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Abstract

In this Part II of D(11), we introduce new objects: super-Ck-schemes and Azumaya
super-Ck-manifolds with a fundamental module (or synonymously matrix super-Ck-manifolds
with a fundamental module), and extend the study in D(11.1) ([L-Y3], arXiv:1406.0929
[math.DG]) to define the notion of ‘differentiable maps from an Azumaya/matrix superman-
ifold with a fundamental module to a real manifold or supermanifold’. This allows us to
introduce the notion of ‘fermionic D-branes’ in two different styles, one parallels Ramond-
Neveu-Schwarz fermionic string and the other Green-Schwarz fermionic string. A more de-
tailed discussion on the Higgs mechanism on dynamical D-branes in our setting, taking maps
from the D-brane world-volume to the space-time in question and/or sections of the Chan-
Paton bundle on the D-brane world-volume as Higgs fields, is also given for the first time
in the D-project. Finally note that mathematically string theory begins with the notion of
a differentiable map from a string world-sheet (a 2-manifold) to a target space-time (a real
manifold). In comparison to this, D(11.1) and the current D(11.2) together bring us to the
same starting point for studying D-branes in string theory as dynamical objects.
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DB & NCDG II: Maps from Matrix Supermanifolds, and Fermionic D-Branes

0. Introduction and outline

As a preparation to study D-branes in string theory as dynamical objects, in [L-Y3] (D(11.1))
we developed the notion of ‘differentiable maps from an Azumaya/matrix manifold with a fun-
damental module to a real manifold’ along the line of Algebraic Geometry of Grothendieck
and synthetic/Ck-algebraic differential geometry of Dubuc, Joyce, Kock, Moerdijk, and Reyes;
and gave examples to illustrate how deformations of differentiable maps in our setting capture
various behaviors of D-branes.

In this continuation of [L-Y3] (D(11.1)), we extend the study to the notion of ‘differentiable
maps from an Azumaya/matrix supermanifold with a fundamental module to a real superman-
ifold’. This allows us to introduce the notion of ‘fermionic D-branes’ in two different styles, one
parallels Ramond-Neveu-Schwarz fermionic string and the other Green-Schwarz fermionic string.
[L-Y1] (D(1)), [L-L-S-Y] (D(2)), [L-Y3] (D(11.1)) and the current note (D(11.2)) together bring

· the study of D-branes in string theory as dynamical objects in the context/realm/language
of algebraic geometry or differential/symplectic/calibrated geometry, without supersym-
metry or with supersymmetry

all in the equal footing. This brings us to the door of a new world on dynamical D-branes, whose
mathematical and stringy-theoretical details have yet to be understood.

The organization of the current note is as follows. In Sec. 1, we brings out the notion of
differential maps from an Azumaya/matrix brane with fermions in a most primitive setting
based on [L-Y3] (D(11.1)). In Sec. 2 – Sec. 4, we first pave our way toward uniting the new
fermionic degrees of freedom into the Azumaya/matrix geometry involved, as is done in the study
of supersymmetric quantum field theory to the ordinary geometry, and then define the notion
of ‘differentiable maps from an Azumaya/matrix supermanifold with a fundamental module to
a real manifold’ in Sec. 4.2 and further extend it to the notion of ‘differentiable maps from an
Azumaya/matrix supermanifold with a fundamental module to a real supermanifold’ in Sec. 4.3.
To give string-theory-oriented readers a taste of how such notions are put to work for D-branes, in
Sec. 5.1, we introduce the two notions of fermionic D-branes, one following the style of Ramond-
Neveu-Schwarz fermionic string and the other the style of Green-Schwarz fermionic string; and
in Sec. 5.2 we give a more precise discussion on the Higgs mechanism on dynamical D-branes
in our setting for the first time in this D-project. Seven years have passed since the first note
[L-Y1] (D(1)) in this project in progress. In Sec. 6, we reflect where we are in this journey on
D-branes, with a view toward the future.

Convention. Standard notations, terminology, operations, facts in (1) superring theory toward
superalgebraic geometry; (2) supersymmetry, supersymmetric quantum field theory; (3) Higgs
mechanism, gauge symmetry breaking; grand unification theory can be found respectively in
(1) [Wes]; (2) [Arg1], [Arg2], [Arg3], [Arg4], [D-E-F-J-K-M-M-W], [Freed], [Freund], [G-G-R-
S], [St], [Wei], [W-B]; (3) [I-Z], [P-S], [Ry]; [B-H], [Mo], [Ros]. There are several inequivalent
notions of (4) ‘supermanifold’; all intend to (and each does) capture (some part of) the geometry
behind supersymmetry in physics. The setting in (4) [Man], [S-W] is particularly in line with
Grothendieck’s Algebraic Geometry and hence relevant to us.

· ‘field’ in the sense of quantum field theory (e.g. fermionic field) vs. ‘field’ as an algebraic
structure in ring theory (e.g. the field R of real numbers).
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· For clarity, the real line as a real 1-dimensional manifold is denoted by R1, while the field
of real numbers is denoted by R. Similarly, the complex line as a complex 1-dimensional
manifold is denoted by C1, while the field of complex numbers is denoted by C.

· The inclusion ‘R ↪→ C’ is referred to the field extension of R to C by adding
√
−1, unless

otherwise noted.

· The real n-dimensional vector spaces R⊕n vs. the real n-manifold Rn;
similarly, the complex r-dimensional vector space C⊕r vs. the complex r-fold Cr.

· All manifolds are paracompact, Hausdorff, and admitting a (locally finite) partition of
unity. We adopt the index convention for tensors from differential geometry. In particular,
the tuple coordinate functions on an n-manifold is denoted by, for example, (y1, · · · yn).
The up-low index summation convention is always spelled out explicitly when used.

· ‘differentiable’ = k-times differentiable (i.e. Ck) for some k ∈ Z≥1 ∪ ∞; ‘smooth’ = C∞;
C0 = continuous by standard convention.

· All the Ck-rings in this note can be assumed to be finitely generated and finitely-near-point
determined. In particular, they are finitely generated and germ-determined ([Du], [M-R:
Sec. I.4]) i.e. fair in the sense of [Joy: Sec. 2.4]. (Cf. [L-Y4].)

· For a Ck-subscheme Z of a Ck-scheme Y , Zred denotes its associated reduced subscheme
of Y by modding out all the nilpotent elements in OZ .

· The ‘support’ Supp (F) of a quasi-coherent sheaf F on a scheme Y in algebraic geometry
or on a Ck-scheme in Ck-algebraic geometry means the scheme-theoretical support of F
unless otherwise noted; IZ denotes the ideal sheaf of a (resp. Ck-)subscheme of Z of a
(resp. Ck-)scheme Y ; l(F) denotes the length of a coherent sheaf F of dimension 0.

· coordinate-function index, e.g. (y1, · · · , yn) for a real manifold vs. the exponent of a power,
e.g. a0y

r + a1y
r−1 + · · · + ar−1y + ar ∈ R[y].

· global section functor Γ ( · ) on sheaves vs. graph Γf of a function f .

· ‘d-manifold ’ in the sense of ‘derived manifold’ vs. ‘D-manifold ’ in the sense of ‘D(irichlet)-
brane that is supported on a manifold’ vs. ‘D-manifold ’ in the sense of works [B-V-S1]
and [B-V-S2] of Michael Bershadsky, Cumrun Vafa and Vladimir Sadov.

· The current Note D(11.2) continues the study in

[L-Y1] Azumaya-type noncommutative spaces and morphism therefrom: Polchin-
ski’s D-branes in string theory from Grothendieck’s viewpoint, arXiv:0709.1515
[math.AG] (D(1)).

[L-L-S-Y] (with Si Li and Ruifang Song), Morphisms from Azumaya prestable curves
with a fundamental module to a projective variety: Topological D-strings as a
master object for curves, arXiv:0809.2121 [math.AG](D(2)).

[L-Y3] D-branes and Azumaya/matrix noncommutative differential geometry, I: D-
branes as fundamental objects in string theory and differentiable maps from
Azumaya/matrix manifolds with a fundamental module to real manifolds,
arXiv:1406.0929 [math.DG](D(11.1)).

Notations and conventions follow these earlier works when applicable.
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Outline

0. Introduction.

1. Differentiable maps from fermionic Azumaya/matrix branes: A primitive setting

· Bosonic fields and fermionic fields on the world-volume of coincident D-branes

· Differentiable maps from matrix branes with fermions

2. Algebraic geometry over super-Ck-rings

2.1 Superrings, modules, and differential calculus on superrings

2.2 Super-Ck-rings, modules, and differential calculus on super-Ck-rings

2.3 Super-Ck-manifolds, super-Ck-ringed spaces, and super-Ck-schemes

2.4 Sheaves of modules and differential calculus on a super-Ck-scheme

3. Azumaya/matrix super-Ck-manifolds with a fundamental module

4. Differentiable maps from an Azumaya/matrix supermanifold with a fundamental module to a real
manifold

4.1 A local study: The affine case

4.2 Differentiable maps from an Azumaya/matrix supermanifold with a fundamental module to
a real manifold

4.2.1 Aspect I [fundamental]: Maps as gluing systems of ring-homomorphisms

4.2.2 Aspect II: The graph of a differentiable map

4.2.3 Aspect III: From maps to the stack of D0-branes

4.2.4 Aspect IV: From associated GLr(C)-equivariant maps

4.3 Remarks on differentiable maps from a general endomorphism-ringed super-Ck-scheme with
a fundamental module to a real supermanifold

5. A glimpse of super D-branes, as dynamical objects, and the Higgs mechanism in the current setting

5.1 Fermionic D-branes as fundamental/dynamical objects in string theory

· Ramond-Neveu-Schwarz fermionic string and Green-Schwarz fermionic string from the
viewpoint Grothendieck’s Algebraic Geometry

· Fermionic D-branes as dynamical objects à la RNS or GS fermionic strings

5.2 The Higgs mechanism on D-branes vs. deformations of maps from a matrix brane

5.2.1 The Higgs mechanism in the Glashow-Weinberg-Salam model

5.2.2 The Higgs mechanism on the matrix brane world-volume

6. Where we are, and some more new directions
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1 Differentiable maps from fermionic Azumaya/matrix branes:
A primitive setting

In this section, we give a very primitive view of D-branes with fermions directly from the
viewpoint of [L-Y3] (D(11.1)) that a bottommost ingredient to describe a D-brane in string
theory as a dynamical object is the notion of a differentiable map from a matrix manifold (cf.
the world-volume of coincident D-branes) to a real manifold (cf. the target space-time).

Bosonic fields and fermionic fields on the world-volume of coincident D-branes1.

Fields on the world-volume of a D-brane are created by excitations of oriented open strings
through their end-points that stick to the D-brane. Cf. Figure 1-1. When the open string
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Figure 1-1. Fields on the world-volume of a D-brane are created by excitations
of oriented open strings through their end-points that stick to the D-branes. The
dynamics of these fields are dictated by the anomaly-free requirement of the conformal
field theory on the open-string world-sheet ([Le]).

carries in addition fermionic degrees of freedom, the fields it creates on the D-brane world-
volume include not only bosonic ones but also fermionic ones. Each of these fields is associated
to an open string state |Λ〉 from a representation of the 2-dimensional superconformal algebra
(associated to the open-string world-sheet theory) that is repackaged to a representation of
Lorentz group under the requirement that the quantum field theory of these fields on the D-
brane world-volume be Lorentz invariant.

When r-many simple D-branes coincide, the open string spectrum {|Λ〉 |Λ} on the common
D-brane world-volume gets enhanced. There are three possible sectors of the newly re-organized
spectrum of open string states:

(1) From oriented open strings with both end-points stuck to the coincident D-brane :
In this case, one has an enhancement

|Λ〉 ⇒ |Λ; i, j̄〉 , 1 ≤ i, j ≤ r .

The field ψΛ on the D-brane world-volume that is associated to {|Λ; i, j̄〉 | 1 ≤ i, j ≤ r} as
a collection takes now r × r-matrix-values.

1 The contents of this theme are by now standard textbook materials under the theme on quantization of closed
or open strings and the spectrum closed or open strings create on the target. The concise conceptual highlight
here is only meant to make a passage to relate fields on the world-volume of coincident D-branes to sheaves of
modules on a matrix manifold in the next theme. Unfamiliar mathematicians are referred to [B-B-Sc], [G-S-W],
[Po2] for details.
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(2) When, for example, the whole target space-time itself is taken as a background simple
D-brane or equivalently one of the two end-point of the oriented open string takes the
Neumann boundary condition instead of the Dirichlet boundary condition :

There are two sectors in this case:

|Λ〉 ⇒ |Λ; i〉 , 1 ≤ i ≤ r , and |Λ〉 ⇒ |Λ; j̄〉 , 1 ≤ j ≤ r .

The former are created by oriented open strings with only the beginning end-point stuck
to the D-brane world-volume; and the latter are created by oriented open strings with only
the ending end-point stuck to the D-brane world-volume. The field ψΛ on the D-brane
world-volume that is associated to {|Λ; i〉 | 1 ≤ i ≤ r} as a collection takes now r × 1-
matrix-values, i.e., column-vector-values. And the field ψ′Λ on the D-brane world-volume
that is associated to {|Λ; j̄〉 | 1 ≤ j̄ ≤ r} as a collection takes now 1× r-matrix-values, i.e.,
row-vector-values.

Cf. Figure 1-2.

(1)

(2)

(3)
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Figure 1-2. Three possible sectors of fields on the world-volume of coincident D-
branes. They are created respectively by (1) oriented open strings with both end-
points stuck to the D-brane world-volume, or (2) oriented open strings with only the
beginning end-point stuck to the D-brane world-volume; or (3) oriented open strings
with only the ending end-point stuck to the D-brane world-volume. Sector (1) is
always there on the D-brane world-volume while Sectors (2) and (3) can arise only
when there is a background D-brane world-volume in the space-time to which the
other end of oriented open strings can stick. Fields in Sector (1) (resp. Sector (2),
Sector (3)) are matrix-valued (resp. column-vector-valued, row-vector-valued).

Differentiable maps from matrix branes with fermions

As explained in [L-Y1] (D(1)), while originally the pair (i, j̄) should be thought of as labeling
elements in the Lie algebra u(r), to bring geometry to the enhanced scalar field on the D-
brane world-volume that describes the collective deformations of the coincident D-branes along
the line of Grothendieck’s Algebraic Geometry, it is more natural to embed u(n) into the Lie
algebra gl (r,C) which now has the underlying unital associative algebra structure, namely the
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matrix ring Mr×r(C). Following this line, coincident D-branes are now collectively described by
a differentiable map

ϕ : (XAz, E) := (X,OAzX := EndO C
X

(E), E) −→ Y

from a matrix manifold XAz with a fundamental module E to the target space-time Y ; cf. [L-Y3]
(D(11.1)). The vector bundle associated to E plays the role of the Chan-Paton bundle on the
D-brane world-volume.

The enhancement of fields on the D-brane world-volume due to coincidence of simple D-branes
now takes the following form:

(1) Field in Sector (1) corresponding to |Λ〉 ⇒ {|Λ; i, j̄〉 | 1 ≤ i, j ≤ r} :

OX -module FΛ ⇒ bi-OAzX -module GΛ := E ⊗O C
X
FΛ ⊗OX E∨ ' OAzX ⊗OAzX FΛ.

(2) Field in Sector (2) corresponding to |Λ〉 ⇒ {|Λ; i〉 | 1 ≤ i ≤ r} :

OX -module FΛ ⇒ left OAzX -module GΛ := E ⊗OX FΛ.

(3) Field in Sector (3) corresponding to |Λ〉 ⇒ {|Λ; j̄〉 | 1 ≤ j ≤ r} :

OX -module FΛ ⇒ right OAzX -module GΛ := FΛ ⊗O C
X
E∨.

Here E∨ := HomO C
X

(E ,OC
X) is the dual of E . Note that the functor in Item (2) (resp. Item (3))

is the functor that appears in the Morita equivalence of the category of OC
X -modules and the

category of left (resp. right) OAzX -modules.
Sections of GΛ correspond to the field ψΛ on the world-volume of coincident D-branes in the

previous theme. Here, ψΛ can be either bosonic or fermionic. The dynamics of differentiable
map ϕ and that of sections of the various GΛ’s in general will influence each other through their
equations of motion, which is a topic in its own right.

With this primitive setting in mind and as a motivation, we now proceed to study how the
fermionic degrees of freedom on a D-brane world-volume can be united into the geometry of
the D-brane world-volume — rendering it a matrix supermanifold with a fundamental module
— and how the notion of differentiable maps from a matrix manifold can be promoted to the
notion of differentiable maps from a matrix supermanifold.

Remark 1.1. [ reduction from Mr×r(C) to u(r) ]. Gauge theoretically, a reduction from the
underlying Lie algebra gl (r,C) of Mr×r(C) to the original u(r) can be realized by introducing a
Hermitian metric on the fundamental module E . However, how this influences or constrains the
notion of differential maps in our setting in [L-Y3] (D(11.1)) should be studied in more detail.

2 Algebraic geometry over super-Ck-rings

Basic notions and terminology from super-Ck-algebraic geometry required for the current note
are introduced in this section. The setting given is guided by a formal Z/2-graded extension of
Ck-algebraic geometry and the goal to study fermionic D-branes later.
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2.1 Superrings, modules, and differential calculus on superrings

We collect in this subsection the most basic notions in superrings, supermodules, and superdif-
ferential calculus needed for the current note. Readers are referred to the thesis ‘Superrings
and supergroups’ [Wes] of Dennis Westra for further details and the foundation toward super-
algebraic geometry in line with Grothendieck’s Algebraic Geometry.

Superrings and modules over superrings

Definition 2.1.1. [superring]. A superring A is a Z/2-graded Z/2-commutative (unital asso-
ciative) ring A = A0 ⊕A1 such that the multiplication A×A→ A satisfies

(Z/2-graded) A0A0 ⊂ A0 , A0A1 = A1A0 ⊂ A1 , and A1A1 ⊂ A0 ,

(Z/2-commutative) aa′ = (−1)ii
′
a′a for a ∈ Ai and a′ ∈ Ai′ , i, i′ = 0, 1 .

A morphism between superrings (i.e. superring-homomorphism) is a Z/2-grading-preserving ring-
homomorphism of the underlying unital associative rings. The elements of A0 are called even,
the elements of A1 are called odd, and an element that is either even or odd is said to be
homogeneous. For a homogeneous element a ∈ A, denote by |a| the Z/2-degree or parity of a;
|a| = i if a ∈ Ai, for i = 0, 1.

An ideal of I of A is said to be Z/2-graded if I = (I ∩ A0) + (I ∩ A1). In this case, A
induces a superring structure on the quotient ring A/I, with the Z/2-grading given by A/I =
(A0/(I ∩A0))⊕ (A1/(I ∩A1)). The converse is also true; cf. Definition/Lemma 2.1.2.

Definition/Lemma 2.1.2. [Z/2-graded ideal = supernormal ideal]. An ideal I of a
superring A is called supernormal if A induces a superring structure on the quotient ring A/I.
In terms of this, I is Z/2-graded if and only if I is supernormal.

Proof. The only-if part is immediate. For the if part, let κ : A→ A/I is the quotient-superring
map and a = a0 + a1 ∈ I = Ker (κ). If, say, a0 6∈ I, then both κ(a0) and κ(a1) are non-zero
in A/I and hence have parity even and odd respectively since κ is a superring-homomorphism
by the assumption. On the other hand, κ(a) = κ(a0) + κ(a1) = 0; thus, κ(a0) = −κ(a1). Since
(A/I)0 ∩ (A/I)1 = 0, this implies that κ(a0) = κ(a1) = 0, which is a contradiction. This proves
the lemma.

Definition 2.1.3. [module over superring]. Let A be a superring. An A-module M is a
left module over the unital associative ring underlying A that is endowed with a Z/2-grading
M = M0 ⊕M1 such that

A0M0 ⊂ M0 , A1M0 ⊂ M1 , A0M1 ⊂ M1 , and A1M1 ⊂ M0 .

The elements of M0 are called even, the elements of M1 are called odd, and an element that is
either even or odd is said to be homogeneous. For a homogeneous element m ∈ M , denote by
|m| the Z/2-degree or parity of m; |m| = i if m ∈Mi, for i = 0, 1.

For a superring A,

· a left A-module is canonically a right A-module by setting ma := (−1)|m||a|am for homo-
geneous elements a ∈ A and m ∈M and then extending Z-linearly to all elements.
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For that reason, as in the case of commutative rings and modules, we don’t distinguish a left-,
right-, or bi-module for a module over a superring.

A morphism (or module-homomorphism) h : M →M ′ between A-modules is a right-module-
homomorphism between the right-module over the unital associative ring underlying A; or equiv-
alently a left-module-homomorphism between the left-module over the unital associative ring
underlying A but with the sign rule applied to homogeneous components of h and homogeneous
elements of A. Explicitly, h is said to be even if it preserves the Z/2-grading or odd if it switches
the Z/2-grading; decompose h to h = h0 + h1 a summation of even and odd components, then
hi(am) = (−1)i|a|ahi(m), i = 0, 1, for a ∈ A homogeneous and m ∈M .

Subject to the above sign rules when applicable, the notion of

· submodule M ′ ↪→M , (cf. monomorphism),
· quotient module M �M ′, (cf. epimorphism),
· direct sum M ⊕M ′ of A-modules,
· tensor product M ⊗AM ′ of A-modules,
· finitely generated: if A⊕l �M exists for some l,
· finitely presented: if A⊕l

′ → A⊕l →M → 0 is exact for some l, l′

are all defined in the ordinary way as in commutative algebra.

Differential calculus on a superring

Definition 2.1.4. [superderivation on superring]. Let A be a superring over another
superring B with B → A the underlying superring-homomorphism. Then, a (left) super-B-
derivation ζ on A of fixed parity |ζ| = 0 or 1 is a map

ζ : A −→ A

that satisfies

(left-B-superlinearity) ζ(ba+ b′a′) = (−1)|ζ||b|b ζ(a) + (−1)|ζ||b
′| b′ ζ(a′) ,

(super Leibniz rule) ζ(aa′) = ζ(a) a′ + (−1)|ζ||a| a ζ(a′)

for all b, b′ ∈ B and a, a′ ∈ A homogeneous, and all the Z-linear extensions of these relations.
A (left) super-B-derivation ζ on A is a formal sum ζ = ζ0 + ζ1 of a super-B-derivation ζ0 on A
of even parity and a super-B-derivation ζ1 on A of odd parity.

Denote by sDerB(A) the set of all super-B-derivations on A. Then, sDerB(A) is Z/2-graded
by construction. Furthermore, if ζ ∈ sDerB(A), then so does aζ = (−1)|a||ζ|ζa, with

(aζ)( · ) := a(ζ( · )) and (ζa)( · ) := (−1)|a|| · | (ζ( · ))a

for a ∈ A. Thus, sDerB(A) is naturally a (bi-)A-module, with a · ζ := aζ and ζ · a := ζa for
a ∈ A and ζ ∈ sDerB(A).

Note that if ζ, ζ ′ ∈ sDerB(A) (homogeneous), then so does their super Lie bracket (synony-
mously, supercommutator)

[ζ, ζ ′] := ζζ ′ − (−1)|ζ||ζ
′| ζ ′ζ .

Thus, sDerB(A) is naturally a super-Lie algebra. Homogeneous elements in which satisfy the
super-anti-commutativity identity and the super-Jacobi identity:

[ζ, ζ ′] = − (−1)|ζ||ζ
′| [ζ ′, ζ] ,

[ζ, [ζ ′, ζ ′′]] = [[ζ, ζ ′], ζ ′′] + (−1)|ζ||ζ
′| [ζ ′, [ζ, ζ ′′]] .

When A is a k-algebra, we will denote sDer k(A) also by sDer (A), with the ground field k
understood.
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Remark 2.1.5. [ equivalent condition ]. The left-B-superlinearity condition and the super Leibniz
rule condition in Definition 2.1.4, are equivalent to

(right-B-linearity) ζ(ab+ a′b′) = ζ(a) b + ζ(a′) b′ ,

(super Leibniz rule′) ζ(aa′) = ζ(a) a′ + (−1)|a||a
′| ζ(a′) a

respectively. Note that the parity |ζ| of ζ is removed in this equivalent form. The format in
Definition 2.1.4 is more natural-looking while the above equivalent form is more convenient to
use occasionally. Cf. Definition 2.1.7.

Remark 2.1.6. [ inner superderivation ]. Similarly to the commutative case, all the inner su-
perderivations of a superring are zero.

Definition 2.1.7. [superderivation with value in module]. Let A be a superring over
another superring B and M be an A-module. A Z-linear map

d : A → M

is called a super-B-derivation with values in M if d satisfies

(right-B-linearity) d(ab+ a′b′) = d(a) b + d(a′) b′ ,

(super Leibniz rule′) d(aa′) = d(a) a′ + (−1)|a||a
′| d(a′) a

for a, a′ ∈ A homogeneous, and all Z-linear extension of such identities. In particular, d is a
B-module-homomorphism. d is said to be even if d(A0) ⊂ M0 and d(A1) ⊂ M1; and odd if
d(A0) ⊂ M1 and d(A1) ⊂ M0. The set sDerB(A,M) of all super-B-derivations with values in
M is naturally a (Z/2-graded) bi-A-module, with the multiplication defined by

a · d : a′ 7−→ a (d(a′)) and d · a : a′ 7−→ (−1)|a||a
′| (d(a′)) a

for a ∈ A and d ∈ sDerB(A,M) homogeneous, plus a Z-linear extension.

Definition 2.1.8. [module of differentials of superring]. Continuing Definition 2.1.7. An
A-module M with a super-B-derivation d : A → M is called the cotangent module of A if it
satisfies the following universal property:

· For any A-module M ′ and super-B-derivation d′ : A → M ′, there exists a unique homo-
morphism of A-modules ψ : M →M ′ such that d′ = ψ ◦ d .

A
d //

d′   

M

ψ}}
M ′ .

(Thus, M is unique up to a unique A-module isomorphism.) We denote this M with d : A→M
by ΩA/B, with the built-in super-B-derivation d : A→ ΩA/B understood.
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Remark 2.1.9. [ explicit construction of ΩA/B ]. The cotangent module ΩA/B of a superring A
over B can be constructed explicitly from the A-module generated by the set

{d(a) | a ∈ A} ,

subject to the relations

(Z/2-grading) |d(a)| = |a| ,
(right-B-linearity) d(ab+ a′b′) = d(a) b + d(a′) b′ ,

(super Leibniz rule′) d(aa′) = d(a) a′ + (−1)|a||a
′| d(a′) a ,

(bi-A-module structure) d(a) a′ = (−1)|a||a
′| a′ d(a)

for all b, b′ ∈ B, a, a′ ∈ A homogeneous, plus a Z-linear extension of these relations. Denote the
image of d(a) under the quotient by da. Then, by definition, the built-in map

d : A −→ ΩA/B

a 7−→ da

is a super-B-derivation from A to ΩA/B.

Remark 2.1.10. [ relation between sDerB(A) and ΩA/B ]. The universal property of ΩA/B implies
that there is an A-module-isomorphism sDerB(A,M) ' HomA(ΩA/B,M) for any A-module M .
In particular, for M = A, one has sDerB(A) ' HomA(ΩA/B, A).

2.2 Super-Ck-rings, modules, and differential calculus on super-Ck-rings

Basic notions and terminology from super-Ck-algebra are introduced in this subsection. They
serve the basis to construct super-Ck-schemes and quasi-coherent sheaves thereupon

Remark 2.2.1. [ on the setting in this subsection, alternative, and issue beyond ]. The setting in
the current subsection allows the transcendental/nonalgebraic notion of Ck-rings to merge with
the algebraic notion of superrings immediately. It leads to the notion of super-Ck-manifolds and
super-Ck-schemes that are nothing but a sheaf-type super-thickening of ordinary Ck-manifolds
and ordinary Ck-schemes; cf. Remark 2.3.16 and Figure 3-1. While mathematically these are
not the most general kind of superspaces, physically they are broad enough to cover the super-
spaces and supermanifolds that appear in supersymmetric quantum field theory and superstring
theory in most situations.

There are alternatives to our setting. A most fundamental one would be re-do the alge-
braic geometry over Ck-rings, using now the Ck-function rings

∐
(p,q)C

k(Rp|q), where Rp|q is

the super-Ck-manifold whose coordinates (x1, · · · , xp; θ1, · · · , θq) have both commuting and
anti-commuting variables. Different interpretations/settings to the evaluation of ordinary Ck-
functions of Rp on p-tuples of supernumbers ∈ R1|q′ may lead to different classes of algebraic
geometry over super-Ck-rings. In this sense, our setting is the simplest one. Other more general
settings should be studied in their own right.
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Super-Ck-rings

With Sec. 2.1 as background, we now build into the superring in question an additional Ck-ring
structure on an appropriate subring of its even subring.

Definition 2.2.2. [superpolynomial ring over Ck-ring]. Let R be a Ck-ring. A superpoly-
nomial ring over R is a (unital) associative ring over R of the following form

R[θ1, · · · , θs] :=
R〈θ1, · · · , θs〉

(rθα − θαr , θβθγ + θγθβ | r ∈ R , 1 ≤ α, β, γ ≤ s)
,

where

· R〈θ1, · · · , θs〉 is the unital associative ring over R generated by the variables θ1, · · · , θs,

· (rθα− θαr , θβθγ + θγθβ | r ∈ R , 1 ≤ α, β, γ ≤ s) is the bi-ideal in R〈θ1, · · · , θs〉 generated
by the elements indicated.

· The Z/2-grading is determined by specifying |r| = 0, |θα| = 1 for all r ∈ R and 1 ≤ α ≤ s
and the extension by the product rule |r̂r̂′| = |r̂||r̂′| whenever applicable.

Underlying R[θ1, · · · θs] as an algebra-extension of R is a built-in split short exact sequence
of R-modules

0 // (θ1, · · · , θs) // R[θ1, · · · , θs] // R //
oo 0 ,

where R → R[θ1, · · · , θs] is the built-in R-algebra inclusion map. It is also an exact sequence
of R[θ1, · · · , θs]-modules in the sense of Definition 2.1.3.

Let V be a vector space over R of dimension s, spanned by {θ1, · · · , θs} , and
∧• V be the

(Z/2-graded Z/2-commutative) Grassmann/exterior algebra associated to V . Then

R[θ1, · · · , θs] ' R⊗R
∧• V

as Z/2-graded Z/2-commutative rings over R, with

R[θ1, · · · , θs]0 ' R⊗R
∧even V and R[θ1, · · · , θs]1 ' R⊗R

∧odd V .

.

Definition 2.2.3. [super-Ck-ring: split super-extension of Ck-ring]. Let R be a Ck-ring.
A split super-extension R̂ of R is a (unital) associative ring R̂ over R that is equipped with a
split short exact sequence of R-modules

0 //M // R̂ // R //ii 0

such that

· There exists a superpolynomial ring R[θ1, · · · , θs] over R, for some s, that can realize R̂
as its superring-quotient R-algebra

R[θ1, · · · , θs] // // R̂

in such a way that the following induced diagram commutes

0 // (θ1, · · · , θs) //

����

R[θ1, · · · , θs] //

����

R //
oo 0

0 //M // R̂ // R //jj 0 .

11



We will call R̂ synonymously a super-Ck-ring over R. In particular, R itself is trivially a super-
Ck-ring, with M = 0.

Definition 2.2.4. [homomorphism between super-Ck-rings]. Let R and S be Ck-rings, R̂
be a super-Ck-ring over R, and Ŝ be a super-Ck-ring over S. A super-Ck-ring-homomorphism
from R̂ to Ŝ is a pair of superring-homomorphisms (cf. Definition 2.1.1)

f̂ : R̂ −→ Ŝ and f : R −→ S

such that

(1) f is a Ck-ring-homomorphism,

(2) (f̂ , f) is compatible with the underlying super-Ck-ring structure of R̂ and Ŝ; namely, the
following diagram commutes

R̂
f̂ //

����

Ŝ

����
R

HH

f // S

HH

.

For the simplicity of notations, we may denote the pair (f̂ , f) : (R̂, R)→ (Ŝ, S) also as f̂ : R̂→ Ŝ.
We say that a super-Ck-ring-homomorphism f̂ : R̂ → Ŝ is injective (resp. surjective) if both f̂
and f are injective (resp. surjective). In this case, f̂ is called a super-Ck-ring-monomorphism
(resp. super-Ck-ring-epimorphism).

Definition 2.2.5. [ideal, super-Ck-normal ideal, super-Ck-quotient]. Let R̂ be a super-
Ck-ring. An ideal Î of R̂ is an ideal Î of R̂ as a Z/2-graded R-algebra. Î is called super-Ck-normal
if the super-Ck-ring structure on R̂ descends to a super-Ck-ring structure on the quotient R-
algebra R̂/Î. In this case, Î must be a Z/2-graded ideal of R̂ (cf. Lemma 2.1.2). R̂/Î with the
induced super-Ck-ring structure is called a super-Ck-quotient of R̂ and one has the following
commutative diagram

R̂
q̂ //

����

R̂/Î

����
R

HH

q // R/I

JJ

,

where q̂ : R̂→ R̂/Î is the quotient map and I := Î ∩R is now a Ck-normal ideal of the Ck-ring
R. Note that for Î Ck-normal, the quotient super-Ck-ring structure on R̂/Î is compatible with
the quotient R-algebra structure.

Definition 2.2.6. [localization of super-Ck-ring]. Let R̂ be a super-Ck-ring, with R ↪→ R̂
the built-in inclusion, S be a subset of R, and R[S−1] be the localization of the Ck-ring R at S,
with the built-in Ck-ring-homomorphism R → R[S−1]. The localization of R̂ at S, denoted by
R̂[S−1], is the super-Ck-ring over R[S−1] defined by

R̂[S−1] := R̂⊗R R[S−1] .

It goes with a built-in super-Ck-ring-homomorphism R̂→ R̂[S−1].
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Modules over super-Ck-rings

Definition 2.2.7. [module over super-Ck-ring]. Let R be a Ck-ring and R̂ be a super-Ck-

ring over R. Recall Definition 2.1.3. A module M̂ over R̂, or R̂-module, is a module over R̂ as
a superring.

The notion of

· homomorphism M̂1 → M̂2 of R̂-modules,

· submodule M̂1 ↪→ M̂2, (cf. monomorphism),

· quotient module M̂1 � M̂2, (cf. epimorphism),

· direct sum M̂1 ⊕ M̂2 of R̂-modules,

· tensor product M̂1 ⊗R̂ M̂2 of R̂-modules,

· finitely generated: if R̂⊕l � M̂ exists for some l,

· finitely presented: if R̂⊕l
′ → R̂⊕l → M̂ → 0 is exact for some l, l′

are all defined as in Definition 2.1.3 for modules over a superring.
Denote by Mod (R̂) the category of modules over R̂.

Remark 2.2.8. [ module over super-Ck-ring vs. module over Ck-ring ]. Recall the built-in ring-
homomorphism R→ R̂. Thus every R̂-module is canonically an R-module. The induced functor
Mod (R̂)→Mod (R) is exact.

Definition 2.2.9. [localization of module over super-Ck-ring]. Let M̂ be a module over a
super-Ck-ring R̂. Recall the built-in inclusion R ↪→ R̂. Let R̂→ R̂[S−1] be the localization of R̂

at a subset S ⊂ R. Then, the localization of M̂ at S, denoted by M̂ [S−1], is the R̂[S−1]-module
defined by

M̂ [S−1] := R̂[S−1]⊗
R̂
M̂ .

By construction, it is equipped with an R̂-module-homomorphism M̂ → M̂ [S−1].

Differential calculus on super-Ck-rings

Definition 2.2.10. [superderivation on super-Ck-ring]. Let R̂ be a super-Ck-ring over
another super-Ck-ring Ŝ with Ŝ → R̂ the built-in super-Ck-ring-homomorphism. Then, a (left)
super-Ck-Ŝ-derivation Θ̂ on R̂ is a map

Θ̂ : R̂ −→ R̂

that satisfies

(right-Ŝ-linearity) Θ̂(r̂ŝ+ r̂′ŝ′) = Θ̂(r̂) ŝ + Θ̂(r̂′) ŝ′ ,

(super Leibniz rule′) Θ̂(r̂r̂′) = Θ̂(r̂) r̂′ + (−1)|r̂||r̂
′| Θ̂(r̂′) r̂

for all ŝ, ŝ′ ∈ Ŝ, r̂, r̂′ ∈ R̂ homogeneous, and the R-linear extensions of these relations, and

(chain rule)

Θ̂(h(r1, · · · , rl)) = ∂1h(r1, · · · , rl) Θ̂(r1) + · · · + ∂lh(r1, · · · , rl) Θ̂(rl)
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for all h ∈ Ck(Rl), l ∈ Z≥1, and r1, · · · , rl ∈ the Ck-ring R ⊂ R̂.

Denote by sDer
Ŝ

(R̂) the set of all super-Ck-Ŝ-derivations on R̂. Then, sDer
Ŝ

(R̂) is Z/2-

graded by construction. Furthermore, if Θ̂ ∈ sDer
Ŝ

(R̂), then so does r̂Θ̂ = (−1)|r̂||Θ̂|Θ̂r̂, with

(r̂Θ̂)( · ) := r̂(Θ̂( · )) and (Θ̂r̂)( · ) := (−1)|r̂|| · |(Θ̂( · ))r̂, for r̂ ∈ R̂. Thus, sDer
Ŝ

(R̂) is naturally a

(bi-)R̂-module, with r̂ · Θ̂ := r̂Θ̂ and Θ̂ · r̂ := Θ̂r̂ for Θ̂ ∈ sDer
Ŝ

(R̂), r̂ ∈ R̂.

Furthermore, if Θ̂, Θ̂′ ∈ sDer
Ŝ

(R̂) (homogeneous), then so does the super Lie bracket

[Θ̂, Θ̂′] := Θ̂Θ̂′ − (−1)|Θ̂||Θ̂
′| Θ̂′Θ̂

of Θ̂ and Θ̂′. Thus, sDer
Ŝ

(R̂) is naturally a super-Lie algebra.

We will denote sDer R(R̂) also by sDer (R̂).

Remark 2.2.11. [ inner superderivation ]. Similarly to the commutative case, all the inner su-
perderivations of a super-Ck-ring are zero.

Remark 2.2.12. [ relation to Der S(R) ]. Note that the built-in inclusion R ↪→ R̂ induces a natural
R̂-module-homomorphism sDer

Ŝ
(R̂)→ Der S(R)⊗R R̂.

Definition 2.2.13. [superderivation with value in module]. Let R̂ be a super-Ck-ring

over a super-Ck-ring Ŝ and M̂ an R̂-module. An R-linear map

d : R̂ → M̂

is called a super-Ck-Ŝ-derivation with values in M̂ , if

(right-Ŝ-linearity) d(r̂ŝ+ r̂′ŝ′) = d(r̂) ŝ + d(r̂′) ŝ′ ,

(super Leibniz rule′) d(r̂r̂′) = d(r̂) r̂′ + (−1)|r̂||r̂
′| d(r̂′) r̂

(chain rule) d(f(r1, · · · , rn)) =
∑n

i=1(∂if)(r1, · · · , rn) · dri

for all ŝ, ŝ′ ∈ Ŝ, r̂, r̂′ ∈ R̂ homogeneous, f ∈ ∪nCk(Rn), and ri ∈ R. Here ∂if is the partial
derivative of f ∈ Ck(Rn) with respect to the i-th coordinate of Rn. In particular, d is a Ŝ-

module-homomorphism. The set sDer
Ŝ

(R̂, M̂) of all super-Ck-Ŝ-derivation with values in M̂ is

naturally an R̂-module, with the multiplication defined by r̂ · d : r̂′ 7→ r̂(d(r̂′)) and d · r̂ : r̂′ 7→
(−1)|r̂||r̂

′|(d(r̂′))r̂ for r̂ ∈ R̂.

Definition 2.2.14. [module of differentials of super-Ck-ring]. Let R̂ be a super-Ck-ring

over Ŝ. An R̂-module M̂ with a super-Ck-Ŝ-derivation d : R̂ → M is called the Ck-cotangent
module of R̂ over Ŝ if it satisfies the following universal property:

· For any R̂-module M̂ ′ and super Ck-Ŝ-derivation d′ : R̂ → M̂ ′, there exists a unique
homomorphism of R̂-modules ψ : M̂ → M̂ ′ such that d′ = ψ ◦ d .

R̂
d //

d′ ��

M̂

ψ~~
M̂ ′ .
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(Thus, M̂ is unique up to a unique R̂-module isomorphism.) We denote this M̂ with d : R̂→ M̂
by Ω

R̂/Ŝ
, with the built-in super-Ck-Ŝ-derivation d : R̂→ Ω

R̂/Ŝ
understood.

Remark 2.2.15. [ explicit construction of Ω
R̂/Ŝ

]. The Ck-cotangent module Ω
R̂/Ŝ

of R̂ over Ŝ

can be constructed explicitly from the R̂-module generated by the set

{d(r̂) | r̂ ∈ R̂} ,

subject to the relations

(Z/2-grading) |d(r̂)| = |r̂| ,
(right-R-linearity) d(r̂ŝ+ r̂′ŝ′) = d(r̂) ŝ + d(r̂′) ŝ′ ,

(super Leibniz rule′) d(r̂r̂′) = d(r̂) r̂′ + (−1)|r̂||r̂
′| d(r̂′) r̂ ,

(bi-R̂-module structure) d(r̂) r̂′ = (−1)|r̂||r̂
′| r̂′ d(r̂)

for all ŝ, ŝ′ ∈ Ŝ, r̂, r̂′, and

(chain rule) d(h(r1, · · · , rs))
= ∂1h(r1, · · · , rs) d(r1) + · · · + ∂sh(r1, · · · , rs) d(rs)

for all h ∈ Ck(Rs), s ∈ Z≥1, and r1, · · · , rs ∈ R ⊂ R̂. Denote the image of d(r̂) under the
quotient by dr̂. Then, by definition, the built-in map

d : R̂ −→ Ω
R̂/Ŝ

r̂ 7−→ dr̂

is a super-Ck-Ŝ-derivation from R̂ to Ω
R̂/Ŝ

.

Remark 2.2.16. [ relation to ΩR/S ]. Note that the built-in inclusion R ↪→ R̂ induces a natural

R̂-module-homomorphism ΩR/S ⊗R R̂→ Ω
R̂/Ŝ

.

Remark 2.2.17. [ relation between sDer
Ŝ

(R̂) and Ω
R̂/Ŝ

]. The universal property of Ω
R̂/Ŝ

implies

that there is an R̂-module-isomorphism

sDer
Ŝ

(R̂) −→ Hom
R̂

(Ω
R̂/Ŝ

, R̂) .

2.3 Super-Ck-manifolds, super-Ck-ringed spaces, and super-Ck-schemes

The notion of super-Ck-manifolds, super-Ck-ringed spaces, and super-Ck-schemes are introduced
in this subsection. They are a super generalization of related notions from works of Eduardo
Dubuc [Du], Dominic Joyce [Joy], Anders Kock [Ko], Ieke Moerdijk and Gonzalo E. Reyes [M-
R], Juan Navarro González and Juan Sancho de Salas [NG-SdS] in C∞-algebraic geometry or
synthetic differential geometry. The presentation here proceeds particularly with [Joy] in mind.
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Super-Ck-manifolds

The notion of ‘supermanifolds’ to capture the geometry (either the space-time over which
fermionic fields are defined or the symmetry group itself) behind supersymmetric quantum
field theory was studied by various authors, including Majorie Batchelor [Bat], Felix Berezin
and Dimitry Leites [B-L], Bryce DeWitt [DeW], Bertram Kostant [Kos], Alice Rogers [Rog],
Mitchell Rothstein [Rot], leading to several inequivalent notions of ‘supermanifolds’.

For this note, we follow the direction of Yuri Manin [Man] and Steven Shnider and Raymond
Wells, Jr., [S-W]. In essence,

· A supermanifold is a ringed space with the underlying space an ordinary manifold (X,OX),
as a Ck-scheme, but with the structure sheaf a Z/2-graded Z/2-commutative OX-algebra.

Such setting (cf. the detail below) is both physically direct and compatible and mathematically
in line with Grothendieck’s Algebraic Geometry. It suits best for our purpose of generaliza-
tion to the notion of matrix supermanifolds to describe coincident fermionic D-branes as maps
therefrom.

Definition 2.3.1. [super-Ck-manifold]. Let (X,OX) be a Ck-manifold of dimension m and
F be a locally-free sheaf of OX -modules of rank s. Then

ÔX :=
∧•
OX F

is a sheaf of superpolynomial rings over OX (or equivalently a sheaf of Grassmann OX -algebras).
The Z/2-grading of ÔX is given by setting

Ô even
X :=

∧even
OX F and Ô odd

X :=
∧odd
OX F .

The new ringed space
X̂ := (X, ÔX)

is called a super-Ck-manifold. The dimension m of X is called the even dimension of X̂ while
the rank s of F is called the odd dimension of X̂. By construction, there is a built-in split short
exact sequence of OX -modules (also as ÔX -modules)

0 // ÎX // ÔX // OX //kk 0 ,

where ÎX :=
∧≥ 1
OX F . In terms of ringed spaces, one has thus

X̂
π̂ //

X ,
ι̂

oo

where π̂ is a dominant morphism and ι̂ is an inclusion such that π̂ ◦ ι̂ = IdX . Note that since in
this case ÎX is the nil-radical (i.e. the ideal sheaf of all nilpotent sections) of ÔX , X = X̂red ⊂ X̂.
Cf. Definition 2.3.15.

A morphism
f̂ := (f, f̂ ]) : X̂ := (X, ÔX) −→ ÔY := (Y, ÔY )

between super-Ck-manifolds is a Ck-map f : X → Y between Ck-manifolds together with a
sheaf-homomorphism

f̂ ] : f−1ÔY −→ ÔX
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that fits into the following commutative diagram

f−1ÔY
f̂] //

��

ÔX

��
f−1OY

JJ

f] // OX

II

.

Here, the homomorphism f ] : f−1OY → OX between sheaves of Ck-rings on X is induced by
the Ck-map f : X → Y between Ck-manifolds. In terms of morphisms between ringed spaces,
one has the commutative diagram:

X̂

π̂
��

f̂ // Ŷ

π̂
��

X

ι̂

OO

f // Y

ι̂

OO

.

We will call f̂ also a Ck-map.

Remark 2.3.2. [supermanifold/superspace in physics: spinor and issue of central charge ]. The
above Definition 2.3.1 of super-Ck-manifolds gives a general mathematical setting. However, for
a physical application some refinement or extension of the above definition is required:

(1) For a physical application to N = 1 supersymmetric quantum field theories, the Ck-
manifold X is equipped with a Riemannian or Lorentzian metric and the sheaf F is a
sheaf of spinors that arises from the associated bundle of the orthonormal-frame bundle
to an irreducible spinor representation of the orthonormal group related to the metric.

(2) For a physical application to N ≥ 2 supersymmetric quantum field theories, not only that
the Ck-manifold X is equipped with a Riemannian or Lorentzian metric and the sheaf F is
a sheaf of spinors that arises from the associated bundle of the orthonormal-frame bundle
to a direct sum of N -many irreducible spinor representations of the orthonormal group
related to the metric, one has but also a new issue of whether to include the (bosonic)
extension to the structure sheaf ÔX in Definition 2.3.1 that takes care also of the central
charges in the N ≥ 2 supersymmetry algebra; cf. [So], [W-B], and [W-O].

Such necessary refinement or extension should be made case by case to reflect physics. For the
current note, our focus is on the notion of ‘differentiable maps from a matrix-supermanifold to
a real manifold’. The framework we develop (cf. Sec. 3 and Sec. 4) is intact once a refined or
extended structure sheaf ÔX for a supermanifold is chosen.

Remark 2.3.3. [ real spinor vs. complex spinor ]. Also to reflect physics presentation, it may be
more convenient case by case to take F in Definition 2.3.1 to be an OC

X -module, rather than

an OX -module, when one constructs the structure sheaf ÔX . See, for example, Example 2.3.8
below. Again, our notion of ‘differentiable maps from a matrix-supermanifold to a real manifold’
remains intact.

The following sample list of superspaces is meant to give mathematicians a taste of the role
of spinor representations in physicists’ notion of a supermanifold beyond just a Z/2-graded
Z/2-commutative manifold. See, for example, [Freed: Lecture 3] of Daniel Freed.
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Example 2.3.4. [superspace Rm|s as super-Ck-manifold]. This is the supermanifold of
topology Rm and function ring the superpolynomial ring Ck(Rm)[θ1, · · · , θs] over the Ck-ring
Ck(Rm). In particular, R0|s is called a superpoint.

Example 2.3.5. [d = 1+1, N = (2, 2) superspace]. The supermanifold R2|4 of the underlying
space the (1 + 1)-dimensional Minkowski space-time M1+1 and of function ring the superpoly-

nomial ring C∞(R2)[θ1, θ2, θ̄1̇, θ̄2̇]. Furthermore, each of θ1 and θ2 (resp. θ̄1̇ and θ̄2̇) is in the left
(resp. right) Majorana-Weyl spinor representation of SO (1, 1). This is a basic superspace for a
d = 2 superconformal field theory and a superstring theory.

Example 2.3.6. [d = 2 + 1, N = 1 superspace]. The supermanifold R3|2 of the underlying
space the (2 + 1)-dimensional Minkowski space-time M2+1 and of function ring the superpoly-
nomial ring C∞(R3)[θ1, θ2]. Furthermore, the tuple (θ1, θ2) is in the Majorana spinor represen-
tation of SO (2, 1) (' the fundamental representation of SL(2,R)). This is a basic superspace
for a d = 2 + 1, N = 1 supersymmetric quantum field theory.

Example 2.3.7. [d = 3, N = 1 superspace]. The supermanifold R3|4 of the underlying
space the 3-dimensional Euclidean space E3 and of function ring the superpolynomial ring
C∞(R3)[θ1, θ2, θ3, θ4]. Furthermore, the tuple (θ1, θ2, θ3, θ4) is in the pseudo-real spinor rep-
resentation of SO (3). Notice how the signature of the metric may influence the dimension of a
minimal/irreducible spinor representation at the same manifold dimension; cf. Example 2.3.6.

Example 2.3.8. [d = 3 + 1, N = 1 superspace]. The supermanifold R4|4 of the underlying
space the 3+1-dimensional Minkowski space-time M3+1 and of function ring the superpolynomial
ring C∞(R4)[θ1, θ2, θ3, θ4]. Furthermore, the tuple (θ1, θ2, θ3, θ4) is in the real Majorana spinor
representation of SO (3, 1). In physics, it is more convenient to consider instead complex Weyl
spinor representations of SO (3, 1) via the isomorphism Spin (3, 1) ' SL(2,C). In this case we

take as the function ring C∞(R4)⊗R [θ1, θ2, θ̄1̇, θ̄2̇]C, in which (θ1, θ2) and (θ̄1̇, θ̄2̇) are in complex
Weyl spinor representations of opposite chirality. This is a basic superspace for a d = 3 + 1,
N = 1 supersymmetric quantum field theory. See, for example, [W-B].

Example 2.3.9. [d = 3 + 1, N = 2 superspace]. The supermanifold R4|8 of the underlying
space the 3+1-dimensional Minkowski space-time M3+1 and of function ring the superpolynomial
ring C∞(R4)[θ1, θ2, θ3, θ4, θ′1, θ′2, θ′3, θ′4]. Furthermore, each of the tuples (θ1, θ2, θ3, θ4) and
(θ′1, θ′2, θ′3, θ′4) is in the real Majorana representation of SO (3, 1). Here, we ignore the central
charge in the d = 3 + 1, N = 2 super-Poincaré algebra. As in Example 2.3.8, for physics, it is
more convenient to take as the function ring C∞(R4)⊗R [θ1, θ2, θ̄1̇, θ̄2̇, θ′1, θ′2, θ̄′1̇, θ̄′2̇]C through
complex Weyl representations of SO (3, 1). This is a basic superspace for a d = 3 + 1, N = 2
supersymmetric quantum field theory.

Super-Ck-ringed spaces and super-Ck-schemes

Definition 2.3.10. [super-Ck-ringed space, Ck-map]. A super-Ck-ringed space

X̂ = (X,OX , ÔX)
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is a Ck-ringed space (X,OX) together with a sheaf ÔX of super-Ck-rings over OX . By con-
struction, it has a built-in split short exact sequence of OX -modules (also as ÔX -modules)

0 // ÎX // ÔX // OX //kk 0 .

Here, ÎX := Ker (ÔX → OX) is an ideal sheaf of ÔX . The split short exact sequence defines
the a pair of morphisms between the ringed spaces

X̂
π̂ //

X ,
ι̂

oo

where π̂ is a dominant morphism and ι̂ is an inclusion such that π̂ ◦ ι̂ = IdX .
A morphism

f̂ := (f, f ], f̂ ]) : X̂ := (X,OX , ÔX) −→ ÔY := (Y,OY , ÔY )

between super-Ck-ringed spaces is a morphism (f, f ]) : (X,OX) → (Y,OY ) between Ck-ringed
spaces together with a sheaf-homomorphism

f̂ ] : f−1ÔY −→ ÔX

that fits into the following commutative diagram

f−1ÔY
f̂] //

��

ÔX

��
f−1OY

JJ

f] // OX

II

.

That is, a commutative diagram of morphisms between ringed spaces:

X̂

π̂
��

f̂ // Ŷ

π̂
��

X

ι̂

OO

f // Y

ι̂

OO

.

We will call f̂ also a Ck-map.

Definition 2.3.11. [affine super-Ck-scheme]. Let R̂ be a super-Ck-ring with the structure

ring-homomorphisms R̂ // Rii . The affine super-Ck-scheme associated to R̂ is a super-Ck-

ringed space (X,OX , ÔX) defined as follows:

· (X,OX) is the affine Ck-scheme associated to R.

· ÔX is the quasi-coherent sheaf on X associated to R̂ as an R-module, as defined in Ck-
algebraic geometry via localizations of R̂ at subsets of R.

By construction, ÔX is a sheaf of super-Ck-rings overOX and the ring-homomorphisms R̂ // Rii
induce a split short exact sequence

0 // ÎX // ÔX // OX //kk 0 ,
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which defines a pair of built-in morphisms

X̂
π̂ //

X ,
ι̂

oo

where π̂ is a dominant morphism and ι̂ is an inclusion such that π̂ ◦ ι̂ = IdX .
A morphism (X,OX , ÔX) → (Y,OY , ÔY ) between affine super-Ck-schemes is defined to be

a Ck-map f̂ : (X,OX , ÔX)→ (Y,OY , ÔY ) of the underlying super-Ck-ringed spaces.

Remark 2.3.12. [ super-Ck-ring vs. affine super-Ck-scheme ]. For our purpose, we shall assume
that all the Ck-rings in our discussion are finitely generated and germ-determined. In this
case, the category of affine super-Ck-schemes is contravariantly equivalent to the category of
super-Ck-rings. See, for example, [Joy: Proposition 4.15].

Definition 2.3.13. [super-Ck-scheme]. A super-Ck-ringed space X̂ := (X,OX , ÔX) is called
a super-Ck-scheme if X admits an open-set covering {Uα}α∈A such that (Uα,OX |Uα , ÔX |Uα) is
an affine super-Ck-scheme for all α ∈ A. By construction, ÔX is a sheaf of super-Ck-rings over
OX with a built-in a split short exact sequence

0 // ÎX // ÔX // OX //kk 0 ,

which defines a pair of built-in morphisms

X̂
π̂ //

X ,
ι̂

oo

where π̂ is a dominant morphism and ι̂ is an inclusion such that π̂ ◦ ι̂ = IdX .
A morphism (X,OX , ÔX) → (Y,OY , ÔY ) between super-Ck-schemes is defined to be a Ck-

map f̂ : (X,OX , ÔX)→ (Y,OY , ÔY ) of the underlying super-Ck-ringed spaces.

Remark 2.3.14. [ super-Ck-scheme vs. equivalence class of gluing systems of super-Ck-rings ].
Recall Remark 2.3.12. Under the assumption that all the Ck-rings in our discussion be finitely
generated and germ-determined, the category of super-Ck-schemes is contravariantly equivalent
to the category of equivalence classes of gluing systems of super-Ck-rings.

Definition 2.3.15. [super-Ck-normal ideal sheaf and super-Ck-subscheme]. Let X̂ :=
(X,OX , ÔX) be a super-Ck-scheme. A super-Ck-normal ideal sheaf Î on X̂ is a sheaf of super-
Ck-normal ideals of ÔX . In this case (and only in this case), Î defines a super-Ck-subschme
Ẑ := (Z,OZ , ÔZ) of X̂ with a built-in commutative diagram of ÔX -modules

0 // Î // ÔX //

����

ÔZ //

����

0

0 // I := Î0 ∩ OX //
?�

OO

OX //
?�

OO

OZ //
?�

OO

0

such that both horizontal sequences are exact. Here Î = Î0 + Î1 is the decomposition of Î by
its homogeneous components.

Remark 2.3.16. [sheaf-type super-thickening]. One may think of the graded-commutative scheme
X̂ as a sheaf-type super-thickening of the underlying Ck-scheme X, and the morphism f̂ : X̂ → Ŷ
as a lifting of Ck-map f : X → Y . Cf. Figure 3-1.
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2.4 Sheaves of modules and differential calculus on a super-Ck-scheme

Basic notions of sheaves of modules and differential calculus on a super-Ck-scheme are collected
in this subsection.

Sheaves of modules on a super-Ck-scheme

Definition 2.4.1. [sheaf of modules on super-Ck-scheme]. Let X̂ = (X,OX , ÔX) be a
super-Ck-scheme. A sheaf of modules on X̂ (i.e. ÔX-module) is defined to be a sheaf F̂ of
modules on the (Z/2-graded Z/2-commutative) ringed space that underlies X̂. In particular, F̂
is Z/2-graded F̂ = F̂0 ⊕ F̂1. Sections of F̂0 (resp. F̂1) is said to be even (resp. odd). Sections
of either F̂0 or F̂1 is said to be homogeneous. The left-ÔX -module structure on F̂ induces the
right-ÔX -structure on F̂ and vice versa; thus we won’t distinguish left-, right-, or bi-module
structures in our discussions.

The notion of

· homomorphism F̂ → Ĝ of ÔX -modules,

· submodule Ĝ ↪→ F̂ , (cf. monomorphism),

· quotient module F̂ � Ĝ, (cf. epimorphism),

· direct sum F̂ ⊕ Ĝ of ÔX -modules,

· tensor product F̂ ⊗ÔX Ĝ of ÔX -modules,

· finitely generated: if Ô⊕lX � F̂ exists for some l,

· finitely presented: if Ô⊕l′X → Ô⊕lX → F̂ → 0 is exact for some l, l′

are all defined in the ordinary way as in commutative algebraic geometry. A homomorphism
F̂ → Ĝ of ÔX -modules is said to be even (resp. odd) if it preserves (resp. switches) the parity of
homogeneous sections.

Denote by Mod (X̂) the category of all ÔX -modules.

Definition 2.4.2. [push-forward and pull-back of sheaf of modules]. Let f̂ : X̂ → Ŷ be
a morphism between super-Ck-schemes and F̂ (resp. Ĝ) be a ÔX -module (resp. ÔY -module).
Then, the structure sheaf-of-rings homomorphism f̂ ] : f−1ÔY → ÔX renders F̂ an ÔY -module.
It is called the push-forward of F̂ by f̂ and is denoted by f̂∗(F̂) or f̂∗F̂ . The inverse-image sheaf
f−1Ĝ of Ĝ under f is an f−1ÔY -module. Define the pull-back f̂∗Ĝ (or f̂∗Ĝ) of Ĝ under f̂ to be
the ÔX -module f−1Ĝ ⊗

f−1ÔY ÔX .

Let X̂ = (X,OX , ÔX) be an affine super-Ck-scheme associated to a super-Ck-ring R̂ ⊃ R

and M̂ be an R̂-module. Then, the assignment U 7→ M̂ ⊗
R̂
ÔX(U), with the restriction map

Id
M̂
⊗ρUV for V ⊂ U , where ρUV : ÔX(U)→ ÔX(V ) is the restriction map of ÔX , is a presheaf

on X̂. Let M̂∼ be its sheafification.

Definition 2.4.3. [quasi-coherent sheaf on affine super-Ck-scheme]. The sheaf M̂∼ of

ÔX -modules on the affine super-Ck-scheme X̂ thus obtained from the R̂-module M̂ is called a
quasi-coherent sheaf on X̂.
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Definition 2.4.4. [quasi-coherent sheaf on super-Ck-scheme]. Let X̂ = (X,OX , ÔX)
be a super-Ck-scheme. An ÔX -module F̂ is said to be quasi-coherent if X admits an open-
set covering {Uα}α∈A such that (Uα,OX |Uα , ÔX |Uα) is an affine super-Ck-scheme and F̂ |Uα is
quasi-coherent in the sense of Definition 2.4.3 for all α.

Denote by QCoh (X̂) the category of all quasi-coherent ÔX -modules.

Let X̂ = (X,OX , ÔX) be a super-Ck-scheme. Recall the built-in dominant morphism π̂ :
X̂ → X. The following immediate lemmas relate modules over X̂ and those over X:

Lemma 2.4.5. [quasi-coherent sheaf on super-Ck-scheme vs. on Ck-scheme]. An ÔX-
module F̂ is quasi-coherent if and only if π̂∗(F̂) is quasi-coherent on X. The push-forward
functor

π̂∗ : Mod
X̂
−→ ModX

is exact and takes QCoh (X̂) to QCoh (X).

Lemma 2.4.6. [natural push-pull relation]. Let f̂ : X̂ → Ŷ be a morphism between super-
Ck-schemes and F̂ (resp. Ĝ) be a ÔX-module (resp. ÔY -module). Then, there are canonical
isomorphisms

f∗(π̂∗F̂) ' π̂∗(f̂∗F̂) and f∗(π̂∗Ĝ)
∼→ π̂∗(f̂

∗Ĝ) .

Differential calculus on a super-Ck-scheme

Definition 2.4.7. [tangent sheaf and cotangent sheaf]. Let X̂ = (X,OX , ÔX) be a super-
Ck-scheme. (1) The presheaf on X̂ that associates to an open set U ⊂ X the ÔX(U)-module
Der R(ÔX(U)) is a quasi-coherent sheaf of ÔX -modules, denoted by T∗X̂ and called interchange-
ably the tangent sheaf of X̂ or the sheaf of super-Ck-derivations on ÔX .

(2) The presheaf on X̂ that associates to an open set U ⊂ X the ÔX(U)-module ΩÔX(U)/R is a

quasi-coherent sheaf of ÔX -modules, denoted by T ∗X̂ and called interchangeably the cotangent
sheaf of X̂ or the sheaf of differentials of ÔX . By construction, there is a canonical even map
d : ÔX → T ∗X̂ as sheaves of R-vector spaces on X̂.

It follows from the local study in Sec. 2.2 that there is a canonical isomorphism

T∗X̂ −→ Hom ÔX (T ∗X̂, ÔX)

as ÔX -modules. Cf. Remark 2.2.17.

3 Azumaya/matrix super-Ck-manifolds with a fundamental
module

Once the basics of super-Ck-rings are laid down (Sec. 2.2), the extension of the notion of super-
Ck-rings to the notion of Azumaya/matrix super-Ck-rings proceeds in the same manner as
the extension of the notion of Ck-rings to the notion of Azumaya/matrix Ck-rings in [L-Y3]
(D(11.1)). After localizations at a subset in the center of the rings in question and then glu-
ings from local to global, the extension of the notion of super-Ck-manifolds to the notion of
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Azumaya/matrix super-Ck-manifolds with a fundamental module proceeds in the same manner
as the extension of the notion of Ck-manifold to the notion of Azumaya/matrix Ck-manifolds
with a fundamental module in ibidem. A brief review is given below for the introduction of
terminology and notations we need and the completeness of the note.

Azumaya/matrix algebras over a super-Ck-ring, modules, and differential calculus

Let R̂ be a super-Ck-ring and R̂C := R̂ ⊗R C be its complexification. The (complex) matrix
algebra of rank r over R̂C is the algebra Mr×r(R̂

C) of r×r matrices with entries elements in R̂C.
The addition and the multiplication of elements of Mr×r(R̂

C) are defined through the matrix
addition and the matrix multiplication in the ordinary way:(

âij

)
ij

+
(
b̂ij

)
ij

:=
(
âij + b̂ij

)
ij

and
(
âij

)
ij
·
(
b̂ij

)
ij

:=
(∑r

k=1 âik b̂kj

)
ij
,

where âij + b̂ij and âik · b̂kj are respectively the addition and the multiplication in R̂C. As an

abstract (complex) Azumaya algebra over R̂,

Mr×r(R̂
C) '

R̂C〈 e ji | 1 ≤ i, j ≤ r 〉
( r̂e ji − e

j
i r̂ , e

j
i e

j′

i′ − δ
j
i′ e

j′

i | r̂ ∈ R̂C , 1 ≤ i, j, i′, j′ ≤ r )
.

Here R̂C〈 e ji | 1 ≤ i, j ≤ r 〉 is the unital associative algebra generated by R̂C and the set

{e ji | 1 ≤ i, j ≤ r} and ( r̂e ji − e ji r̂ , e
j
i e

j′

i′ − δji′ e
j′

i | r̂ ∈ R̂C , 1 ≤ i, j, i′, j′ ≤ r ) is the bi-

ideal thereof generated by the elements indicated. The Z/2-grading of Mr×r(R̂
C) follows from

the Z/2-grading of R̂C by assigning in addition the parity of e ji to be even. As Z/2-graded
C-algebras, one has the isomorphism

Mr×r(R̂
C) ' Mr×r(C)⊗C R̂

C .

Mr×r(R̂
C) naturally represents on the free module R̂C-module F̂ := (R̂C)⊕r of rank r, by

the matrix multiplication to the left on a column vector. We will call F̂ the fundamental module
of Mr×r(R̂

C). The dual F̂∨ := Hom
R̂ C(F̂ , R̂C) of F̂ , as a R̂C-module, is a right-Mr×r(R̂

C)-

module. Denote by Mr×r(R̂
C)-Mod the category of left-Mr×r(R̂

C)-modules. Then there are
natural functors

R̂C-Mod −→ Mr×r(R̂
C)-Mod

M̂ 7−→ F̂ ⊗
R̂ C M̂

and
Mr×r(R̂

C)-Mod −→ R̂C-Mod

N̂ 7−→ F̂∨ ⊗
Mr×r(R̂ C)

N̂ .

When R̂ is the function-ring of a super-Ck-manifold, these two functors render R̂C-Mod and
Mr×r(R̂

C)-Mod equivalent, called the Morita equivalence.
Let R̂ be a super-Ck-ring over another super-Ck-ring Ŝ. Then, under the isomorphism

Mr×r(R̂
C) 'Mr×r(C)⊗C R̂

C between C-algebras,

sDer
Ŝ

(Mr×r(R̂
C)) ' Der C(Mr×r(C))⊗C R̂

C ⊕ Id r×r ⊗C sDer
Ŝ

(R̂)C

and Ω
Mr×r(R̂ C)/Ŝ C ' ΩMr×r(C)/C ⊗C R̂

C ⊕Mr×r(C)⊗C ΩC
R̂/Ŝ

.

Caution that the former is only a R̂C-module while the latter is an Mr×r(R̂
C)-module.
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Remark 3.1. [ center of Mr×r(R̂
C) ]. Despite being only Z/2-commutative, conceptually it is

instructive to regard R̂C as playing the role of the center of the matrix ring Mr×r(R̂
C).

Azumaya/matrix super-Ck-manifolds with a fundamental module

The notion of Azumaya/matrix manifolds ([L-Y3] (D(11.1))) and the notion of supermanifolds
(Sec. 2.3) can be merged into the notion of Azumaya/matrix supermanifolds:

{Ck-manifolds }
H h

uu

� t

''
{Azumaya/matrix Ck-manifolds }

� w

))

{ super-Ck-manifolds }
I i

vv
{Azumaya/matrix super-Ck-manifolds } .

Definition 3.2. [Azumaya/matrix super-Ck-manifold with a fundamental module].
An Azumaya (or matrix) super-Ck-manifold with a fundamental module is the following tuple:

(X,OX , ÔX , ÔAzX := End Ô C
X

(Ê), E) =: (X̂Az, Ê) ,

where

· X̂ := (X,OX , ÔX) is a super-Ck-manifold;

· E is a locally free OC
X -module of finite rank, say, r;

· Ê := E ⊗OX ÔX = π̂∗E , where X̂
π̂
// X?
_ι̂oo are the built-in morphisms for X̂.

Note that one has the canonical isomorphism

ÔAzX := End Ô C
X

(Ê) ' EndO C
X

(E)⊗OX ÔX = OAzX ⊗OX ÔX =: π̂∗OAzX .

Built into the definition is the following commutative diagram of morphisms:

X̂Az

˙̂πww

π̇Az

&&
XAz
* 


˙̂ι

77

πAz

''

X̂

π̂
wwX
* 


ι̂

77

.

Figure 3-1.

Remark 3.3. [ smearing of matrix-points ]. Conceptually, it is instructive to regards an Azumaya/
matrix super-Ck-manifold either as a smearing of unfixed matrix points over a super-Ck-manifold
or as a smearing of unfixed matrix superpoint over a Ck-manifold.
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X

Az

AzX

X X

Figure 3-1. The built-in morphisms that underlie an Azumaya/matrix supermanifold

X̂Az. It is worth emphasizing that, as in the case of Azumaya/matrix manifolds, the

superspace X̂ (and hecne X) should be regarded only as an auxiliary space, providing

a topology underlying X̂Az. The major object is the structure sheaf ÔAz
X , which

should be thought of as a matrix-type noncommutayive cloud over X̂ and contains
the geometrical contents that are relevant to D-branes. The built-in pair of morphisms
X̂Az −→←− XAz (resp. X̂ −→←− X) means that X̂Az is a sheaf-type thickening of XAz

and contains XAz as the zero-section, as indicated, (resp. X̂ is a sheaf-type thickening
of X and contains X as the zero-section, as indicated). In the illustration, the bluish
shade indicates a “superization” while the orangish shade indicates “matrixization”;
and their combination is indicated by a bluish orangish shade.

Definition 3.4. [tangent sheaf]. Continuing the notation in Definition 3.2. The tangent
sheaf T∗X̂Az of X̂Az is the ÔX -module which assigns to each open U ⊂ X the ÔX(U)-module
sDer C(ÔAzX (U)).

Definition 3.5. [cotangent sheaf]. Continuing the notation in Definition 3.2. The cotangent
sheaf T ∗X̂Az of X̂Az is the ÔAzX -module which assigns to each open U ⊂ X the ÔAzX (U)-module
ΩÔAzX (U)/C.

Through the Morita equivalence, general (left) ÔAzX -modules on X̂Az can be obtained by the

tensor Ê ⊗ÔX F̂ of the fundamental module Ê with ÔX -modules F̂ .

Remarks on general endomorphism-ringed super-Ck-schemes and differential
calculus thereupon

Let X̂ := (X,OX , ÔX) be a super-Ck-scheme, with OX a sheaf of finitely-generated germ-
determined Ck-rings, and F̂ be a finitely-presented quasi-coherent ÔC

X -module on X̂. Then,

the sheaf End Ô C
X

(F̂) of endomorphisms of F̂ is a quasi-coherent ÔC
X -module that is finitely

presentable as well. Thus, if one assumes further that the built-in sheaf-of-rings homomorphism
ÔC
X → End Ô C

X
(F̂) is injective; i.e. F̂ is supported on the whole X̂, and defines

Ônc
X := End Ô C

X
(F̂) ,
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then Ônc
X is a sheaf of rings that is a finitely-presentable (noncommutative) algebraic extension

of the sheaf of rings ÔC
X . This defines a new ringed topological space

X̂nc := (X,OX , ÔX , Ônc
X ) ,

which may be named endomorphism-ringed super-Ck-scheme with a fundamental module. The
Azumaya/matrix case X̂Az corresponds to the case F is in addition locally free. Notions or
constructions for X̂Az that depend only on the finite-presentability or algebraicness of the ex-
tension ÔX ↪→ ÔAzX generalize immediately to the general endomorphism-ringed space X̂nc. In
particular, the basics:

· the notion of X̂nc as an equivalence class of gluing systems of rings,

· the functor F̂ ⊗ÔX ( · ) : ÔX -Mod → Ônc
X -Mod that turn an ÔX -module to a (left) Ônc

X -
module,

· the tangent sheaf T∗X̂nc and the cotangent sheaf T ∗X̂nc of X̂nc

can all be defined/establised. And it remains instructive to regard the whole ÔX , despite only
Z/2-commutative, as the center of Ônc

X .

4 Differentiable maps from an Azumaya/matrix supermanifold
with a fundamental module to a real manifold

With the preparations in Sec. 2 and Sec. 3, we now come to the main theme of the current
note: the notion of ‘differentiable map from an Azumaya/matrix supermanifold with a funda-
mental module’ that generalizes the setting in [L-Y3] (D(11.1)) for the case of Azumaya/matrix
manifolds.

4.1 A local study: The affine case

The local study in this subsection is the foundation to the general notion of a differentiable map
from an Azumaya/matrix supermanifold with a fundamental module to a real manifold.

From the aspect of function-rings and modules

Definition 4.1.1. [admissible homomorphism from Ck-ring to Azumaya/matrix super-
Ck-ring]. Let

· U ⊂ Rm and V ⊂ Rn be open sets,

· E be a complex Ck vector bundle of rank r on U , for our purpose we may assume that E
is trivial,

· Û
π̂
// U?
_ι̂oo be a super-Ck-manifold supported on U associated to the super-Ck-polynomial

ring Ck(U)[θ1, · · · , θs], where θαθβ + θβθα = 0 for 1 ≤ α, β ≤ s,

· pr
Û

: Û × V → Û , prV : Û × V → V be the projection maps, and

· Ê := π̂∗E be the pull-back complex vector bundle on Û .
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Then the endomorphism algebra of Ê over Û is isomorphic to the r × r matrix ring
Mr×r(C

k(U)[θ1, · · · , θs]) over Ck(U)[θ1, · · · , θs]C. With this identification, a ring-homomorphism

ϕ̂] : Ck(V ) −→ Mr×r(C
k(U)[θ1, · · · , θs]C)

over R ↪→ C is said to be Ck-admissible if the following diagram of ring-homomorphisms

Mr×r(C
k(U)[θ1, · · · , θs]C) Ck(V )

ϕ̂]oo

Ck(U)[θ1, · · · , θs]
?�

π̇Az,]

OO

extends to a commutative diagram of ring-homomorphisms (over R or R ↪→ C when applicable)

Mr×r(C
k(U)[θ1, · · · , θs]C) Ck(V )

ϕ̂]oo
_�

pr]V
��

Ck(U)[θ1, · · · , θs]
?�

π̇Az,]

OO

� �

pr]
Û

// Ck(U × V )[θ1, · · · , θs]

˜̂ϕ
]

kk

such that the following two conditions are satisfied:

(1) The image of ˜̂ϕ
]

Im ˜̂ϕ
] ' Ck(U × V )[θ1, · · · , θs]

Ker ˜̂ϕ
]

admits a quotient super-Ck-ring structure from the super-Ck-ring Ck(U × V )[θ1, · · · , θs].

(2) Regard π̇Az,] and ϕ̂] now as ring-homomorphism to Im ˜̂ϕ
]
; then, with respect to the super-

Ck-ring structure in Condition (1), both ring-homomorphisms

π̇Az,] : Ck(U)[θ1, · · · , θs] −→ Im ˜̂ϕ
]
,

ϕ̂] : Ck(V ) −→ Im ˜̂ϕ
]

are super-Ck-ring-homomorphisms.

Note that since Ck(U × V )[θ1, · · · , θs] is the push-out of Ck(U)[θ1, · · · , θs] and Ck(V ) in the

category of super-Ck-rings, ˜̂ϕ
]

is unique if exists. In this case, one may think of Im ˜̂ϕ
]

as
the super-Ck-ring generated by Ck(U)[θ1, · · · , θs] and Im ϕ̂] in Mr×r(C

k(U)[θ1, · · · , θs]C). In
notation,

Aϕ̂ := Ck(U)[θ1, · · · , θs]〈Im ϕ̂]〉 := Im ˜̂ϕ
]
.

Bringing both Aϕ̂ and the module of sections of the fundamental vector bundle Ê over Û
into the picture, one now has the following full diagram for a Ck-admissible ring-homomorphism
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ϕ̂ : Ck(V )→Mr×r(C
k(U)[θ1, · · · , θs]C) over R ↪→ C :

(Ck(U)[θ1, · · · , θs]C)⊕r

Mr×r(C
k(U)[θ1, · · · , θs]C)

kk

Aϕ̂ := Ck(U)[θ1, · · · , θs]〈Im ϕ̂]〉
?�

σ
]
ϕ̂

OO

bb

Ck(V )

ϕ̂]

ll

f
]
ϕ̂

oo
_�

pr
]
V

��
Ck(U)[θ1, · · · , θs]

?�

π
]
ϕ̂

OO

XX

� �

pr
]

Û

// Ck(U × V )[θ1, · · · , θs] .

˜̂ϕ
]

llll

Remark 4.1.2. [ k =∞ ]. For the case k =∞, Condition (1) in Definition 4.1.1 is always satisfied
and, hence, redundant.

From the aspect of super-Ck-schemes and sheaves

Continuing the notations of the previous theme. Let

· OU be the sheaf of Ck-functions on U , OV be the sheaf of Ck-functions on V , ÔU be
the structure sheaf of Û as the affine super-Ck-scheme associated to the super-Ck-ring
Ck(U)[θ1, · · · , θs],

· Aϕ̂ be the ÔU -algebra associated to the Ck(U)[θ1, · · · , θs]-algebra Aϕ̂,

· E be the sheaf of Ck-sections of E over U , Ê := π̂∗E the induced locally free ÔU -module,

· ÔAzU := End Ô C
U

(Ê) the structure sheaf of the Azumaya/matrix super-Ck-manifold ÛAz,

which realizes Ê as the fundamental module on ÛAz.

Let
ϕ̂] : Ck(V ) −→ Mr×r(C

k(U)[θ1, · · · , θs]C)

be a Ck-admissible ring-homomorphism over R ↪→ C as in the previous theme. Then the full
diagram of ring-homomorphisms associated to ϕ̂ in the previous theme can be translated into
the following diagram of maps between spaces:

Ê

!!

��

��

ÛAz

ϕ̂

**

σϕ̂
����

Ûϕ̂ fϕ̂

//
w�

˜̂ϕ ))
πϕ̂
����

V

Û Û × V .

prV

OOOO

pr
Û

oooo
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Notice that in the above diagram, the maps πϕ̂, fϕ̂, and ˜̂ϕ are now maps between super-Ck-
ringed spaces in the sense of Definition 2.3.10 while the ‘maps’ ϕ̂ and σϕ̂ are only conceptual
without real contents and are defined solely contravariantly through the ring-homomorphisms
ϕ̂] and σ]ϕ̂ respectively.

Definition 4.1.3. [Ck-map from Azumaya/matrix super-Ck-manifold ÛAz]. We shall
call ϕ̂ : (ÛAz, Ê)→ V in the above diagram a k-times differentiable map (in brief, Ck-map) from
the super-Ck-manifold with a fundamental module (ÛAz, Ê) to the Ck-manifold V . Through the
underlying admissible ring-homomorphism ϕ̂] in the previous theme, Ê becomes an OY -module,
called the push-forward of Ê under ϕ̂ and denoted by ϕ̂∗(Ê) or ϕ̂∗Ê . The image of ϕ̂ : ÛAz → V ,
in notation Im ϕ̂ or ϕ̂(ÛAz), is the Ck-subscheme of V defined by the ideal Ker (ϕ̂) of Ck(V ).

Lemma 4.1.4. [image Im ϕ̂ vs. support Supp (ϕ̂∗(Ê))]. Continuing the notation in Defini-
tion 4.1.3. The image Im (ϕ̂) of the Ck-map ϕ̂ is identical to the Ck-scheme-theoretical support
Supp (ϕ̂∗(Ê)) of the push-forward ϕ̂∗(Ê).

Definition 4.1.5. [surrogate of ÛAz specified by ϕ̂]. Continuing the discussion. The super-
Ck-scheme Ûϕ̂ together with the built-in Ck-maps

Ûϕ̂
fϕ̂ //

πϕ̂
����

V

Û

is called the surrogate of (the noncommutative) ÛAz specified by ϕ̂ : ÛAz → V . Caution that in
general there is no Ck-map Û → V that makes the diagram commute.

The role of the fundamental module Ê

Let
ϕ̂ : (ÛAz, Ê) −→ V

be a Ck-map defined by a Ck-admissible ring-homomorphism

ϕ̂] : Ck(V ) −→ Mr×r(C
k(U)[θ1, · · · , θs]C)

over R ↪→ C after fixing a trivialization of E on U . Then the same argument as in [L-Y3:
Sec. 5.2] (D(11.1)) implies by construction the following properties related to the fundamental
module Ê on the super-Ck-manifold Û :

(1) The fundamental module Ê := π̂∗E , first on Û , is also naturally an Aϕ̂-module on Ûϕ̂ and

an ÔAzU -module on ÛAz. We will denote them all by Ê .

(2) The OV -modules ϕ∗(Ê) and fϕ̂,∗(Ê) are canonically isomorphic.
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Definition 4.1.6. [graph of ϕ̂]. The graph of the Ck-map ϕ̂ : (ÛAz, Ê) → V is defined to be
the O

Û×V -module
˜̂E ϕ̂ := ˜̂ϕ∗(Ê)

on the product-space Û × V .

Definition 4.1.7. [Ck-admissible O
M̂

-module]. Let M̂ be a super-Ck-manifold. An O
M̂

-

module F̂ is said to be Ck-admissible if the annihilator ideal sheaf Ker (O
M̂
→ EndO

M̂
(F̂)) is

super-Ck-normal. In this case, Ker (O
M̂
→ EndO

M̂
(F̂)) defines a super-Ck-subscheme structure

for Supp (F̂) in M̂ ; i.e., the quotient map of O
M̂

, as a sheaf of super-Ck-rings,

O
M̂
−→ O

Supp (F̂)
:= OM̂/Ker (O

M̂
→ EndO

M̂
(F̂))

induces a sheaf-of-super-Ck-rings structure on O
Supp (F̂)

.

Remark 4.1.8. [ case k = ∞ ]. For a super-C∞-manifold M̂ , every O
M̂

-module F̂ is C∞-
admissible.

Lemma 4.1.9. [basic properties of
˜̂E ϕ̂]. The graph

˜̂E ϕ̂ of ϕ̂ has the following properties:

(1)
˜̂E ϕ̂ is a Ck-admissible OC

Û×V
-module; its super-Ck-scheme-theoretical support Supp (

˜̂E ϕ̂)

is isomorphic to the surrogate Ûϕ̂ of ÛAz specified by ϕ̂. In particular,
˜̂E ϕ̂ is of relative

dimension 0 over Û

(2) There is a canonical isomorphism Ê ∼−→ pr
Û ,∗(

˜̂E) of OC
Û

-modules. In particular,
˜̂E ϕ̂ is flat

over Û , of relative complex length r.

(3) There is a canonical exact sequence of OC
Û×V

-modules

pr∗
Û

(Ê) −→ ˜̂E ϕ̂ −→ 0 .

(4) The ÔV -modules prV,∗(
˜̂E ϕ̂) and ϕ̂∗(Ê) are canonically isomorphic.

Conversely, one has the following lemma of reconstruction, which follows the same argument
as in [L-L-S-Y] (D(2)) for the algebraic case and [L-Y3] (D(11.1)) for the Ck-case:

Lemma 4.1.10. [reconstructing Ck-map via OC
Û×Y

-module]. Let
˜̂E be an OC

Û×V
-module

that is Ck-admissible, and of relative dimension 0, of finite relative complex length, and flat

over Û . For the moment, we assume further that pr
Û ,∗(

˜̂E) is trivial. Let Ê := pr
Û ,∗(

˜̂E). Then
˜̂E

specifies a Ck-map ϕ̂ : (ÛAz, Ê)→ V whose graph
˜̂E ϕ̂ is canonically isomorphic to

˜̂E.

Proof. Note that the OV -action on
˜̂E via pr ]V and the OC

Û
-action on

˜̂E via pr ]
Û

commute since

the image of pr ]V : OV → OÛ×V lies in the center of O
Û×V . Thus, the OV -action on

˜̂E via pr ]V
induces a Ck-admissible ϕ̂] : OV → EndO C

Û

(Ê), which defines a Ck-map

ϕ̂ : (U, ÔAzU := EndO C
Û

(Ê), Ê)→ V .
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Remark 4.1.11. [ when Û = U ]. For S = 0 the zero-OU -module, Û = U ; and all the set-
tings/objects/statements in this subsection for the super-Ck-case reduce to the corresponding
settings/objects/statements in [L-Y3: Sec. 5.1 & Sec. 5.2] (D(11.1)) for the Ck case.

The induced Ck-map ϕ : (UAz, E)→ V

By the post-composition with ˙̂ι
]

of the built-in ring-homomorphisms of the matrix super-Ck-ring

Mr×r(C
k(U)[θ1, · · · , θs]C)

˙̂ι
]

// // Mr×r(C
k(U)C) ,? _

˙̂π
]

oo

a ring-homomorphism

ϕ̂] : Ck(V ) −→ Mr×r(C
k(U)[θ1, · · · , θs]C)

induces a ring-homomorphism

ϕ] : Ck(V ) −→ Mr×r(C
k(U)C) .

It follows by construction that:

Lemma 4.1.12. [induced Ck-admissible ring-homomorphism]. If ϕ̂] is Ck-admissible,
then ϕ] is Ck-admissible as well.

In this case, the Ck-map

ϕ̂ : (ÛAz, Ê) := (Û , ÔAzU := End Ô C
U

(Ê), Ê) −→ (V,OV )

defined by ϕ̂] induces a Ck-map

ϕ : (UAz, E) := (U,OAzU := EndO C
U

(E), E) −→ (V,OV )

defined by ϕ] that fits into the following commutative diagram

ÛAz
ϕ̂ // V

UAz
?�

˙̂ι

OO

ϕ

66

,
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whose full detail is given in the commutative diagram below: (Cf. [L-Y3] (D(11.1)).)

Ê = π̂∗E

++

%%

��

ÛAz

ϕ̂

++

σϕ̂

~~~~

˙̂π

����

Ûϕ̂
fϕ̂ //

x�

˜̂ϕ

**

πϕ̂

~~~~

π̂

����

V

Û

π̂

����

Û × V

prV

<< <<

pr
Û

oooo

π̂

����

E

++

%%

��

UAz

ϕ

++

σϕ}}}}

?�

˙̂ι

OO

Uϕ
fϕ //

y�

ϕ̃

++
πϕ}}}}

?�

ι̂

OO

V

U
?�

ι̂

OO

U × V

prV

;; ;;

prU
oooo

?�

ι̂

OO

.

Further observation that Ker ˙̂ι
]

is a nilpotent bi-ideal of Mr×r(C
k(U)[θ1, · · · , θs]C) implies

then:

Lemma 4.1.13. [images differ by nilpotency]. As Ck-subschemes of V ,

(Im ϕ̂)red = (Imϕ)red .

Remark 4.1.14. [ for general E and Û ]. To make the discussion in this subsection more explicit
and notationwise simpler, we choose the complex vector bundle E over U to be trivial (and
trivialized) and the super-Ck-manifold Û to be of product type U × p̂, where p̂ is a super-point.
For general E and Û ,

O
Û

:= ÔU =
∧• S

for some locally free OU -module S associated to a vector bundle S on U of rank, say, s. Let

· E∨ be the dual complex bundle of E and
End U (E) = E ⊗ E∨ be the bundle of (complex) endomorphisms of E.

Then

· ÔU (U) = Ck(
∧• S),

· Ê(U) is canonically isomorphic to Ck(E)⊗Ck(U) C
k(
∧• S),

· ÔAzU (U) is canonically isomorphic to Ck(End U (E))⊗Ck(U) C
k(
∧• S).
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And the argument in this subsection goes through with the following replacements:

· the Ck(U)[θ1, · · · θs]-module (Ck(U)[θ1, · · · , θs]C)⊕r

=⇒ the Ck(
∧• S)-module Ck(E)⊗Ck(U) C

k(
∧• S);

· the Ck(U)[θ1, · · · , θs]-algebra Mr×r(C
k(U)[θ1, · · · θs]C)

=⇒ the Ck(
∧• S)-algebra Ck(End U (E))⊗Ck(U) C

k(
∧• S).

4.2 Differentiable maps from an Azumaya/matrix supermanifold with
a fundamental module to a real manifold

In Sec. 4.1 we see that locally the notion of a Ck-map from an Azumaya/matrix super-Ck-
manifold is fundamentally the same as the notion of a Ck-map from an Azumaya/matrix Ck-
manifold. The only difference is the ring involved, which may modify the exact presentation but
not the underlying concept. It follows that

· Gluing from local to global with respect to the topology of the (auxiliary) manifold X, all
the settings/discussions in [L-Y3: Sec. 5.3] (D(11.1)) can be adapted without work to the
current super-case.

The essential details are given in this subsection for the completeness of discussion.

4.2.1 Aspect I [fundamental]: Maps as gluing systems of ring-homomorphisms

The notion of a differentiable map

ϕ̂ : (X̂, ÔAzX := End Ô C
X

(Ê), Ê) −→ Y

from an Azumaya/matrix supermanifold with a fundamental module to a real manifold follows
from the notion of ‘morphisms between spaces’ studied in [L-Y1: Sec. 1.2 A noncommutative
space as a gluing system of rings] (D(1)).

The fundamental aspect of Ck-maps from Azumaya manifolds

Definition 4.2.1.1. [gluing system of Ck-admissible ring-homomorphisms]. Let

· (X,OX) be a Ck-manifold, with the structure sheaf OX of Ck-functions on X,

· E be a locally free OC
X -module of finite rank on X,

· X̂ be a super-Ck-manifold with the structure sheaf ÔX :=
∧• S for some locally free

OX -module S of finite rank on X,

· Ê := E ⊗OX ÔX ,

· (X̂Az, Ê) := (X̂, ÔAzX := End Ô C
X

(Ê), Ê) be an Azumaya/matrix super-Ck-manifold with a

fundamental module,

· (Y,OY ) be a Ck-manifold, with the structure sheaf OY of Ck-functions on Y .

A (contravariant) gluing system of Ck-admissible ring-homomorphisms over R ↪→ C related to
(X̂Az, Y ) consists of the following data:
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· (local charts on X̂Az) an open cover U = {Uα}α∈A on X,

· (local charts on Y ) an open cover V = {Vβ}β∈B on Y ,

· a gluing system Φ̂] of Ck-admissible ring-homomorphisms from {Ck(Vβ)}β
to {Ck(EndO C

Uα
(EUα))⊗Ck(Uα) C

k(
∧• SUα)}α over R ↪→ C, which consists of

· (specification of a target-chart for each local chart on X̂Az) a map σ : A→ B,

· (differentiable map from charts on X̂Az to charts on Y )
a Ck-admissible ring-homomorphism over R ↪→ C

φ̂ ]α,σ(α) : Ck(Vσ(α)) −→ Ck(EndO C
Uα

(EUα))⊗Ck(Uα) C
k(
∧•SUα)

for each α ∈ A

that satisfy

· (gluing/identification of maps at overlapped charts on X̂Az)
for each pair (α1, α2) ∈ A×A,

(G1) (φ̂α,σ(α1))∗(ÊUα1∩Uα2 ) is completely supported in Vσ(α1) ∩ Vσ(α2) ⊂ Vσ(α1),

(G2) recall the Ck-admissible ring-homomorphism over R ↪→ C

φ̂ ]α1α2, σ(α1)σ(α2)
: Ck(Vσ(α1) ∩ Vσ(α2)) −→ Ck(EndO C

Uα1∩Uα2

(EUα1∩Uα2
))⊗Ck(Uα1

∩Uα2
) C

k(
∧•SUα1∩Uα2

)

induced by φα1,σ(α1), then

φ̂ ]α1α2, σ(α1)σ(α2) = φ̂ ]α2α1, σ(α2)σ(α1) .

Definition 4.2.1.2. [equivalent systems]. A gluing system (U ′,V ′, Φ̂′]) is said to be a refine-
ment of another gluing system (U ,V, Φ̂]), in notation (U ′,V ′, Φ̂′]) 4 (U ,V, Φ̂]), if

· U ′ = {U ′α′}α′∈A′ is a refinement of U = {Uα}α∈A, with a map τ : A′ → A that labels
inclusions U ′α′ ↪→ Uτ(α′); similarly, V ′ = {V ′β′}β′∈B′ is a refinement of V = {Vβ}β∈B, with a
map υ : B′ → B that labels inclusions V ′β′ ↪→ Vυ(β′); the maps between the index sets A,
B, A′, and B′ satisfy the commutative diagram

A′
σ′ //

τ

��

B′

υ

��
A

σ // B .

· the Ck-admissible ring-homomorphism

φ̂′]α′, σ′(α′) : Ck(Vσ′(α′)) −→ Ck(EndO C
Uα′

(EUα′ ))⊗Ck(Uα′ )
Ck(

∧•SUα′ )
in Φ̂′] coincides with the Ck-admissible ring-homomorphism

Ck(Vσ′(α′)) −→ Ck(EndO C
Uα′

(EUα′ ))⊗Ck(Uα′ )
Ck(

∧•SUα′ )
induced by

φ̂ ]τ(α′), σ(τ(α′)) = φ̂ ]τ(α′), υ(σ′(α′)) : Ck(Vυ(σ′(α′))) −→ Ck(EndO C
U
τ(α′)

(EUτ(α′)))⊗Ck(Uτ(α′))
Ck(

∧• SUτ(α′))

in Φ̂] from the inclusions Uα′ ↪→ Uτ(α′) and Vσ′(α′) ↪→ Vυ(σ′(α′)).
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Two gluing systems (U1,V1, Φ̂
]
1) and (U2,V2, Φ̂

]
2) are said to be equivalent if they have a common

refinement.

Definition 4.2.1.3. [differentiable map as equivalence class of gluing systems]. We de-
note an equivalence class of contravariant gluing systems of Ck-admissible ring-homomorphisms
compactly as

ϕ] : OY −→ ÔAzX := End Ô C
X

(Ê) .

This defines a k-times differentiable map (i.e., Ck-map)

ϕ̂ : (X̂, ÔAzX := End Ô C
X

(Ê), Ê) −→ Y .

The Ck-admissible ring-homomorphism

φ̂ ]α,σ(α) : Ck(Vσ(α)) −→ Ck(EndO C
Uα

(EUα))⊗Ck(Uα) C
k(
∧•SUα)

renders Ck(EUα)⊗Ck(Uα)C
k(
∧• SUα) a Ck(Vσ(α))-module. Passing to germs of Ck-sections (with

respect to the topology of X), this defines a sheaf of OVσ(α)-modules, denoted by (φ̂α, σ(α))∗(ÊUα).
The following lemma/definition follows by construction:

Lemma/Definition 4.2.1.4. [push-forward ϕ̂∗(Ê) under ϕ̂]. The collection of sheaves on
local charts {(φ̂α, σ(α))∗(ÊUα)}α∈A glue to a sheaf of OY -modules on Y . It is independent of the

contravariant gluing system of Ck-admissible ring-homomorphisms over R ↪→ C that represents
ϕ̂. It is called the push-forward of Ê under ϕ̂ and is denoted by ϕ̂∗(Ê).

Lemma/Definition 4.2.1.5. [surrogate of X̂Az specified by ϕ̂]. (Cf. Definition 4.1.5.) The
collection of local surrogates Ûϕα,σ(α) of ÛAzα specified by ϕ̂α,σ(α) glue to a super-Ck-scheme over

X̂. It is independent of the contravariant gluing system of Ck-admissible ring-homomorphisms
over R ↪→ C that represents ϕ̂. It is called the surrogate of X̂Az specified by ϕ̂; in notation, X̂ϕ̂.

Readers are referred to [L-Y3: Remark 5.3.1.8] (D(11.1)), with a straightforward adaptation
to the current super-case, for three conceptually important remarks on Definition 4.2.1.3.

The equivalent affine setting

Recall that the Ck-manifolds (X,OX) and (Y,OY ) are affine Ck-schemes associated respectively
to the Ck-rings Ck(X) and Ck(Y ) in the context of Ck-algebraic geometry. Observe also that

· As an OX-module, the sheaf ÔAzX of OC
X-algebras is quasi-coherent. Explicitly, it is the

quasi-coherent sheaf on the affine Ck-scheme (X,OX) associated to the Ck(X)C-module
Ck(EndO C

X
(E))⊗Ck(X) C

k(
∧• S).

This implies that
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Lemma/Definition 4.2.1.6. [Ck-map in affine setting]. The equivalence class

ϕ̂] : OY −→ ÔAzX := End Ô C
X

(Ê)

of gluing systems of Ck-admissible ring-homomorphisms over R ↪→ C in Definition 4.2.1.3
defines a Ck-admissible ring-homomorphism, still denoted by ϕ̂],

ϕ̂] : Ck(Y ) −→ Ck(X̂Az) := Ck(EndO C
X

(E))⊗Ck(X) C
k(
∧•S)

over R ↪→ C. Conversely, any Ck-admissible ring-homomorphism ϕ̂] : Ck(Y ) → Ck(X̂Az) over
R → C defines an equivalence class ϕ̂] : OY → ÔAzX of contravariant gluing systems of Ck-

admissible ring-homomorphisms over R ↪→ C associated to (X̂Az, Y ). It follows that the notion
of a Ck-map

ϕ̂ : (X, ÔAzX := End Ô C
X

(Ê), Ê) −→ Y .

in Definition 4.2.1.3 can be equivalently defined by a Ck-admissible ring-homomorphism
ϕ̂] : Ck(Y )→ Ck(X̂Az) over R ↪→ C.

Remark 4.2.1.7. [ when X̂ = X ]. For S = 0 the zero-OX -module, X̂ = X; and all the set-
tings/objects/statements in this subsection for the super-Ck-case in the current subsection re-
duce to the corresponding settings/objects/statements in [L-Y3: Sec. 5.3.1] (D(11.1)) for the
Ck case. And hence similarly, Sec. 4.2.2, Sec. 4.2.3, Sec. 4.2.4 of the current note to [L-Y3:
Sec. 5.3.2, Sec. 5.3.3, Sec. 5.3.4] (D(11.1)).

The induced Ck-map ϕ : (XAz, E)→ Y

Continuing the notation in Definition 4.2.1.1. Let(
U = {Uα}α∈A , V = {Vβ}β∈B ,

Φ̂ ] =
(
σ : A→ B , {φ̂ ]α,σ(α) : Ck(Vσ(α))→ Ck(EndO C

Uα
(E))⊗Ck(Uα) C

k(
∧• SUα)}α∈A

) )
be a contravariant gluing system of Ck-admissible ring-homomorphisms over R ↪→ C associated
to (X̂Az, Y ). Recall the surjective ring-homomorphism

˙̂ι
]

: Ck(EndO C
Uα

(E))⊗Ck(Uα) C
k(
∧•SUα) −→ Ck(EndO C

Uα
(E))

for every α ∈ A and let
φ ]α,σ(α) := ˙̂ι ◦ φ̂ ]α,σ(α) .

Then, (
U = {Uα}α∈A , V = {Vβ}β∈B ,

Φ ] =
(
σ : A→ B , {φ ]α,σ(α) : Ck(Vσ(α))→ Ck(EndO C

Uα
(E))}α∈A

) )
becomes a contravariant gluing system of Ck-admissible ring-homomorphisms over R ↪→ C
associated to (XAz, Y ). Furthermore, if (U1,V1, Φ̂

]
1) and (U2,V2, Φ̂

]
2) are equivalent, then, so are

their associated gluing systems (U1,V1,Φ
]
1) and (U2,V2,Φ

]
2). It follows that
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Proposition 4.2.1.8. [induced Ck-map ϕ : (XAz, E) → Y ]. ϕ̂ ] : OY → ÔAzX defines an

accompanying ϕ ] : OY → OAzX through the post-composition with ˙̂ι
]

: ÔAzX → OAzX ; that is, a
commutative diagram

ÔAzX
˙̂ι
]

����

OY
ϕ̂ ]oo

ϕ ]
uu

OAzX ,

or, equivalently, a commutative diagram of Ck-maps

X̂Az
ϕ̂ // Y

XAz
?�

˙̂ι

OO

ϕ

66

,

whose full detail is given in the commutative diagram below: (Cf. Diagrams after Lemma 4.1.12.)

Ê = π̂∗E

++

%%

��

X̂Az

ϕ̂

++

σϕ̂

~~~~

˙̂π

����

X̂ϕ̂

fϕ̂ //
x�

˜̂ϕ

**

πϕ̂

}}}}

π̂

����

Y

X̂

π̂

����

X̂ × Y

prY

<< <<

pr
X̂

oooo

π̂

����

E

++

&&

��

XAz

ϕ

++

σϕ}}}}

?�

˙̂ι

OO

Xϕ
fϕ //

y�

ϕ̃

++
πϕ||||

?�

ι̂

OO

Y

X

?�

ι̂

OO

X × Y

prY

;; ;;

prX
oooo

?�

ι̂

OO

.

Since Ker ˙̂ι
]

is a nilpotent ideal sheaf of ÔAzX on X̂Az, one has

Corollary 4.2.1.9. As Ck-subschemes of Y ,

(Im ϕ̂)red = (Imϕ)red .
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4.2.2 Aspect II: The graph of a differentiable map

Similar to the studies [L-L-S-Y: Sec. 2.2] (D(2)) and [L-Y2: Sec. 2.2] (D(6)) in the algebro-
geometric setting and [L-Y3: Sec. 5.3] (D(11.1)) in the Ck-algebro-geometric/synthetic-differential-
topological setting, the graph of a differentiable map ϕ̂ : (X, ÔAzX := End Ô C

X
(Ê), Ê) → Y is a

sheaf
˜̂E ϕ̂ of OC

X̂×Y
-modules on the super-Ck-manifold X̂×Y with special properties. And ϕ̂ can

be recovered from its graph. Details are given below for the current super-synthetic-differential-
topological setting.

Graph of a differentiable map ϕ̂ : (X̂Az, Ê)→ Y

It follows from the local study in Sec. 4.1 that an equivalence class

ϕ̂] : OY −→ ÔAzX := End Ô C
X

(Ê)

of gluing systems of Ck-admissible ring-homomorphisms over R ↪→ C extends canonically to an
equivalence class

˜̂ϕ
]

: O
X̂×Y −→ ÔAzX

of gluing systems of ring-homomorphisms over R ↪→ C that defines canonically to a map

˜̂ϕ : (X, ÔAzX := End Ô C
X

(Ê), Ê) −→ X̂ × Y ,

making the following diagram commute:

(X, ÔAzX := End Ô C
X

(Ê), Ê)
˜̂ϕ //

ϕ̂ **

X̂ × Y

prY

��
Y .

Here prY : X̂ × Y → Y is the projection map to Y .

Definition 4.2.2.1. [graph of ϕ̂]. The graph of a Ck-map ϕ̂ : (X̂Az, Ê) → Y is a sheaf
˜̂E ϕ̂ of

OC
X̂×Y

-modules, defined by

˜̂E ϕ̂ := ˜̂ϕ∗(Ê) .

The following basic properties of
˜̂E ϕ̂ follow directly from the local study in Sec. 4.1:

Lemma 4.2.2.2. [basic properties of
˜̂E ϕ̂]. The graph

˜̂E ϕ̂ of ϕ̂ has the following properties:

(1)
˜̂E ϕ̂ is a Ck-admissible OC

X̂×Y
-module; its super-Ck-scheme-theoretical support Supp (

˜̂E ϕ̂)

is isomorphic to the surrogate X̂ϕ̂ of X̂Az specified by ϕ̂. In particular,
˜̂E ϕ̂ is of relative

dimension 0 over X̂

(2) There is a canonical isomorphism Ê ∼−→ pr
X̂,∗(

˜̂E) of OC
X̂

-modules. In particular,
˜̂E ϕ̂ is flat

over X̂, of relative complex length r.
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(3) There is a canonical exact sequence of OC
X̂×Y

-modules

pr∗
X̂

(Ê) −→ ˜̂E ϕ̂ −→ 0 .

(4) The ÔY -modules prY,∗(
˜̂E ϕ̂) and ϕ̂∗(Ê) are canonically isomorphic.

Lemma 4.2.2.3. [presentation of graph of ϕ̂]. Continuing the notation. The graph
˜̂E ϕ̂ of

ϕ̂ admits a presentation given by a natural isomorphism

˜̂E ϕ̂ ' pr∗
X̂

(Ê)
/(

(pr∗Y (f)− pr∗
X̂

(ϕ̂](f)) : f ∈ Ck(Y )) · pr∗
X̂

(Ê)
)
.

Remark 4.2.2.4. [presentation of
˜̂E ϕ̂ in local trivialization of Ê ].

Note that with respect to a local trivialization C⊕r ⊗R (Ck(U)⊗R C
k(
∧• SU )) of Ê and, hence,

a local trivialization

C⊕r ⊗R C
k(U × Y )⊗R C

k(
∧• SU ) ' C⊕r ⊗R (Ck(U)⊗R C

k(
∧• SU ))⊗Ck Ck(Y )) ,

where ⊗Ck is the Ck-push-out, of pr∗
X̂

(Ê) on X̂ × Y restricted to over Û ⊂ X̂, the subsheaf

(pr∗Y (f) − pr∗
X̂

(ϕ̂](f)) : f ∈ Ck(Y )) · pr∗
X̂

(Ê) in the above lemma is generated (as an OC
X̂×Y

-

module) by elements of the form

v ⊗ f − (ϕ̂](f)(v))⊗ 1 , f ∈ Ck(Y ) .

Here, v represents an r × 1 column-vector with coefficients in Ck(U)⊗R C
k(
∧• SU ).

Recovering ϕ̂ : (X̂Az, Ê)→ Y from an OC
X̂×Y

-module

Conversely, let X̂ = (X, ÔX :=
∧• S) be a super-Ck-manifold, Y be a Ck-manifold, and

˜̂E be a
sheaf of OC

X̂×Y
-modules with the following properties:

(M1) The annihilator ideal sheaf Ker (O
X̂×Y → EndO

X̂×Y
(
˜̂E)) is super-Ck-normal inO

X̂×Y ;

thus, Supp (
˜̂E) is a super-Ck-subscheme of the super-Ck-manifold X̂ × Y . Assume

that Supp (
˜̂E) is of relative dimension 0 over X̂.

(M2) The push-forward Ê := pr
X̂,∗(

˜̂E) is a locally free OC
X̂

-module of finite rank, say, r.

Then
(X, ÔAzX := End Ô C

X
(Ê), Ê)

is an Azumaya/matrix super-Ck-manifold with a fundamental module and
˜̂E defines an equiva-

lence class
ϕ̂] : OY −→ ÔAzX

of contravariant gluing systems of Ck-admissible ring-homomorphisms over R ↪→ C related to
(X̂Az, Y ) as follows:
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(1) Let Û ⊂ X̂ be an open set from an atlas of X such that prY (Supp (
˜̂E
Û

)) is contained in

an open set V ⊂ Y that lies in an atlas of Y . Here, we treat
˜̂E also as a sheaf over X̂ and

˜̂E
Û

:=
˜̂E|
Û×Y is the restriction of

˜̂E to over Û .

(2) Let f ∈ Ck(V ). Then the multiplication by pr∗Y (f) ∈ Ck(Û×V ) induces an endomorphism

˜̂αf :
˜̂E
Û
→ ˜̂E

Û
as an OC

Û×V
-module. Since Û×V ⊃ Supp (

˜̂E
Û

) and pr∗Y (f) lies in the center

of O
Û×Y ,

α̂f := pr
X̂∗(

˜̂αf )

defines in turn a Ck-endomorphism of the ÔC
U -module ÊU ; i.e. α̂f ∈ ÔAzX (U). This defines

a ring-homomorphism ϕ̂] : Ck(V )→ ÔAzX (U) over R ↪→ C, with f 7→ α̂f . By construction,
ϕ̂] is Ck-admissible.

(3) Compatibility of the system of Ck-admissible ring-homomorphisms ϕ̂] : Ck(V )→ ÔAzX (U)
over R ↪→ C with gluings follows directly from the construction.

In this way,
˜̂E defines a Ck-map ϕ̂ : (X̂Az, Ê)→ Y .

By construction, the graph
˜̂E ϕ̂ of the Ck-map ϕ̂ associated to

˜̂E is canonically isomorphic to
˜̂E . This gives an equivalence of the two notions/categories:

Ck-maps ϕ̂ : (X̂Az, Ê)→ Y ⇐⇒ OC
X̂×Y

-modules
˜̂E that satisfy (M1) and (M2)

(Figure 4-2-2-1.)

4.2.3 Aspect III: From maps to the stack of D0-branes

Aspect II of a Ck-map ϕ̂ : (X̂Az, Ê) → Y discussed in Sec. 4.2.2 brings out a third aspect of ϕ̂,
which we now explain.

An Azumaya/matrix supermanifold X̂Az as a smearing of unfixed Azumaya/matrix
points over the underlying supermanifold X̂

We shall illuminate this in three steps. First, recall the following example in complex analysis:

Example 4.2.3.1. [real contour γ in complex line C1]. ([L-Y3 : Example 5.3.3.1] (D(11.1)).)
A differentiable contour in the complex line C1 with complex coordinate z = x +

√
−1y is a

differentiable map
γ = γx +

√
−1γy : [0, 1] −→ C1 .

There is no issue about this, if γ is treated as a map between point-sets with a manifold struc-
ture: from the interval [0, 1] to the underlying real 2-space R2 of C1 with coordinates (x, y).
However, in terms of function rings, some care needs to be taken. While there is a built-in
ring-homomorphism R ↪→ C over R, there exists no ring-homomorphism C → R with 0 7→ 0
and 1 7→ 1. If follows that there is no ring-homomorphism γ] : Ck(C1)C → Ck([0, 1]), where
Ck(C1)C is the algebra of complex-valued Ck-functions on C1. To remedy this, one should first
complexify Ck([0, 1]) to

Ck([0, 1])C := Ck([0, 1])⊗R C ;
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Fourier-Mukai 
    transform

Xϕ
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Figure 4-2-2-1. The equivalence between a Ck-map ϕ̂ from an Azumaya/matrix

super-Ck-manifold with a fundamental module (X̂, ÔAz
X := End Ô C

X
(Ê), Ê) to a Ck-

manifold Y and a special kind of Fourier-Mukai transform
˜̂E ∈ Mod C(X̂ × Y ) from

X̂ to Y . Here, Mod C(X̂ × Y ) is the category of O C
X̂×Y

-modules.
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then there is a well-defined algebra-homomorphism over C

γ] : Ck(C1)C −→ Ck([0, 1])C

by the pull-back of functions via γ. Here comes the guiding question:

Q. What is the geometric meaning of the above algebraic operation?

The answer comes from an input to differential topology from algebraic geometry.
By definition, a point with function field R is an R-point while a point with function field

C is a C-point. Topologically they are the same but algebraically they are different, as already
indicated by

R ↪→ C , while C /−→ R ,

which means algebrao-geometrically, concerning the existence of a map from one to the other,

C-point −→ R-point , while R-point /−→ C-point .

By replacing Ck([0, 1]) by its complexification Ck([0, 1])C, we promote each original R-points on
[0, 1] to a C-point. In other words, we smear C-points along the interval [0, 1]. The map γ now
simply specifies a Ck [0, 1]-family of C-points on C1 by associating to each C-point on [0, 1] a
C-point on C1, which is now allowed algebro-geometrically. This concludes the example

�

Let pAz be a point with function ring isomorphic to the endomorphism algebra End C(C⊕r)
Then, recall from [L-Y3] (D(11.1)) that by exactly the same reasoning and geometric pictures as
in Example 4.2.3.1, with ( · · · )⊗RC replaced by ( · · · )⊗R End C(E) locally where E is a C-vector
space and ( · · · ) is the Ck-ring in question, one has

Azumayanized manifold (X,OX ⊗R End C(C⊕r)) ⇐⇒ the smearing of fixed pAz’s along X

general Azumaya manifold (XAz, E) ⇐⇒ a smearing of unfixed pAz’s along X

Finally, by the same reasoning but with ( · · · ) above replaced by the super-Ck-ring in question,
one has completely analogously

Azumayanized supermanifold (X, ÔX ⊗R End C(C⊕r)) ⇐⇒ the smearing of fixed pAz’s along X̂

general Azumaya supermanifold (X̂Az, Ê) ⇐⇒ a smearing of unfixed pAz’s along X̂

Remark 4.2.3.2. [ another smearing ]. Though for our purpose the above viewpoint is preferred,
there is however a second viewpoint:

· Let p̂Az be an Azumaya/matrix superpoint with function ring End C(C⊕r) ⊗R
∧•(R⊕s).

Then X̂Az can be regarded as smearing unfixed p̂Az’s along X as well.
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A Ck-map ϕ̂ : (X̂Az, Ê)→ Y as smearing D0-branes on Y along X̂

To press on along this line, we have to list two objects that are studied in algebraic geometry
and yet their counter-objects are much less known/studied in differential topology/geometry:

(1) [Quot-schemes ] Grothendieck’s Quot -scheme Quot rY ((OC
Y )⊕r) of 0-dimensional quotient

sheaves of (OC
Y )⊕r of complex-length r. This is the parameter space of differentiable maps

from the fixed Azumaya point (pAz,C⊕r) to Y ; cf. [L-Y3: Sec. 3, Lemma/Definition 5.3.1.9,
Sec. 5.3.2] (D(11.1)). In other words, it parameterizes D0-branes F on Y (where F is a
complex 0-dimensional sheaf on Y of complex length r) that is decorated with an isomor-
phism C⊕r ∼→ Ck(F) over C.

(2) [Quotient stacks ] The general linear group GLr(C) acts on Quot rY (OC
Y )⊕r) by its tauto-

logical action on the C⊕r-factor in the canonical isomorphism (OC
Y )⊕r ' OY ⊗RC⊕r. This

defines a quotient stack [Quot rY ((OC
Y )⊕r)/GLr(C)], which now parameterizes differentiable

maps ϕ from unfixed Azumaya points (pAz, E), where E is a C-vector space of rank r, to

Y . In other words, [Quot rY ((OC
Y )⊕r)/GLr(C)] is precisely the moduli stack M 0Az

f

r (Y ) of
D0-branes of complex length r on Y , realized as complex 0-dimensional sheaves on Y of
complex length r via push-forwards ϕ∗(E), from [L-Y3: Definition 5.3.1.5] (D(11.1)); cf.
Definition 4.2.1.3 and Remark 4.2.1.7.

Recall from Sec. 4.2.2 that a differentiable map ϕ̂ : (X̂Az, Ê)→ Y is completely encoded by its

graph
˜̂E ϕ̂ on X̂ × Y . Over any super-Ck-subscheme Ẑ ⊂ X̂,

˜̂E ϕ̂|Ẑ×Y is simply a flat Ẑ-family of

0-dimensional OC
Y -modules of complex length r. Despite missing the details of these parameter

“spaces”, it follows from their definition as functors or sheaves of groupoids over the category
of super-Ck-schemes, with suitable Grothendieck topology, that

Ck-maps ϕ̂ : (X̂Az, Ê)→ Y ⇐⇒ admissible maps X̂ →M 0Az
f

r (Y )

This matches perfectly with the picture of an Azumaya/matrix supermanifold (X̂Az, Ê) as a
smearing of unfixed Azumaya/matrix points pAz along X̂ since, then, a map X̂Az → Y is nothing

but an X̂-family of maps pAz → Y , which is exactly the map X̂ →M 0Az
f

r (Y ). Cf. Figure 4-2-3-1.

4.2.4 Aspect IV: From associated GLr(C)-equivariant maps

Again, we list a parallel issue in differential topology that remains to be understood:

(1) [Fibered product ] The notion of the fibered product of stratified singular spaces with a
structure sheaf and its generalization to stacks needs to be developed.

Subject to this missing detail, from the very meaning of a quotient stack, it is natural to
anticipate that any natural definition of the notion of fibered product should lift a map

X̂ −→ M 0Az
f

r (Y ) = [Quot rY ((OC
Y )⊕r)/GLr(C)]

lift to a GLr(C)-equivariant map

P
X̂
−→ Quot rY ((OC

Y )⊕r) ,
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open  strings
D0-branes

p-cycle Dp-brane

Smearing D0-branes
along a p-cycle
to get a Dp-brane

Figure 4-2-3-1. ([L-L-S-Y: Figure 3-1-1].) The original stringy operational defini-
tion of D-branes as objects in the target space(-time) Y of fundamental strings where
end-points of open-strings can and have to stay suggests that smearing D0-branes
along a (real) p-dimensional submanifold X in Y renders X a Dp-brane. Such a
smearing can be generalized to the supercase and is realized as a map from the super-
manifold X̂ (over and containing X) to the stack MD0(Y ) of D0-branes on Y . In the
figure, the Chan-Paton sheaf E that carries the index information on the end-points
of open strings is indicated by a shaded cloud.

where P
X̂

is a principal GLr(C)-bundle over X̂ from the fibered product

P
X̂

:= X̂ ×
M 0Az

f

r (Y )
Quot rY ((OC

Y )⊕r)

Conversely, any latter map should define a former map. Together with Aspect III in Sec. 4.2.3,
this gives a correspondence

Ck-maps ϕ̂ : (X̂Az, Ê)→ Y

⇐⇒ admissible GLr(C)-equivariant maps P
X̂
→ Quot rY ((OC

Y )⊕r)

4.3 Remarks on differentiable maps from a general endomorphism-ringed
super-Ck-scheme with a fundamental module to a real supermanifold

Recall the last theme ‘Remarks on general endomorphism-ringed super-Ck-schemes and differen-
tial calculus thereupon’ of Sec. 3, in which the notion of endomorphism-ringed super-Ck-schemes
with a fundamental module is introduced, which generalizes the notion of Azumaya/matrix
super-Ck-schemes with a fundamental module. Similar notion of ‘differentiable maps from an
endomorphism-ringed super-Ck-scheme with a fundamental module to a real supermanifold’ is
readily there from a generalization of the discussions in Sec. 4.1 and Sec. 4.2.

Consider the local study first. Let

· R ' Ck(Rn)/I (i.e. R a finitely generated Ck-ring) and

R̂ // Roo be a super-Ck-ring over R,

· S = Ck(V ) where V be an open set of Rn and

Ŝ // Soo be a superpolynomial ring over S.

Then
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· The push-out R ⊗Ck S of R and S exists in the category of Ck-rings with R ⊗Ck S '
Ck(Rn × V )/I and with the built-in Ck-ring-homomorphisms pr ]1 : R ↪→ R ⊗Ck S and

pr ]2 : S ↪→ R ⊗Ck S coincident with pulling back of functions via the projections pr1 and
pr2 of the product space to its factors. Here I ↪→ Ck(Rn × V ) via the canonical inclusion
Ck(Rn) ⊂ Ck(Rn × V ).

· The push-out R̂⊗sCk Ŝ of R̂ and Ŝ exists in the category of super-Ck-rings with the built-in
super-Ck-ring-homomorphisms p̂r ]1 : R̂ ↪→ R̂⊗sCk Ŝ and p̂r ]2 : Ŝ ↪→ R̂⊗sCk Ŝ.

· One has a built-in commutative diagram of morphisms

Ŝ

��

K k

p̂r]2

yy

R̂

��

� � p̂r]1 // R̂⊗sCk Ŝ

��

S

OO

K k

pr]2

xx
R

OO

� � pr]1 // R⊗Ck S

OO

.

Let

· M̂ be a finitely generated R̂C-module and

· End
R̂ C(M̂) be the R̂C-algebra of R̂C-endomorphisms of M̂ .

We assume that the built-in R̂-algebra-homomorphism R̂ → End
R̂ C(M̂) is injective. We will

denote this inclusion by π̂]. Then, the key notion in the whole setting is the following:

Definition 4.3.1. [Ck-admissible superring-homomorphism]. (Cf. [L-Y3: Definition 5.1.2]
(D(11.1)) and Definition 4.1.1 in Sec. 4.1.) A superring-homomorphism

ϕ̂] : Ŝ −→ End
R̂ C(M̂)

over R ↪→ C is said to be Ck-admissible if the arrow ϕ̂] extends to the following commutative
diagram of superring-homomorphisms

End
R̂ C(M̂) Ŝ

ϕ]oo
_�

p̂r]2
��

R̂
?�

π̂]

OO

� �

p̂r]1

// R̂⊗sCk Ŝ

˜̂ϕ
]hh

such that

· Ker (˜̂ϕ
]
) is super-Ck-normal and hence Im ˜̂ϕ

]
can be equipped with a quotient super-Ck-

ring structure from that of R̂⊗sCk Ŝ via ˜̂ϕ
]
.

· With respect to the super-Ck-ring structure on Im ˜̂ϕ
]
, ϕ̂] is a super-Ck-ring-homomorphism

as a superring-homomorphism Ŝ → Im ˜̂ϕ
]
.
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Moving on to the global study. Let X̂ := (X,OX , ÔX) be a super-Ck-scheme and F̂ be a
finitely generated quasi-coherent ÔC

X -module. We shall assume that the built-in ÔX-algebra-

homomorphism ÔX → End Ô C
X

(F̂) is injective. Consider the endomorphism-ringed super-Ck-

scheme with a fundamental module

(X̂nc, F̂) := (X̂, Ônc
X := End Ô C

X
(F̂), F̂) .

Definition 4.3.2. [differentiable map]. (Cf. [L-Y3: Definition 5.3.1.5] (D(11.1)) and Defi-
nition 4.2.1.3 in Sec. 4.2.1.) Let Ŷ be a super-Ck-manifold. A k-times differentiable map (i.e.
Ck-map)

ϕ̂ : (X̂nc, F̂) −→ Ŷ

is defined contravariantly as an equivalence class of gluing systems of Ck-admissible superring-
homomorphisms, in notation,

ϕ̂] : ÔY −→ Ônc
X ,

exactly as in Definition 4.2.1.1, Definition 4.2.1.2, and Definition 4.2.1.3 in Sec. 4.2.1.

As in [L-Y3: Sec. 5.3.1] (D(11.1)) and Sec. 4.2 for the case of Ck-maps from an Azu-
maya/matrix super-Ck-manifold to a Ck-manifold, one has the following well-defined basic
notions:

· the surrogate X̂ϕ̂ of X̂nc specified by ϕ̂,

· the push-forward ϕ̂∗F̂ of F̂ to Ŷ ,

· the graph
˜̂F ϕ̂ of ϕ̂, which is an ÔC

X×Y -module on X̂ × Ŷ .

One has now Aspect I and Aspect II for ϕ. When F̂ is in addition locally free and Ŷ = Y , one
recovers the notion of Ck-map in Sec. 4.2.1 and has in addition Aspect III and Aspect IV.

Recall the built-in inclusion ι̂ : X ↪→ X̂ and let

F := ι̂∗F̂

be the restriction of F̂ to X. Then, ϕ̂ induces a Ck-map

ϕ : (Xnc,F) := (X,Onc
X := EndO C

X
(F),F) −→ Y
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with a built-in commutative diagrams of morphisms

F̂

++

%%

��

X̂nc

ϕ̂

++

σϕ̂

~~~~

˙̂π

����

X̂ϕ̂

fϕ̂ //
x�

˜̂ϕ

**

πϕ̂

}}}}

π̂

����

Ŷ

π̂

����

X̂

π̂

����

X̂ × Ŷ

pr
Ŷ

<< <<

pr
X̂

oooo

π̂

����

F := ι̂∗F̂

++

&&

��

Xnc

ϕ

++

σϕ||||

?�

˙̂ι

OO

Xϕ
fϕ //

y�

ϕ̃

++
πϕ||||

?�

ι̂

OO

Y
?�

ι̂

OO

X
?�

ι̂

OO

X × Y

prY

;; ;;

prX
oooo

?�

ι̂

OO

.

as in Proposition 4.2.1.8.

5 A glimpse of super D-branes, as dynamical objects, and the
Higgs mechanism in the current setting

We give in this section a glimpse of super D-branes, as dynamical objects in string theory, and
the Higgs mechanism on D-branes in the current setting. It serves to give readers a taste of
applications to string theory and a bridge to sequels of the current note.

5.1 Fermionic D-branes as fundamental/dynamical objects in string theory

There are two versions of fermionic (fundamental, either open or closed) strings:

(1) Ramond-Neveu-Schwarz (RNS) fermionic string, for which world-sheet spinors are mani-
festly involved ([N-S] of André Neveu and John Schwarz and [Ra] of Pierre Ramond);

(2) Green-Schwarz (GS) fermionic string, for which space-time spinors are manifestly involved
([G-S] of Michael Green and John Schwarz).

Mathematicians are referred particularly to [G-S-W: Chap. 4 & Chap. 5] of Green, Schwarz,
and Witten for thorough explanations. Once having the notion of differentiable maps from
Azumaya/matrix manifold to a real manifold ([L-Y3] (D(11.1))) and its super-extension (Sec. 4.2
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of the current note), it takes no additional work to give a prototypical definition of fermionic
D-branes in the style of either Ramond-Neveu-Schwarz or Green-Schwarz fermionic string once
one understands the meaning of such fermionic strings from the viewpoint of Grothendieck’s
Algebraic Geometry.

Ramond-Neveu-Schwarz fermionic string and Green-Schwarz fermionic string
from the viewpoint of Grothendieck’s Algebraic Geometry

This discussion in this theme follows [G-S-W: Chap. 4 & Chap. 5] (with possibly some mild
change of notations to be compatible with the current note) and [Ha: Chap. II]. Let M(d−1)+1

be the d-dimensional Minkowski space-time with coordinates y := (yµ)µ = (y0, y1, · · · , yd−1)
and Σ ' R1 × S1 or R1 × [0, 2π] be a string world-sheet with coordinates σ := (σ0, σ1).

(a) Ramond-Neveu-Schwarz (RNS) fermionic string

In this setting, there are both bosonic (world-sheet scalar) fields yµ(σ) and fermionic (world-
sheet spinor) fields ψµ(σ) on the string world-sheet Σ for µ = 0, 1, · · · , d − 1. The former
collectively describe a map f : Σ→M(d−1)+1 and the latter as its superpartner.

Consider the supermanifold Σ̂ that have the same topology as Σ but with additional Grass-
mann coordinates θ := (θA)A = (θ1, θ2) forming 2-component Majorana spinor on Σ. Then,
after adding auxiliary (nondynamical) fields Bµ(σ) to the world-sheet, these fields on Σ can be
grouped to superfields:(Cf. [G-S-W: Sec. 4.1.2; Eq. (4.1.16)].)

Y µ(σ) = yµ(σ) + θ̄ψµ(σ) +
1

2
θ̄θ Bµ(σ) .

From the viewpoint of Grothendieck’s Algebraic Geometry, a map f̂ : Σ̂ → M(d−1)+1 is
specified contravariantly by a homomorphism

f̂ ] : C∞(M(d−1)+1) −→ C∞(Σ̂)

yµ 7−→ f̂ ](yµ)

of the function rings in question. Since C∞(Σ̂) = C∞(Σ)[θ1, θ2] a superpolynomial ring over
C∞(Σ), f̂ ](yµ) must be of the form

f̂ ](yµ) = fµ(σ) + θ̄ψµ(σ) +
1

2
θ̄θ Bµ(σ) ,

which is exactly the previous quoted expression [G-S-W: Eq. (4.1.16)]. In conclusion,

· A Ramond-Neveu-Schwarz fermionic string moving in a Minkowski space-time M(d−1)+1

as studied in [G-S-W: Chap. 4] can be described by a map f̂ : Σ̂→ M(d−1)+1 in the sense
of Grothendieck’s Algebraic Geometry.

(b) Green-Schwarz (GS) fermionic string

In this setting, in addition to the ordinary bosonic (world-sheet scalar) fields yµ(σ), µ =
0, 1, · · · , d− 1, on Σ that collectively describe a map f : Σ → M(d−1)+1, there are also a set of
world-sheet scalar yet mutually anticommuting fields θAa(σ), A = 1, · · · , N and a = 1, · · · , s,
on Σ. Here s is the dimension of a spinor representation of the Lorentz group SO (d − 1, 1) of
the target Minkowski space-time M(d−1)+1.

Differential geometrically intuitively, one would think of these (world-sheet scalar) fields on
Σ collectively as follows:
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· Let M̂(d−1)+1 be a superspace with coordinates the original coordinates y := (yµ)µ of
M(d−1)+1 and additional anticommuting coordinates θAa, A = 1, · · · , N and a = 1, · · · , s,
such that each tuple (θA1, · · · , θAs), A = 1, · · · , N , is in a spinor representation of
the Lorentz group SO (d − 1, 1), the symmetry of the space-time M(d−1)+1 . Note that
M̂(d−1)+1 ' Rd|Ns as supermanifolds.

· The collection (yµ(σ), θAa(σ))µ,A,a of (world-sheet scalar) fields on Σ describe collectively

a map f̂ : Σ → M̂(d−1)+1. In other words, a Green-Schwarz fermionic string moving
in M(d−1)+1 is described by a map from an ordinary world-sheet to a super-Minkowski
space-time.

However, algebraic geometrically some revision to this naive differential geometric picture has
to be made.

· One would like a contravariant equivalence between spaces and their function ring:

f̂ : Σ −→ M̂(d−1)+1

with
f̂ ] : C∞(M(d−1)+1)[θAa : 1 ≤ A ≤ N, 1 ≤ a ≤ s] −→ C∞(Σ)

yµ 7−→ yµ(σ)

θAa 7−→ ? .

Here, C∞(M(d−1)+1)[θAa : 1 ≤ A ≤ N, 1 ≤ a ≤ s] is the superpolynomial ring over the
C∞-ring C∞(M(d−1)+1) with anticummuting generators in {θAa}A,a.

· The natural candidate for f̂(θAa) is certainly the world-sheet scalar field θAa(σ) regarded
as an element in the function-ring of Σ. However, the anticommuting nature of fields θAa,
1 ≤ A ≤ N and 1 ≤ a ≤ s, among themselves forbids them to lie in C∞(Σ).

· The way out of this from the viewpoint of Grothendieck’s Algebraic Geometry is to extend
the world-sheet Σ also to a superworld-sheet Σ̂ with the function ring the superpolynomial
ring C∞(Σ)[θ′Aa : 1 ≤ A ≤ N, 1 ≤ a ≤ s].

· One now has a well-defined super-C∞-ring-homomorphism

f̂ ] : C∞(M(d−1)+1)[ θAa : A, a ] −→ C∞(Σ)[ θ′Aa : A, a ]

yµ 7−→ yµ(σ)

θAa 7−→ θAa(σ) .

· Furthermore, since all the fields θAa(σ) are dynamical, in comparison with the setting for
the RNS fermionic string, it is reasonable to require in addition that

f̂ ](θAa) = θAa(σ) ∈ Span C∞(Σ){ θ′Aa |A, a } .

In conclusion,

· Assuming the notation from the above discussion. A Green-Schwarz fermionic string mov-
ing in a Minkowski space-time M(d−1)+1 as studied in [G-S-W: Chap. 5] can be described
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in the sense of Grothendieck’s Algebraic Geometry by a map f̂ : Σ̂→ M̂(d−1)+1, defined by
a super-C∞-ring-homomorphism

f̂ ] : C∞(M(d−1)+1)[ θAa : A, a ] −→ C∞(Σ)[ θ′Aa : A, a ]

yµ 7−→ yµ(σ)

θAa 7−→ θAa(σ)

such that
f̂ ](θAa) = θAa(σ) ∈ Span C∞(Σ){ θ′Aa |A, a } .

Fermionic D-branes as dynamical objects à la RNS or GS fermionic strings

Terminology 5.1.1. [ Azumaya/matrix super-Ck-manifold associated to (S, E) ]. Let X be a Ck-
manifold, S be a locally free OX -module of finite rank, and S be a locally free OC

X -module of
finite rank. For convenience, introduce the following terminologies:

· X̂ := (X, ÔX :=
∧• S) be the supermanifold generated by S on X, denote Ê := E⊗OX ÔX ,

· XAz := (X,OAzX := EndO C
X

(E)) be the Azumaya/matrix manifold associated to E on X,

X̂Az := (X̂, ÔAzX := End Ô C
X

(Ê) ' OAzX ⊗OX ÔX) be the Azumaya/matrix supermanifold

specified by the pair (S, E) on X, (and Ê is the fundamental module of X̂Az).

Definition-Prototype 5.1.2. [fermionic D-branes à la a RNS fermionic string]. Let

· Y be a Ck-manifold (e.g. a space-time with a Lorentzian metric, or a Euclidean space-time
from Wick rotation, or a Riemannian internal space in a compactification of superstring
theory background).

Then, a fermionic D-brane in Y in the style of a Ramond-Neveu-Schwarz fermionic string
consists of the following data:

(X, S, E , ϕ̂ : (X̂Az, Ê)→ Y ) ,

where

· X is a Ck-manifold (with a Riemannian or Lorentzian structure, depending on the context),

· S is a (finite) direct sum of sheaves of spinors on X,

· E is a locally free OC
X -module of some finite rank r,

· (X̂Az, Ê) is the Azumaya/matrix super-Ck-manifold with a fundamental module specified
by (S, E) on X and ϕ̂ : (X̂Az, Ê) → Y is a Ck-map from (X̂Az, Ê) to Y , as defined in
Definition 4.2.1.3.

Definition-Prototype 5.1.3. [fermionic D-branes à la a GS fermionic string]. Let

· Y be a Ck-manifold (e.g. a space-time with a Lorentzian metric, or a Euclidean space-time
from Wick rotation, or a Riemannian internal space in a compactification of superstring
theory background),
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· SY be a (finite) direct sum of sheaves of spinors on Y ,

· Ŷ := (Y, ÔY :=
∧• SY ) be the super-Ck-manifold generated by SY on Y .

Then, a fermionic D-brane in Y in the style of a Green-Schwarz fermionic string consists of the
following data:

(X, S, E , ϕ̂ : (X̂Az, Ê)→ Ŷ ) ,

where

· X is a Ck-manifold (with a Riemannian or Lorentzian structure, depending on the context),

· S is a locally free OX -module of the same rank as that of the OY -module SY ,

· E is a locally free OC
X -module of some finite rank r,

· (X̂Az, Ê) is the Azumaya/matrix super-Ck-manifold with a fundamental module specified
by (S, E) on X and ϕ̂ : (X̂Az, Ê) → Ŷ is a Ck-map from (X̂Az, Ê) to Ŷ , as defined in
Definition 4.3.2, such that

ϕ](SY ) ⊂ OAzX ⊗OX S .

Remark 5.1.4. [ action functional for fermionic D-brane ]. The supersymmetric action functional
of either type of fermionic D-branes in the above prototypical definitions remains to be worked
out and understood. Cf. Sec. 6.

5.2 The Higgs mechanism on D-branes vs. deformations of maps from a
matrix brane

Throughout the series of works in this project, we have in a few occasions brought out the term
‘Higgsing/un-Higgsing’ of D-branes in the study of deformations of maps/morphisms from an
Azumaya/matrix scheme or manifold with a fundamental module; cf. [L-Y1: Sec. 2.2] and [L-Y2:
Example 2.3.2.11]. In particlular, recall Figure 5-2-0-1. A closer look at the link of the two
can now be made.

5.2.1 The Higgs mechanism in the Glashow-Weinberg-Salam model

To manifest the parallel setting in our situation, we highlight in this subsubsection the relevant
classical part of the Higgs mechanism in the Glashow-Weinberg-Salam model for leptons (here,
electron and muon and their corresponding neutrinos) that breaks the gauge symmetry from
SU(2)×U(1)Y (the gauge symmetry for the electroweak interaction) to U(1)em (the gauge sym-
metry for the electromagnetic interaction). Here, both U(1)Y and U(1)em are isomorphic to the
U(1) group; the different labels Y and em indicates that U(1)em is a subgroup of SU(2)×U(1)Y
that is different from the factor U(1)Y in the product. em here stands for ‘electromagnetic’.
Mathematicians are referred to [P-S: Sec. 20.2] and also [I-Z: Sec. 12.6], [Mo: Chap. 3], [Ry:
Sec. 8.5] for a complete discussion that takes care also of quantum-field-theoretical issues such
as renormalizability of and anomalies in the theory.
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D0-brane of rank r

M      (   ) NC cloudr   r

r

ϕ 1
ϕ 2 ϕ 3

ϕ 2

un-Higgsing

Higgsing

n

Figure 5-2-0-1. (Cf. [L-Y2: Figure 2-1-1] (D(6)).) Readers are referred to [L-Y3:
Figure 3-4-1, caption] (D(11.1)) for explanations.
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The Lagrangian density of the Glashow-Weinberg-Salam model

This is a 4-dimensional quantum field theory on the Minkowski space-time M3+1 (with coordi-
nates x := (xµ)µ=0,1,2,3), whose Lagrangian density is given by

L = Lfermion + Lgauge + LHiggs + LYukawa ,

where

· Lfermion = ĒL(i /D)EL + ēR(i /D)eR + Q̄L(i /D)QL + ūR(i /D)uR + d̄R(i /D)dR,

· Lgauge = − 1
4FµνF

µν ,

· LHiggs = (Dµφ)†(Dµφ) + µ2φ†φ− λ(φ†φ)2,

· LYukawa = −λeĒL · φeR − λdQ̄L · φdR − λuεabQ̄Laφ†buR + (hermition conjugates)

consists of the cubic interaction terms that are linear in Higgs-field components and
quadratic in other matter-field components.

The part in this expression that is most relevant to us is explained/reviewed below: (Assuming
up-down-repeated-dummy-index summation convention.)

(1) The Lie algebra su (2) takes the basis {τ1, τ2, τ3} from Pauli matrices σ1, σ2, σ3 with

τ1 =
1

2
σ1 =

1

2

[
0 1

1 0

]
, τ2 =

1

2
σ2 =

1

2

[
0 −i
i 0

]
, τ3 =

1

2
σ3 =

1

2

[
1 0

0 −1

]
;

A = Aaµ(x)τadx
µ is the su (2) gauge field in the adjoint representation of su (2), B =

Bµ(x)dxµ is the U(1)Y gauge field, F = Fµν(x)dxµ∧dxν the field strength (i.e. curvature)
of the su (2)⊕ u(1)Y -valued 1-form field A⊕B.

(2) The su (2) ⊕ u(1)Y representation-theoretical contents of all the fields in the model are
given by the following table:

field in su (2)-rep su (2)⊕ u(1)Y
components representation name

gauge fields

Aµ =

A1
µ

A2
µ

A3
µ

 (3, 0)
gauge boson

gauge boson

gauge boson

Bµ (1,0) gauge boson

matter fields

EL =
(
νeL
eL

)
(2,−1

2)
neutrino (left-handed)

electron (left-handed)

QL =
(
uL
dL

)
(2, 1

6)
quark (left-handed)

quark (left-handed)

eR (1,−1) electron (right-handed)

uR (1, 2
3) quark (right-handed)

dR (1,−1
3) quark (right-handed)

Higgs fields

φ =
(
φ+

φ0

)
(2, 1

2) Higgs field
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In the above table, matter fields νeL, e
−
L , uL, dL (resp. eR, uR, dR) are described by left-

handed (resp. right-handed) Weyl spinor fields on M3+1.

· For a field ψ belonging to a representation T of su (2) with u(1)Y charge Y , the covariant
derivative Dµψ of ψ is given by

Dµψ = (∂µ − igAaµTa − ig′Y Bµ)ψ .

For example, for the complex 2-component Higgs field φ,

Dµφ =

(
∂µ − igAaµ(x)τa −

i

2
g′Bµ(x)

)
φ .

Similarly, for the covariant derivative of EL, QL, eR, uR, dR.

· g, g′, µ2, λ, and λe, λd, λu in L are real-valued coupling constants of the model.

· Lfermion as given is the standard gauge-invariant Lagrangian density without a potential
for massless fermions.

Formally and classically, one has massless fermions (νeL, eL, uL, dL, eR, uR, dR), massless gauge
bosons (Aaµ, Bµ), and tachyonic Higgs bosons (φ+, φ0) to begin with.

Remark 5.2.1.1. [ quark and strong interaction ]. The above model contains quarks uL, uR,
dL, dR. However, only their involvement with the electroweak interaction is considered. The
Standard Model, which takes into account also the strong interaction, enlarges the gauge group
from the current SU(2) × U(1)Y to SU(2)L × U(1)Y × SU(3)c. On the other hand, as long as
the purpose of comparison to Higgs mechanism on D-branes in our setting is concerned, one can
remove all the quarks in the model and consider only the truncated theory

L′ = L′fermion + Lgauge + LHiggs + L′Yukawa
= ĒL(i /D)EL + ēR(i /D)eR − 1

4FµνF
µν

+(Dµφ)†(Dµφ) + µ2φ†φ− λ(φ†φ)2 − λeĒL · φeR + (hermition conjugates) .

Spontaneous gauge-symmetry breaking from a spontaneous settling-down to
a vacuum of the Higgs field

The vacuum manifold for the Higgs field φ is given by the locus in the φ-space ' C2 on which
the potential V (φ) takes its minimum:

{(z1, z2) | |z1|2 + |z2|2 = µ2/(2λ)} ⊂ C2 .

Let
v =

√
µ2/λ > 0 .

Then, up to a gauge transformation, we may assume that the Higgs field “condenses” to (i.e. takes
its value only at) the vacuum expectation value (VEV) (0, v/

√
2). This reduces the gauge group

from the original SU(2)×U(1)Y to the subgroup Stab ((0, v/
√

2)) (the stabilizer or isotropy group
of (0, v/

√
2)) consisting of all elements of SU(2)× U(1)Y that leave (0, v/

√
2) fixed. Or equiva-

lently in terms of Lie algebras, it reduces su (2)⊕u(1) to the sub-Lie algebra Ann ((0, v/
√

2)) (the
annihilator of (0, v/

√
2)) consisting of all elements in su (2)⊕ u(1)Y that annihilate (0, v/

√
2):

u(1)em := { (c1τ1 + c2τ2 + c3τ3, c
4) | c1 = c2 = 0, c3 = c4 } ⊂ su (2)⊕ u(1)Y .
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The original model L descends to a new quantum field theory on fields that fluctuate around
the Higgs vacuum (0, v/

√
2) (a procedure that influences only the Higgs field in the current

model) and in terms of the induced representations of the residual u(1)em (a procedure that
reorganizes and may regroup and influence all the fields in the model):

(1) A general Higgs field φ around the VEV 1√
2

(
0
v

)
can be expressed as

φ(x) = U(x)
1√
2

(
0

v + h(x)

)
under a gauge transformation U(x) with value in SU(2) × U(1)Y , where h(x) is a real-
valued scalar field on M3+1 with 〈h(x)〉 = 0. Thus, the only physical degree of freedom
from φ after gauge-symmetry breaking is h.

(2) The u(1)em representation-theoretical contents of all the fields around vacuum in the model
after the symmetry breaking are given by the following table. Each is specified by its
u(1)em-charge.

field in u(1)em-rep u(1)em-charge name

(u(1)em) gauge field

Aemµ := 1√
g2+g′2

(g′A3
µ + gBµ) 0 gauge boson

massive vector fields

W+
µ := 1√

2
(A1

µ − iA2
µ) 1 vector boson

W−µ := 1√
2
(A1

µ + iA2
µ) −1 vector boson

Z0
µ := 1√

g2+g′2
(gA3

µ − g′Bµ) 0 vector boson

matter fields

EL =
(
νeL
eL

)
0
−1

neutrino (left-handed)

electron (left-handed)

QL =
(
uL
dL

)
2/3

−1/3

quark (left-handed)

quark (left-handed)

eR −1 electron (right-handed)

uR 2/3 quark (right-handed)

dR −1/3 quark (right-handed)

Higgs field

h 0 Higgs field

Note in particular that the u(1)em-charge of both Weyl spinors eL and eR on M3+1 is
−1, reaffirming that they correspond to electrons of different chiralities moving in the
Minkowski space-time. Note also that all quarks have fractional u(1)em-charge.

This gives the full field contents of the model after the gauge-symmetry breaking in terms of
representations of the U(1)em symmetry left.
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Mass generation to fermions and gauge bosons after the symmetry breaking

Rewrite the Lagrangian density L now in terms of fields after the gauge-symmetry breaking.
Then, up to an overall constant,

LHiggs = 1
2(∂µh)2 − µ2h2 + g2v2

4 W−µ W
+
µ + (g2+g′2)v2

4 (Z0
µ)2

+ ( higher order terms in h, W−µ , W+
µ , Z0

µ )

LYukawa = −λev√
2
ĒL · eR − λdv√

2
Q̄L · dR − λuv√

2
ūLuR

+ ( higher order terms and hermition conjugates ) .

Note that the kinetic terms for h in LHiggs, W
−
µ , W+

µ , Z0
µ in Lgauge, eL, eR, dL, dR, uL, uR in

Lfermion are all in the standard form. It follows that classically the mass of particles associated
to h, W−µ , W+

µ , Z0
µ (resp. eL, eR, dL, dR, uL, uR) are read off from LHiggs (resp. LYukawa) as

mh =
√

2µ , mW−µ
= mW+

µ
=

gv

2
, mZ0

µ
=

√
g2 + g′2v

2
,

meL = meR =
λev√

2
, mdL = mdR =

λdv√
2
, muL = muR =

λuv√
2
.

To recap in words,

(1) Before gauge-symmetry breaking, LHiggs is the only part in L that contains quartic terms
that are quadratic in gauge fields and quadratic in Higgs field. After gauge-symmetry
breaking, such terms create a mass term for the gauge fields that correspond to broken
gauge symmetry, rendering them massive vector bosons in the symmetry-broken theory.

(2) Before gauge-symmetry breaking, LYukawa is the only part in L that contains cubic terms
that are quadratic in fermionic fields and linear in Higgs fields. After gauge-symmetry
breaking, such terms create a mass term for the fermionic fields, rendering them massive
fermions in the symmetry-broken theory.

Remark 5.2.1.2. [ mathematical reflection : principal bundle, representation, associated bundle,
reduction of gauge group, induced representation ]. In mathematical terms, let

· PLorentz be the principle Lorentz-frame bundle (with group SO (3, 1) and trivialized by the
flat Levi-Civita connection associated to the space-time metric) over M3+1,

· PG be a principle G-bundle (trivial in the above case) with group G = SU(2)× U(1)Y .

The various tensor products of irreducible representations VρL of SO (3, 1) and irreducible rep-
resentations VρG of G give rise to various associated vector bundles EρL⊗ρG of the SO (3, 1)×G-
principle bundle PLorentz ×M3+1 PG whose sections corresponds to various fields ψρL⊗ρG on the

space-time M3+1. ρL determines the spin (e.g. bosons vs. fermions) of ψρL⊗ρG while ρG dis-
tinguishes other particle features (e.g. electrons vs. quarks). A choice of a collection of such
representations and a choice of a gauge invariant Lagrangian density L for the fields correspond-
ing to these representations together give a model of particle physics.

When some of the fields take their VEV, the gauge group is reduced to the stabilizer subgroup
H ⊂ G of the VEV and a principal subbundle PH ⊂ PG (and hence PLorentz ×M3+1 PH ⊂
PLorentz×M3+1 PG) is selected. Original fields expanding around VEV assume naturally induced
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representations from G to its subgroup H. Re-writing L in terms of fields corresponding to these
induced representations gives the classical picture of the Higgs mechanism.

Mathematicians should be aware that this is the easy part. It is the contents at the quan-
tum level that take works. And for the Glashow-Weinberg-Salam model, such quantum-field-
theoretical conclusions are experimentally justified, up to possibly higher order corrections.

5.2.2 The Higgs mechanism on the matrix brane world-volume

While the full detail of the Higgs mechanism that fits our setting can be produced only after the
action functional for differentiable maps from a matrix brane with fields is introduced, the basic
structure that initiates the mechanism and the associated gauge-symmetry-breaking pattern are
readily there in the setting. Indeed, the following two steps

(1) Recall Remark 5.2.1.2 and consider the associated Lie-algebra bundle EG of PG from the
Adjoint representation G on its Lie algebra G. Note that all G-modules are naturally
G-modules from the induced endomorphisms.

(2) Promote the Lie algebra G to a (unital) associative algebra A, the Lie-algebra bundle EG

to an associative-algebra bundle EA and all G-modules to A-modules; and do the same
reduction procedure as in Sec. 5.2.1, with the sub-Lie algebra of G specified by a VEV
replaced by an appropriate subalgebra of A.

give the essential formal classical picture of the Higgs mechanism on D-branes in our setting.
(And this is why we call it Higgs mechanism in our setting after all.) We now explain the details,
assuming that an unspecified action functional for D-branes in our setting with fields thereupon
is given (cf. Sec. 6).

Candidates for the Higgs fields

There are two classes of fields on a matrix brane that can serve as the Higgs fields:

(1) Differentiable maps from the matrix brane to the target space(-time).

This can be traced back to the origin of this project ([L-Y1] (D(1))). Coincident D-branes
in the space-time exhibit, in addition to enhanced gauge symmetries, an enhanced matrix-
valued scalar field on the D-brane world-volume that describes the deformations of the
D-branes collectively. Cf. [Po2: vol. I, Sec. 8.7] of Joseph Polchinski.

(2) Differentiable sections on the fundamental bundle E or its dual E∨.

Such fields can occur when a dynamical D-brane is immersed in a non-dynamical back-
ground D-brane in the space-time, in the same spirit as [Do-G: Sec. 5] of Michael Douglas
and Gregory Moore. Cf. Figure 1-2 and its caption.

Remark 5.2.2.1. [ soft lower-dimensional D-branes in a hard higher-dimensional D-brane ]. Re-
call that the tension Tp of a Dp-brane in a target-space-time of a superstring is given by

Tp = 2π

(
T

2π

) p+1
2

,

where T is the tension of the superstring. Thus, in the regime of the superstring theory
where T � 2π, higher-dimensional D-branes would have much larger tension than the lower-
dimensional ones and it makes sense to consider a soft/dynamical D-branes immersed in a
hard/background D-branes.
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Remark 5.2.2.2. [ comparison with Glashow-Weinberg-Salam model ]. If the Glashow-Weinberg-
Salam model is realized as a gauge theory on the world-volume of coincident D3-branes, then
the Higgs field φ in the model would correspond to a section of the Chan-Paton bundle E.

Reduction induced by a VEV of Higgs field: Transverse fluctuations and the new
field contents

The notion of ‘reduction’ induced by a VEV of Higgs field:

· a ‘transverse fluctuation’ of a Higgs field around its vacuum expectation value (VEV) and
the resulting ‘new field contents’ under the “induced symmetry-breaking’ from the VEV of
the Higgs field

are naturally built into the setting as follows.

Case (a): Differentiable map from the brane world-volume as Higgs field

Let ϕ0 : (XAz, E)→ Y be a Ck-map defined by a Ck-admissible ϕ]0 : OY → OAzX , and

OAzX = EndO C
X

(E)

Aϕ0 := OX〈Imϕ]0〉
?�

OO

OY
ϕ]0oo

OX
?�

OO

be the underlying diagram. Let C(Aϕ0) be the commutant sheaf of Aϕ0 in OAzX , defined by

C(Aϕ0)(U) := {a ∈ OAzX (U) | [a, a′] = 0 for all a′ ∈ Aϕ0(U)}

for open sets U of X. Here, [a, a′] := aa′−a′a. Then, C(Aϕ0) is an OC
X -subalgebra of OAzX , which

contains Aϕ0 since Aϕ0 is commutative.
Consider

· the class of Ck-maps ϕ : (XAz, E)→ Y with the constraint that Imϕ] ⊂ C(Aϕ0).

A Ck-map ϕ in this class has the property that Aϕ ⊂ C(Aϕ0) as well. It follows that such
ϕ] : OY → OAzX induces an equivalence class of gluing systems of ring-homomorphisms

ϕ] : OY −→ C(Aϕ0)

and, equivalently, ϕ induces a map

ϕ : (X, C(Aϕ0)) −→ Y .

By construction, ϕ factors through ϕ as indicated in the following commutative diagram:

(X,OAzX , E)

����

ϕ // Y

(X, C(Aϕ0), E)

ϕ

66

,

where
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· (X, C(Aϕ0)) is a noncommutative space with the underlying topology X and the structure
sheaf C(Aϕ0);

· E is now regarded as the C(Aϕ0)-module via the built-in inclusion C(Aϕ0) ⊂ OAzX ;

· the surjection (X,OAzX )→ (X, C(Aϕ0)) is defined by the built-in inclusion C(Aϕ0) ↪→ OAzX .

Note that, also by construction,

· ϕ and ϕ have identical surrogates, i.e., Xϕ = Xϕ, and identical Ck-maps fϕ : Xϕ → Y
and fϕ : Xϕ → Y under the above identification of surrogates.

With Sec. 5.2.1 in mind, it is natural to interpret such ϕ as a transverse fluctuation of Higgs
field around ϕ0 in the current case. Moreover,

· Note that C(Aϕ0) is an OC
X-subalgebra of OAzX of lower rank as OC

X-modules. It is in this
sense that ϕ0 “breaks the original symmetry” in the current context.

All OAzX -modules can be regarded also as C(Aϕ0)-modules naturally.
As for the generation of masses by ϕ0, as long as there are terms LYukawa and LHiggs in the

action functional for fields on XAz that are parallel to like terms of the same notation in the
Glashow-Weinberg-Salam model in Sec. 5.2.1, ϕ0 would play such role.

Case (b): Section of fundamental module as Higgs field

Let ξ0 be a nowhere-zero Ck-section of E. Since fiberwise the Aut (E)-orbit of ξ0 is open in E,
there is no transverse fluctuation of the Higgs field in the current case. (However, see Remark
5.2.2.3.) Nevertheless, ξ0, regarded now as the VEV of the Higgs field in the current case,
remains to have effect both on symmetry-breaking and on generation of masses, as we now
explain.

Define the null-sheaf N (ξ0) of ξ0 in OAzX to be the sheaf on X defined by

N (ξ0)(U) :=
{
a ∈ OAzX (U) | a · ξ0|U = 0

}
for open sets U of X. Then, N (ξ0) is an OC

X -module that is multiplicatively closed. But it is
not an OC

X -algebra since it has no unit element for the multiplication. To remedy this, consider

N+(ξ0) := N (ξ0) +OC
X ⊂ OAzX

This is now an OC
X -subalgebra of OAzX . Note that N (ξ0) ∩ OC

X = 0 in OAzX ; thus, N+(ξ0) '
N (ξ0)⊕OC

X .
Consider

· the class of Ck-maps ϕ : (XAz, E)→ Y with the constraint that Imϕ] ⊂ N+(ξ0).

A Ck-map ϕ in this class has the property that Aϕ ⊂ N+(ξ0) as well. It follows that such
ϕ] : OY → OAzX induces an equivalence class of gluing systems of ring-homomorphisms

ϕ] : OY −→ N+(ξ0)

and, equivalently, ϕ induces a map

ϕ : (X,N+(ξ0)) −→ Y .

By construction, ϕ factors through ϕ as indicated in the following commutative diagram:

(X,OAzX , E)

����

ϕ // Y

(X,N+(ξ0), E)

ϕ

66

,

where

59



· (X,N+(ξ0)) is a noncommutative space with the underlying topology X and the structure
sheaf N+(ξ0);

· E is now regarded as the N+(ξ0)-module via the built-in inclusion N+(ξ0) ⊂ OAzX ;

· the surjection (X,OAzX )→ (X,N+(ξ0)) is defined by the built-in inclusion N+(ξ0) ↪→ OAzX .

Note that, also by construction,

· ϕ and ϕ have identical surrogates, i.e., Xϕ = Xϕ, and identical Ck-maps fϕ : Xϕ → Y
and fϕ : Xϕ → Y under the above identification of surrogates.

On the other hand,

· Since ξ0 is nowhere-zero, N+(ξ0) is an OC
X-subalgebra of OAzX of lower rank as OC

X-modules.
It is in this sense that ξ0 “breaks the original symmetry” in the current context.

As for the generation of masses by ξ0, the situation is the same as in the previous case: as
long as there are terms LYukawa and LHiggs in the action functional for fields on XAz that are
parallel to like terms of the same notation in the Glashow-Weinberg-Salam model in Sec. 5.2.1,
such role of ξ0 remain intact.

Remark 5.2.2.3. [ reduction of structure group from GL(r,C) to U(r) ]. The notion of ‘transverse
fluctuation’ of the Higgs field in the current Case (b) will be postponed to the future. It is
better addressed after a Hermitian metric on the Chan-Paton bundle E is introduced and the
details of the reduction Mr×r(C) ⇒ GL(n,C) ⇒ U(r) in line with our setting are understood.
Cf. Remark 1.1.

The following toy model of a dynamical Azumaya/matrix brane with fermions illustrates the
further issue of the generation of masses from the VEV of a Higgs field. It is a modification
(by a potential) of a truncated and simplified version of an action functional motivated by
Matrix Theory in the sense of Thomas Banks, Willy Fischler, Stephen Shenker, and Leonard
Susskind [B-F-S-S]. See, for example, [T-vR1], [T-vR2], [T-vR3] for some related study in curved
space-time.

Example 5.2.2.4. [Higgs mechanism on Azumaya/matrix brane with fermion]. Let

· X = R1 be the real line as a C∞-manifold with coordinate t, and
OX := OR1 be the structure sheaf of C∞-functions on R1;

· E ' OR1 ⊗R C⊕r be a free OC
R1-module of rank r; for concreteness, we assume that E is

trivialized;

· (XAz, E) := (R1,Az, E) := (R1,OAzR1 := EndO C
R1

(E), E) be an Azumaya/matrix real line with

a fundamental module and

· Y = M(d−1)+1 be the d-dimensional Minkowski space-time, as a C∞-manifold with coor-
dinates (ya)a := (y0, y1, · · · , yd−1) and a flat Lorentzian metric
ds2 = −(dy0)2 + (dy1)2 + · · · + (dyd−1)2.

Consider a 1-dimensional quantum field theory on the matrix real line R1,Az with fields:

· Bosonic :
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- C∞-maps ϕ : R1,Az → M(d−1)+1 from the matrix real line to the Minkowski space-
time; recall that ϕ is defined by a C∞-admissible ring-homomorphism

ϕ] : C∞(M(d−1)+1) −→ Mr×r(C
∞(R1))

ya 7−→ Y a(t) , a = 0, 1, · · · , d− 1 ;

- gauge fields A(t) dt ,A(t) ∈ Mr×r(C
∞(R1)) , on the fundamental module E ; recall

that its induced connection on OAzR1 is simply the inner derivation [A(t), · ] dt and
note that A is nondynamical since its curvature vanishes;

· Fermionic :

- OAzR1-valued spinor fields Θα ∈ (OAzR1 ⊗OR1
S)(R1) = Mr×r(C

∞(S)) on R1,
α = 1, · · · , N , where

· S is the spinor bundle on R1 (with flat metric (dt)2) of rank 1,
· S is the sheaf of OR1-modules associated to S, and
· N is the dimension of a spinor representation of SO (d− 1, 1);

note that since S ' OR1 as OR1-modules, Mr×r(C
∞(S)) 'Mr×r(C

∞(R1));

and Lagrangian: (Up-low-repeated-dummy-index summation rule is assumed.)

L(ϕ,Θ, A) := T0 Tr
{
−DtYaDtY

a + V (Y 0, Y 1, · · · , Y d−1)

+ ΘαDtΘ
α − c0Θαγa,αβ[Y a,Θβ ]

}
,

where

· T0 and c0 are constants (depending on the string tension and the string coupling constant
when the setting is fitted into string theory);

· DtY
a = ∂tY

a + [A, Y a] and DtΘ
α = ∂tΘ

α + [A,Θα] are covariant derivatives of Y a and
Θα respectively;

· γa, a = 0, 1, · · · , d− 1, are the γ-matrices for M(d−1)+1.

As given, this quantum field theory on R1,Az has massless fermions.
In comparison to the Lagrangian density for the Glashow-Weinberg-Salam model in Sec. 5.2.1,

one has immediately that

Lfermion = ΘαDtΘ
α , LHiggs = −DtYaDtY

a + V (Y 0, Y 1, · · · , Y d−1) ,

Lgauge = 0 , LYukawa = − c0Θαγa,αβ[Y a,Θβ ] .

With the C∞-maps ϕ : R1,Az → M(d−1)+1 serving as Higgs fields of the current toy model and
the Higgs mechanism in the Glashow-Weinberg-Salam model and the discussion of open strings
and D-branes in [Po: vol. I: Sec. 8.6 and Sec. 8.7] of Polchinski in mind, one expects thus:

Claim 5.2.2.4.1. [mass generation of fermion]. A vacuum expectation value VEV ϕ0 of
ϕ may generate mass for some of the fermions in the model. Furthermore, the mass the VEV
ϕ0 generates for fermions in the model may depend on the distance between the connected or
irreducible components of the image brane ϕ0(R1,Az) in the space-time M(d−1)+1.

To justify this, observe that
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Lemma 5.2.2.4.2. [commutator with diagonal matrix]. Let r = r1 + · · · + rl be a
positive-integer decomposition of r, Id ri×ri be the ri × ri identity matrix, and

M
(r1, ··· ,rl)
(λ1, ···λl) :=


λ1 Id r1×r1

. . .
. . .

λl Id rl×rl


with the i-th block in the diagonal being λi · Id ri×ri and all other entries being 0. Let

B = [Bij ]ij, l×l ∈Mr×r(C)

be an r × r-matrix in the l × l block-matrix form, where Bij ∈ Mri×rj (C) is an ri × rj-matrix.
Then, the commutator

[M
(r1, ··· ,rl)
(λ1, ··· ,λl) , B] = [(λi − λj)Bij ]ij, l×l .

Suppose now that the potential V (ϕ) := V (Y 0, Y 1, · · · , Y d−1) is chosen so that it takes a
VEV at a C∞-map ϕ0 : R1,Az →M(d−1)+1 defined by

ϕ]0 : C∞(M(d−1)+1) −→ Mr×r(C
∞(R1))

ya 7−→ Y a
0 (t) , a = 0, 1, · · · , d− 1

with
Y 0

0 (t) = t · Id r×r and Y a
0 (t) = M

(r1, ··· ,rl)
(λa1 , ··· ,λal ) for a = 1, · · · , d− 1 ,

for some positive-integer decomposition r = r1 + · · · + rl of r independent of a. Recall from
[L-Y3: Sec. 3] (D(11.1)) that all the λai must be real and they correspond to the ya-coordinate
of the i-th components of ϕ0(R1,Az) in M(d−1)+1. As elements in Mr×r(C

∞(S)), express

Θβ = [Θβ
ij ]ij, l×l

in the l× l block-matrix form. Then, after formally expanding ϕ around the VEV ϕ0, rewriting
the Lagrangian L as done in the Glashow-Weinberg-Salam model, and applying Lemma 5.2.2.4.2,
one concludes that

LYukawa = − c0 Θαγa,αβ[(λai − λaj )Θ
β
ij ]ij, l×l + (higher order terms) .

Assume that there is at least one a such that λai are distinct for all i. Then one has now a
nontrivial mass-matrix for fermions that depends only on the set

{λai − λaj | a = 1, · · · , d− 1 ; 1 ≤ i, j ≤ l}

that describes the relative position/distance of connected/irreducible components of ϕ0(R1,Az)
in M(d−1)+1. This justifies the claim and concludes the example. Cf. Figure 5-2-2-4-1.

Further details of the Higgs mechanism on D-branes in our setting should be re-picked up
after the details of the action functional is understood; cf. Sec. 6.
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ϕ 0

ϕ 0

ϕ

X Y

1λ 2λ

1λ 2λ

Θ Θ

Θ Θ

Az

Figure 5-2-2-4-1. Generation of mass for fermions on the D-brane world-volume
(XAz, E), a matrix manifold with a fundamental module, through the Higgs mechanism
that takes C∞-maps ϕ : XAz → Y as Higgs field. In the Figure, this process
is indicated by the arrow ⇒ that transforms a ΘϕΘ Feynman diagram to a series
of diagrams with the lowest-order term the propagator diagram for fermions. The
geometry of the image configuraion Im (ϕ0) ⊂ Y of XAz under a VEV ϕ0 determines
the mass of fermions Θ through the Yukawa coupling terms in the actional functional,
as indicated by the relevant Feynman diagram, with fermions in solid line —– and
Higgs fields in dashed line ...... . Such Feynman diagrams may be thought of as
reflecting the scattering in XAz of particles associated to these fields on XAz. The
factor (λ1−λ2) for fermion mass terms after Higgsing is only meant to be schematic,
indicating its dependence on the distance “λ1 − λ2” of components of the image
Im (ϕ0) of XAz in Y .
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6 Where we are, and some more new directions

Recall the following guiding question (cf. [L-Y1: Sec. 2.2] (D(1))):

Q. What is a D-brane intrinsically?

that initiated our D-brane project. Following the line of Grothendieck’s theory of schemes for
modern algebraic geometry, [L-Y1] (D(1)) provided a proto-typical setting for dynamical D-
branes in the common realm of string theory and algebraic geometry, as maps/morphisms from
an Azumaya/matrix scheme with a fundamental module. Its equivalent settings were realized
in [L-L-S-Y] (D(2), with Si Li and Ruifang Song). Seven years later, [L-Y3] (D(11.1)) and the
current note D(11.2) together brought into play the notion of differentiable rings from synthetic
differential geometry and algebraic geometry over differentiable rings, and extends such settings
to the common realm of string theory and differential/symplectic geometry, as differentiable
maps from an Azumaya/matrix manifold with a fundamental module with similar equivalent
settings. Before moving on, it is instructive to pause here, as a conclusion of this note, with a
reflection on where we are now — in comparison with how string theory began — and a sample
list of new themes/directions naturally brought out from the study.

First, another guiding question:

Q. How does string theory begin?

Physically and historically, it began with the attempt to understand hadrons (particles that
interacts through the strong interaction). However, as you open any textbook on string theory,
another answer from another aspect may immediately come to you:

A. Mathematically, string theory begins with the notion of a differentiable map from a string
or the world-sheet of a string (open or closed, with or without world-sheet fermions) to a
space-time.

For example, [B-B-Sc: Sec. 2.2], [G-S-W: vol. 1: Sec. 1.3.2], [Joh: Sec. 2.2], [Po2: vol. I: Sec. 1.2],
[Zw: Chap. 6]. Indeed, replacing ‘string’ (resp. ‘world-sheet’) with any physical object (resp.
‘world-volume’), the same answer should work for any dynamical object moving in a space-time;
in particular, D-branes. And that’s what we just completed and that’s exactly where we are:

· After [L-Y3] (D(11.1)) and the current note D(11.2), we are now at the beginning/entrance
of a theory of D-branes — purely bosonic or with fermionic fields and supersymmetry —
as dynamical objects moving in a space-time. Figure 6-1.

With the above comparison to the history of string theory in mind, in [L-Y3] (D(11.1)) we
bring out a sample of five new directions all related to or motivated by D-branes in string
theory that the notion of differentiable maps from matrix manifolds may play a role. Some
more immediate new directions include:

(1) The Dirac-Born-Infeld term, the Chern-Simons term, as well as any other term, and
their supersymmetric generalization in the full action functional for coincident D-branes
from the aspect of functionals for maps from a matrix manifold with various bosonic and
fermionic fields thereupon.

(2) Synthetic/Ck-algebraic symplectic geometry.

(3) Synthetic/Ck-algebraic calibrated geometry.
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ϕ

f

Σ Y

X YAz

versus

theory of D-branes as dynamical objects

string world-sheet
= 2-manifold

D-brane world-volume
= Azumaya/matrix manifold 
    with a fundamental module

theory of strings as dynamical objects

Figure 6-1. The mathematical starting point of string theory with string as a dy-
namical object moving in a space-time (cf. [G-S-W: Sec. 1.3, Figure 1.3] of Green,
Schwarz, and Witten) vs. the mathematical starting point of D-brane theory with
D-brane as a dynamical object moving in a space-time: The former begins with the
notion of ‘differentiable maps f : Σ→ Y from a string world-sheet to the space-time’
while the latter begins with the notion of ‘differentiable maps ϕ : (XAz, E)→ Y from
a matrix manifold (i.e. the D-brane world-volume) with a fundamental module to
the space-time’. Unlike the string world-sheet Σ, XAz carries a matrix-type “non-
commutative cloud” over its underlying topology. Under a differentiable map ϕ as
defined in [L-Y3: Definition 5.3.1.5] (D(11.1), (cf. Definition 4.2.1.3 of the current
note) the image ϕ(XAz) can behavior in a complicated way. In particular, it could be
disconnected or carry some nilpotent fuzzy structure. See also Figure 5-2-0-1.
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(4) A new matrix theory based on complex matrices of real eigenvalues.

From the string-theory point of view,

· Theme (1) is the next guiding theme: Only when one is able to give a string-theory-
compatible action functional on differentiable maps from an Azumaya/matric manifold
with a fundamental module to a space-time can one begin to address physics of D-branes
as fundamental objects in their own right in string theory .

From the mathematical point of view,

· Theme (2) and Theme (3) have been missing in symplectic/calibrated geometry when
Lagrangian or calibrated submanifolds and their deformations/collidings were studied.
Whatever the reason they are overlooked, we now provide a motivation to study them
from the new aspect of dynamical D-branes, cf. [L-Y3: Sec. 7.2] (D(11.1)). This should
bring the study of Lagrangian/calibrated submanifolds (possibly supporting a decorated
sheaf) to a footing closer to that of Hilbert- or Quot-schemes or moduli of coherent or
(semi-)stable sheaves in algebraic geometry.

From both mathematical and physical aspects,

· Theme (4), the new matrix theory — as a theory for differentiable maps from an Azu-
maya/matrix point with a fundamental module to a space — could provide one with a
starting point before attacking questions for general Azumaya/matrix manifolds.

With the notion/framework of differentiable maps from a matrix manifold-or-supermanifold
to a space-time (or superspace-time) in place, the stage has just been set.
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