Differential Equations from
Mirror Symmetry

Bong H. Lian,! and Shing-Tung Yau?

Abstract: We discuss a method for deriving differential equations
for the prepotential and the mirror map arising from a pair of Calabi-
Yau manifold. Examples with one Kahler modulus are given. Here
we find that the differential equations we derive almost entirely char-
acterize the prepotential and the mirror map in question. Some of the
results here have been announced previously in [3].

July 99

1

02154.
2 Department of Mathematics, Harvard University, Cambridge, MA
02138.

Department of Mathematics, Brandeis University, Waltham, MA



Lian and Yau 511

1. Introduction

We construct a new type of differential equations which govern
the B-model prepotential and the mirror map which arise from a pair
of mirror manifolds. By this we mean a pair of Calabi-Yau threefolds
whereby the B-model prepotential of one threefold agrees with the
A-model prepotential of the other threefold. The existence of those
equations are in fact closedly related to the special geometry of the
moduli spaces of Calabi-Yau manifolds.

In this paper we will restrict ourselves to the case where the
mirror pair X,Y have h}(Y) =1 = h?}(X) = 1. Our construction
can be generalized to the multi-moduli cases as well.

2. The mirror map and the prepotential

Let 7 : X = P! be a smooth algebraic family over P1. We
. assume that the fibers X, := 7~1(2), except at finitely many points,
are Calabi-Yau threefolds with h*!(X,) = 1, and that the singular
locus is a divisor with normal crossing. In a neighborhood of a smooth
fiber X,, we have a map from this into a universal family of Calabi-
Yau threefolds, which by the theorem of Bogomolov-Tian-Todorov, is
a smooth family over a disk in H%'(X,). We assume that this map
is locally 1-1. We shall fix a smooth base point zp € P!. Away from
the singularity, there is a natural line bundle over the base whose
fiber over z is H3%(X,). There is a section 2 whose value Q(z) at
z is a nowhere vanishing holomorphic 3-form on X,. It is clear that
2 is unique up to a choice of a holomorphic function. For a given
symplectic base ay, , a3, 8%, 8% of H3(X,,) with {a;,#?) = &, we can
consider the integrals of Q(z) over them near zy. Put together, they
form a 4-vector of (multivalued) holomorphic function which we call a

period vector 7. It can be shown that (see [2][4]) that the period vector

takes the form (&q, &1, gg—, Qggl) where G is a homogeneous function of

degree 2 of &,&;. By a change of variable, t = £/, it follows that
F=¢ 2@ is a function of t only, and we can write

7 = to(1,t, F', 2F — tF"). (2.1)

It is well-known that the components of the period vectors are
flat section of a bundle equipped with a natural flat connection. Con-
cretely, the normalization of 2 can be choosen so that the components
of the period vectors are solutions to a fourth order ordinary differ-
ential equations on P! with regular singularities. It is known as a
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Picard-Fuchs equation. In particular it is an ODE with polynomial
coefficients.

Under suitable conditions, Mirror Symmetry interpretes the func-
tion F' as a holomorphic function defined on the tube domain 7 =
HYY(Y,R)++/—1K(Y), where Y is another Calabi-Yau threefold and
K(Y) is its Kahler cone. The change of variable t = &, /§p is inter-
preted as a mapping from P! into 7. Note that as given, this mapping
is only defined near a based point 2zy. Inverting the mapping locally,
we get a holomorphic function z(t) which we call a mirror map. In
Physics, F’" is known as a Yukawa coupling.

Note that both z(t) and F(t) are both defined at least as functions
from a domain in C, independent of the above Mirror Symmetry
interpretation. In the context of mirror symmetry, many physicists
have posted the following question (we thank M. Bershadsky and
C. Vafa for communicating this question to us): Is the function F
governed by a differential equation? In this paper, we answer this
question in the affirmative. We shall construct a (rather complicated)
7th order polynomial differential equation for the function

K :=F"

with constant coefficients. More generally, we have

Theorem 2.1. Let L be a 4th order linear differential operator on
P! with polynomial coefficients. Suppose &g, 51,§0F'(%), 50(2F(§§) -

%F ! (%)) are linearly independent solutions to Lf = 0 near 0 for

some holomorphic function F on a domain. Then K(t) := F"'(t)
satisfies a Tth order polynomial differential equation with constant co-
efficients. Likewise for 2(t) as defined above.

The result is really local in nature and can be formulated entirely
in a disk. The details of the construction of the 7th order differential
equation for z(t) was done in [3] and shall not be repeated here. We
shall first prove the theorem, and then return to examples in the last
section. The hypotheses of the theorem will be in force throughout
this paper.

The basic idea of the proof is this: ODEs with solutions above can
be viewed as the differential algebraic analogue of polynomial equa-
tions in two variables. The functions F' and z play the roles of the
two variables. In the algebraic case, one can use eliminating theory to
construct algebraic equations for each variables by ”separating” the
variables. The strategy is to try to do the same in the differential alge-
braic case. We achieve this by developing and using some elementary
tools in differential graded algebra.
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3. Change of variables

Note that the functions z(t) and F () depend only on the ratio of
two solutions £;, £p, hence remain unchanged if we perform a change
of variables f(2) = A(2)g(z) on the equation Lf = 0. We can choose
A so that the new equation reads:

9" (2) + a2(2)9" (2) + a1(2)g'(2) + ao(2)g(2) = 0 (3.1)
where the a; are rational functions.

Lemma 3.1. a;(z) = aj(2).

For the proof of this, see [2]. Under a change of variable z + t,
(3.1) becomes

Lg := g""'(2(t)) + 29" (2(1)) + chg'(2(t)) + cog(2(1)) =0 (3.2)

where
15 2" (3)
c2 =az?” - 7(27)2 + 5%;7 = 22" + 5{2(t), t}
4 3das 2, 3 "2 1352114
N R PR i e 3.3
Co =agz + P 2 4a2 o ( )
+3 15(3) 4 76272203) 152032 15274 3,05

The prime here means %. Note that cp,cs are differential rational

functions of z(t), ie. a rational function in z,2',2”,... Now (3.2)has
four linear independent solutions of the form u(1,¢, F/, 2F —tF') where
u = &o/A. We may now view (3.2) together with its four special so-
lutions as a system of polynomial ODEs in z(¢), F(t), u(t). Our poly-
nomial ODEs for z(t), F(t) with constant coefficients will be obtained
by separating the variables.
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First we claim that
A2
K = const. u™? = const. — (3.4)

&
Substituting the 4 special solutions above in (3.2), we get

u® + cou” + chu! + cou =0

u"" + 2cou’ + chu =0

K(6u” + cou) + 4K'u' + K"u =0

2Kv' + K'u =0.

Our claim follows from solving the 4th equation above.

Note that given this K, the 2nd equation in (3.5)can be obtained
by differentiating the 3th equation. From now on we want to view
the system (3.5)of equations as a system of ODEs in the two depen-

dent variables K (t), 2(t) and one independent variable t. The system
(3.5)can be written as

ca(z;t) =r2(K;t)

(3.6)
co(z;t) =ro(K;t)

where ¢, cg are rational function of 2, 2, .. defined in (3.3). The r3, g
are rational function of K, K’,.. given by

2""K 2K (3.7)
~35K"* B5K?K" 5K" 2K'K® KW@ '
™=T6K4 T TR T ike KT T3k

Note that the system (3.6)of equations are derived with no special
assumption about the coordinate ¢ other than that it is the ratio of
two linearly independent solutions: t = &;/€9. Thus the form of the
system (3.6)must remain the same if we use another ratio £. Thus the
new equations will read:

c2(z(t); 1) =ra(K (); 1)

co(=(B);8) =ro(K (B D). (38)
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4. Some differential algebra

If we assign the weight 1 to each t differentiation (ie each prime),
then both cy,72 in (3.6)are expressions of weight 2. Similarly both
co,To are expression of weight 4. This motivates the following con-
siderations. Let z,2’,..,¥,7/,.. be formal variables. We assume that
wt 8 = wt y*) = k. We may also freely use some other formal
variables a,d/, .., 8, ', .. which will bear the analogous meaning. A
rational function f(z,z’,..,y,%/,..) in these variables will be called a
differential rational function. We usually denote it as f[z,y]. If it
depends only on the z, we write f[z]. Given two such functions, say
flz], g[y], it makes sense to compose them. Namely we do so in an
obvious way f[g[z]] according to the usual rule of differentiation. Let
X|z), Y[z}, Aly], Bly] be differential rational functions, homogeneuos
with positive weights | X| = [A|, |[Y| = |B|. We would like to study
the system of ODEs:

X[z] =Aly) (41)
Y[z] =B[y]
We write
I(Aly], Bly]) := {Pl[a, b]| P[A[y], By]] = 0} (4.2)

This is obviously a differential ideal in the ring of differential poly-
nomials in two variables «, 8. If , 3 are assign the weight |A|,|B)|
respectively, then I(A[y], Bly]) is in fact a graded ideal. Note that
if z(t),y(t) are solutions to the system (4.1), then every element
Pla,b] € I(A[y], Bly]) gives a differential equation

P[X[z(8)], Y[z(®)]] =0 (4.3)

for the function z(t). This equation can of course be trivial.

We shall construct a nontrivial differential equation for the func-
tion K (t) by first studying the differential graded ideal I(cz, co) where
cg, Co are given in (3.3). We will prove that there exists an element of
minimal weight in this ideal. In this sense, this will be the simplest
polynomial differential equation for K (¢).

Let’s consider the effect under the formal substitution law ¢t —
t = ﬁ, z ~ &, y — ¥ on a homogeneous differential rational
function of the form P[X[z],Y[z]] of weight [. It is called covariant

if it transforms like P[X[z], Y[z]] = v P[X[Z],Y[Z]]. Suppose the
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differential rational functions X[z], Y[z] transform as follows:

X[z) Y I QX3 Y(3))
7= (4.4)
Y[z] = Z Y™ I R;[ X (2], Y3
j=0

where v = ct + d, n,m are the respective weights of X,Y, and the
Q;, R; are some fixed differential polynomials of respective weights
n — j,m — j. We also assume the same transformation law for the
differential polynomials A[y], B[y], but only with z, Z replaced by y, §
respectively. Note that the leading term must be given by Qo[X,Y] =
X and Rg[X,Y] = Y. The assumption above simply says that the
differential polynomial C(t)-algebra generated by X,Y is closed under
the transformations from SL(2,C).

Lemma 4.1. Suppose that Pla, 8] is an element in I(Aly], Bly]) of
minimal weight. Then P[X|z],Y|[z]] is covariant.

Proof: It is enough to show that Pla, 8] — 7% P|a, 8] under formal
substitution:

o E 72"“jcin [e, O]

=0

- (45)
B~ Z v*™=3¢I Rj[a, B].
Jj=0
Obvioiusly under (4.5), we have
!
Plo, B ) y*idSj(e, B] (4.6)

j=0

for some differential polynomials S; of weights [ — j. We must show
that S; = 0 for all j > 0. By assumption A, B have similar transfor-
mation law (4.5). More precisely we have

l
P[A[y), Bly]l = > v*~7¢ S;[Alg], BI]] (4.7)
j=0

Since P, (] is an element of the ideal I(A[y], B[y]), it follows that
P[Aly], Bly]] is identically zero. Hence the right hand side of (4.7)must
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also be identically zero. Thus we have S;[A[g], B[g]] = 0 for all j.
Since 7 is just a formal variable, the same holds true with § replaced
by y. This means that the S;[a, 8] are in the ideal I(A[y], B[y]). But
S; has weight ! — j and so by the minimality of Pla, ], we have
Sjla, 8] = 0 for all § > 0. Thus (4.6)now says exactly that P is
covariant of weight I. This completes the proof. [J

4.1. SL(2) action on solution set

We now return to our original system of equations (3.6), and
diagress slightly to consider its general solutions. Given a complex
parameter t, let t = %:—'_Ii_lg where ad — bc = 1. Viewing t — t as a

change of coordinates, we have the formal relations:

c2(2(8); ) =7 ea(2(2); 1)

4.8
co(2(2); £) =73co(2(2); t) + 377 ccy(2(F); 1) + 67°c?ca(2(2); 1) (e

Proposition 4.2. Let z(t), K(t) be solutions to (3.6). Then so are

at +b

Z(t) .= )
] z(ct+dat+b (4.9)
K(t) ==C’Y"4K(Ct+ 7

for any constant C.

Proof: It follows immediately from (3.6)that the equations are invari-
ant under the scaling of K by a constant. So without loss of generality,
we can set C = 1. By direct computation, we find that

ro(K (8);8) =v*ra(v K (f); 1)
ro(K ();8) =v®ro(v™* K (£); 1) + 37" ery (v A K (8); 1) + 69°cPra(v K (B); 8).
4.10
Applying (3.6), (4.8) and (4.10), we get (10
ca(2(D);t) =7 *e2(2(8); ) = v Hr2(K (£); ) = ra(v T K (£);1)
co(z(£); ) =y 8co(2(2); 1) — 37 tech(2(2);t) — 6722 ea(2(E); t)

=ro(y*K({);t) O
(4.11)
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It is interesting to see how the new solution given is constructed.
Fix a solution (z(t), K(t)) to the system (3.6). And consider the same

system with z, K replaced by z,K. Set (t) = z(242) where 2(t) is

assumed to be a given solution. We would like to solve for K(t) in
terms of the given K(t). We shall see that the general solution is

precisely K(t) = Cy~4K(2£8). We must solve

ra(K () ) =v*r2(K (t); t)
ro(K (£); 1) =nPro(K(t);t) + 37 cry(K (t);t) + 67°cPra (K (2); ¢).

(4.12)
Set y(t) = Log K (t). Then we get
12
ra(K (t);1) =24 = %
y(4) yuZ ynyﬂ y/4 (4.13)
ro(K(t);t) =—2- + T T + 16
Thus the first equation in (4.12)becomes
dy() 1 dy(d),, 4 G(8) 1 dj(t),,
@ ata) = e 1)) (4.14)

Since y(t) is given, this is a Ricatti equation in the variable —d%ﬂ. It’s
easy to verify that its general solution is

- at+b
i) =y

By the standard classical method, we find that the general solu-
tion to (4.14) is

) —4Log . (4.15)

4Cezp(37(t))
1+ C [ exp(35(t))

where C is an arbitrary constant. Writing it in terms of K (t), we get

(4.16)

ygen(t) = g(t) - /

—4 g (attb
K(t) = v K (&) .
(B+C[v2K (2 2) .

(4.17)
ct+d

Now this satisfy the second equation in (4.12) iff C = 0.
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5. ODEs for the Yukawa Coupling — Existence

Our problem now is to construct an element Pla, §] of I(cs, ¢o),
which will give a nontrivial differential equation for K(t). The last
section indicates that we should look for a covariant element P, ]
such that

Plca,c0) =0 (5.1)

identically. We shall do this in three steps. Let a, 8 be formal vari-
able of weight 2,4 respectively. We shall call a differential polynomial
Pla, () a simple covariant of weight k if

Plez, co) = p(2)2"* (5.2)

for some rational function p(z). It is obvious that Pla, 8] is automati-
cally a covariant. First we find two simple covariants P;[a, 8], @ [a, 3]
of lowest weights. Our original system (3.6) then becomes

Pi[ry[K], mo[K]] =p(2)2''

5.3
Ql[r2[K], To[K]] :q(z)z’[Q1| ( )

for some rational functions p(z), g(z). We then eliminate z from this
pair of equations. Finally we prove that the resulting equation gov-
erning K is nontrivial.

Proposition 5.1. Let
pla, 8] =1008 — 902 — 300"

d d?
X[aa :8] =- 32p[a, ﬁ]za - 45(Ep[a, :B])z + 40,0[01, ﬂ]gt—g'p[ai ,3]
(5.4)
They are the unique simple covariants of weights 4,10 respectively.
Moreover any other simple covariant not proportional to either of
them has higher weight.

Note that these two simple covariants are in fact universal: they
are independent of the original 4th order differential operator. Thus
they are independent of the initial data (a2, ao).

Proof: We prove this by solving exactly the condition (5.2) in the
differential graded algebra generated by a, 8 up to weight 10. Since
a, B have weights 2,4, the only graded pieces we have to look are
of weights between 2,10. It is easy to work out a basis in terms
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of a,,..,03,3 for each graded pieces. Solving the above condition
yields the desired result. O

It is interesting to note that the equations (5.4)defines an isomor-
phism

v: (o, B) = (pla, B], X[, B]) (5.5)

between the two fields of differential rational functions: one is gener-
ated by p, x, the other by a, 5.
We also note that

plea, co] =plaz(2), ao(2)]2"

110 (5.6)

x[c2, co] =x[a2(2), ao(2)]2

Here we have slightly abused the notation: p[az(2), ag(2)] really means
100aq(z) — 9a3(2)? — 30a%(z), and similarly for x[a2(z),ao(2)]. Thus
both are just rational functions in the variable 2.

If plaz(z),a0(2)] = 0 (or x[az(2),a0(2)] = 0), then it’s easy to
show that p[ra[K],ro[K]] = 0 (or x[r2[K],ro[K]] = 0) is a nontrivial
ODE for K. Thus from now on, we assume that neither is zero. Set

p(2) =plaz(2), ao(2)]

(5.7)
q(2) =x[az2(2), ao(2)] '
Then we have
/ , dp dg, 15
5x[c2, coplcz, o) — 2x[c2, o) plea, co] = (5‘132 - 2133;)1’ . (5.8)
1t follows that
p[02, CO]5 2_5.
X[C2, 60]2 q2 (5 9)
(5x]es, colplez, col’ — 2xlc2, col'plea, col)? _ (59 - 2p32)? :
xle2, co)3 q?

Lemma 5.2. For any f(2),9(z) € C(z), there is a nonzero
polynomial Q(a,b) such that Q(f(2),9(z)) = 0 identically. If we
write f = fi/f2, 9 = 91/92, then such a Q may be choosen so
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that deg, Q and degy Q@ are both bounded from above by Npop =
maz(maz(deg fi,deg f2)+ maz(deg g1,deg g2) — 2,1).

Proof: We consider the system of homogeneous linear equations re-
sulting from the coefficients of the powers of z in

N

Y asf (gl =o0. (5.10)

1,j=0

It is easy to verify that for N = Npqez, the linear system has more
variables than equations. [J

In particular if we now take f, g to be the two right hand sides of
(5.9), then it follows that we have a nonzero polynomial @ with the
above vanishing property. Fix such a @ and define a new differential
polynomial in the variables &, 1 of weights 4,10 respectively:

& (5n¢’ ~ 2'€)?

> = ). (5.11)

R[E,n] :=n"N Q(

It is obvious that R[£,n) is nonzero. Also by construction we have
R[p[c2, co}, x[c2, co]] = 0 identically.

Proposition 5.3. R[p[ry[K],mo[K]], x[c2[K], co[K]]] = 0 is a non-
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trivial ODE for K.

Proof: By direct computation, we find

plra[K], rolK]] =
2 2 2 2 3 3 4
175 K™ —oso K- K" +49K* K" + 70K K'K® —10K3 KW

X[ra[K], ro[K]] =4 (1225000 K'*° — 4900000 K K'® K"
+ 6737500 K2 K'® K"*r — 3626000 K3 K'* K""°
+ 689675 K* K'* K'"* — 360836 K® K"'°
+1225000 K2 K'" K® — 2940000 K3 K'° K" K®
+1690500 K* K> K" K®)
+ 695800 K5 K' K"° K®)
+ 367500 K4 K" K®” — 705600 K5 K" K" K®®
~ 235200 K® k"2 K®* 4 117600 K¢ K’ K®°
— 175000 K3 K'° K + 420000 K* K'* K" K®
— 562800 K5 K'> K" K™ + 203000 K¢ K" K®)
+ 42000 K5 K'° K@ K™ 4 142800 K® K’ K" K® K@
— 16800 K7 K®? K4 _ 12000 K® K'2 K®*
— 26400 K7 K" K®® + 94500 K3 K" K" K'®)
— 103950 K® K’ K" K® — 31500 K8 K'* K® K
+ 37800 K" K" K® K®) 4+ 9000 K" K' K K(®
~ 1125 K K®? — 17500 K® K'* K©®
+ 28000 K8 K'* K" K(®) — 4900 K7 K"'* K(©)

—7000K"K'K® K® 1 1000 K K@ K (6)) /K10

(5.12)
Observe that R[,7n] has either a nontrivial leading power in 7/,
or else it has a leading power in 7. In the first case, we see
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R[p[r2[K],m0[K]], x[c2[K], co[K]]] bas a nontrivial leading term con-
taining the 7th derivative K(7). In the second case we have a nontriv-
ial leading term containing K (®), In either case, the resulting ODE is
nontrivial. O

This completes the proof of our main theorem.

6. Remarks and examples

The proof above indicates also that we can put a bound on the
minimal weight of our ODE for K. Since @ obviously has weight zero,
the differential polynomial R above has weight 5N. Thus the minimal
weight is no more than 5N,,4;.

We now return to the discussion of the Picard-Fuchs equation of
a family of Calabi-Yau 3-folds. In the case of the mirror quintic, we
have the famous Picard-Fuchs equation

(0* —52(50 + 4)(50 + 3)(50 + 2)(5© + 1)) f(2)) =0  (6.1)

where © := zf—. In this case one finds that N,z = 1400. This turns
out to be far from optimum. Using the computer, we find an ODE
for K of weight 360.

In practice, we can simplify the computation for an ODE sig-
nificantly as follows. If we regard 5n¢’ — 2n'¢ as another variable,
then the construction in the last section guarantees that there have a
polynomial in &,7,6 := 5n¢' — 2n'€ which gives a nontrivial ODE for
K.

Thus it is enough to look in the polynomial ring in £, 7,8 where
the weights of the variables are respectively 4,10, 15. Our construction
guarantees that any zero polynomial quasi-homogeneous polynomial

P(&,n,0) satisfying

P(plcz, co), X[c2, col, 5pcz, co] X[z, o] — 2p[c2, colx[c2, o]’ ) = 0 (6(*2))
identically gives a a nontrivial ODE for K. We want to find one wi.th
the minimum weight.

Lemma 6.1. A necessary and sufficient condition for a nonzero
polynomial P(€,n, 8) satisfying (*) to be a minimum of weight n is that
every polynomial T'(€,n,0) satisfying (*) of weight n —1,n—2,n -3,
orn —4 s zero.

Proof: The necessity of the condition is clear. To show sufficiency,
note that if T'(£, n,d) is a polynomial of weight lower that n — 4 and



524 Differential Equations from Mirror Symmetry

satisfies (*), then we can multiply it by a suitable power — say £* —
so that £¥T'(€,7,6) has weight n — 1,n — 2,n — 3, or n — 4 because £
has weight 4. Now it must be zero, implying that T itself is zero. [

When we try to find a polynomial P(§,, ) satisfying (*) and
of minimal weight, say n, the lemma saves us from checking the the
lower weight polynomials — all we have to check is that there is none in
weights n — 4 to n — 1. For example, in the case of the mirror quintic.
We verify by computer that there are no nonzero polynomial T'(£, 7, §)
satisfying (*) and has weight between 359 and 356. Moreover there
are exactly 127 monomials of weight 360 in the three variables. Up
to multiple, exactly one linear combination of them satisfies (*).

Here we shall give the simplest example known to us: here we
consider the family of Calabi-Yau 3-folds X mirror to the complete
intersection of 4 quadrics in P7. In this case, the minimal polynomial
satisfying (*) has weight 180:

P (67 X p) =

3783403212890625 x® + 52967644980468750 x*° 42

+ 292835408677734375 x*2 6* + 833559395864062500 x° 5°
+1301823644717109375 x° 6 + 1064406315612768750 x> 61°
+ 357449882108765625 §'2 + 9097175898878906250 x 6 p°
+ 75543680906950781250 x 13 62 p°

— 55168781762820937500 1054 p°

— 1235933279927738437500 x 7 66 p°

— 2628328829388247068750 x* 48 p°

— 1669442421173622243750 x 60 p°

— 316395922222462973709375 x4 p'°

— 1041303693581386404075000 ! 52 p1°

+ 1397061241390545045311250 & 64 p10

— 978071752628929206000 x> 5 p1°

+ 3088961515882945520173125 x2 68 p1°

+ 726375263921582813504122500 x'2 pt5

— 2401967567306257982918892000 x? 62 p'°

+ 2931906039367569842399977800 & 64 p'°

~ 2592007729730548310729752000 x3 5° p'°

+ 26477211431856325292132500 68 p*°

+ 731773527868504699561324929024 ' p*°

— 1384453886791545382987331665920 x” 62 p2°
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+ 1003786188392583028918031769600 x* 6* p*°

— 92650299984331138894225408000 ) 66 p2°

+ 264379950716374035480557566033920 x® p°

— 323653884996678359415539902709760 x° 62 p2°

+ 105122101152057682020817226956800 x2 64 p2°

+ 48853700167414249640038923438653440 x5 p3°

— 33153423760664989683513831467253760 x> 62 p3°
+ 528120679253988321156369324441600 6* p3°

+ 4965538896010513223822010617996247040 x* p*°
— 1238934080748073699029086124292177920 x 62 p3°
+ 265021771162266355900761945816768184320 2 p*°
+ 5822406825670998196401392296588763725824 p*°

(6.3)

Note that since 4, x, p are of weights 15,10,4 respectively, P is a quasi-
homogeneous polynomial of weight 180. Each of the 37 terms in this
polynomial corresponds to a partition of 180 by 15,10,4.

In the second example, we consider the complete intersection of
two cubic in P°. In this case, we find that the ODE for K is given
by a polynomial of weight 330. There are 108 partitions of 330 by
15,10,4. Thus this polynomial has a maximum length of 108.

We have verified that in all cases above, our differential equa-
tion determines the Yukawa coupling K (¢) up to the first two Fourier
coefficients.
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