇̃aÅ
′(3)
ab ]Pj d S2.

The first term vanishes since Å
′(3)
ab is traceless. For the second and third terms, we use

∇̃bÅ
′(3)
ab = ∇̃a W0

which can be derived from the Codazzi equation. As a result,

∫

S2
ai X̃ i Å

′(3)
ab ∇̃b∇̃a X (3)

0 d S2 = ai a j

a0

∫

S2
(2∇̃a X̃ i ∇̃a W0 − 6X̃ i W0)Pj d S2

= −10
ai a j

a0

∫

S2
X̃ i W0Pj d S2,

where we apply Lemma 5.1 and integration by parts for the last equality. 	
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9. Computing the Physical Hamiltonian

In this section, we compute the limit of the third integral in Eq. (6.4):
∫

�r

τdivσ αH d�r .

Proposition 9.1.

lim
r→∞ r−5

∫

�r

τdivσ αH d�r =
∫

S2

[
4a0

3
W 2

0 +
2

3
ai Wi W0 − (ai X̃ i )|β|2

]
d S2.

Proof. Recall that

divσ αH = −1

2
� ln(−σ ablab) +

1

2
� ln(σ abnab) − divσ η.

The expansions for σ ablab, σ abnab and divσ η are obtained in Lemma 3.11. First we
compute

∫

�r

τ� ln(−σ ablab)d�r =
∫

S2
(ai X̃ i )r�[2

r
− r3

45
|α|2]r2d S2 + O(r6)

= −r5
∫

S2
(ai X̃ i )�̃

1

90
|α|2d S2 + O(r6)

= 1

45
r5

∫

S2
(ai X̃ i )|α|2d S2 + O(r6).

Next we compute the term involving divσ η. From Eq. (3.47), we have
∫

�r

τdivσ ηd�r =
∫

S2
(ai X̃ i r + r3aβ X (3)

β ){ρ + r Dρ

+ r2[ D2ρ

2
+

|α|2 − 8|β|2
15

]}r2d S2 + O(r6)

= r5
∫

S2
{(ai X̃ i )

1

15
(|α|2 − 8|β|2) + aβ X (3)

β ρ}d S2 + O(r6),

where Lemma 3.9 is used in the last equality. We compute

∫

S2
aβ X (3)

β W0d S2 =
∫

S2
(−a0

3
W0 − ai

3
Wi )W0d S2.

Lastly, we compute
∫
�r

τ� ln(σ abnab)d�r .

∫

�r

τ� ln(σ abnab)d�r

=
∫

�r

�[rai X̃ i + r3aβ X (3)
β ] ln(1 + r2(σ abnab)

(1)

+ r3(σ abnab)
(2) + r4(σ abnab)

(3))d�r + O(r6)
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=
∫

S2
[−2ai X̃ i r + r3(2a0W0 + 2ai Wi − ai Si − 4

5
ai Di j X j )]{r2(σ abnab)

(1)

+ r3(σ abnab)
(2)

+ r4[(σ abnab)
(3) − 1

2
((σ abnab)

(1))2]}d S2 + O(r6).

Using Lemma 3.11 for the expansion of σ abnab and applying Lemma 3.9, we conclude

∫

�r

τ� ln(σ abnab)d�r

= r5
∫

S2
{(2ai Wi + 2a0W0 − ai Si − 4

5
ai Di j X̃ j )W0

− 2ai X̃ i [(σ abnab)
(3) − 1

2
W 2

0 ]}d S2 + O(r6)

= r5
∫

S2
[(2ai Wi + 2a0W0 − ai Si )W0 + ai X̃ i (

22

45
|β|2 − 1

15
|α|2)]d S2 + O(r6).

The proposition follows from collecting terms and Eq. (3.32). 	


10. Evaluating the Energy

We now evaluate the energy for an observer T0 = (
√
1 + |a|2,−a1,−a2,−a3) using

Lemma 7.3 and Propositions 7.1, 8.1 and 9.1. It is easy to observe that the energy takes
the following form

∑

α

Aαaα +
∑

i j

Ai j
ai a j

a0 .

The following lemma, which follows from Lemma 5.3, is useful for evaluating the above
integrals. Recall that we denote W̄0m0n by Dmn .

Lemma 10.1.
∫

S2
W0 X̃ i X̃ j d S2 = 8π

15
Di j (10.1)

∫

S2
W 2

0 d S2 = 8π

15

∑

i j

D2
i j (10.2)

∫

S2
Wi X̃ j X̃ ld S2 = 4π

15
(W̄0li j + W̄0 j il) (10.3)

∫

S2
W0Wi d S2 = 8π

15

∑

jl

D jl W̄0li j . (10.4)

Proof. These follow from the definitions of W0 and Wi as well as Lemma 5.3. 	
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First we compute A0. Collecting the coefficients, we have

A0 = 1

12

∫

S2
W 2

0 d S2 − 1

60

∫

S2
|α|2d S2 +

11

45

∫

S2
|β|2d S2

= 1

12

∫

S2
W 2

0 d S2 +
1

9

∫

S2
|β|2d S2.

Equation (3.31) is used in the last equality.

Lemma 10.2.
∫

S2
|β|2d S2 = 12π

15

∑
D2

i j +
6π

15

∑
W̄ 2

i jk0.

Proof.
∫

S2
|β|2d S2 =

∫

S2
W̄Lir0W̄Lir0d S2 −

∫

S2
W̄0rr0W̄0rr0d S2

=
∫

S2
W̄0ir0W̄0ir0d S2 +

∫

S2
W̄rir0W̄rir0d S2 −

∫

S2
W 2

0 d S2

= 20π

15
Di j Di j +

4π

15
W̄ jik0W̄min0(δ jkδmn + δ jmδkn + δ jnδmk) − 8π

15
Di j Di j

= 12π

15
Di j Di j +

4π

15
W̄ jik0(W̄ jik0 + W̄ki j0),

where Lemma 10.1 is used in the second last equality. The lemma follows from the first
Bianchi identity, since

W̄i jk0W̄i jk0 = −W̄i jk0(W̄ jki0 + W̄ki j0) = 2W̄ jik0W̄ki j0.

	

Thus, we have proved that

Proposition 10.1.

A0 = 4π

15
(
1

6

∑

i jk

W̄ 2
0i jk +

1

2

∑

i j

D2
i j ).

Next we compute Ai . Collecting the coefficients, we have

Ai =
∫

S2
X̃ i |β|2d S2 − 2

3

∫

S2
Wi W0d S2. (10.5)

We compute
∫

S2
X̃ i |β|2d S2 =

∫

S2
X̃ i W̄L jr0W̄Lkr0(δ

jk − Xk X j )d S2

=
∫

S2
X̃ i W̄L jr0W̄L jr0d S2 −

∫

S2
X̃ i W̄0rr0W̄0rr0d S2

= 8π

15
D jm W̄0mi j .

As a result, we have
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Proposition 10.2.

Ai = 4π

15
(
2

3
D jm W0mi j ).

At the end, we have

Proposition 10.3.

Ai j = −2π

45
δi j

∑

m,n

D2
mn . (10.6)

Proof. To compute Ai j , we combine Lemma 7.3 and Proposition 7.1, 8.1 and 9.1 and
derive

Ai j =
∫

S2

W0

2
[Ri j + 2∇̃ X̃ i · ∇̃(X (3)

j + Pj ) + X̃ i (S j − �̃(X (3)
j + 12Pj )]d S2

− 3

4

∫

S2
W 2

0 X̃ i X̃ j d S2 − 30
∫

S2
Pi Pj d S2 − 10

∫

S2
X̃ i W0Pj d S2. (10.7)

We compute
∫

S2

W0

2
[Ri j + 2∇̃ X̃ i · ∇̃(X (3)

j + Pj ) + X̃ i (S j − �̃X (3)
j + 12Pj )]d S2

=
∫

S2

W0

6
[2X̃ i X̃ k W̄0 j0k + 2X̃ j X̃ k W̄0k0i − 2W̄0i0 j − W0δi j − W0 X̃ i X̃ j ]d S2

+
∫

S2
W0∇̃ X̃ i · ∇̃(

2

5
W̄0 j0n X̃n)

+
∫

S2
W0 X̃ i (

2

3
X̃ j W0 − 2

3
W̄0 j0n X̃n +

2

5
W̄0 j0n X̃n)d S2

=
∫

S2

W0

6
[2X̃ i X̃ k W̄0 j0k + 2X̃ j X̃ k W̄0k0i − 2W̄0i0 j − W0δi j − W0 X̃ i X̃ j ]d S2

+
∫

S2
W0 X̃ i (

2

3
X̃ j W0 − 2

3
W̄0 j0n X̃n)d S2

= 1

2

∫

S2
W 2

0 X̃ i X̃ j d S2 − 1

6
δi j

∫

S2
W 2

0 d S2.

Moreover,

−30
∫

S2
Pi Pj d S2 = 5

∫

S2
W0 X̃ i Pj d S2

= 1

3

∫

S2
W0W̄0 j0n X̃ i X̃ nd S2 − 5

6

∫

S2
W 2

0 X̃ i X̃ j d S2,

and thus

Ai j = 7

12

∫

S2
W 2

0 X̃ i X̃ j d S2 − 1

6
δi j

∫

S2
W 2

0 d S2 − 1

3

∫

S2
W0W̄0 j0n X̃ i X̃ nd S2.

Applying the last formula in Lemma 5.3, we obtain
∫

S2
W 2

0 X̃m X̃nd S2 = 4π

3 · 5 · 7 (2δmn

∑

i j

D2
i j + 8

∑

i

Dim Din).

	




Evaluating Small Sphere Limit 769

11. Minimizing the Energy

In this section, we study the existence and uniqueness of observers T0 = (a0,−a1,−a2,

−a3) that minimize the energy computed in Sect. 10. In Lemma 6.3, we solve the
leading order term of the optimal embedding equation. In this section, we show that by
minimizing the quasi-local energy, the optimal embedding equation can be solved to
higher orders.

Throughout the section, we denote the surface �r simply by � and the isometric
embedding Xr by X . We consider pairs (X, T0) with the following expansion:

X0 =
∞∑

i=3

X (i)
0 r i

Xk = r X̃k +
∞∑

i=3

X (i)
k r i

T0 = (a0,−ai ) +
∞∑

i=1

T (i)
0 r i .

(11.1)

For such pairs, we have

E(�, X, T0) =
∞∑

i=5

E(�, X, T0)
(i)r i .

Similar to [6], the O(rk) part of the optimal embedding equation is of the form

1

2
�̃(�̃ + 2)X (k+3)

0 = Mk(X (3)
0 , . . . , X (k+2)

0 , T (0)
0 , . . . , T (k)

0 ).

The equation is solvable if
∫

S2
Mk(X (3)

0 , . . . , X (k+2)
0 , T (0)

0 , . . . , T (k)
0 )X̃ i d S2 = 0.

We need the following lemma about the above integral.

Lemma 11.1.
∫

S2
Mk(X (3)

0 , . . . , X (k+2)
0 , T (0)

0 , . . . , T (k)
0 )X̃ i d S2

is independent of X (k+2)
0 and T ( j)

0 for j ≥ k − 1.

Proof. The optimal embedding equation reads

divσ ( f ∇τ) − �(sinh−1(
f �τ

|H ||H0| )) = divσ αH0 − divσ αH .

For the right hand side, divσ αH is independent of (X, T0). divσ αH0 is independent of
T0. While it depends on X , X (k+2)

0 contributes

1

2
�̃(�̃ + 2)X (k+2)

0 rk−1 + O(rk+1)
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to the right hand side and does not contribute to Mk . For the left hand side, |H | is
independent of (X, T0). X (k+2)

0 only contributes to |H0| by terms of the order O(rk+2)

and does not contribute to Mk . For T (k−1)
0 = (b0,−bi ), it contributes to τ by

bi X̃ i r k−1 + O(rk).

As in the proof of Lemma6.3, this contributes to the left hand side by a linear combination
of −12-eigenfunctions. 	

Remark 5. Here are some examples to illustrate the above lemma. Set k = 1, the O(r)

order of the optimal embedding equation is

1

2
�̃(�̃ + 2)X (4)

0 = M1(X (3)
0 , T (0)

0 , T (1)
0 ). (11.2)

By the lemma, it is solvable for any choice of X (3)
0 , T (0)

0 and T (1)
0 . On the other hand,

set k = 2, the O(r2) order of the optimal embedding equation is

1

2
�̃(�̃ + 2)X (5)

0 = M2(X (3)
0 , X (4)

0 , T (0)
0 , T (1)

0 , T (2)
0 ). (11.3)

Its solvability depends only on T (0)
0 and X (3)

0 . In fact, it only depends on the choice of

T (0)
0 since X (3)

0 is determined by T (0)
0 using Lemma 6.3.

The structure of the higher order terms of the optimal embedding equation is the
same. Namely, the O(rk) order of the optimal embedding equation is

1

2
�̃(�̃ + 2)X (k+3)

0 = M2(X (3)
0 , . . . , X (k+2)

0 , T (0)
0 , . . . , T (k)

0 ) (11.4)

but the solvability depends only on the choice of T (i)
0 for i ≤ k − 2. We expect there is

a unique choice such that the equation is solvable.

Let E(�, X (T0), T0) be the quasi-local energy of � with embedding X (T0) and
observer T0 where X (T0) is the isometric embedding of � into R

3,1 determined by
Lemma 6.1 and Lemma 6.3. We have

E(�, X (T0), T0) =
∞∑

i=5

E(�, X (T0), T0)
(i)r i ,

where

E(�, X (T0), T0)
(5) = 1

90
{(1
2

∑

k,m,n

W̄ 2
0kmn +

∑

m,n

W̄ 2
0m0n)a

0

+ 2
∑

i

∑

m,n

W̄0m0nW̄0minai +
∑

m,n

W̄ 2
0m0n

2a0 }.

We show that generically, there is a unique minimizer T0 of E(�, X (T0), T0)(5). More-
over, for the minimizer, Eq. (11.3) is solvable. We start with the following lemma.
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Lemma 11.2. Let V = ( 12
∑

W̄ 2
0kmn +

∑
W̄ 2

0m0n, 2
∑

W̄0m0nW̄0min). V is future
directed non-spacelike. Moreover, V is timelike unless in some orthonormal frame, we
have

(
Di j

) =
⎛

⎝
0 0 0
0 b 0
0 0 −b

⎞

⎠ (
Ei j

) =
⎛

⎝
0 0 0
0 0 b
0 b 0

⎞

⎠ (11.5)

where

W̄0i jk = ε jkn Ein .

Remark 6. D and E are both symmetric traceless 3 by 3 matrices. Together, they capture
all the ten independent components of the Weyl curvature at a point.

Proof. It suffices to show that

(
1

2

∑
W̄ 2

0kmn +
∑

W̄ 2
0m0n)

2 ≥ 4
∑

i

(
∑

m,n

W̄0m0nW̄0min)2. (11.6)

We pick an orthonormal frame which diagonalizes D. Suppose

(
Di j

) =
⎛

⎝
a 0 0
0 b 0
0 0 −(a + b)

⎞

⎠ .

In this case, the only components of E that appear on the right hand side are the off-
diagonal entries. Let

W̄0131 = c W̄0212 = d W̄0121 = e

and the inequality follows from

(c2 + d2 + e2 + a2 + b2 + ab)2 − [(a − b)2c2 + (2b + a)2d2 + (2a + b)2e2] ≥ 0,

where we discard terms of the form W0123, namely the entries on the diagonal of E ,
from the left hand side of equation (11.6). However

(c2 + d2 + e2 + a2 + b2 + ab)2 − ((a − b)2c2 + (2b + a)2d2 + (2a + b)2e2)

= c2(a + b)2 + (c2 + ab)2 + d2a2 + (d2 − b2 − ab)2 + e2b2 + (e2 − a2 − ab)2.

Hence the vector ( 12
∑

W̄ 2
0kmn +

∑
W̄ 2

0m0n, 2
∑

W̄0m0nW̄0min) is future directed non-
spacelike. If the vector is indeed null, then the diagonal of E is 0 and c(a +b), (c2 +ab),
da, (d2 − b2 − ab), eb and (e2 − a2 − ab) must all vanish. Then, up to switching the
indices, Di j and Ei j must be the ones indicated in the statement of the lemma. 	

Corollary 3. The energy functional E(�, X (T0), T0)(5) is non-negative. Moreover, it is
positive and proper when V is timelike.

Hence,whenV is timelike, there is at least one observerT0 = (a0,−ai )whichminimizes
E(�, X (T0), T0)(5). We show that under the same condition, the minimizer is unique.

Lemma 11.3. Assume V is timelike then there is a unique T0 = (ā0,−āi ) that minimizes
E(�, X (T0), T0)(5).
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Proof. It suffices to show that E(�, X (T0), T0)(5) is a strictly convex function
of (a1, a2, a3) since a convex function cannot have two critical points. Recall
E(�, X (T0), T0)(5) is

1

90
{(1
2

∑
W̄ 2

0kmn +
∑

W̄ 2
0m0n)a

0 + 2
∑

W̄0m0nW̄0minai +
1

2

∑
W̄ 2

0m0n
1

a0 }.

Since ∂ai a0 = ai

a0
, the first derivative of 90E(�, X (T0), T0)(5) with respect to ai is

(
1

2

∑
W̄ 2

0kmn +
∑

W̄ 2
0m0n)

ai

a0 + 2
∑

W̄0m0nW̄0min − 1

2

∑
W̄ 2

0m0n
ai

(a0)3

and the second derivative is

(
1

2

∑
W̄ 2

0kmn +
∑

W̄ 2
0m0n)(

1

a0 − (ai )2

(a0)3
) − 1

2

∑
W̄ 2

0m0n(
1

(a0)3
− 3(ai )2

(a0)5
)

= (
1

2

∑
W̄ 2

0kmn +
∑

W̄ 2
0m0n)(

1

a0 − (ai )2

(a0)3
) − 1

2

∑
W̄ 2

0m0n(
1

(a0)3
− (ai )2

(a0)5
)

+

∑
W̄ 2

0m0n(a
i )2

(a0)5

≥ (
1

2

∑
W̄ 2

0kmn +
1

2

∑
W̄ 2

0m0n)(
1

a0 − (ai )2

(a0)3
)

This is positive unless the Weyl curvature tensor vanishes at p. 	

As a result, there is a unique observer T̄0 = (ā0,−āi ) such that for any other T0,

E(�, X (T0), T0)
(5) ≥ E(�, X (T̄0), T̄0)

(5).

Lemma 11.4. For every pair (X, T0) with expansion given in Eq. (4.1),

E(�, X, T0)
(5) ≥ E(�, X (T̄0), T̄0)

(5).

Proof. It suffices to show that

E(�, X, T0)
(5) ≥ E(�, X (T0), T0)

(5).

However, tracing through the dependence of E(�, X, T0)(5) on X , we have

E(�, X, T0)
(5) − E(�, X (T0), T0)

(5) = M(X (3)
0 ) − M(X (3)

0 (T0)),

where

M( f ) =
∫

S2
[1
4

f �̃(�̃ + 2) f + f g]d S2

for some function g on S2. This is a convex functional of f and the X (3)
0 (T0) obtained

in Lemma 6.3 is its critical point. 	
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Finally, we show that Eq. (11.3) is solvable for the minimizer (ā0,−āi ). Wemay assume
that we pick some T (1)

0 , T (2)
0 , X (3)

0 and X (4)
0 such that the top order term of the optimal

embedding equation and Eq. (11.2) are solved. From Lemma 11.4, we have

∂ai E(�, X (T̄0), T0)
(5) = 0.

However,

∂ai τ = X̃ i r + O(r2).

We conclude that

∂ai E(�, X (T̄0), T0)
(5) = ±

∫

S2
X̃ i [1

2
�̃(�̃ + 2)X (5)

0

− M2(X (3)
0 , X (4)

0 , T (0)
0 , T (1)

0 , T (2)
0 )]d S2.

As a result,
∫

S2
X̃ i M2(X (3)

0 , X (4)
0 , T (0)

0 , T (1)
0 , T (2)

0 )d S2 = 0.
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