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Abstract: M5 branes probing D-type singularities give rise to 6d (1,0) SCFTs with SO×
SO flavor symmetry known as D-type conformal matter theories. Gauging the diagonal

SO-flavor symmetry leads to a little string theory with an intrinsic scale which can be

engineered in F-theory by compactifying on a doubly-elliptic Calabi-Yau manifold. We

derive Seiberg-Witten curves for these little string theories which can be interpreted as

mirror curves for the corresponding Calabi-Yau manifolds. Under fiber-base duality these

models are mapped to D-type quiver gauge theories and we check that their Seiberg-Witten

curves match. By taking decompactification limits, we construct the curves for the related

6d SCFTs and connect to known results in the literature by further taking 5d and 4d limits.
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1 Introduction

The classification of 6dN = (1, 0) SCFTs in F-theory through elliptic Calabi-Yau manifolds

[1, 2] naturally leads to the question of classification of 4d vacua obtained from these

theories in a dimensional reduction. The most straightforward direction to proceed is

to construct the Seiberg-Witten curves of the resulting four-dimensional N = 2 theories

upon compactification on a two-torus. This approach has been pursued in [3–5] using

different methods. The method used in [3] is the orbifold Landau-Ginzburg technique,

while the strategy of [4, 5] has been the connection to (2, 0) compactifications on Gaiotto

curves. Both methods have limited scopes while shedding light on different aspects of

the compactification. Orbifold Landau-Ginzburg models can be applied to any F-theory

compactification which admits an orbifold description as a discrete quotient of T 2×C×C.

Thus the method has been successfully applied to the non-Higgsable classes with one tensor

multiplet and to various conformal matter theories. The procedure involves constructing

the mirror geometry of the orbifold (T 2 × C × C)/ΓG which leads to the SW-curve of an

intrinsically four-dimensional theory and then taking a limit in moduli space to reach a

CFT point. In constructing the resulting theories, however, a certain limit of the Calabi-

Yau geometry has been taken which from the 6d SCFT point of view involves shrinking the

radii of compactification from 6d to 4d. On the other hand, the approach of [4, 5] has been
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to identify a quiver description for the reduced theory and subsequently use the technique

of associating a Gaiotto curve to such a theory from which the SW-curve can be read off.

In the present paper we will be taking yet another direction to construct the Seiberg-

Witten curve. Our approach is based on the recent progress in computing 6d SCFT BPS

partition functions by identifying the 2d theories on the worldvolume of strings which

appear on their tensor branch [6–17]. As advocated in [18], we propose to take the thermo-

dynamic limit [19] of 6d partition functions in order to obtain the SW-curve as the spectral

curve of the resulting matrix model. Given the recent advances in computing these parti-

tion functions, it seems natural to pursue this path as more non-trivial SCFTs, which do

not admit an orbifold description and do not connect to other (2, 0) theories upon compact-

ification, move within reach. Moreover, in this approach we can keep all radii in the game

finite and thus obtain an expression for the true 6d curve which still depends non-trivially

on the 6d to 5d and 5d to 4d compactification radii. Given such a more general curve, it is

expected that its singular loci in moduli space classify the corresponding 4d SCFTs which

can be reached.

We will be looking at 6d (1, 0) SCFTs which arise from M5 branes probing D-type

singularities and the SW-curves they give rise to. As it turns out, in order to derive the

equations for the curve, it is useful to “uplift” these theories to little string theories by

compactifying the chain of P1’s in the base of the Calabi-Yau geometries to an elliptic

curve, thus making the Calabi-Yau doubly elliptic. The little string theory obtained this

way admits fiber-base duality which is essentially T-duality transforming the system of

M5 branes to D5 branes probing a D-type singularity. The SW-curve for this T-dual

picture was obtained in [18] by generalizing the construction of [20]. We analyze the

special case of one M5 brane and one D5 brane in detail and show that the two SW-curves

are indeed identical. We can then take two different SCFT limits by decompactifying the

base either by sending the volume of a −1-curve to infinity or that of a −4-curve. This

decompactification limit not only fixes the form of the SCFT SW-curve but also gives

further information about the structure of the SW-curve of the little string theory which in

turn gives further consistency checks for our ansatz. We show that so obtained 6d curves

are indeed the most general curves as they correctly reproduce the known 5d and 4d curves

upon sending the compactification radii to zero.

One remarkable aspect of the little string curves is that they can be given interpreta-

tions of spectral curves corresponding to moduli spaces of instantons on a complex two-

dimensional torus (also known as an abelian surface) on the one hand and instantons on

a particular K3 surface on the other hand. In fact, the moduli space of quantum vacua of

the two little string theories can be identified with the two corresponding instanton moduli

spaces. In the case of M5 branes and D5 branes probing an A-type singularity this cor-

respondence is well-known to mathematicians and is the one between moduli spaces of N

SU(r) instantons on T 4 on the one side and that of r SU(N) instantons on the other [21].

But whereas in the A-type case the abelian surface is a general one, in the D and E type

cases it is restricted to be a product of two elliptic curves1, the reason being that the A-

1What makes the D and E cases more complicated is the equation defining the curve inside the abelian
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type singularity has a further U(1) isometry corresponding to mass deformation which the

other two cases do not admit. One way to view the results of this paper is a generalization

of this correspondence to SO(8)-instantons on T 4 and SU(2) instantons on K3 ≡ T 4/Z2.

The organization of the paper is as follows. In Section 2 we review the brane construc-

tion for the two little string theories in question. In Section 3 we give a precise account on

the thermodynamic limit of the 6d partition function and derive saddle-point equations in

this limit which define the spectral curve. We then proceed in Section 4 to derive concrete

expressions for the spectral curve. We observe the invariance under fiber-base duality by

comparing to the dual SW-curve obtained by taking the thermodynamic limit of another

little string partition function. Finally, we take the SCFT limits as well as 5d and 4d

limits of the obtained curve and compare with existing results. We end the paper with a

discussion giving an outlook on open problems and directions to proceed.

2 Brane construction

In this section we want to review the brane construction for the little string theories (LSTs)

of interest and their duality frames. This will allow us to describe their quantum moduli

spaces of vacua in a coherent formalism and look at various limiting behaviors obtained by

successively sending radii involved to zero. These limits will correspond to the 6d SCFT,

5d and 4d limits of the theory. The LSTs we will be interested in arise on the one hand in

Type IIB string theory from D5-branes probing ADE singularities and on the other hand

from M5 branes probing ADE singularities. The two constructions, denoted by T B and T A
respectively, are related through fiber-base duality of doubly elliptic Calabi-Yau threefolds

[22] which can equally well be interpreted as T-duality in Type II string theory [5].

D5 branes probing ADE singularities

This case corresponds to the T B theories [23]. Let us focus for simplicity on A-type

singularities and then successively generalize from results draws from this case. The brane

configuration in this case is shown in the following table:

S1 S1 R4
‖ TNr+1

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

N D5 × × × × × × – – – –

We want to deduce the moduli space of vacua corresponding to the Coulomb branch of the

4d N = 2 compactification. To this end, we perform T-duality along the Taub-NUT circle

and arrive at the type IIA brane configuration:

S1 S1 R4
‖ S1 R3

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

r + 1 NS5 × × × × × × {yi} – – –

N D6 × × × × × × × – – –

surface.
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We next perform T-duality along the X1 circle and arrive at the following type IIB brane

setup:

S1 S̃1 R4
‖ S1 R3

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

r + 1 NS5 × × × × × × {yi} – – –

N D5 × – × × × × × – – –

In order to arrive at a description of the Coulomb branch, we further compactify the direc-

tion X2. The moduli space is then the one of the resulting 3d N = 4 theory which admits

a Hitchin system description. To deduce it, we perform two T-dualities along X0 and X2

and arrive at the picture shown in Figure 1. The D5 branes have now become D3 branes

D3

NS5

X 6

X 1

Figure 1: Brane setup for a 3d N = 4 theory capturing the Coulomb branch of our

original T BAr theory.

which form impurities in the gauge theory living on the NS5 branes. In the current case,

due to the Ar singularity we started with, this gauge group is GAr = SU(r+ 1). There are

now several limits we can consider:2

1) R0, R1 → 0 and R6 →∞ D3-branes are periodic monopoles on R2 × S1

2) R2 → 0 and R6 →∞ D3-branes are doubly-periodic monopoles on R× T 2

3) R6 →∞ D3-branes are triply-periodic monopoles on T 3

4) all radii are finite Instantons on T 4

We refer to [24] for more details on the moduli spaces of periodic monopoles. To see how

the fourth case comes about, note that D3-branes are S-duality invariant. Thus performing

S-duality and then successively T-duality along X6, we arrive at D2-branes as instantons

in D6-branes wrapping a four-torus composed of the periodic directions X0, X1, X2, X6.

In the original D5 setup the above limits correspond to:

2The radii R0 and R1 are the ones of the original configuration corresponding to the 6d SCFT shown in

the first table before applying the T-dualities. The T-dual variables have to be sent to ∞ in this limit.
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1) 4d quiver gauge theory on R3 × S1

2) 5d quiver gauge theory on R3 × T 2

3) Tensor branch of 6d SCFT on R3 × T 3

4) 6d LST on R3 × T 3

It is the last case which is of interest for us in this paper. Let us conclude by noting that the

generalization of this construction to the D and E types amounts to identifying the moduli

spaces of the corresponding LSTs with those of SO(8 + 2n) and E6, E7, E8 instantons on

T 4 [25].

M5 branes probing ADE singularities

We now turn our attention to the LSTs arising from M5 branes probing ADE singularities,

denoted T A [22, 26]. The A-type case is already covered in the construction above which

can be identified as its T-dual. The central example of this paper will be the D-type

singularity on which we want to focus in the following. Let us first focus on the case of a

single M5 brane probing a D4 singularity:

S1 S1 R4
‖ S1 C2/ΓD4

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

M5 × × × × × × – – – – –

In this case it is known that the M5 brane fractionates into 2 half M5 branes along the X6

circle. By reducing the ALF circle, they become IIA NS5-branes between which we have

D6-branes with O6+ and O6− on different sides of the NS5 branes [27–29], thus giving the

following setup:

S1 S1 R4
‖ S1 R3

⊥
X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

NS5 × × × × × × y1 – – –

NS5 × × × × × × y2 – – –

O6+ × × × × × × [y1, y2) – – –

O6− × × × × × × [y2, y1) – – –

4 D6 × × × × × × × – – –

Next, we compactify the X2 direction and perform 3 T-dualities along X0, X1 and X2

which are common to the NS5 branes and D6 branes. We end up with D3 branes on top

of O3± planes suspended between NS5 branes as shown in Figure 2. Now we perform

S-duality of type IIB and then another T-duality along the X6 direction and end up with

D2 and O2 planes in D6 branes wrapping the periodic directions X0, X1, X2 and X6. In

fact, the orientifolds fractionate and we end up with 16 O2 planes located at the 16 = 4×4

fixed points of T 4 ∼= T 2 × T 2 under the Z2 action Xi 7→ −Xi. Thus we arrive at 2 D6

branes wrapping the K3 surface T 4/Z2 together with 4 D2 instantons of the corresponding

SU(2) gauge theory. This picture can easily be generalized to the case of N M5 branes

probing a D4+n singularity. The corresponding Coulomb branch moduli space is then the

one of 4 + n SU(2N) instanton on T 4/Z2.
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D3

NS5

X 6

X 1

O3+
O3−O3−

NS5

Figure 2: Brane setup for a 3d N = 4 theory capturing the Coulomb branch of our

original T AD4
theory.

Spectral curves

Let us first focus on the case ofN D5 branes probing an affine Ar singularity. The four-torus

appearing in the above constructions can be viewed as an elliptic surface by identifying

one torus as its fiber and the other as its base. Thus we will be writing T 4 ∼= Tτf × Tτb ,
where Tτ = C/(Z ⊕ τZ). Now the moduli space of N SU(r + 1) instantons on T 4 can

be identified with the moduli space of the instanton spectral curve with respect to the

projection X
π→ Tτb . Such a curve is a branched r-fold covering map where r is the rank

of the gauge group G. It is given in terms of the zero set of the determinant of a G-bundle

over the Jacobian of the fiber T̂τf = H1(Tτf ,R)/H1(Tτf ,Z) (which is isomorphic to Tτf
itself) [30]. Thus we see that the spectral curve S has a realization as a holomorphic curve

inside T̂τf × Tτb . On the other hand, the moduli space of the T-dual description in terms

of N M5 branes probing an affine Ar singularity is the one of r instantons of SU(N) gauge

theory on the dual torus T̂ 4 ∼= T̂τf × T̂τb . In this case T̂τb is the fiber and the spectral

curve is a holomorphic curve inside T̂τf ×
̂̂Tτb = T̂τf ×Tτb . In fact, the two spectral curves

are identical and one can show that the two descriptions are related through the so called

Fourier-Mukai transform [21]. Hence there is a bijective correspondence between the two

instanton moduli spaces: MT 4(r + 1, N) ↔ M
T̂ 4(N, r + 1). As shown in [18], such a

spectral curve can be interpreted as the mirror curve of the elliptic Calabi-Yau manifolds

engineering the corresponding 6d LSTs in F-theory. In the A-type case the mirror curve

is given in terms of a linear combination of genus 2 Riemann theta functions and the

Fourier-Mukai transform in that context corresponds to the element(
0 1

−1 0

)
∈ Sp(4,Z), (2.1)

swapping the 2-tori inside the four-torus.
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Let us next come to the D-type singularity. The case of a D5-brane probing a D4

singularity corresponds to the moduli space of an SO(8) instanton on T 4. The spectral

curve is living in T̂τf × Tτb and restricted to the fiber, it is given as the zero set of the

determinant of an SO(8)-bundle over T̂τf [18]. On the other hand, in the dual picture we

have a non-trivial fibration of Tτb over T̂τf /Z2 such that the fiber degenerates over four

fixed-points of the Z2 action in the base. As we will see in the following sections, when

restricted to the fiber, the spectral curve turns out to be the zero set of the determinant

of an SL(2) bundle. Moreover, we will see how the SO(8) bundle of the previous picture

arises from the four instantons and their mirror images under the Z2 action. The procedure

we will be using to arrive at the spectral curve is the thermodynamic limit of [19], to which

we turn now.

3 The thermodynamic limit

The thermodynamic limit, as developed in [19] and further applied in [20] to the case of

quiver gauge theories, provides a straightforward derivation of Seiberg-Witten curves once

there is sufficient information for the instanton sector of a gauge theory. The procedure

involves writing the Nekrasov partition function, which is equivalent to the topological

string partition function of the Calabi-Yau manifolds engineering the gauge theory, as a

sum over its instanton sectors:

Ztop = e
∑
g ~2g−2Fg = Zpert

1 +
∑
{ki}

qk11 q
k2
2 . . . qkrr Z{ki}

 , (3.1)

where ~ is the topological string coupling constant and qi = e2πiτi with τi being the com-

plexified gauge coupling of the ith gauge node. The Z{ki} can be computed through super-

symmetric localization on instanton moduli spaces and can themselves be written in terms

of discrete sums. In the limit where the topological string coupling constant goes to zero,

~→ 0, the above sum becomes a path integral of the following form

Ztop ∼
∫ ∏

i

D%ie
F0(~τ,~%)

~ +O(1), (3.2)

where the %i can be viewed as eigenvalue densities of the ith instanton gauge group (not

to be confused with the bulk gauge group). This leads to a matrix model from which we

can extract the spectral curve. The instanton sector of the little string theory T AD4,1
(i.e.

one M5 brane probing a D4 singularity) compactified on R4 × T 2 is captured by the 2d

quiver gauge theory shown in Figure 3. It is composed of an E-string node [9] and an

O(−4) node [10] combined into a circular −1,−4 chain [31]. k1 and k2 denote the winding

numbers of two fractional little strings corresponding to the −4 and −1 curves in the F-

theory construction. The topological string partition function in this case then boils down

to computing the following infinite sum

Ztop = Zpert

1 +
∑

k1,k2≥0
qk11 q

k2
0

∑
d

ZSp(k1)×O(k2),d

 , (3.3)
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SO(8)

Sp(k1) O(k2)

symanti

Figure 3: Quiver for one instanton on D4.

where
∑

d Z
Sp(k1)×O(k2),d denotes the elliptic genus of a string chain composed of k1 SO(8)

instanton strings and k2 E-strings. We refer to [31] for its precise definition. Notice that

care has been taken of the fact that it has discrete gauge moduli labeled by d in the

superscript of the elliptic genus. In the following we want to find an integral representation

for the elliptic genera, whose integrand is known as the 1-loop determinant.

3.1 The 1-loop determinants

The field content of the quiver depicted in Figure 3 is shown in Table 1. The corresponding

Type Fields Representation

vector (Aµ, λ
α̇A
− ) adj of Sp(k1)

hyper (aαα̇, ψ
αA
+ ) anti of Sp(k1)

hyper (qα̇, ψ
A
+) bif of Sp(k1)× SO(8)

vector (Aµ, λ
α̇A
− ) adj of O(k2)

hyper (aαα̇, ψ
αA
+ ) sym of O(k2)

Fermi (χ1), (χ2) bif of O(k2)× SO(8)

twisted hyper (φα̇, µ
A
+)1 bif of Sp(k1)×O(k2)

Fermi (µα−)1 bif of Sp(k1)×O(k2)

twisted hyper (φα̇, µ
A
+)2 bif of O(k2)× Sp(k1)

Fermi (µα−)2 bif of O(k2)×O(k1)

Table 1: The field contents of D4.
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theory is a 2d N = (0, 4) gauge theory and the 1-loop determinants over the superfields

are,

Zvector =

r∏
i=1

2πη2 θ1(2ε+)dφi
∏

ρ∈root

θ1(ρ · φ)θ1(ρ · φ+ 2ε+)

η2
,

ZFermi =
∏

ρ∈repg

∏
κ∈repf

θ1(ρ · φ+ κ · z)
η

,

Zhyper =
∏

ρ∈repg

∏
κ∈repf

η

θ1(ε+ + ρ · φ+ κ · z) ,

Ztwistedhyper =
∏

ρ∈repg

∏
κ∈repf

η

θ1(−ε+ + ρ · φ+ κ · z) .

(3.4)

φ denotes the gauge holonomy eigenvalue, ρ is the eigenvalue of the Cartan generator of

the gauge symmetry in the representation repg. κ collectively denotes the eigenvalues for

the Cartan generators of all global symmetry including SU(2)L, i.e., anti-self-dual rotation

of the R4. We refer to the appendix for our conventions of the Jacobi theta function and

the eta function as well as other modular forms appearing in this paper.3

The Sp(k1) node

The contribution to the 1-loop determinant from the pure Sp(k1) part is

ZSp(k1) = Z
Sp(k1)
vector Z

Sp(k1)
hyper,antiZ

Sp(k1)
hyper , (3.5)

where

Z
Sp(k1)
vector =

k1∏
i=1

2πη2 θ1(2ε+)dφi
θ1(±2φi)θ1(ε+ ± 2φi)

η4

∏
1≤i<j≤k1

θ1(±φi ± φj)θ(2ε+ ± φi ± φj)
η8

,

Z
Sp(k1)
hyper,anti =

∏
1≤i<j≤k1

η8

θ1(ε+ + ε− ± φi ± φj)θ(ε+ − ε− ± φi ± φj)
,

Z
Sp(k1)
hyper =

k1∏
i=1

4∏
j=1

η4

θ1(ε+ ± φi ±mj)
, (3.6)

and ε+ = 1
2(ε1 + ε2) and ε− = 1

2(ε1 − ε2). To derive (3.6) from (3.4), we used the fact that

the gauge holonomy φ is a 2k1 by 2k1 matrix with the following eigenvalues:

φ = diag(±φ1,±φ2, · · · ,±φk1). (3.7)

The 2k1-dimensional Sp(k1) charge vectors are given by

ρ = (0, · · · , 0, 1, 0, · · · , 0) for the defining representation, (3.8)

ρ = (0, · · · , 0, 2, 0, · · · , 0) or

(0, · · · , 0, 1, 0, · · · , 0, 1, 0, · · · , 0) for the adjoint representation,

ρ = (0, · · · , 0, 1, 0, · · · , 0, 1, 0, · · · , 0) for the antisymmetric representation,

from which one can compute (ρ · φ) and then obtain the expression (3.6).

3For reasons of clarity in the presentation, we will omit the dependence on the modular parameter in all

theta-functions appearing in this section.
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The O(k2) node

The contribution from the pure O(k2) (assuming k2 even) part is

ZO(k2) = Z
O(k2)
vectorZ

O(k2)
hyper,symZ

O(k2)
Fermi , (3.9)

where

Z
O(k2)
vector =

k2/2∏
i=1

2πη θ1(2ε+)dϕi
∏

1≤i<j≤k2/2

θ1(±ϕi ± ϕj)θ(2ε+ ± ϕi ± ϕj)
η8

, (3.10)

Z
O(k2)
hyper,sym =

ηk2

θ
k2
2
1 (ε1)θ

k2
2
1 (ε2)

k2/2∏
i=1

η4

θ1(ε1 ± 2ϕi)θ1(ε2 ± 2ϕi)

∏
i<j

η8

θ1(ε1 ± ϕi ± ϕj)θ(ε2 ± ϕi ± ϕj)
,

Z
O(k2)
Fermi =

k2/2∏
i=1

4∏
j=1

θ1(±ϕi ±mj)

η4
.

Again we used the fact that the k2-dimensional O(k2) charge vectors are given by

ρ = (0, · · · , 0, 1, 0, · · · , 0) for the defining representation, (3.11)

ρ = (0, · · · , 0, 2, 0, · · · , 0) or

(0, · · · , 0, 1, 0, · · · , 0, 1, 0, · · · , 0) for the adjoint representation,

ρ = (0, · · · , 0, 1, 0, · · · , 0, 1, 0, · · · , 0) for the antisymmetric representation.

O(k2) allows discrete holonomies. All disconnected holonomy sectors are classified into k2
by k2 matrices having the following eigenvalues:

O(2p+ 1) : diag(±ϕ1, · · · ,±ϕp, 0), diag(±ϕ1, · · · ,±ϕp−1,
1

2
,

1 + τ

2
,
τ

2
), diag(±ϕ1, · · · ,±ϕp,

τ

2
),

diag(±ϕ1, · · · ,±ϕp−1,
1

2
,

1 + τ

2
, 0), diag(±ϕ1, · · · ,±ϕp,

1

2
), diag(±ϕ1, · · · ,±ϕp,

1 + τ

2
),

diag(±ϕ1, · · · ,±ϕp−1, 0,
τ

2
, 0), diag(±ϕ1, · · · ,±ϕp−1,

τ

2
,

1 + τ

2
, 0)

O(2p) : diag(±ϕ1, · · · ,±ϕp), diag(±ϕ1, · · · ,±ϕp−2, 0,
1

2
,

1 + τ

2
,
τ

2
), diag(±ϕ1, · · · ,±ϕp−1, 0,

τ

2
),

diag(±ϕ1, · · · ,±ϕp−1,
1

2
,

1 + τ

2
), diag(±ϕ1, · · · ,±ϕp−1, 0,

1

2
), diag(±ϕ1, · · · ,±ϕp−1,

τ

2
,

1

2
)

diag(±ϕ1, · · · ,±ϕp−1,
τ

2
,

1 + τ

2
), diag(±ϕ1, · · · ,±ϕp−1, 0,

1 + τ

2
). (3.12)

We need to replace (ρ ·ϕ)’s with their proper value which involves discrete holonomies and

sum over all distinct sectors. We will distinguish them by the superscript d, i.e., ZO(k2),d.

– 10 –



Lie Algebra Rep Dynkin label

Sp(k) fund (1, 0, · · · , 0)

adj (2, 0, · · · , 0)

anti (0, 1, 0, · · · , 0)

O(k) fund (1, 0, · · · , 0)

adj (0, 1, 0, · · · , 0)

sym (2, 0, · · · , 0)

Table 2: The Dynkin labels of representations.

The bifundamental contribution

The contribution from bifundamentals of Sp(k1)×O(k2) is Zbif,d = Zbif,d
twistedZ

bif,d
Fermi, with

Zbif
twisted =

k1∏
i=1

k2/2∏
j=1

η4

θ1(−ε+ ± φi ± ϕj)
,

Zbif
Fermi =

k1∏
i=1

k2/2∏
j=1

θ1(ε− ± φi ± ϕj)
η4

.

(3.13)

The final Sp(k1)×O(k2) 1-loop determinant in a discrete holonomy sector d is given by

Z
Sp(k1)×O(k2),d
1−loop = ZSp(k1)ZO(k2),d(Zbif,d)2. (3.14)

3.2 Matrix integral

Pure Sp(k1) part

First consider ZSp(k1) = Z
Sp(k1)
vector Z

Sp(k1)
hyper,antiZ

Sp(k1)
hyper ,

ZSp(k1) =

k1∏
i=1

2πηθ1(2ε+)dφi
θ1(±2φi)θ1(2ε+ ± 2φi)

η4

k1∏
i=1

4∏
j=1

η4

θ1(ε+ ± φi ± µj)

×
∏

1≤i<j≤k1

θ1(±φi ± φj)θ1(2ε+ ± φi ± φj)
θ1(ε+ + ε− ± φi ± φj)θ1(ε+ − ε− ± φi ± φj)

.

(3.15)

Define the eigenvalue density and the profile function as

ρ(z) =ε1ε2
∑
i

(δ(z − φi) + δ(z + φi)) ,

f(z) =− 2ρ(z) +
∑
l

(|z − µl|+ |z + µl|).
(3.16)

Under the thermodynamic limit ε1 = −ε2 = ~ and ~→ 0, we have the following expansion

to leading order in ~,

ZSp(k1) ∼ exp

(
− 1

ε1ε2
FSp(k1)0

)
= exp

(
1

~2
FSp(k1)0

)
, (3.17)
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and

FSp(k1)0 =− 1

2
−
∫
dzdz′ρ(z)ρ(z′)∂2z∂

2
z′γ0(z − z′)−

1

2

∫
dzρ(z)∂2zγ0(2z)

+

∫
dzρ(z)

4∑
l=1

(
∂2xγ0(z + µl) + ∂2zγ0(z − µl)

)
.

(3.18)

The function γ0(x) is the leading term in the expansion of the elliptic multiple Gamma

function

γ(z; ~) =
∞∑
g=0

~2g−2γg(z), (3.19)

and in the following we will be needing the following property: γ′′0 (z) = ln θ1(z). Applied

to our present situation this gives

∂2zγ0(z − z′) = log θ(z − z′),

∂2z∂
2
z′γ0(z − z′) =− θ′(z − z′)2 − θ(z − z′)θ′′(z − z′)

θ(z − z′)2 .
(3.20)

We can now rewrite equation (3.18) in terms of f(x) which gives:

FSp(k1)0 = −1

8
−
∫
dxdyf ′′(z)f ′′(z′)γ0(z − z′) +

1

4

∫
dzf ′′(z)γ0(2z) +O(~2). (3.21)

Pure O(k2) part

First consider k2 = 2p even.

ZO(2p) =
η2p

θp1(ε1)θ
p
1(ε2)

p∏
i=1

2πηθ1(2ε+)dϕi
∏

1≤i<j≤p

θ1(±ϕi ± ϕj)θ(2ε+ ± ϕi ± ϕj)
θ1(ε1 ± ϕi ± ϕj)θ(ε2 ± ϕi ± ϕj)

×
p∏
i=1

η4

θ1(ε1 ± 2ϕi)θ1(ε2 ± 2ϕi)

p∏
i=1

4∏
j=1

θ1(±ϕi ± µj)
η4

.

(3.22)

There are eight disconneted holonomy sectors and we need to replace ϕ’s with the correct

holonomies. Notice that it is simpler if we group up holonomy sectors by the number of

their continuous holonomies. For example, diag(±ϕ1, · · · ,±ϕp) should be grouped with

diag(±ϕ1, · · · ,±ϕp, 0, 12 , 1+τ2 , τ2 ) although the first contribution is from holonomies of O(2p)

and the other one from holonomies of O(2p+ 4). This is not a problem since we sum over

all possible values of p.

We will be explicit here, logZO(2p) contains three terms. Under the limit ε1 = −ε2 = ~
and ~→ 0, the first one is

log
∏

1≤i<j≤p

θ1(±ϕi ± ϕj)θ(2ε+ ± ϕi ± ϕj)
θ1(ε1 ± ϕi ± ϕj)θ(ε2 ± ϕi ± ϕj)

=
∑

1≤i<j≤p
~2
θ′1(±ϕi ± ϕj)2 − θ1(±ϕi ± ϕj)θ′′1(±ϕi ± ϕj)

θ1(±ϕi ± ϕj)2
+O(~4)

=− 1

~2
1

2
−
∫
dzdz′%(z)%(z′)∂2z∂

2
z′γ0(z − z′) +O(1).

(3.23)
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The second term is,

log

p∏
i=1

1

θ1(ε1 ± 2ϕi)θ1(ε2 ± 2ϕi)
= −

p∑
i=1

log θ1(±2ϕi)
2 +O(~2)

=
1

~2
1

2
−
∫
dz%(z)∂2zγ0(2z) +O(1). (3.24)

The third term is,

log

p∏
i=1

4∏
j=1

θ1(±ϕi ± µj) = − 1

~2

∫
dz%(z)

4∑
l=1

(
∂2zγ0(z + µl) + ∂2zγ0(z − µl)

)
. (3.25)

The contribution FO(2p),1
0 of the continuous holonomy sector is given by

FO(2p,1)
0 =− 1

2
−
∫
dzdz′%(z)%(z′)∂2z∂

2
z′γ0(z − z′) +

1

2

∫
dz%(z)∂2zγ0(2z)

−
∫
dz%(z)

4∑
l=1

(
∂2zγ0(z + µl) + ∂2zγ0(z − µl)

)
,

(3.26)

with

%(z) = ε1ε2
∑
i

(δ(z − ϕi) + δ(z + ϕi)). (3.27)

Now consider the effect of other holomony sectors. For example for ϕ = diag(±ϕ1, · · · ,±ϕp, 0, τ2 ),

the contribution from Z
O(2p)
Fermi is

Z
O(2p)
Fermi =

 p∏
i=1

4∏
j=1

θ1(±ϕi ± µj)
η4

 4∏
j=1

θ1(±µj)
η2

θ1(
τ
2 ± µj)
η2

 . (3.28)

The discrete holonomies add only % independent terms to FO(2p)
0 hence can be omitted.

Similar for the
p+1∏
i=1

η4

θ1(ε1 ± 2ϕi)θ1(ε2 ± 2ϕi)
(3.29)

term where discrete holonomies have no effect. However, we have to be careful on the
crossing terms,∏

1≤i<j≤p+1

θ1(±ϕi ± ϕj)θ1(2ε+ ± ϕi ± ϕj)

θ1(ε1 ± ϕi ± ϕj)θ1(ε2 ± ϕi ± ϕj)

=

 ∏
1≤i<j≤p

θ1(±ϕi ± ϕj)θ1(2ε+ ± ϕi ± ϕj)

θ1(ε1 ± ϕi ± ϕj)θ1(ε2 ± ϕi ± ϕj)

 2p+2∏
j=2p+1

 ∏
1≤i≤p

θ1(±ϕi + ϕj)θ1(2ε+ ± ϕi + ϕj)

θ1(ε1 ± ϕi + ϕj)θ1(ε2 ± ϕi + ϕj)

× · · · ,
(3.30)

where we omitted terms which don’t depend on ϕi with 1 ≤ i ≤ p and ϕ2p+1 and ϕ2p+2

are the two discrete holonomies. In this case ϕ2p+1 = 0 and ϕ2p+2 = τ
2 . One can easily
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generalize this argument to the other five holonomy sectors with rank 2p + 2. Under the

thermodynamic limit, the crossing term is

log

2p+2∑
j=2p+1

∑
1≤i≤p

θ1(±ϕi + ϕj)θ1(2ε+ ± ϕi + ϕj)

θ1(ε1 ± ϕi + ϕj)θ1(ε2 ± ϕi + ϕj)

=

2p+2∑
j=2p+1

∑
1≤i≤p

~2
θ′1(±ϕi + ϕj)

2 − θ1(±ϕi + ϕj)θ
′′
1(±ϕi + ϕj)

θ1(±ϕi + ϕj)2
+O(~4)

=−
∫
dz%(z)

[
∂2z∂

2
z′ γ0(z − z′)

∣∣
z′=−ϕ2p+1

+ ∂2z∂
2
z′ γ0(z − z′)

∣∣
z′=−ϕ2p+2

]
+O(~2),

(3.31)

which is apparently higher order. Therefore the leading contribution to F from this discrete
holonomy sector of rank 2p+ 2 is the same as the one of continuous holonomy of rank 2p.
For the holonomy sector with rank 2p+ 4 we have∏

1≤i<j≤p+1

θ1(±ϕi ± ϕj)θ(2ε+ ± ϕi ± ϕj)

θ1(ε1 ± ϕi ± ϕj)θ(ε2 ± ϕi ± ϕj)

=

 ∏
1≤i<j≤p

θ1(±ϕi ± ϕj)θ(2ε+ ± ϕi ± ϕj)

θ1(ε1 ± ϕi ± ϕj)θ(ε2 ± ϕi ± ϕj)

 2p+4∏
j=2p+1

 ∏
1≤i≤p

θ1(±ϕi + ϕj)θ(2ε+ ± ϕi + ϕj)

θ1(ε1 ± ϕi + ϕj)θ(ε2 ± ϕi + ϕj)

× · · · ,
(3.32)

And again the crossing terms do not contribute to the leading order of F . Therefore six

holonomy sectors with rank 2p + 2 and one holonomy sector with rank 2p + 4 have the

same leading order as the continuous sector with rank 2p. Altogether, we can summarize

the contributions of the O(k2)-node as follows

FO(k2)
0 = −1

2
−
∫
%(z)%(z′)∂2z∂

2
z′γ0(z − z′) +

1

2

∫
dz%(z)∂2zγ0(2z)

−
∫
dz%(z)

4∑
l=1

(∂2zγ0(z + µl) + ∂2zγ0(z − µl)). (3.33)

Defining g(z) = −2%(z) then gives

FO(k2)
0 = −1

8
−
∫
dzdz′g′′(z)g′′(z′)γ0(z − z′)−

1

4

∫
dxg′′(z)γ0(2z)

−
∫
dx%′′(z)

4∑
l=1

(γ0(z + µl) + γ0(z − µl)). (3.34)

Bifundamental part

The bifundamental contribution is,

(Zbif)2 =

k1∏
i=1

p∏
j=1

θ21(ε− ± φi ± ϕj)
θ21(−ε+ ± φi ± ϕj)

. (3.35)

where φi and ϕj denote eigenvalues of Sp(k1) and O(k2) holonomies, respectively. For

discrete O(k2) holonomy sectors, some ϕj can represent either 0 or the half-period points
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on T 2, i.e., 1
2 , 1+τ

2 , τ
2 . For the continuous O(k2) holonomy sector,

log

k1∏
i=1

p∏
j=1

θ21(ε− ± φi ± ϕj)
θ21(−ε+ ± φi ± ϕj)

(3.36)

=2~
k1∑
i=1

p∑
j=1

θ′1(±φi ± ϕj)
θ1(±φi ± ϕj)

− ~2
k1∑
i=1

p∑
j=1

θ′1(±ϕi + ϕj)
2 − θ1(±ϕi + ϕj)θ

′′
1(±ϕi + ϕj)

θ1(±ϕi + ϕj)2
+O(~3).

The leading term vanishes by taking the sum over the ± sectors, since θ1 is odd and its

derivative is even. Using the functions f(z) and g(z′), the bifundamental contribution is

given by

Fbif
0 =

1

4
−
∫
dzdz′f ′′(z)g′′(z′)γ0(z − z′) +

∫
dz%′′(z)

4∑
l=1

(γ0(z + µl) + γ0(z − µl)). (3.37)

We see that the second term on the right hand side is exactly equal to the negative of

the last term of FO(k2)
0 . Thus we conclude that this term cancels in the overall product of

gauge and matter contributions.

3.3 The full partition function

We now gather all results from the previous subsection and combine everything into an

expression for the full partition function

Z = Zpert

1 +
∑

k1,k2≥0
qk11 q

k2
0

∑
d

ZSp(k1)×O(k2),d

 . (3.38)

In the above Zpert is the perturbative contribution to the partition function and we will

henceforth leave it unspecified as it will play no role in further discussions. Using the fact

that ∫
dxx2f ′′(z) = 4

∑
l

µ2l + 8~2k1, (3.39)

and ∫
dxx2g′′(z) = 8~2k2, (3.40)

we have

Z =Zpert
∫

[df ′′(z)][dg′′(z)]e
Ffull
0
~2

(
1 + q20

∑
d

eF
d,(1)

+ q40e
F8,(1)

)
. (3.41)

Note that, as stated before, contributions from discrete holonomy sectors, captured by

Fd,(1) and F8,(1), are of higher order in ~ and can be treated as perturbations to the

leading order contribution F full
0 of continuous holonomies. The leading order contribution

is given by

F full
1 =

2πiτb,1
8

∫
dzz2f ′′(z)− 1

8
−
∫
dzdz′f ′′(z)f ′′(z′)γ0(z − z′) +

1

4

∫
dzf ′′(z)γ0(2z)
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2πiτb,0
8

∫
dzz2g′′(z)− 1

8
−
∫
dzdz′g′′(z)g′′(z′)γ0(z − z′)−

1

4

∫
dzg′′(z)γ0(2z)

+
1

4
−
∫
dzdz′f ′′(z)g′′(z′)γ0(z − z′), (3.42)

where we have defined log(q0) = 2πiτb,0 and log(q1) = 2πiτb,1. Variation with respect to

f ′′(z) and g′′(z) then gives the following saddle point equations:4

δF0

δf ′′(z)
=

2πiτb,1
8

z2 − 1

4

∫
dz′f ′′(z′)γ0(z − z′) +

1

4
γ0(2z)

+
1

4

∫
dz′g′′(z′)γ0(z − z′) = 0,

δF0

δg′′(z)
=

2πiτb,0
8

z2 − 1

4

∫
dz′g′′(z′)γ0(z − z′)−

1

4
γ0(2z)

+
1

4

∫
dyf ′′(z′)γ0(z − z′)

= 0. (3.43)

Multiplying by 4 and taking 2 derivatives with respect to z gives:5

y+0 (z)y−0 (z) = P0y1(z)2 (3.44)

y+1 (z)y−1 (z) = P1y0(z)2, (3.45)

where

P0 = θ1(2z)
−4q0,

y0 = exp
1

2

∫
dz′g′′(z′) log θ1(z − z′),

P1 = θ1(2z)
4q1,

y1 = exp
1

2

∫
dz′f ′′(z′) log θ1(z − z′). (3.46)

Equation (3.44) and (3.45) can then be rewritten as transformations

r0 : y0 7→ P0
y21
y0
,

r1 : y1 7→ P1
y20
y1

(3.47)

upon crossing cuts on the z-plane which due to periodicity properties of the θ1 functions

is actually compactified to a torus Tτf = C/(Z ⊕ τfZ). Equations (3.47) then describe a

two-sheeted covering of this torus with y1 being a coordinate on one sheet with cuts at

I0,µl and I0,−µl for l = 1, 2, 3, 4. On the other hand, y0 is a coordinate on the other sheet

with only one cute, namely I1,0. Then ri for i = 0, 1 can be interpreted as Weyl reflections

4From now on we will denote F full
0 simply as F0.

5y±i are defined by y±i (z) ≡ yi(z ± iε).
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of the affine Â1 quiver on these sheets. To make this clear, we rewrite equations (3.47) as

follows

ri : yi 7→ Piyi
∏
j

y
−Cij
j , (3.48)

where the product over j is the one over all nodes of the quiver and Cij is the Cartan

matrix

Cij =

(
2 −2

−2 2

)
. (3.49)

Equation (3.48) is referred to in [20] as an iWeyl reflection. At this point, we want to

highlight a symmetry enjoyed by equations (3.48). Notice that under the Z2 reflection

z 7→ −z, y1 transforms as follows

y1 7→ exp
1

2

∫
dz′f ′′(z′) log θ1(−z − z′)

= exp

(
−1

2

∫
dz′′f ′′(−z′′) log θ1(−z + z′′)

)
= exp

(
−1

2

∫
dz′′f ′′(z′′)(log θ1(z − z′′) + iπ)

)
= y−11 , (3.50)

where in the last two steps we have used that f ′′(z′′) is an even function and that
∫
dz′′f ′′(z′′)

is an integer multiple of 4. Similarly, we can show that

z 7→ −z −→ y0 7→ y−10 . (3.51)

Furthermore, adding the transformation Pi 7→ Pi−1, we see that the combined reflection

z 7→ −z, Pi 7→ Pi−1, (3.52)

is a symmetry of the saddle point equations (3.48). This observation is very crucial for the

derivation of the spectral curve which we will be dealing with in detail in the next section.

Before proceeding to the derivation of the spectral curve, we will comment on the more

general story of T AD4+n,N
, namely N M5 branes probing a D4+n singularity.

3.4 Thermodynamic limit for general T ADn,N theory

Let us first focus on the immediate generalization of one M5 brane probing a Dn singularity

with n > 4 and then proceed to the general picture.

One brane on Dn (N = 1)

This adds one Sp(n − 4) flavor node in the quiver together with a bifundamental hyper

of Sp(n − 4) × O(k2) and 2 bifundamental Fermi of Sp(n − 4) × Sp(k1). The quiver is

depicted in figure 4. Therefore, the total matter contribution to the pure Sp(k1) part of

the partition function is given by

k1∏
i=1

n∏
j=1

η4

θ1(ε+ ± φi ± ai)

k1∏
i=1

n−4∏
j=1

θ1(±φi ± bj)
η4

. (3.53)
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SO(2n)

Sp(k1) O(k2)

symanti

Sp(n− 4)

Figure 4: Quiver for one instanton on Dn.

The total matter contribution to the pure O(k2) part of the partition function is

k2∏
i=1

n∏
j=1

θ1(±%i ± aj)
η4

k2∏
i=1

n−4∏
j=1

η4

θ1(ε+ ± %i ± bj)
. (3.54)

We use a’s and b’s to denote fugacities of SO(2n) and Sp(n− 4) flavor symmetry respec-

tively. Therefore the free energy at thermodynamic limit of pure Sp(k1) part is

FSp(k1)0 ∼− 1

2
−
∫
dzdz′ρ(z)ρ(z′)∂2z∂

2
z′γ0(z − z′)−

1

2

∫
dzρ(z)∂2zγ0(2z)

+

∫
dzρ(z)

n∑
f=1

(
∂2zγ0(z + af ) + ∂2zγ0(z − af )

)
−
∫
dzρ(z)

n−4∑
f=1

(
∂2zγ0(z + bf ) + ∂2zγ0(z − bf )

)
.

(3.55)

and the pure O(k2) part is

FO(k2)
0 = −1

2
−
∫
%(z)%(z′)∂2z∂

2
z′γ0(z − z′) +

1

2

∫
dz%(z)∂2zγ0(2z)

−
∫
dz%(z)

n∑
f=1

(∂2zγ0(z + af ) + ∂2zγ0(z − af )) (3.56)

+

∫
dz%(z)

n−4∑
f=1

(∂2zγ0(z + bf ) + ∂2zγ0(z − bf )). (3.57)
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Figure 5: Quiver for N branes on Dn.

The bifundamental part remains the same. Defining

f(z) =− 2ρ(z) +
n∑
f=1

(|z − af |+ |z + af |),

g(z) =− 2%(z) +
n−4∑
f=1

(|z − bf |+ |z + bf |),
(3.58)

the total free energy in thermodynamic limit is,

F0 =
2πiτb,1

8

∫
dzz2f ′′(z)− 1

8
−
∫
dzdz′f ′′(z)f ′′(z′)γ0(z − z′) +

1

4

∫
dzf ′′(z)γ0(2z)

2πiτb,0
8

∫
dzz2g′′(z)− 1

8
−
∫
dzdz′g′′(z)g′′(z′)γ0(z − z′)−

1

4

∫
dzg′′(z)γ0(2z)

+
1

4
−
∫
dzdz′f ′′(z)g′′(z′)γ0(z − z′). (3.59)

The saddle-point equations remain the same as in (3.48) with the only difference that the

yi functions are defined with the new f(z) and g(z) functions given in (3.58). In particular,

the saddle-point equations will still enjoy the Z2 symmetry (3.52).

N branes on Dn

We will have 2N gauge nodes alternating between Sp groups and O groups. The quiver

diagram for N = 4 is depicted in figure 5. We use k1, · · · , kN and p1, · · · , pN to denote the

winding modes. The total free energy is
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F0 =
N∑
i=1

{
2πiτb,1

8

∫
dzz2f ′′i (z)− 1

8
−
∫
dzdz′f ′′i (z)f ′′i (z′)γ0(z − z′) +

1

4

∫
dzf ′′i (z)γ0(2z)

2πiτb,0
8

∫
dzz2g′′i (z)− 1

8
−
∫
dzdz′g′′i (z)g′′i (z′)γ0(z − z′)−

1

4

∫
dzg′′i (z)γ0(2z)

+
1

8
−
∫
dzdz′f ′′i (z)g′′i (z′)γ0(z − z′) +

1

8
−
∫
dzdz′g′′i (z)f ′′i+1(z

′)γ0(z − z′)
}
,

(3.60)

where N + 1 is identified with 1. fi’s and gi’s are

fi(z) =− 2ρi(z) +

n∑
f=1

(|z − ai,f |+ |z + ai,f |),

gi(z) =− 2%i(z) +
n−4∑
f=1

(|z − bi,f |+ |z + bi,f |).
(3.61)

The saddle-point equations are the same as (3.48) with Cij now replaced with a general

affine Â2N−1 Cartan matrix. Notice that the Z2 reflection (3.52) is a symmetry of the

equations.

4 Spectral curves from saddle-point equations

Let us construct the Seiberg-Witten curves of little string theories T AD4,N
and T BD4,N

en-

gineered from M5/D5 branes probing an affine D4 singularity. In the case of T BD4,N
, the

curve corresponds to the zero locus of the determinant of an SO(8)-bundle over T̂f as was

derived in [18]. Here, we want to see what the corresponding section for T AD4,N
looks like

and subsequently compare the two spectral curves obtained.

To begin with, we note that we need to construct a section which is invariant under

the reflections (3.48). To this end, we define variables

ti(z) = ťi
yi(z)

yi−1(z)
, i = 1, . . . , 2N, (4.1)

where we impose the periodicity condition y2N = y0 defining yi for all i ∈ Z. Thus

t(z) = (t1(z), t2(z), . . . , t2N (z)) (4.2)

represents an element of the maximal torus of SL(2N,C), i.e.

2N∏
i=1

ti(z) = 1. (4.3)

The ťi are defined by

ťi = (Pi . . .P2N−1)−1(P1P2
2 . . .P2N−1

2N−1 )
1

2N , i = 1, . . . , 2N. (4.4)
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Then it is easy to check that the following zero-set of the determinant of an SL(2N,C)

bundle over Tb

sAN (w, {wl}; τb) =

2N∏
i=1

θ1(w − wl(z); τb)
θ1(w; τb)

= 0, t = e2πiw, ti = e2πiwi(z), (4.5)

is in fact invariant under the reflections (3.48) derived from the saddle-point equations.

To derive this, one has to use periodicity properties of the θ1-function as reviewed in the

appendix. Note that in a strict sense (4.5) is the restriction of another section of a degree

zero line bundle on Tb × T̂f where z is a coordinate on T̂f . The Z2 symmetry given in

(3.52) acts then as follows

ti(z) 7→ 1/ti(z), (4.6)

which combined with (4.5) immediately tells us that this symmetry lifts to Tb × T̂f :

Z2 : z 7→ −z, w 7→ −w, (4.7)

which in turn tells us that the spectral curve (4.5) lives in the K3 surface (Tb × T̂f )/Z2.

More intuitively, we can think of this K3 surface as an elliptic fibration over P1 = T̂f/Z2

with fibers given by Tb everywhere except over the 4 fixed-points under the Z2 in the base

where they degenerate according to a type I∗0 Kodaira singularity. The spectral curve can

then be viewed as a 2N -fold cover of the P1-base with restriction to the fiber given by (4.5).

Let us now turn to the spectral curve for T BD4,N
. Adopting the notation θn(x ± y) ≡

θn(x+ y)θn(x− y) for simplicity, the SO(8)-section found in [18] can be written as

sB(w, {wl}; τf ) =

4∏
l=1

θ1(w ± wl(z); τf )

θ1(w; τf )2
= 0, (4.8)

where in this case w is now a coordinate on T̂f and z a coordinate on Tb. As there is no Z2

symemtry here, the spectral curve is a hypersurface inside T̂f × Tb. The Seiberg-Witten

differential of both curves sA = 0 and sB = 0 takes the form

λSW = z
dX(w)

Y (w)
, (4.9)

where X and Y are Weierstrass coordinates whose precise definitions are given in Appendix

A. Next, we want to expand the sections sA and sB in terms of Weierstrass coordinates

X(w; τ) and Y (w; τ). The following identity [32] can be utilized to manipulate the SL(N+

1) determinant line bundles, for which
∑N+1

i=1 wi = 0 holds.

N+1∏
i=1

η(τ)3 θ1(w − wl; τ)

θ1(wl; τ)θ1(w; τ)
=

(−1)N

2N−1N !

det


1 ℘(w; τ) ℘′(w; τ) · · · ℘(N−1)(w; τ)

1 ℘(w1; τ) ℘′(w1; τ) · · · ℘(N−1)(w1; τ)
...

...
...

...

1 ℘(wN ; τ) ℘′(wN ; τ) · · · ℘(N−1)(wN ; τ)


det

1 ℘(w1; τ) ℘′(w1; τ) · · · ℘(N−2)(w1; τ)
...

...
...

...

1 ℘(wN ; τ) ℘′(wN ; τ) · · · ℘(N−2)(wN ; τ)


.

(4.10)
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SL(2) Once we apply (4.10) to sA1 (w, {wi}; τb) with w1 + w2 = 0, it is found that

sA1 (w, {w1}; τb) =
θ1(w1; τb)

2 ℘(w1; τb)

η(τb)6
· 1− θ1(w1; τb)

2

4η(τb)6
·X(w; τb) (4.11)

We want to express coefficients of the Weierstrass monomials using two Â1 fundamental

characters. Both of them are at level-1, being associated to the irreducible representations

whose highest weights are g[0] = [0, 0] and g[1] = [+1
2 ,−1

2 ]:

Θ
[0]
A1

(w1; τb) = θ3(2w1; 2τb), Θ
[1]
A1

(w1; τb) = θ2(2w1; 2τb). (4.12)

Note that both Θ
[0]
Aa

as well as Θ
[1]
A1

are invariant under any combinations of Weyl reflections

(3.48). Thus they must be invariant under the operation of crossing cuts in the z-plane

and hence must be sections of degree zero line bundles on Tb. We will make strong use

of this observation in section 4.1 to derive their concrete z-dependence. For now, let us

proceed by noting the following identities

θ1(w; τb)
2 = θ2(0; 2τb)θ3(2w; 2τb)− θ3(0; 2τb)θ2(2w; 2τb) (4.13)

θ4(w; τb)
2 = θ3(0; 2τb)θ3(2w; 2τb)− θ2(0; 2τb)θ2(2w; 2τb),

which applied to the coefficients in (4.11) allows us to write them as follows: (with θn ≡
θn(0; τb) being understood)

θ1(w1; τb)
2

η(τb)6
=
θ2(0; 2τb)

η(τb)6
·Θ[0]

A1
(w1; τb)−

θ3(0; 2τb)

η(τb)6
·Θ[1]

A1
(w1; τb), (4.14)

θ1(w1; τb)
2 ℘(w1; τb)

η(τb)6
=

3θ22θ
2
3θ3(0; 2τb)− θ2(0; 2τb)

(
θ42 + θ43

)
12 η(τb)6

·Θ[0]
A1

(w1; τb)

− 3θ22θ
2
3θ2(0; 2τb)− θ3(0; 2τb)

(
θ42 + θ43

)
12 η(τb)6

·Θ[1]
A1

(w1; τb). (4.15)

SL(4) Similarly, the SL(4) section sA2 (w, {wi}; τb) with
∑4

i=1w4 = 0 is decomposed into

sA3(w, {wl}; τb) = a0({wl}; τb) + a1({wl}; τb) ·X(w; τb) (4.16)

+ a2({wl}; τb) · Y (w; τb) + a3({wl}; τb) ·
(
X(w; τb)

2 − 1
18E4(τb)

)
where the coefficients are given by (with θn ≡ θn(0; τb) being understood)

a3({wl}; τb) =
1

16

4∏
l=1

θ1(wl; τb)

η(τb)3
, a2({wl}; τb) = −1

4

3∏
l<m

θ1(wl + wm; τb)

η(τb)3
(4.17)

a1({wl}; τb) =− θ2(0; τb)
4

8

∏4
i=1 θ3(wi; τb) +

∏4
i=1 θ4(wi; τb)

η(τb)12
(4.18)

− θ3(0; τb)
4 + θ4(0; τb)

4

24

∏4
i=1 θ1(wi; τb)− 3

∏4
i=1 θ2(wi; τb)

η(τb)12

a0({wl}; τb) =− 4θ82 − 3θ83 + 3θ84
288

∏4
i=1 θ3(wi; τb)

η(τb)12
+

4θ82 + 3θ83 − 3θ84
288

∏4
i=1 θ4(wi; τb)

η(τb)12
(4.19)

− 2θ82 + θ83 + θ84
288

∏4
i=1 θ1(wi; τb)

η(τb)12
− 2θ82 − 3θ83 − 3θ84

288

∏4
i=1 θ2(wi; τb)

η(τb)12
.
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SO(8) We notice that the section sB(w, {wl}; τf ) of the SO(8) determinant line bundle

can be regarded as the product of four SL(2) sections, i.e.,

sD4(w, {w1,2,3,4}; τf ) =
4∏
l=1

sA1 (w, {wl}; τf ) =
4∑

n=0

an({wl}; τf ) ·X(w; τf )n (4.20)

where the coefficients are given by

a0({wl}; τf ) =
4∏
l=1

θ1(wl; τf )2℘(wl; τf )

η(τf )6
, a2({wl}; τf ) =

4∏
l=1

θ1(wl; τf )2

16η(τf )6
·
∑
i 6=j

℘(wi; τf )℘(wj ; τf ),

a1({wl}; τf ) = −
4∏
l=1

θ1(wl; τ)2

4η(τf )6
·
∑

i 6=j 6=k 6=i
℘(wi; τf )℘(wj ; τf )℘(wk; τf ) (4.21)

a3({wl}; τf ) = −
4∏
l=1

θ1(wl; τf )2

64η(τf )6
·
∑
i

℘(wi; τf ), a4({wl}; τf ) =
4∏
l=1

θ1(wl; τ)2

256η(τf )6
.

We want to express these coefficients (4.21) using five SO(8) fundamental characters. Four

of them are level-1, associated to the irreducible representations whose highest weights are

g[0] = [0, 0, 0, 0], g[1] = [1, 0, 0, 0], g[3] = [12 ,
1
2 ,

1
2 ,

1
2 ], g[4] = [12 ,

1
2 ,

1
2 ,−1

2 ] (4.22)

in the orthogonal basis. One can explicitly write them as follows:

Θ
[0]
D4

({wl}; τf ) =

∏4
i=1 θ3(wi; τf ) +

∏4
i=1 θ4(wi; τf )

2
, (4.23)

Θ
[1]
D4

({wl}; τf ) =

∏4
i=1 θ3(wi; τf )−∏4

i=1 θ4(wi; τf )

2
,

Θ
[3]
D4

({wl}; τf ) =

∏4
i=1 θ2(wi; τf ) +

∏4
i=1 θ1(wi; τf )

2

Θ
[4]
D4

({wl}; τf ) =

∏4
i=1 θ2(wi; τf )−∏4

i=1 θ1(wi; τf )

2
.

The level-2 fundamental character is for the irreducible representation whose highest weight

is g[2] = [1, 1, 0, 0]. Some SO(8) level-2 characters can be constructed from the SU(8) level-

1 theta function based on the SO(8) ⊂ SU(8) embedding, i.e., (qf ≡ e2πiτf , ti ≡ e2πiwi)

Ξi({wl}; τf ) ≡∑|m|=i
n,m∈Z4

(
q
n·(n−m)+ 1

2
m2

f ·∏4
i=1 t

2ni−mi
i

)
. (4.24)

For example, squares of the SO(8) level-1 fundamental characters are related to them as

(Θ
[0]
D4

({wl}; τf ) + Θ
[1]
D4

({wl}; τf ))2 = Ξ0 + 2
∑8

i=1 Ξi (4.25)

(Θ
[0]
D4

({wl}; τf )−Θ
[1]
D4

({wl}; τf ))2 = Ξ0 + 2
∑8

i=1(−1)i Ξi

(Θ
[3]
D4

({wl}; τf ) + Θ
[4]
D4

({wl}; τf ))2 = q−1Ξ−4 + 2
∑8

i=1 q
i−2
2 Ξi−4

(Θ
[3]
D4

({wl}; τf )−Θ
[4]
D4

({wl}; τf ))2 = q−1Ξ−4 + 2
∑8

i=1(−1)iq
i−2
2 Ξi−4.
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Expressing the coefficients (4.21) using the level-1 fundamental characters and a3({wl}; τf ),

we get

a4({wl}; τf ) = 1
256 η(τf )−24

(
Θ

[3]
D4

({wl}; τf )−Θ
[4]
D4

({wl}; τf )
)2

(4.26)

a2({wl}; τf ) = +
θ82 ·

(
Θ

[0]
D4

({wl}; τf )−Θ
[1]
D4

({wl}; τf )
)2

256η(τf )24
−
θ42θ

4
4 ·Θ

[0]
D4

({wl}; τf )Θ
[1]
D4

({wl}; τf )

64η(τf )24

−
(2θ43θ

4
4 − θ82) ·

(
Θ

[3]
D4

({wl}; τf )−Θ
[4]
D4

({wl}; τf )
)2

768η(τf )24

+
θ43θ

4
4 ·Θ

[3]
D4

({wl}; τf )Θ
[4]
D4

({wl}; τf )

64η(τf )24

a1({wl}; τf ) =− E4(τf )a3({wl}; τf )

3
+
θ42θ

4
3

(
θ42 + θ43

)
Θ

[0]
D4

({wl}; τf )Θ
[1]
D4

({wl}; τf )

192η(τf )24

+
θ43θ

4
4

(
θ43 + θ44

)
Θ

[3]
D4

({wl}; τf )Θ
[4]
D4

({wl}; τf )

192η(τf )24

+

(
θ43 + θ44

)3 (
Θ

[3]
D4

({wl}; τf )−Θ
[4]
D4

({wl}; τf )
)2

3456η(τf )24

−
θ82
(
θ43 + θ44

) (
Θ

[0]
D4

({wl}; τf )−Θ
[1]
D4

({wl}; τf )
)2

384η(τf )24

a0({wl}; τf ) =− 2E6(τf )a3({wl}; τf )

27
−
θ43θ

4
4

(
θ42 + θ43

) (
θ42 − θ44

)
(Θ

[3]
D4

({wl}; τf ) + Θ
[4]
D4

({wl}; τf ))2

2304η(τf )24

+
θ22θ

4
4Θ

[0]
D4

({wl}; τf )Θ
[1]
D4

({wl}; τf )
(
θ42 + θ43

) (
θ43 + θ44

)
576η(τf )24

+

(
θ83 − θ84

)2
(Θ

[0]
D4

({wl}; τf )−Θ
[1]
D4

({wl}; τf ))2

2304η(τf )24
.

We remark that the coefficient a3({wl}; τf ) arises in front of the combination X(w; τf )3 −
1
3E4(τf )X(w; τf )− 2

27E6(τf ), which becomes 1
4Y (w; τf )2 by the Weierstrass equation (A.7).

The coefficient a3({wl}; τf ) itself can also be expressed as

a3({wl}; τf ) = +
θ23θ

2
4

16η(τf )24
· (Ξ2({wl}; τf ) + Ξ6({wl}; τf ))

− θ24(θ23 − θ24)

256η(τf )24
· (Θ[0]

D4
({wl}; τf ) + Θ

[1]
D4

({wl}; τf ))2

+
θ23(θ23 − θ24)

256η(τf )24
· (Θ[0]

D4
({wl}; τf )−Θ

[1]
D4

({wl}; τf ))2

− θ23θ
2
4

256η(τf )24
· (Θ[3]

D4
({wl}; τf ) + Θ

[4]
D4

({wl}; τf ))2

+
θ43 − 3θ23θ

2
4 + θ44

768η(τf )24
· (Θ[3]

D4
({wl}; τf )−Θ

[4]
D4

({wl}; τf ))2. (4.27)
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This contains the level-2 characters Ξ2({wl}; τf ) and Ξ6({wl}; τf ) = q2b ·Ξ2({wl}; τf ) which

are independent from the ones appearing in (4.25).

4.1 Fiber-base duality

Let us construct the Seiberg-Witten curves for 6d N = (1, 0) little string theories T AD4,N
and

T BD4,N
. We begin by focusing on the case N = 1. We have already obtained the equations

for these curves as restrictions to Tτb (4.11) and to T̂τf (4.20). As we have seen, these

equations admit expansions in terms of Â1-characters in the one case and D̂4 characters

in the other. These characters are invariant under the Weyl reflections (3.48) and are thus

sections of line bundles on the orthogonal elliptic curve in each case. In this Section, we

want to find out which sections they correspond to and this way lift the expressions for

the spectral curves to the four-torus Tτb × T̂τf . Our starting point is the spectral curve

equation for affine Â1 base. By using equations (4.13)–(4.15), we rewrite (4.11) as follows

0 =
θ3(0; τb)

2θ2(0; τb)
2

4η(τb)6
· θ4(w1; τb)

2 −
(
θ3(0; τb)

4 + θ2(0; τb)
4

12
+
X(w; τb)

4

)
· θ1(w1; τb)

2

η(τb)6
.

(4.28)

We see that θ4(w1(z); τb)
2 and θ1(w1(z); τ)b)2 are both linear combinations of Â1 characters

and are thus invariant under crossing branch cuts on the z-plane. We thus have to replace

them with sections of powers of the canonical bundle K of T̂τf . Here we will simply state

the replacement rule and give a derivation in Section 4.2 where we will be proving that

the choices we make here are in fact the unique ones giving the correct SCFT limit of the

LST. We replace the combinations of SU(2) characters by the following Sp(0) and SO(8)

fiber sections:

θ1(w1; τb)
2

η(τb)6
→ c0

η(τf )18θ1(2z; τf )2

θ1(z; τf )8
=
c0
64
· Y (z; τf )2 (4.29)

θ4(w1; τb)
2 → c1

4∏
l=1

θ1(z + zl; τf )θ1(z − zl; τf )

θ1(z; τf )2
= c1

4∑
n=0

an(z; τf ) ·X(z; τf )n

At this point we observe that this choice is consistent with the Z2-symmetry of (3.52).

In fact, Y (z; τf ) is an odd function under z 7→ −z as it should be because under the Z2

reflection we have

θ1(w1; τb) 7→ −θ1(w1; τb). (4.30)

Moreover, θ4(w1; τb) is an even function which is again consistent with (4.29). We can

now proceed to use the Weierstrass equation Y (z; τf )2 = 4X(z; τf )3 − 4
3E4(τf )X(z; τf ) −

8
27E6(τf ), to express the Seiberg-Witten curve (4.28) as a polynomial in X(w; τb) and

X(z; τf ), i.e.

0 =
(
c1
4 f0(τb)a3(z; τf )− c0

64

(
f̃0(τb) + 1

4X(w; τb)
)
η(τf )−12

)
Y (z; τf )2

+ c1f0(τb) ·
(
a4(z; τf )X(z; τf )4 + a2(x; τf )X(z; τf )2 + ã1(z; τf )X(z; τf ) + ã0(z; τf )

)
,

(4.31)
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where

f0(τb) = 1
4θ3(0; τb)

2θ2(0; τb)
2η(τb)

−6, f̃0(τb) = 1
12

(
θ3(0; τb)

4 + θ2(0; τb)
4
)

(4.32)

ã1(z; τf ) = a1(z; τf ) + 1
3E4(τf )a3(z; τf ), ã0(z; τf ) = a0(z; τf ) + 2

27E6(τf )a3(z; τf ) (4.33)

On the other hand, if we start from the curve equation for affine D̂4 base of T BD4,1
and apply

the following master equations derived in [18, 20], which replace the level-2 characters by

the SU(1) and SU(2) fiber sections:

(Θ
[0]
D4

(w; τf ) + Θ
[1]
D4

(w; τf ))2 → b0, (Θ
[0]
D4

(w; τf )−Θ
[1]
D4

(w; τf ))2 → b1, (4.34)

(Θ
[4]
D4

(w; τf )−Θ
[3]
D4

(w; τf ))2

η(τf )24
→ b3,

(Θ
[4]
D4

(w; τf ) + Θ
[3]
D4

(w; τf ))2

η(τf )24
→ b4, (4.35)

as well as

Ξ2(w; τf ) + Ξ6(w; τf )

η(τf )24
→ b2

(
f0(τb) θ4(z1; τb)

2 −
(
f̃0(τb) +

X(z; τb)

4

)
· θ1(z1; τb)

2

η(τb)6

)
,

(4.36)

the curve equation can also be expressed as a polynomial in X(t; τb) and X(z; τf ), i.e.

0 = b3
256 X(w; τf )4 +

∑3
i=0 gi(b0, b1, b3, b4; τf )X(w; τf )i + b2

16θ3(0; τf )4θ4(0; τf )2Y (w; τf )2

×
(
f0(τf )θ4(z1; τb)

2 − (f̃0(τb) + 1
4X(z; τb))η(τb)

−6θ1(z1; τb)
2
)
. (4.37)

We notice that it is in the same functional form with (4.31). The crucial miracle which

made this possible is that the level-2 characters of D̂4 only appear in the a3({wl}; τf )

coefficient in the expansion of sB and that coefficient is only multiplying 1
4Y (w; τf )2!

4.2 SCFT limit

Let us take the 6d SCFT reduction, i.e., R6/`s → ∞, which decompactifies the toroidal

base Tτb into a cylindrical one by sending τb → i∞, or equivalently, qb ≡ q0q1 → 0. There

are two options for decompactification. The first option is to take q0 → 0, sending the

2d O(2k) gauge coupling to zero. The resulting SCFT is the 6d SO(8)-theory with zero

hypermultiplets as studied in [10]. In this limit, the profile functions (3.16) get reduced to

g(z) = 0, such that t1 ≡ e2πiw1(z;τf ) can be identified as

t1 =
1√

P1(z; τf )

y1(z; τf )

y0(z; τf )
−→ 1√

q1θ1(2z; τf )2
y1(z; τf ). (4.38)

Then the curve equation (4.28) becomes (with t ≡ e2πiw)

0 =
√
q1θ(2z; τf )2t2 − χ1(z; τf ) t+

√
q1θ1(2z; τf )2 with χ1 ≡ y1 +

q1θ1(2z; τf )4

y1
(4.39)

where for consistency reasons χ1(z; τf ) has to be a section of a degree 8 line bundle over

T̂τf 6. Another 6d SCFT can be reached by taking the limit q1 → 0, i.e., R6/`s →∞ after

6Basically, the reason is that as explained in the Appendix θ(2z; τ)2 is a degree 8 section and therefore

χ1 must also be.

– 26 –



w → w′ = − τb
2 −w and w1 → w′1 = − τb

2 −w1. This induces 6d rank-1 E-string theory with

E8 → SO(8) holonomy, also known as D4 conformal matter theory [26]. Now the profile

function (3.27) becomes f(z) = 2
∑4

i=1(|z − µl|+ |z + µl|) such that

t′1 =

√
P1(z; τf )
√
q0q1

y0(z; τf )

y1(z; τf )
−→ θ1(2z; τf )2

√
q0
∏4
l=1 θ1(z ± µl)

y0(z; τf ). (4.40)

In this case the curve equation (4.28) becomes (with t ≡ e2πiw)

0 =
√
q0

4∏
l=1

θ1(z ± µl) t2 − θ1(2z; τf )2 · χ0(z; τf ) t+
√
q0

4∏
l=1

θ1(z ± µl) (4.41)

where χ0(z; τf ) is a section of a degree 0 line bundle, defined by

χ0 ≡ y0 +
q0
∏4
l=1 θ1(z ± µl)2
θ1(2z; τf )4

1

y0
. (4.42)

Now we want to derive the LST curve (4.31), or equivalently, (4.28) after imposing the

replacement rule (4.29) by unfreezing an “Sp(0)”/SO(8) node from (4.39)/(4.41) respec-

tively. We observe that under qb → 0 we have the following limiting behaviors

θ3(0; τb)
2θ2(0; τb)

2

4η(τb)6
−→ 1 , (4.43)

θ3(0; τb)
4 + θ2(0; τb)

4

12
+
X(w; τb)

4
−→ − t

(t− 1)2
. (4.44)

Together with the replacement rules (4.29) the limiting behavior of equation (4.28) is then

0 = c1

∏4
l=1 θ1(z ± µl; τf )

θ1(z; τf )8
(t− 1)2 + c0

η(τf )18θ1(2z; τf )2

θ1(z; τf )8
t (4.45)

Here we have used the fact that the variables zl are functions of coupling constants, fugac-

ities and other scales in the theory such that under qb,1 → 0 we have

zl(τb,1, τf , {µl}) −→ µl. (4.46)

We see that (4.45) can be immediately put into the form (4.41) with the identification

χ0(z; τf ) =
2
√
q0
∏4
l=1 θ1(z ± µl; τf )

θ1(2z; τf )2
− c0
c1

√
q0 η(τf )18. (4.47)

Another limit we can take is obtained by first shifting w → w′ = − τb
2 −w and w1 → w′1 =

− τb
2 − w1. Under this shift, the role of θ1 and θ4 gets exchanged by the identities

θ4(−
τb
2
− w1; τb) = q

−1/8
b eiw1πθ1(w1; τb),

θ1(−
τb
2
− w1; τb) = q

−1/8
b eiw1πθ4(w1; τb). (4.48)
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Thus using the replacement rules(4.29), the limiting behavior of the spectral curve under

qb → 0 becomes

0 = c1

∏4
l=1 θ1(z ± zl; τf )

θ1(z; τf )8
t′ + c0

η(τf )18θ1(2z; τf )2

θ1(z; τf )8
(t′ − 1)2, t′ = q

−1/2
b /tb. (4.49)

Note that here zl does not get replaced with µl as we are keeping τb,1 finite in the limit.

Again, one can easily see that equation (4.49) can be recast into the form (4.39) with the

identification

χ1 = 2
√
q1 θ1(2z; τf )2 − c1

c0

√
q1
∏4
l=1 θ(z ± zl; τf )

η(τf )18
. (4.50)

Performing these steps, we have learned two things. Firstly, the replacement rules (4.29)

are the unique choices compatible with the SCFT curves (4.39) and (4.41), in particular

they reproduce the corresponding matter polynomials in a correct way. Secondly, we have

derived expressions for the SCFT characters given by equations (4.47) and (4.50). Armed

with these expressions, we can next proceed to take the 5d and 4d limits.

4.2.1 5d/4d SCFTs

The 6d LST T AD4,1
can be reduced to the 5d SCFT in the decompactification limit qf → 0,

accompanied by SO(8) holonomy (z1, z2, z3, z4) = (z1, z2,
τf
2 −z3,

τf
2 −z4) that breaks SO(8)

to SO(4)2. The elliptic curve Tτf will be degenerated to the cylinder C×τf . The resulting

5d SCFT will be effectively described by 5d SO(4)× “Sp(0)” circular quiver gauge theory,

whose curve equation is obtained from (4.31) as follows:

0 =
θ3(0; τb)

2θ2(0; τb)
2

4η(τb)6
·

2∏
i=1

sn (z ± zl)−
(
θ3(0; τb)

4 + θ2(0; τb)
4

12
+
X(w; τb)

4

)
· sn (2z)2

(4.51)

where sn(x) ≡ 2 sin (πx). In the dual description T BD4,1
, the same decompactification limit

corresponds to freezing two “SU(1)” nodes, yielding the linear “SU(1)”×SU(2)×“SU(1)”

quiver gauge theory with two hypermultiplets attached to the middle “SU(2)” node [33].

Extra decompactification of the X1 circle removes periodicity z ∼ z + 1 from a fiber

coordinate z, turning the cylinder C×τf to the complex plane Cτf . Such a limit will reduce

(4.51) to a polynomial equation in fiber coordinates, corresponding to the 4d spectral curve.

To reach the conformal gauge theory whose β function vanishes to zero, it is also required

to introduce the SO(4) holonomy (z1, z2) = (z1,
1
2−z2) before decompactification, breaking

SO(4)→ SO(2)2. The resulting 4d SCFT will have SO(2)×“Sp(0)” gauge symmetry and

the following curve equation:

0 =
θ3(0; τb)

2θ2(0; τb)
2

4η(τb)6
· (z2 − z21)−

(
θ3(0; τb)

4 + θ2(0; τb)
4

12
+
X(w; τb)

4

)
· 4z2. (4.52)

This is consistent with the analysis of [34]; especially the polynomial degree in z matches.

Here we also apply the same 5d/4d reductions directly to 6d SCFT curves. Firstly, 6d

D4 conformal matter becomes 5d N = 1 free QFT of four 1
2 -hypermultiplets with SO(4)
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flavor symmetry. Its curve equation can be derived from (4.45) as follows:

0 = c1
∏2
i=1 sn (z ± µl) · (t− 1)2 + c0 sn (2z)2 · t (4.53)

The 4d reduction gives the free QFT of two 1
2 -hypers with SO(2) flavor group, for which

0 = c1 (z2 − µ21) · (t− 1)2 + c0 (2z)2 · t. (4.54)

Secondly, 6d SO(8) SCFT reduces to 5d N = 1 SO(4) super Yang-Mills, whose curve is

0 = c0 sn (2z)2 · (t− 1)2 + c1
∏2
i=1 sn (z ± zl) · t. (4.55)

Further reduction will yield 4d N = 2 SO(2) ' U(1) gauge theory, for which

0 = c0 (2z)2 · (t− 1)2 + c1 (z2 − z21) · t. (4.56)

Notice that the 4d curve equations (4.54) and (4.56) are all in agreement with [34].

4.3 Some comments on N = 2

Let us give some comments on the case of 2 M5 branes probing the D4 singularity cor-

responding to the theory T AD4,2
. The restriction of its spectral curve to Tτb is now the

determinant section of an SL(4) bundle given in equation (4.16). The SW-curve of the

dual theory is obtained by first writing down the section sD4 and then subsequently replac-

ing the level-2 D4 characters by SL(4) sections. Looking at (4.16), we see that the highest

power of X(w; τb) is quadratic and multiplies the iWeyl-invariant coefficient a3({wl}; τb).
Thus in order for fiber-base duality to work, we have to introduce the replacement rule

a3({wl}; τb) −→ c3Y (z; τf )2, (4.57)

to reproduce the structure appearing in (4.8). Moreover, we see that a0({wl}, τb) has to be

replaced by the determinant of an SO(8) bundle, i.e.

a0({wl}; τb) −→ c0

∏4
l=1 θ1(z ± zl; τf )

θ1(z; τf )8
. (4.58)

The replacement rule for a1({wl}; τb) is expected to be a linear combination of the above

two sections, i.e.

a1({wl}; τb) −→ c1

∏4
l=1 θ1(z ± zl; τf )

θ1(z; τf )8
+ c̃1Y (z; τf )2. (4.59)

Regarding a2({wl}; τb), the situation is more complicated. Naively, one might think that

one should replace it with Y (z; τf )2 in order to reproduce the structure of the dual curve.

However, this is not allowed due to the Z2 symmetry enjoyed by the theory T A. The

reason is that Y (w; τb) is an odd function under w 7→ −w, which means that a2 should be

replaced by an odd function under z 7→ −z. Therefore, Y (z; τf )2 is ruled out by this.

If that is the case, how can then the two curves match? One answer is that they will

not unless one sets certain parameters in both equations to zero. In the T A curve equation
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we would set a2({wl}; τb) = 0 and in the T B curve equation we would need to set to zero

the analogous term appearing after applying the replacement rules. The interpretation of

this in the F-theory geometric engineering picture, is that one has to blow-down −1-curves

in the base of one theory and half of the −2-curves in the central fiber of the other theory.

In fact, blowing down −1-curves in the base leads to a chain of −2-curves which can then

be matched with the central fiber −2-curves of the other theory. A further analysis of these

issues is beyond the scope of this work and we leave it for future investigations.

5 Discussion

In this paper we mainly studied the Seiberg-Witten curves for 6d little string theories,

engineered from M5-branes probing Dn singularities. This brane configuration admits a

dual description in terms of D5-branes probing Dn singularities, whose effective description

is given by a 6d affine D̂n quiver gauge theory with U(2N)×U(N)4 gauge symmetry. The

curve we found is identical to the one obtained from the dual description. The curve is

also reducible to the spectral curves of 6d/5d/4d SCFTs, reproducing some known results

given in [34].

There are two interesting directions to extend the current work. One direction is to

apply the same approximation techniques used in this paper and [18, 20] to various 6d

N = (1, 0) LSTs and SCFTs. One particular pair of (1, 0) LSTs are E8 × E8 and SO(32)

heterotic little string theories, for which we naturally expect the Sp(N) determinant line

bundle to be supported on the base and fiber curve, respectively. Working out the heterotic

LST curves will require an interesting extension of our analysis to non-simply-laced vector

bundles. It will be also interesting to study the spectral curves of 6d SCFTs supported on

O(−3) curves, such as the SU(3) SCFT, the G2 SCFT with nf = 1, and the SO(7) SCFT

with ns = 2, whose 2d GLSMs producing the correct elliptic genera of instanton strings

are obtained in [13, 15] but did not originate from brane configurations. Likewise, non-

Higgsable SCFTs on clusters of 2-cycles, i.e., (−3)(−2)(−2) curves, (−2)(−3)(−2) curves,

and (−3)(−2) curves, can be studied from their 2d GLSMs [15] and are expected to give

an interesting curve equation.

Another extension of the current work is to study the quantum curve which arises

in the refined topological string partition function for the elliptic Calabi-Yau manifolds.

In the NS-limit the curve is expected to capture information about BPS magnetic strings

[35, 36]. More generally, the q-deformed and qq-deformed Seiberg-Witten curves of 6d Dn

LSTs and corresponding SCFTs, are obtained from their codimension-4 half-BPS defect

partition functions [37, 38]. As established in [39–41] for the case of (2, 0) SCFTs, the Y
variables will be defined as a particular collection of residues in the GLSM contour integral,

constituting the entire defect partition function X that corresponds to the Ω-deformation

of an iWeyl character.
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A Notation

This section collects definitions of elliptic and Jacobi elliptic functions used throughout the

paper. First, the Jacobi theta function θi(x; τ) is a section of a degree 1 line bundle over

an elliptic curve Tτ , having quasi-periodicity (t ≡ e2πix, q ≡ e2πiτ )

θ1(x+ j1 + j2τ ; τ) = (−1)j1+j2q−j
2
2/2t−j2θ1(x; τ), (A.1)

θ2(x+ j1 + j2τ ; τ) = (−1)j1q−j
2
2/2t−j2θ2(x; τ)

θ3(x+ j1 + j2τ ; τ) = q−j
2
2/2t−j2θ3(x; τ)

θ4(x+ j1 + j2τ ; τ) = (−1)j2q−j
2
2/2t−j2θ4(x; τ).

They can be written in the following series expansion form:

θ1(x; τ) = i

∞∑
n=0

(−1)n (tn+
1
2 − t−n− 1

2 ) · q 1
2
(n+ 1

2
)2 (A.2)

θ2(x; τ) =
∞∑
n=0

(tn+
1
2 + t−n−

1
2 ) · q 1

2
(n+ 1

2
)2

θ3(x; τ) =
∞∑
n=0

(tn + t−n) · q 1
2
n2
,

θ4(x; τ) =
∞∑
n=0

(−1)n (tn + t−n) · q 1
2
n2
.

These theta functions are used to construct sections of line bundles having different degrees.

For example, θ1(2x; τ)2 shows the following quasi-periodicity,

θ1
(
2(x+ j1 + j2τ); τ

)2
= q−8j

2
2/2t−8j2θ1

(
2x; τ

)2
(A.3)

which implies that it is a section of a degree 8 line bundle.

Secondly, the Weierstrass ℘-function ℘(x; τ) is a section of a degree-0 line bundle,

which can be defined in terms of Jacobi theta functions, i.e.,

℘(x; τ) =
θ3(0; τ)2θ2(0; τ)2

4

θ4(x; τ)2

θ1(x; τ)2
− θ3(0; τ)4 + θ2(0; τ)4

12
. (A.4)

We often use the following notations in Section 4:

℘′(x; τ) ≡ 1
π∂x℘(x; τ), ℘(n)(x; τ) ≡ ( 1

π∂x)n℘(x; τ), (A.5)

X(x; τ) ≡ 4℘(x; τ), Y (x; τ) ≡ 4℘′(x; τ). (A.6)
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where X(x; τ) and Y (x; τ) satisfy the Weierstrass equation

Y (w; τ)2 = 4X(w; τ)3 − 4

3
E4(τ)X(w; τ)− 8

27
E6(τ). (A.7)

Finally, E4(τ), E6(τ), and η(τ) are respectively the Eisenstein series of index 4 and 6

and the Dedekind eta function, defined as

E4(τ) =
1

2

4∑
i=2

θi(0; τ)8, (A.8)

E6(τ) = −1

2

(
3θ2(0; τ)8

4∑
i=3

θi(0; τ)4 −
4∑
i=3

θi(0; τ)12

)
(A.9)

η(τ) = q
1
24

∞∏
n=1

(1− qn). (A.10)
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