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Abstract

Witten’s gauged linear sigma model [Wi1] is one of the universal frameworks or
structures that lie behind stringy dualities. Its A-twisted moduli space at genus 0 case
has been used in the Mirror Principle [L-L-Y] that relates Gromov-Witten invariants
and mirror symmetry computations. In this paper the A-twisted moduli stack for
higher genus curves is defined and systemically studied. It is proved that such a
moduli stack is an Artin stack. For genus 0, it has the A-twisted moduli space of [M-
P] as the coarse moduli space. The detailed proof of the regularity of the collapsing
morphism by Jun Li in [L-L-Y : I and II] can be viewed as a natural morphism from
the moduli stack of genus 0 stable maps to the A-twisted moduli stack at genus 0.

Due to the technical demand of stacks to physicists and the conceptual demand
of supersymmetry to mathematicians, a brief introduction of each topic that is most
relevant to the main contents of this paper is given in the beginning and the appendix
respectively. Themes for further study are listed in the end.
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A-Twisted Moduli Stack from Witten’s GLSM

0. Introduction and outline.

Introduction.

Witten’s gauged linear sigma model (GLSM) [Wi1] is one of the universal frameworks

or structures that lie behind stringy dualities. There are many geometric data that are

encoded in a GLSM, in particular a toric variety X. From a gauged linear sigma model,

one can obtain two different field theories that have the same local but different global

field-theoretic contents as the original theory. These descendant theories are called the

A-twist and the B-twist of the original theory. The moduli space of vacua of the A-

twisted theory is given by solutions to a system of vortex-type equations. Geometrically

each solution corresponds to a system of line bundles-with-a-section on curves with these

sections satisfying some nondegeneracy or nonvanishing conditions. (The background from

field and string theory are summarized in Appendix for mathematicians.)

In general a system of line bundles-with-a-section has nontrivial automorphisms. Thus

the correct language to study the related moduli problem in the algebro-geometric setting

is stack. Since the stack AMg(X) in this moduli problem on one hand is related to curves

and on the other hand arises from the A-twisted theory of a gauged linear sigma model,

we will call it the A-twisted moduli stack for curves (from Witten’s GLSM).

To really do geometry on a stack, usually one requires it be an algebraic (Artin or

Deligne-Mumford) stack. For such stacks, by passing to a covering system of atlases, many

(down-to-earth) concepts in algebraic geometry for schemes, notably cycles, intersection

of cycles, coherent sheaves, and derived categories, can also be defined and studied. (A

literature guide on stacks is given in Sec. 1 for physicists.) In Sec. 2, we spell out the

definition of AMg(X) and prove that it is indeed an Artin stack. Hence AMg(X) is an

object that one may hope to do geometries related to curves.

From the other end, recall the moduli stack Mg,n(X) of stable maps studied in Behrend

[Be1, Be2], Behrend-Manin [B-M], Fulton-Pandharipande [F-P], Li-Tian [L-T1, L-T2] . . .

and many others since Kontsevich that are related to Gromov-Witten invariants for alge-

braic varieties.

It is Witten’s insight [Wi1] and Morrison-Plesser’s later further push [M-P] with some

foundation laid down by Cox [Cox2] that the two moduli stacks AMg(X) and Mg,0(X)

should be closely related. In particular AMg(X) could be as useful in the computation

of Gromov-Witten invariants as Mg,0(X) itself.

At the moment the detail of relations between these two stacks has been carried out

for the genus 0 case. Indeed AM0(X), or more precisely its coarse moduli space, has

been used in the Mirror Principle [L-L-Y : I and II] that relates Gromov-Witten invariants

and mirror symmetry computations. The two moduli stacks AM0(X) and M0,0(X) are

related by the natural morphisms

∐
dMd(X)

ւ ց
M0,0(X) AM0(X) ,
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where
∐
dMd(X) is the moduli stack of genus 0 stable maps into P

1×X with the degree on

the P
1-component being equal to 1,

∐
dMd(X) → M0,0(X) is the contracting morphism,

and
∐
dMd(X) → AM0(X) is the collapsing morphism, whose regularity was proved by

Jun Li. This is explained more carefully in Sec. 3 and Sec. 4.

These notes lay down some foundations for several themes to be reported in the future.

Outline.

1. A brief tour and literature-guide on stacks for physicists.

2. From Cox functor to Witten’s A-twisted moduli stack.

2.1 The A-twisted moduli stack AMg(X).
2.2 AMg(X) is an Artin stack.

3. The g = 0 case.

4. The collapsing morphism.

Appendix. Witten’s gauged linear sigma models for mathematicians.

1 A brief tour and literature-guide on stacks for physicists.

Basic definitions on stacks needed for the discussions are collected in this section for

introduction of notations and physicists’ convenience.

• Grothendieck topology and site. Let (Sch /S0) be the category of schemes over

a base scheme S0 ([Ha1]). See [G-M : Sec. II.4], [Kr], and [L-MB : Chapter 9] for the

definition - and [Mu1] for why they are needed - of the following :

◦ Topology = covering system.

– étale topology.

– fppf topology; fppf = faithfully flat (=flat+surjective), + locally of finite presentation.

– fpqc topology; fpqc = faithfully flat + quasi-compact

◦ Site on (Sch/S0) = usual (Sch /S0) + covering systems.

Notation. Let f : U ′ → U be a covering of U in the site (Sch /S0). We shall adopt the

following notations for the projection maps from fibered products :

U ′′′ := U ′ ×U U
′ ×U U

′ π12, π13, π23
—————−→ U ′′ := U ′ ×U U

′ p1, p2
———−→ U ′ .

Such compact notations are particularly useful for diagram-chasings.

•Grothendieck’s theory of descent. Given a covering morphism f : U ′ → U in the site

(Sch/S0), Grothendieck’s theory of descent studies (1) when and how a geometric object
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(e.g. a coherent sheaf) on U ′ can be descended to a geometric object of the same kind on U

and (2) when and how a morphism between descendable geometric objects on U ′ descends

to a morphism between the descent geometric objects on U . This is a big generalization

of the local-to-global constructions in geometry. See [Kr : Lecture 4 and Lecture 5] for an

introduction and references.

• Stacks. While varieties contain only closed points (= the usual geometric points when

the ground field k is C), schemes (e.g. [E-H] and [Mu4]) contain also nonclosed points to

make doing geometry more natural. Stacks go one step further to contain “points” with

nontrivial automorphisms. A “space” with such a feature is needed to parameterize geo-

metric objects that can have nontrivial automorphisms, e.g. curves and coherent sheaves.

Assuming the background on algebraic geometry in [Ha1], then [Mu1], [D-M], [Gó], and

[Ed] (in suggested reading order) together give a concrete and solid introduction of al-

gebraic stacks and their natural appearance in moduli problems in algebraic geometry;

[L-MB] gives the final up-to-date polishment. See also [Art1], [Art2], [Be2], [Bry], [Gil],

[H-M], [Mu3], and [Vi] for more details. Recall that a groupoid is a category in which all

the morphisms are isomorphisms.

Definition 1.1 [(pre-)stack]. (Cf. [D-M], [Gó], and [Kr].) A stack F over (Sch /S0) is

a category fibered in groupoids pF : F → (Sch /S0) such that the assignment of the fiber

F(U) := p−1
F (U) to each U ∈ (Sch /S0) is a sheaf of groupoids. I.e. it is an assignment of

groupoids

U ∈ (Sch /S0) −→ F(U)

that satisfies the following sheaf axioms : Let f : U ′ → U be a covering of U in the site

(Sch /S0).

(1) (Gluing of morphisms ) Let E1, E2 be objects in F(U) and ϕ ′ : f∗E1 → f∗E2 be a

morphism in F(U ′) such that there exists an isomorphism τ : p∗1f
∗E1 → p∗2f

∗E2 in

F(U ′′). Then there exists a morphism ϕ : E1 → E2 in F(U) such that f∗ϕ = ϕ ′.

(2) (Monopresheaf ) Let E1, E2 be objects in F(U) and ϕ, ψ : E1 → E2 be morphisms

in F(U) such that f∗ϕ = f∗ψ. Then ϕ = ψ.

(3) (Gluing of objects) Let E ′ be an object in F(U ′) and τ : p∗1E ′ → p∗2E ′ be an

isomorphism in F(U ′′) such that π∗23τ ◦π∗12τ = π∗13τ in F(U ′′′). Then there exists an

object E in F(U) and an isomorphism σ : f∗E → E ′ in F(U ′) such that p∗2σ = τ ◦p∗1σ.

If F satisfies only (1) and (2), then it is called a prestack over (Sch /S0). In this case,

sheafification (official term : stackification) of F gives a stack canonically associated to a

prestack (cf. [Ha1 : II. Proposition-Definition 1.2], [Kr : Lecture 7], and [L-MB : Lemma

3.2].)

Remark 1.1.1 [category fibered in groupoids]. ([D-M : Sec. 4] and [Kr : Lecture 6].) Given

a category F over (Sch /S0), pF : F → (Sch /S0), it is fibered in groupoids over (Sch /S0)

if it satisfies the following morphism-lifting properties :
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(1) For any ϕ : U → V in (Sch /S0) and y ∈ F(V ) there is a map f : x → y in F with

pF (f) = ϕ.

(2) Given a diagram

x
ցf

z
րgy

in F with its image

U
ցϕ

W
րψV

in (Sch /S0) . Then for all

χ : U → V such that ϕ = ψ ◦ χ , there is a unique h : x→ y such that f = g ◦ h and

pF (h) = χ.

Such lifting properties in many moduli problems, including the one studied in the notes,

follow automatically by base-change or fibered products. Hence we will omit mentioining

them.

Remark 1.1.2 [algebraic S0-spaces]. For technical reasons in algebro-geometric study of

moduli problems, it is natural to introduce the notion of algebraic S0-spaces and use them,

instead of schemes, to define atlas and representability of morphisms between stacks, cf. [L-

MB : chapters 1 and 10]. Such spaces may be thought of as a collection of étale (instead of

Zariski) local charts for a would-be (generally non-existing) scheme. To keep things down

to earth, we do not adapt this convention in the notes.

• Morphisms between stacks. Let pF : F → (Sch /S0) and pG : G → (Sch /S0) be

stacks over (Sch /S0). A morphism from F to G is a functor F : F → G between the

two categories such that pG ◦ F = pF . Explicitly for moduli stacks, this means that F

sends a flat family of one class of geometric objects to a flat family of another class of

geometric objects in a way that commutes with base change. F is representable if for all

X ∈ (Sch /S0) and morphism x : X → G, the fibered product (cf. next item) F ×F,G, xX is

also in (Sch /S0). Properties of schemes (e.g. proper, separated, smooth, etc.) that are stable

under base change and of a local nature on the target can be defined for representable

morphisms of stacks via fibered products with schemes : [D-M : Sec. 4], [Gó : Sec. 2], and

[L-MB : Definitions (3.9) and (3.10.1)].

• Fibered product. [Be2 : Lecture 1, Groupoids], [Gó : Sec. 2.2], and [L-MB : Sec.

(2.2.2)]. Given two morphisms F : X → Z and G : Y → Z of stacks over (Sch /S0), their

fibered product X ×F,Z,G Y (or denoted X ×Z Y when F and G are clear from the text) is

defined to be the stack over (Sch /S0) with

Objects : Triples (X,Y, α), where X ∈ X , Y ∈ Y, and α : F (X) → G(Y ) is an
isomorphism in Z.
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Morphisms : A morphism from (X1, Y1, α1) to (X2, Y2, α2) is a pair (ϕX , ϕY) of mor-
phisms ϕX : X1 → X2, ϕY : Y1 → Y2 over the same morphism f : U → V
of schemes in (Sch /S0) such that the following diagram commutes

F (X1)
F (ϕX )−→ F (X2)

α1 ↓ ↓ α2

G(Y1)
G(ϕY)−→ G(Y2) .

• Isom and Isom . (Cf. [D-M : Definition (I.10)], [Gro : Sec. 4], and [Mu1: Sec. 3].) Given

a pair of families of geometric objects, e.g. stable curves, πi : Xi → Si, i = 1, 2, then each

induces a family of geometric object, still denoted by πi, over S1 ×S0 S2 via pullback. Let

(Sets ) be the category of sets. Then Isom (π1, π2) is the functor

Isom (π1, π2) : (Sch /S0) −→ (Sets )

S 7−→ { (α, β) |α ∈ Hom(S, S1 ×S0 S2) , β : α∗π1 ≃ α∗π2 } .

In case Isom (π1, π2) is a representable functor, the scheme that represents Isom (π1, π2)

will be denoted by Isom (π1, π2). Representability of Isom in many moduli problems boils

down to the representability of the Hilbert functor or the Quot functor ([Gro]). When the

moduli problem is described by a stack X over (Sch /S0), then πi correspond to morphisms

Fi : S → X and Isom (π1, π2) = S1×F1,X ,F2 S2 . Similarly for Hom and Hom that replace

isomorphisms in the definition of Isom and Isom by morphisms.

Definition 1.2 [Artin stack]. ([Gó : Definition 2.22].) An Artin stack F over (Sch /S0)

is stack F over (Sch /S0) that satisfies additional conditions :

(1) The diagonal morphism ∆F → F ×(Sch/S0)
F is representable, quasi-compact, and

separated.

(2) There exists a scheme U - called an atlas - and a smooth and surjective morphism

u : U → F .

See [L-MB : Definition (5.2)] for the definition of the set of points |F | of a stack F .

Definiton 1.3 [coarse moduli space]. (Cf. [Gó : Definition 2.6] and [Vi : (2.1) Defi-

nition].) A coarse moduli space for a stack F is a scheme Z together with a morphism

φ : F → Z such that

(i) if Z ′ is another scheme that admits a morphism φ′ : F → Z ′ then there is a unique

morphism of schemes η : Z → Z ′ with φ′ = η ◦ φ , (i.e. Z coreprsents F).

(ii) for any algebraically closed field k, the induecd map on k-points |φ | : |F |(k) → Z(k)

is bijective.
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(Thus, when exists, Z is unique up to a canonical isomorphism.)

• Quotient stack. [Be2 : Lecture 1, Example 18.3 and Example 20.4 ], [Gó : Example

2.14], and [L-MB : Sec. (2.4.2)]. For S0 = Spec k, where k is a ground field, let G be an

algebraic group over k. The quotient stack of a G-action on a k-scheme X is denoted by

[X/G]. It is the stackification of the prestack pre[X/G] over (Sch /k). An object of the

groupoid pre[X/G](U), U ∈ (Sch /k), is a diagram

P
f−→ X

↓
U ,

where P is a principal G-bundle over U and f is a G-equivariant k-morphism.

2 From Cox functor to Witten’s A-twisted moduli stack.

Notations and terminologies of toric geometry used here follow mainly [Fu], see also [Oda].

2.1 The A-twisted moduli stack AMg(X).

Let N ≃ Z
n be a lattice, M be its dual lattice, ∆ be a fan in NR, ∆(1) be the 1-dimensional

cones of ∆, and nρ be the generator of ρ ∩ N for ρ ∈ ∆(1). Let X be the smooth toric

variety associated to ∆ and Y be a scheme over S. Recall the following definition from

[Cox2] :

Definition 2.1.1 [∆-collection]. A ∆-collection (Lρ, uρ, cm)ρ,m on Y/S consists of line

bundles Lρ on Y flat over S, sections uρ ∈ H0(Y,Lρ) indexed by ρ ∈ ∆(1), and a collection

of isomorphisms cm : ⊗ρL
⊗〈m,nρ〉
ρ ≃ OY indexed by m ∈M such that

(i) Compatibility : cm ⊗ cm′ = cm+m′ for all m,m′ ∈M .

(ii) Nondegeneracy : The map
∑
σ∈∆max

⊗ρ6⊂σu
∗
ρ : ⊕σ∈∆max ⊗ρ6⊂σ L

−1
ρ → OY

is surjective, where u∗ρ : L
−1
ρ → OY is the dual morphism of

uρ : OY → Lρ.

An isomorphism (Lρ, uρ, cm)ρ,m
∼→ (L′

ρ, u
′
ρ, c

′
m)ρ,m consists of isomorphisms γρ : Lρ

∼→ L′
ρ

which carry uρ to u′ρ and cm to c′m.

Explanation/Fact 2.1.2 [Cox]. For the application in this article, we will consider

only the case when the set {nρ }ρ spans NR. In this case X = (C∆(1) − V (I))/G , where

C
∆(1) = SpecC[xρ : ρ ∈ ∆(1)], I is the ideal generated by

∏
ρ6⊂σ xρ, σ ∈ ∆max, and

G = Hom Z(Pic (X),C×) acts on C
∆((1) via the exact sequence

1 −→ G −→ Hom Z(Z
∆(1),C×) −→ TN −→ 1 .

The following statements either are explicitly in or follow immediately from [Cox2].
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(1) The isomorphisms cm.

(1.1) Lρ are unrelated abstract line bundles on Y/S. To relate the collection of sec-

tions uρ to a map from Y to C
∆(1), some data is needed that enables one to

compare sections in different Lρ - more precisely, the induced sections from uρ
on isomorphic tensor products of Lρ -. The data cm gives exactly this informa-

tion up to the G-action. Condition (i) (Compatibility) is the cocycle conditions

that make sure this comparison of sections on different Lρ is consistent among

themselves.

(1.2) Given {Lρ}ρ and two choices {cm}m and {c′m}m, there exist automorphisms γρ
on Lρ that carry {cm}m to {c′m}m. Thus, up to isomorphisms, there is exactly

one way to compare the line bundles Lρ.

Reason. (Cf. [Cox2 : Theorem 1.1, proof].) A pair of collections of isomor-

phisms ({cm}m, {c′m}m) determines a morphism α : M → H0(Y,O ∗
Y ). From

the long exact sequence

0 → Hom (PicX,H0(Y,O ∗
Y )) → Hom (Z

∆(1)
, H0(Y,O ∗

Y )) → Hom (M,H0(Y,O ∗
Y ))

→ Ext 1(PicX,H0(Y,O ∗
Y )) (= 0) → · · ·

induced from the short exact sequence 0 → M → Z
∆(1) → PicX → 0, one

concludes that α can be lifted to a morphism α̃ : Z∆(1) → H0(Y,O ∗
Y ). The

morphism α̃ defines then a collection of automorphisms γρ on Lρ, ρ ∈ ∆(1),

that carry {cm}m to {c′m}m .

✷

(2) The nondegeneracy condition. Recall (e.g. [Ha1: Appendix A.3]) that, given a section

uρ : OY → Lρ, the zero-sheme of uρ is defined by the ideal sheaf u∗ρ(L
−1
ρ ). Thus,

Condition (ii) (Nondegeneracy) of a ∆-collection means exactly that the image of

the map U → C
∆(1) in Item (2) above lies completely in C

∆(1) − V (I).

Explanation/Fact 2.1.2 : Item (2), [Wi1] and [M-P] together lead to the following

definitions.

Definition 2.1.3 [weak ∆-collection]. (1) A weak ∆-collection on Y/S is a set of data

(Lρ, uρ, cm)ρ,m as in Definition 2.1.1 with Condition (ii) (Nondegeneracy) replaced by

(ii ′) Nonvanishing : The map
∑
σ∈∆max

⊗ρ6⊂σu
∗
ρ : ⊕σ∈∆max ⊗ρ6⊂σ L

−1
ρ → OY

is not a zero-morphism when restricted to each irreducible
component of fibers Ys over s ∈ S.

Isomorphisms of such data are defined the same as in Definition 2.1.1.
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(2) Let (Lρ, uρ, cm) (resp. (L′
ρ, u

′
ρ, c

′
m)) be a weak ∆-collection on Y/S (resp. Y ′/S′).

Then a morphism from (Y/S, (Lρ, uρ, cm)) to (Y ′/S′, (L′
ρ, u

′
ρ, c

′
m)) is a pair (f, γ), where

f : Y → Y ′ fits into a commutative diagram

Y
f−→ Y ′

↓ ↓
S

f−→ S′

and γ : (Lρ, uρ, cm)
∼→ f∗(L′

ρ, u
′
ρ, c

′
m) on Y/S.

Definition 2.1.4 [quasistable curves over S]. (Cf. [Ca].) A prestable (i.e. reduced

connected nodal) curve is called quasistable if all its destabilizing chains have length 1. A

quasistable curve over S is a flat family π : C → S of quasistable curves over S. Define

QMg to be the category fibered in groupoids of quasistable curves over (Sch /S0).

Definition/Lemma 2.1.5 [AMg(X) stack]. Let (Sch /S0) be equipped with the fpqc

or the fppf topology. Define AMg(X) to be the category over (Sch /S0) whose fiber over

U ∈ (Sch /S0) is given by the groupoid

AMg(X)(U) = {weak ∆-collections on quasistable curves C over U } .

Then AMg(X) is a stack. We shall call it the A-twisted moduli stack associated to X for

genus g curves.

Remark 2.1.6. Compared with [Wi1 : Sec. 3.4] and [M-P : Sec. 3.7] summarized in Ap-

pendix, AMg(X) is related to the moduli space of the A-twisted gauged linear model in

the higher genus case.

Definition/Lemma 2.1.5 follows from the proof of the effectiveness of a descent datum

in the case of quasi-coherent sheaves on schemes in (Sch /S0), which we recall from [Kr].

See also [SGA1].

Fact 2.1.7 [descent of quasi-coherent sheaves]. Let f : U ′ → U be a fpqc or fppf

morphism in (Sch /S0). Recall the projection maps from Sec. 1

U ′′′ := U ′ ×U U
′ ×U U

′ π12, π13, π23
—————−→ U ′′ := U ′ ×U U

′ p1, p2
———−→ U ′ .

(a) Descent of quasi-coherent sheaves. Let E ′ be a quasi-coherent OU ′-module and τ :

p∗1 E ′ → p∗2 E ′ be an isomorphism that satisfies π∗23τ ◦ π∗12τ = π∗13τ . Then there exists

a quasi-coherent OU -module E on U together with an isomorphism σ : f∗ E → E ′

such that p∗2σ = τ ◦ p∗1σ. The sheaf E is unique up to a canonical isomorphism.

(b) Descent of morphisms. Let (E ′, τ) and (F ′, υ) be descent data and (E , σ) and (F , ρ)
be their respective descent as in Item (a). Let h′ : E ′ → F ′ be a morphism that

satisfies p∗2h
′ ◦ τ = υ ◦ p∗1h′. Then there exists a unique morphism h : E → F such

that ρ ◦ f∗h = h′ ◦ σ.

8



Sketch of proof. Consider the following stricter version of Statement (b) :

(b∗) Let E and F be quasi-coherent sheaves on U and h′ : f∗ E → f∗F be a morphism of

OU ′-modules such that p∗1h
′ = p∗2h

′. Then there exists a unique morphism h : E → F
such that f∗h = h′.

Via diagram chasings, Statement (b) follows from Statement (b∗) and the existence part

of Statement (a). The proof now consists of three steps.

(1) Case : f = faithfully flat morphism between affine schemes.

(1.a) Descent of quasi-coherent sheaves.

Define f := f ◦ p1 (= f ◦ p2) and let p ♯1 , p
♯
2 : OU ′ → OU ′′ be the defining ring morphism of

structure sheaves associated to p1, p2 respectively. Then their difference p ♯1 −p
♯
2 defines an

OU -module morphism q : f∗OU ′ → f∗OU ′′ . These morphisms induce natural morphisms

p̂1 : E ′ → p∗1 E ′ and p̂2 : E ′ → p∗2 E ′ by pulling back global sections.

Let Θ := τ◦p̂1−p̂2 : E ′ → p∗2 E ′. Then the descent E of the descent datum (E ′, τ) is given

by E = f∗KerΘ. By definition E fits into the following exact sequence of OU -modules

0 −→ E ι−→ f∗ E ′ Θ−→ f∗ (p
∗
2 E ′) .

τ determines an isomorphism k : f∗ f∗ p
∗
2 E ′ → p2∗ f

∗
f∗ E ′ and an automorphism h on

f∗ f∗ E ′. These fit into a commutative square of OU ′-modules

0 −→ f∗ E f∗ι−→ f∗ f∗ E ′ f∗Θ−→ f∗ f∗ p
∗
2 E ′

↓ h ↓ k

0 −→ E ′ f̃−→ f∗ f∗ E ′ q̃−→ p2∗ f
∗
f∗ E ′ ,

where f̃ and q̃ are natural morphisms induced by f and q respectively and both horizontal

complexes are exact. This determines an isomorphism σ : f∗ E → E ′ that satisfies the

conditions in Statement (a). It has the property that if s′ is a global section in Ker Θ

and s is its corresponding global section in E , then σ(f∗s) = s′. Uniqueness of E up to a

canonical isomorphism follows from Item (1.b∗) below.

(1.b∗) Descent of morphisms.

The following natural sequence of OU -modules induced by f and q is exact

0 −→ F f̂−→ f∗ f
∗F q̂−→ f∗ f

∗ F .

Hence for any global section s in E , let f∗(s) be the corresponding global section in f∗ E ,
then h′(f∗(s)) = f∗(t) for a unique global section in F .

One can now define the descent morphism h : E → F by setting h(s) = t. By definition

f∗h = h′. Since f∗ is an exact and faithful functor, such h is unique.

(2) Statements for reductions.

9



Let R
f1−→ S

f2−→ T be a chain of morphisms of schemes in (Sch /S0). By chasing the

following two diagrams :

R×S R×S R −→ R×T R×T R −→ S ×T S ×T S
↓↓↓ ↓↓↓ ↓↓↓

R×S R −→ R×T R −→ S ×T S
ցց ↓↓ ↓↓

R
f1−→ S

f2−→ T

and
(R×S R)×T (R ×S R) ≃ (R×T R)×S×TS (R×T R)

↓↓ ↓↓
R×S R −→ R×T R ,

where all the morphisms are natural projection maps from fibered products, one concludes

the following statements for reduction :

Reduction (2.1). Suppose that (b∗) holds for f1 and that for any quasi-coherent sheaves

A, B on S ×T S, the map η∗ : Hom S×TS(A,B) → HomR×TR(η
∗A, η∗B) is injective, then

(b∗) holds for f2 if and only if (b∗) holds for f2 ◦ f1.

Reduction (2.2). Suppose that (b∗) hold for f1 as well as any pull-back of f1. Suppose

also that (a) and (b) hold for f1, then (a) and (b) hold for f2 if and only if (a) and (b)

hold for f2 ◦ f1.

(3) General case by reductions.

For a general fpqc or fppf morphism f : U ′ → U between S0-schemes, let {Vi }i∈I be

a Zariski affine cover of U and for each i ∈ I let {V ′
i,j }j∈Ji be a Zariski affine cover of

f−1(Vi). If f is fpqc, then Ji can be assumed to be a finite set. Then for each i the map

fi :
∐
j V

′
i,j → Vi is a faithfully flat affine morphism and hence (a) and (b) hold for fi.

Applying Reduction (2.1) and Reduction (2.2) to chains of morphisms

∐

i,j

V ′
i,j

∐
i
fi

−→
∐

i

Vi −→ U and
∐

i,j

V ′
i,j −→ U ′ f−→ U ,

one concludes that (a) and (b) hold for f . If f is fppf, then Vi,j := f(V ′
i,j) are open in

U . For each i, {Vi,j}j is a Zariski open cover of Vi and each morphism V ′
i,j → Vi,j is fpqc.

Applying Reduction (2.1) and Reduction to (2.2) to chains of morphisms

∐

j

V ′
i,j −→

∐

j

Vi,j −→ Vi ,
∐

i,j

V ′
i,j −→

∐

i

Vi −→ U , and
∐

i,j

V ′
i,j −→ U ′ f−→ U ,

one concludes that (a) and (b) hold for f . This concludes the sketch.

✷

Recall that QMg is the category fibered in groupoids of quasistable curves over

(Sch /S0).
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Fact 2.1.8 [QMg Artin]. ([Be1].) QMg is an Artin stack for all g ≥ 0.

Explanation. This follows from [Be1 : Preliminaries on prestable curves] since QMg is an

open substack of the Artin stack of prestable curves.

✷

Corollary 2.1.9 [line bundle with a section]. The category fibered in groupoids of

line bundles with a section on quasistable curves over S0-schemes is a stack.

Proof. Since QMg is an Artin stack, a descent datum for quasistable curves descends

effectively. If f : S1 → S2 is a fppf morphism and C2 is a quasistable curve over S2, then

C1 := f∗C2 = S1 ×S2 C2 is a quasistable curve over S1 and the morphism f : C1 → C2 from

fibered product is also fppf. We shall apply Fact 2.1.7 and its proof to f : C1 → C2.
Given a descent data (E ′, τ) on C1 with E ′ invertible, let E be its descent on C2. Since

f∗E ≃ E ′ and f is fppf, E must be invertible as well.

C1
f−→ C2

↓ π1 ↓ π2

S1
f

−→ S2

Thus Fact 2.1.7 remains true if quasi-coherent sheaves are replaced by invertible sheaves

(cf. [Mu1 : Theorem 90 (Hilbert-Grothendieck)]).

In the construction of the descent of quasi-coherent sheaves and their morphisms for

the affine case in the proof of Fact 2.1.7, one observes that if a global section s′ is added

to a descent datum (E ′, τ) that satisfies the gluing condition given by τ , then it must lies

in KerΘ and hence descends to a global section s in E . Furthermore, the statements in

Item (1.b∗) in that proof imply that such s is unique. I.e. the descent remains effective

with a section added to the data. Consequently, Statement (a) and Statement (b) in Fact

2.1.7 hold for descent data of invertible sheaves with a section when f is a faithfully flat

morphism between affine schemes. Now observe that in the remaining part of the proof

of Fact 2.1.7, precisely two things are used repeatedly :

(i) going-down : effective descent by a morphism, for which Statement (a)
and Statement (b) are known to hold,

(ii) going-up : pulling back a descent datum.

Whenever a going-down is employed, the existence and uniqueness of descent global section

are known to hold by earlier reductions from the affine case while a going-up takes any

part of descent data to the unique corresponding part of descent data automatically. Thus

the whole proof of Fact 2.1.7 goes through without change. This proves the lemma.

✷

Proof of Definition/Lemma 2.1.5. Continuing the notations from previous discussions.

Since the nonvanishing condition of weak ∆-collections is an open condition, we only need

to show that the data without this condition give a stack.

11



(a) Descent of weak ∆-collections. For each ρ ∈ ∆(1) the existence and uniqueness of de-

scent of the descent data (L′
ρ, u

′
ρ ; τρ) on C1 to (Lρ, uρ ;σρ) on C2 follow from Corollary 2.1.9.

Similarly for morphisms between two such descent data. Each (⊗ρL
′
ρ
⊗〈m,nρ〉,⊗ρτρ

⊗〈m,nρ〉),

as well as (OC1 , Id), is a descent datum of line bundles on C1. Their descent on C2 are given
by (⊗ρLρ

⊗〈m,nρ〉,⊗ρ σρ
⊗〈m,nρ〉) and (OC2 , Id) respectively. Thus c′m : ⊗ρL

′
ρ
⊗〈m,nρ〉 → OC1 ,

as an isomorphism between two descent data of line bundles, descends to a unique isomor-

phism cm : ⊗ρLρ
⊗〈m,nρ〉 → OC2 . This shows that a descent datum of weak ∆-collection

on quasistable curves descends effectively.

(b) Descent of morphisms. Since a descent datum of isomorphisms from a weak ∆-

collection to another is really that for line bundles. It descends uniquely.

This concludes the proof.

✷

2.2 AMg(X) is an Artin stack.

Proposition 2.2.1 [AMg(X) Artin]. The A-twisted moduli stack AMg(X) for genus g

quasistable curves is an Artin stack.

Proof. We check the properties that the diagonal morphism needs to satisfy and construct

an atlas for AMg(X) via a relative construction.

(a) Representability, quasi-compactness, and separatedness of the diagonal morphism.

These properties are reflected in the corresponding properties of the Isom -functor (cf.

[Gó : Sec. 2.2]), which we will now check.

(a.1) Representability of Isom U (F1,F2). Let U ∈ (Sch /S0) and F1, F2 ∈ AMg(X)(U)

with the underlying quasistable curves over U denoted by π1 : C1 → U , π2 : C2 → U

respectively. Let Isom U (F1,F2) be the functor on (Sch /U) associating to each U -scheme

f : U ′ → U the set of U ′-isomorphisms from f∗F1 to f
∗F2. By passing through a standard

limit, one may assume that the base schemes U and U ′ are Noetherian and of finite type

over S0 (cf. [L-MB : Théorème (4.6.2.1), proof]). There is a natural morphism of functors

Isom U (F1,F2) → Isom U (C1, C2), whose fiber over an isomorphism ϕ : f∗C1 → f∗C2 over

f : U ′ → U is the set of isomorphisms from f∗F1 to ϕ∗f∗F2 on f∗C1. From [Gro] and Fact

2.1.8 the functor Isom U (C1, C2) is represented by a scheme Isom U (C1, C2) quasi-compact

and separated over U . Let h0 : Isom U (C1, C2) → U be the natural morphism, then there

is a canonical isomorphism Φ : h∗0C1
∼→ h∗0C2. Denote h∗0C1 over Y0 := Isom U (C1, C2)

by C̃1. Consider the functor Isom
C̃1/Y0

(h∗0F1,Φ
∗h∗0F2). From [Gro : Sec. 4] (also [L-MB :

Théorème (4.6.2.1), proof]), if one just focuses on the part of collections of line bundles

{Lρ}ρ in weak ∆-collections, then the Isom -functor is represented by an open subscheme

Y2 of a scheme Y1 that is affine and of finite type over Y0. The additional data : sections
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uρ and trivialization isomorphisms cm of ⊗ρL
⊗〈m,nρ〉
ρ , specify a locally closed subscheme

Y3 of Y2. Thus Isom C̃1/Y0
(h∗0F1,Φ

∗h∗0F2) is represented by Y3 over Y0. In summary,

Y3
h3−→ Y2

h2−→ Y1
h1−→ Y0 = Isom U (C1, C2) h0−→ U .

locally
closed
immersion

open
immersion

affine,
of finite
type

quasi-
compact,
separated

Noetherian

Let p : Y3 → Y0 be the composition h1 ◦h2 ◦ h3, then there is a canonical isomorphism

Ψ : p∗F1 → p∗Φ∗F2 over p∗h∗0C1/Y0.

Claim. The functor Isom U (F1,F2) is represented by Y3.

Proof. One checks the functorial properties for a scheme that represents an Isom -functor.

Let g : U ′ → U be a U -scheme and γ̃ : g∗F1 → g∗F2 be an isomorphism. Let γ :

g∗C1 → g∗C2 be the underlying isomorphism of quasistable curves over U ′. Then one may

rewrite γ̃ as an isomorphism γ̃ : g∗F1 → γ∗g∗F2 on g∗C1. Since Y0 represents the functor

Isom U (C1, C2), there is a unique U -morphism h : U ′ → Y0 such that (γ : g∗C1 → g∗C2) is
the pullback of the canonical isomorphism (Φ : h∗0C1 → h∗0C2) over Y0. Since h0 ◦ h = g,

the data (γ̃ : g∗F1 → γ∗g∗F2) is the same as γ̃ : h∗h∗0F1 → h∗Φ∗h∗0F2. Since Y3 is

the scheme that represents the functor Isom
C̃1/Y0

(h∗0F1,Φ
∗h∗0F2), there is a unique Y0-

morphism h̃ : U ′ → Y3 (i.e. a lifting of h) such that γ̃ is the pullback of Ψ via h̃. This

shows that Isom U (F1,F2) = Hom ( · , Y3) and hence Y3 represents Isom U (F1,F2).

✷

(a.2) Separatedness. Recall the schemes Yi and the morphisms hi between them from the

discussion in Part (a.1). From Hartshorne [Ha] : (i) affine morphisms (cf. h1) are separated

[Ha : II. Exercise 5.17(b)], (ii) open and closed - and hence locally closed - immersions

(cf. h2, h3) are separated [Ha : II. Corollary 4.6(a)], and (iii) composition of separated

morphisms is separated, it follows that Y3 → U is separated since h0 is separated.

(a.3) Quasi-compactness. Recall again from Hartshorne [Ha : II. Exercise 3.3(a)] that a

morphism of schemes is of finite type if and only if it is locally of finite type and quasi-

compact. Since all the morphisms hi are of finite type, so do their composition Y3 → U ,

which then must be quasi-compact.

These together justify that the diagonal morphism is representable, quasi-compact,

and separated.

(b) Construction of an atlas.

We follow a relative construction, which is completed in three steps.

(b.1) Atlas U0 for QMg. It follows from the discussion in [Be1] that an atlas for QMg

can be chosen as follows. Observe that for C a quasistable curve of genus g ≥ 0, the

number of unstable components of C is bounded strictly by 1, for g = 0, 1 and 3g− 3, for

g ≥ 2, and the number of marked points on C needed to stabilize all these components
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is bounded by n0 = 3 for g = 0, 1 for g = 1, and 3g − 3 for g ≥ 2. Let Mq
g,n0

be

the open substack of the Deligne-Mumford stack Mg,n0 that consists of stable curves

of genus g with n0 marked points such that when these marked points are forgotten,

the underlying curves are quasistable. Then Mq
g,n0

is a Deligne-Mumford stack and the

morphism F : Mq
g,n0

→ QMg induced by forgetting the marked points is representable,

smooth, and surjective. Indeed if V ∈ (Sch /S0) and (π : C → V ) ∈ QMg(V ), then the

fibered-product morphism Mq
g,n0

×F,QMg,π V → V is the morphism of S0-schemes

( C ×V · · · ×V C︸ ︷︷ ︸
n0-many times

)(0) −→ V ,

where (C ×V · · · ×V C)(0) is the fibered product C ×V · · · ×V C with all the diagonals

of the fibered product ×V and the locus of nodes of fibers of C → V removed. This

re-justifies that QMg is an Artin stack. Recall the Hilbert scheme construction in [ F-P :

Sec. 2 ] (with P
r therein set to P

0 = {pt}) that realizes Mg,n0 as a quotient stack of a

quasi-projective variety U acted on by an algebraic group. (Caution that a “quasistable

curve” in [F-P] is a “prestable curve” in [Be1] and the current article.) There is an open

subset U0 in U whose geometric points corresponds to quasistable curves. This U0 is then

an atlas for QMg. Since it comes from a Hilbert scheme construction, the associated flat

family of quasistable curves π : C0 → U0 is projective. We shall fix a relative very ample

line bundle on C0/U0.

(b.2) Atlas U1 for WDX
C0/U0

. Consider now the stack WDX
C0/U0

over (Sch /S0) of weak ∆-

collections on C0/U0. Define an atlas V for a stack S in the same way as that for an Artin

stack, namely a morphism V → S that is representable, smooth, and surjective. Then an

atlas for WDX
C0/U0

can be constructed by a sequence of relative constructions given in the

following steps.

(b.2.1) The Quot-scheme construction for an atlas V1 for the Artin stack Bun 1(C0/U0)

of line bundles on C0 flat over U0 (cf. [Gómez : Sec. 2.3, Example 2.24] and [L-MB :

Example (4.6.2)]). V1 can be decomposed into a disjoint union of components labelled

by the degree of the line bundles on fiber of C0 → U0 since the degree determines the

Hilbert polynomial of line bundles on curves of fixed genus. By construction there

are a natural quasi-projective morphism V1 → U0 and a tautological line bundle L̃
on V1 ×U0 C0 over V1.

(b.2.2) An atlas V2 for the stack Bun 1,s(C0/U0) of line bundles with a section on C0/U0 is

given by the scheme V2 := Hom (V1×U0
C0)/V1(OV1×U0

C0 , L̃). It is affine and surjective

over V1, ([Gro : Sec. 4] and [L-MB : Sec. (4.6.2)]). The fibered product

V3 := V2 ×U0 · · · ×U0 V2︸ ︷︷ ︸
|∆(1)|-many times

gives an atlas for the stack of |∆(1)|-tuple of lines with a section on the same qua-

sistable curves.
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(b.2.3) The tensor product conditions ⊗ρ L
⊗〈m,nρ〉
ρ ≃ OC in a weak ∆-collection on a

quasistable curve C are locally closed conditions. Together they determine a locally

closed subscheme V4 in V3. Fix a basis for theM -lattice, then over V4×U0 C0 there is
a rankM -tuple of line bundles (L̃m)m defined by (⊗ρ L

⊗〈m,nρ〉
ρ )m, where m runs over

the fixed basis. To add in the data of the choices of trivialization cm : ⊗ρ L
⊗〈m,nρ〉
ρ ≃

OC , one takes the scheme V5 := ⊕m∈basis Isom (V4×U0
C0)/V4(L̃m , OV4×U0

C0 ), which

is an affine bundle over V4 with fiber the abelian group
∏

rank M Spec k[t, t−1].

(b.2.4) Finally, let U1 be the open subscheme in V5 that corresponds to the nonvanishing

condition of a weak ∆-collection. Note that we start with V1 that is smooth and

surjective over the stack Bun 1(C0/U0). As we start to enlarge Bun 1(C0/U0) to

tuples of line bundles, choice of sections, and so on or doing restriction by imposing

open, closed or locally closed conditions, these extra data or restrictions do not have

nontrivial automorphisms. Thus they do not influence the representability and the

smoothness of the morphism of resulting Vi to the related stack in the discussion.

Also, by construction they are surjective. Thus U1 is an atlas for the stack WDX
C′/U0

.

By construction there is a natural morphism U1 → U0.

(b.3) U1 as an atlas for AMg(X). By construction there is a relative weak ∆-collection F1

on the quasistable curve C1/U1. This gives a morphism f1 : U1 → AMg(X). Let F be a

relative weak ∆-collection on a quasistable curve CW over W ∈ (Sch /S0). This specifies a

morphism fW : W → AMg(X). By the functorial properties of Isom and the morphism

U1 → U0, one has the following natural morphisms

Isom (C1/U1, CW /W ) = U1 ×U0 Isom (C0/U0, CW /W )
π−→ Isom (C0/U0, CW/W )

and

π∗1C1 ≃ π∗π∗10 C0
α :=π∗(α0)

∼−→ π∗2 CW ≃ π∗π∗20CW
\ /
Isom (C1/U1, CW /W )

π1 ւ ց π2

U1 W

π−→

π∗10 C0
α0
∼−→ π∗20 CW

\ /
Isom (C0/U0, CW /W ) .

π10 ւ ց π20

U0 W

It follows that

U1 ×f1,AMg(X), fW W = Isom (FC1/U1
,FCW /W )

= Isom π∗
1C1/Isom(C1/U1, CW /W ) (π

∗
1F1, α

∗π∗2 FW )

= Isom
(
(F1)C1/U1/U0

, (α∗
0π

∗
20FW )(π∗

10 C0)/U0

)

= U1 ×WDX
C0/U0

Isom (C0/U0, CW/W )

smooth and surjective−→ Isom (C0/U0, CW /W ) = U0 ×QMg
W

smooth and surjective−→ W .
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This shows that U1 is an atlas for AMg(X) and we conclude the proof.

✷

Remark 2.2.2. The above type of relative construction can be found also in the study of

relative GIT construction of universal moduli spaces, e.g., [Hu] and [Pa].

3 The g = 0 case.

Since CP1 is rigid, the problem may be treated as in the study of bundles on a fixed variety.

AM0(X) is then the stackification of the prestack preAM0(X), whose fiber preAM0(X)

over S ∈ (Sch /S0) is the groupoid

preAM0(X)(S) = {weak ∆-collections on S × CP1 over S } .

On the other hand one has the construction of Morrison-Plesser [M-P : Sec. 3.7], as is

used in [L-L-Y : II, Sec. 2.4, Example 4]. In this section we shall discuss how Morrison-

Plesser’s construction is related to Cox’s work and the stack AM0(X) adapted from Sec.

2. We shall assume that X = X∆ is convex throughout this section. In particular, this

implies that every entry dρ of a multi-degree d = (dρ)ρ in the discussions are all nonnegative

integers.

The small universal weak ∆-collection à la Morrison-Plesser.

Fix a presentation : P
1 = ProjC[z0, z1] , C[z0, z1] = ⊕l≥0Ml , OP1(l) = C[z0, z1](l)

∼ and

H0(P1,OP1)(l) =Ml for l ≥ 0 , cf. [Ha1]. Then the graded C-algebra structureMl1 ·Ml2 →
Ml1+l2 induces a set of canonical isomorphisms of sheaves O

P1(l1)⊗O
P1(l2) → O

P1(l1+ l2).

Since multiplication amongMl’s is associative with respect to these isomorphisms, one has

also canonical isomorphisms O(l1)⊗· · · ⊗O(ls) → O(l1+ · · ·+ ls) . This implies that if let

∆(1) = { ρ1i }i
∐{ ρ2j }j such that

∑
im1idρ1i =

∑
jm2jdρ2j for some m1i, m2j ≥ 0, then

there is a canonical isomorphism
⊗

i OP1(dρ1i)
⊗m1i ≃ ⊗

j OP1(dρ2j )
⊗m2j . (Cf. [Cox1 :

Proposition 1.1].)

Definition 3.1 [set of canonical isomorphisms]. We shall call the above set of isomor-

phisms the set of canonical isomorphisms among tensor products of OP1(l)’s with respect

to the fixed presentation.

Let d = (dρ)ρ∈∆(1), with dρ nonnegative integers, be a multi-degree and define

Yd := ⊕ρH
0(P1,O(dρ)) with the above fixed presentation .

Recall the abelian group G and the quotient X = (C∆(1)−V (I))/G from Explanation/Fact

2.1.2. Then each element of Yd corresponds to a morphism P
1 → C

∆(1) up to a C
×-action
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on C
∆(1) by t · (xρ)ρ = (t dρxρ)ρ. Define Fd to be the subvariety of Yd that consists of

elements whose corresponding map P
1 → C

∆(1) has image contained in V (I) . Since V (I)

is a union of coordinate subspaces in C
∆(1) and hence invariant under the above C

×-

action, Fd is well-defined. The G-action on C
∆(1) induces a G-action on Yd that leaves Fd

invariant. Thus, one can define the quotient

Wd = Md := (Yd − Fd)/G .

Cf. Appendix, [M-P : Sec. 3.7]; also [L-L-Y : II, Sec. 2.4, Example 4].

Let F := (Lρ, uρ, cm)ρ,m be a weak ∆-collection on P
1 of multi-degree d. Then (cm)m

determines isomorphisms Lρ ≃ OP1(dρ), compatible with the set of canonical isomor-

phisms, up to an ambiguity parameterized by G. Thus F corresponds to a G-orbit OF in

Yd . The nonvanishing condition for F is that
∑
σ∈∆max

⊗ρ6⊂σu
∗
ρ : ⊕σ∈∆max ⊗ρ6⊂σ L

−1
ρ →

OP1 is not a zero-morphism. Since V (I) is defined by the ideal I = (
∏
ρ6⊂σ xρ |σ ∈ ∆max )

and the divisor on C
∆(1) defined by xρ corresponds to the subscheme on P

1 defined by uρ,

the nonvanishing condition means precisely that OF ⊂ Yd − Fd .

Regard the sections of O
P1(dρ) as subschemes of the total space Spec Sym•(O

P1(dρ)
∨)

of OP1(dρ). Then as in the case of Hilbert schemes one obtains the universal tuple of

sections (ũρ)ρ of the line bundles ( Õ(dρ) )ρ over (Yd − Fd) × P
1 from the pullback of the

projection map (Yd − Fd)× P
1 → P

1. The set of canonical isomorphisms in Definition 3.1

gives a canonical set of isomorphisms (c̃m)m. Since Yd−Fd corresponds to tuples (uρ)ρ of

sections that satisfy the nonvanishing condition, (Õ(dρ), ũρ, c̃m)ρ,m is a weak ∆-collection

on (Yd − Fd)× P
1 over Yd − Fd.

Definition 3.2 [universal weak ∆-collection]. F̃d := ( Õ(dρ), ũρ, c̃m )ρ,m is called the

universal weak ∆-collection on (Yd − Fd)× P
1 over Yd − Fd .

Remark 3.3 [universal property]. Since the line bundles Õ(dρ) in F̃d are fixed and c̃m is

determined once a presentation of P1 is chosen, F̃d indeed comes from a restriction of the

universal subscheme over a Hilbert scheme. It thus inherits a similar universal property

as Hilbert schemes.

The (C×)|∆(1)|-action on Yd − Fd lifts to a (C×)|∆(1)|-action on (Yd − Fd) × P
1 by

acting on P
1 by the identity. The latter then lifts to an action on each Õ(dρ) that leaves

ũ invariant. This is the unique lift that has this property. Since G is a subgroup of

(C×)|∆(1)|, G lifts to a unique action on (Õ(dρ), ũρ)ρ as well. By the very definition of G,

this G-action commutes with (c̃m)m .

Definition 3.4 [canonical G-action]. The above G-action on (Õ(dρ), ũρ, c̃m)ρ,m is called

the canonical lifting of the G-action on Yd − Fd.

The (big) universal weak ∆-collection à la Cox.
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Continuing the notations in the previous theme. Fix a basis of the M -lattice. Define

Ξ d = ⊕mIsomO
P1
(⊗ρOP1(dρ)

⊗〈m,nρ〉 , OP1 ) and Ŷd := Yd ⊕ Ξ d ,

where m runs over the fixed basis of M . Let κ : Ŷd → Ξ d be the natural projection. Then,

similar to the discussion in the previous theme, one has the (C×)∆(1) := Hom Z(Z
∆(1),C×)-

action on Ŷd induced from that on C
∆(1). Recall TN from Definition/Fact 2.1.2, then TN

acts on Ξ d freely and transitively and in such a way that κ is ((C×)∆(1), TN )-equivariant

and that theG-subaction on Ŷd leaves each preimage of κ invariant. Since the nonvanishing

condition in a weak ∆-collection has nothing to do with the isomorphism data (cm)m, it

specifies the open (C×)∆(1)-invariant subvariety Ŷd − F̂d, where F̂d := Fd × Ξ d.

Following the same construction as in the previous theme, one has a universal weak

∆-collection

F̃ big
d :=

(
Õ(dρ)

big , ũ big
ρ , c̃bigm

)
ρ,m

on ((Ŷd− F̂d)×P
1)/(Ŷd− F̂d) and the canonical lifting of the (C×)∆(1)-action on the total

space of line bundles (Õ(dρ)
big)ρ.

Remark 3.5 [Morrison-Plesser v.s. Cox ]. From these very explicit constructions, one

observes that a fixed presentation as in the previous theme selects a distinguished point

(ccanm )m in Ξ and Yd − Fd = κ−1((ccanm )m) . The universal weak ∆-collection F̃d on ((Yd −
Fd) × P

1)/(Yd − Fd) is the restriction of F̃ big
d on ((Ŷd − F̂d) × P

1)/(Ŷd − F̂d) to ((Yd −
Fd)× P

1)/(Yd − Fd) . The Isom construction in Sec. 2.2, adjusted for the fixed P
1, gives

Ŷd − F̂d.

Relation with AM0(X).

The two quotient stacks [(Ŷd − F̂d)/(C
×)∆(1)] and [(Yd − Fd)/G] are isomorphic since the

TN -action on Ξ d is transitive and free. The following lemma relates this quotient stack

with AM0(X).

Lemma 3.6 [AM0(X)]. The Artin stack AM0(X) is the quotient stack
∐
d [(Yd − Fd)/G],

for which
∐
d(Yd − Fd) is an atlas and

∐
d Wd is the coarse moduli space. In particular,

AM0(X) is a smooth Artin stack.

We check this at the prestack level. The statement then follows upon stackification.

Proof. The proof is divided in two parts.

(a) AM0(X) as a quotient stack. Let preAM0(X) =
∐
d preAM0(X)d, where d runs over

all the admissible multi-degrees. We shall construct morphisms of prestacks

J
(1)
d : preAM0(X)d −→ pre[(Yd − Fd)/G]
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and

J
(2)
d : pre[(Yd − Fd)/G] −→ preAM0(X)d

so that J
(2)
d ◦ J (1)

d and J
(1)
d ◦ J (2)

d induce auto-equivalences of related fiber groupoids. (In

other words, J
(1)
d is an isomorphism of prestacks with inverse given by J

(2)
d .)

(a.1) Construction of J
(1)
d . Given a weak ∆-collection F = (Lρ, uρ, cm)ρ,m on (S ×P

1)/S,

each Lρ defines a principal C×-bundle L×
ρ over S × P

1 by deleting the zero-section of Lρ.

The isomorphism of line bundles cm : ⊗ρL
⊗〈m,nρ〉
ρ ≃ OS×P1 induces an isomorphism of

principal C×-bundles over S×P
1 by the restriction ⊗ρ(L

×
ρ )

⊗〈m,nρ〉 → O×
S×P1

= (Gm)S×P1

of cm. This then induces a morphism, still denoted by cm, from the composition

cm : ⊕ρL
×
ρ −→ ⊗ρ(L

×
ρ )

⊗〈m,nρ〉 −→ O×
S×P1

.

This gives rise to a principal G-bundle on S × P
1 defined by the kernel (i.e. the preimage

of the section (1, . . . , 1)) of the morphism (cm)m over S × P
1 :

Ker
(
(cm)m : ⊕ρ L

×
ρ → (O×

S×P1
)⊕n = (TN )S×P1

)
,

where m runs over elements in a fixed basis of M and n is the rank of M . A principal

G-bundle over S, p : PGS → S, is obtained by restricting the above principal G-bundle

over S × P
1 to a horizontal slice, e,g. S × {0}. (Note that any two such restrictions are

isomorphic. The inverse of any such restriction of Lρ gives the line bundles on S needed

to twist Lρ so that the result is a pullback line bundle from that on P
1.) Consider the

pullback weak ∆-collection p∗F on (PGS ×P
1)/PGS . The identity morphism of line bundles

(Lρ|S×{0})ρ → (Lρ|S×{0})ρ specifies a canonical trivialization p∗(Lρ|S×{0}) ≃ OPG
S
×{0} on

the horizontal slice PGS ×{0} of PGS ×P
1 over PGS . This implies that p∗(Lρ)ρ is isomorphic

to the pullback of (O
P1(dρ))ρ by the projection map PGS × P

1 → P
1.

Furthermore, a generalization of the following standard constructions :

Let L× be the principal C×-bundle on S from deleting the zero-section of a line

bundle L on S. The projection map L× → S pulls back L to a line bundle L̃ on

the total space Tot (L×) of L×. The natural inclusion map L0 →֒ L gives rise to a

nowhere-zero global section in L̃ over Tot (L×) and hence a canonical trivialization

of L̃.

to the tuple of line bundles (Lρ|S×{0})ρ, its associated principal (C×)n-bundles and its

sub G-bundle, one deduces that the above trivialization over the slice PGS × {0} fixes an

isomorphism (p∗Lρ)ρ ≃ (O
P1(dρ))ρ.

Pulling back now the sections uρ of Lρ, one thus obtains a P
G
S -family p∗(Lρ, uρ)ρ of line

bundles on P
1 with a section. It follows from the universal property of Yd − Fd inherited

from that of Hilbert schemes that there exists a unique morphism ζF : PGS → (Yd − Fd)

with p∗(Lρ, uρ)ρ = ζ∗F F̃d . By construction ζF is G-equivariant and p∗(cm)m = ζ∗F c̃m. The

correspondence F → ζF gives a morphism of prestacks

J
(1)
d : preAM0(X)d → pre[(Yd − Fd)/G] .
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(a.2) Construction of J
(2)
d . To construct J

(2)
d : pre[(Yd − Fd)/G] → preAM0(X), observe

that if PGS is a principal G-bundle on S with a G-equivariant morphism ζ : PGS → (Yd−Fd),
(i.e. an object in the groupoid pre[(Yd − Fd)/G](S)) then ζ∗F̃d is a weak ∆-collection on

(PGS × P
1)/PGS . Since there is a canonical G-action on F̃d, the G-action on PGS also

lifts canonically to ζ∗F̃d. The quotient by this action gives then a weak ∆-collection

F on (S × P
1)/S. i.e. an object in preAM0(X)d(S). This gives a morphism J

(2)
d :

pre[(Yd − Fd)/G] → preAM0(X)d.

(a.3) Isomorphisms of stacks. It remains to show that J
(1)
d (or J

(2)
d ) is an isomorphism of

stacks. This means that J (2)◦J (1) sends a weak ∆-collection on (S×P
1)/S to an isomorphic

weak ∆-collection on (S×P
1)/S, which follows from the very explicit construction of J

(1)
d

and J
(2)
d . Similarly for J

(1)
d ◦ J (2)

d .

(b) Wd as the coarse moduli space.

(b.1) Construction of a morphism AM0(X)d → Wd. A morphism preAM0(X)d → Wd

is already given/hidden in [L-L-Y : II. Sec. 2.5, Lemma 2.7, proof] as follows. Let O(dρ)

be the pullback of OP1(dρ) to S × P
1 via the projection map. Given a weak ∆-collection

F = (Lρ, uρ, cm)ρ,m on S × P
1 over S of multi-degree d, the data (Lρ, uρ)ρ determines

non-uniquely a (u′ρ)ρ ∈ ⊕ρH
0(S ×P

1,O(dρ)) by looking at the zero-divisor/locus of uρ on

S×P
1. The ambiguities are parameterized by (tρ)ρ ∈ (C×)|∆(1)| that satisfy

∏
ρ t

〈m,nρ〉
ρ = 1

for allm ∈M . Thus (u′ρ)ρ, though nonunique, determines a unique S-family of G-orbits on

⊕ρH
0(P1,O(dρ)). The nonvanishing condition on (u′ρ)ρ inherits from that of F . Thus one

obtains a morphism S → Wd. Another construction can be obtained from the discussion

of Part (a) as follows. F determined a principal G-bundle PGS on S with a unique G-

equivariant morphism PGS → Yd − Fd. Taking quotient by G on both sides, one then

obtains a morphism S →Wd determined by F . Either way, one obtains a morphism

preφ : preAM0(X)d −→ Wd

and hence a morphism

φ : AM0(X)d −→ Wd

since for any S ∈ (Sch /S0), preφ(S) depends only on the isomorphism class of the weak

∆-collection on each fiber P1 of S × P
1 over S.

(b.2) The coarse moduli space conditions. From the definition of Wd and points of a stack,

|φ|(k) : |AM0(X)d|(k) →Wd(k) is bijective for all algebraically closed field k.

To see that Wd corepresents AM0(X)d, observe that there is a distinguished weak

∆-collection on (Wd × P
1)/Wd constructed as follows. Consider the diagonal action of G

on (Yd − Fd) × (Yd − Fd). The diagonal ∆(Yd−Fd) of (Yd − Fd) × (Yd − Fd) is invariant

under this G-action. The quotient gives a fibration of ((Yd − Fd)× (Yd − Fd)) /G → Wd

with generic fiber Yd − Fd. The diagonal ∆(Yd−Fd) descends to a section of this fibration,

which corresponds to a weak ∆-collection L̃ on Wd × P
1. By construction φ(L̃) = IdWd

.
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Suppose that W ′
d is another scheme with a morphism φ′ : AM0(X)d → W ′

d. Define

η : Hom (− ,Wd) → Hom (− ,W ′
d) by the composition

(f : S →Wd) 7−→ f∗L̃ ∈ AM0(X)d(S) 7−→ (φ′(f∗L̃) : S →W ′
d) .

Now given L ∈ AM0(X)d(S), let f = φ(L) ∈ Hom (S,Wd) and f
′ = φ′(L) ∈ Hom (S,W ′

d).

Then

η(f) = η(φ(f∗L̃)) = φ′(f∗L̃) = φ′(L) ,
where we have used the observation that L and f∗L̃ are fiberwise isomorphic weak ∆-

collections on (S×P
1)/S and since φ′ induces |φ′| that sends points of |AM0(X)d| to closed

points of W ′
d that corresponds to Spec k → W ′

d, where k is an algebraically closed field,

any such morphism φ′ must send fiberwise isomorphic weak ∆-collections on (S × P
1)/S

to the same element in Hom (S,W ′
d). This shows that Wd corepresents AM0(X)d.

(b.1) and (b.2) together show that
∐
dWd is the coarse moduli space for AM0(X) and

we conclude the proof.

✷

4 The collapsing morphism.

In this section, we re-run the proof of Jun Li of Lemma 2.7 in Mirror Principle II, with the

A-twisted moduli stack AM0(X) of Sec. 3 soldered into the discussion. All the schemes

in the discussion are over C.

Background.

Fact 4.1 [rank 1 sheaf]. ([Ha2]; also [Fr], [Huy-L], and [Od-S].) Any rank 1 torsion-free

coherent sheaf on a locally factorial scheme Y must be of the form IZ ⊗ L, where IZ is

the ideal sheaf of a subscheme Z of codimension ≥ 2 in Y and L is a line bundle on Y .

Such a decomposition is unique up to isomorphisms of OY -modules.

Fact 4.2 [Hartogs extension theorem]. ([Ii].) Let Y be a Noetherian normal scheme

and Z be a closed subset of codimension ≥ 2 in Y . Then H0(Y − Z,OY ) = H0(Y,OY ).

Corollary 4.3 [determinant]. Let L be a rank 1 coherent sheaf on a locally factorial

scheme Y . Then there exists a canonical morphism L → detL of OY -modules.

Proof. Recall the definition and the relations of det and Div in [K-M]. From the exact

sequence 0 → TorL → L → L/TorL → 0 , one has detL = det (TorL)⊗det (L/TorL).
Since L/TorL is torsion-free, L/TorL = IZ ⊗ L̂ canonically, where IZ is the ideal sheaf

of the subscheme of codimension ≥ 2 in Y (from the flattening stratification, cf. [Mu3], of
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L/TorL ) on which the fiber dimensions of L/TorL jump up and L̂ is a line bundle on Y .

These give rise to a sequence of canonical morphisms/identifications of OY -modules :

L → L/TorL = IZ ⊗ L̂ → L̂ = det
(
IZ ⊗ L̂

)
→ det

(
IZ ⊗ L̂

)
⊗ det TorL ≃ detL ,

where we have used the facts : (i) detIZ = OY , (ii) det TorL = O(DivTorL) and

DivTorL ≥ 0, and (iii) there are canonical inclusions OY →֒ OY (D) →֒ KY for D ≥ 0,

where KY is the sheaf of total quotient rings of Y . The composition of this sequence of

canonical morphisms gives the canonical morphism of OY -modules L → detL claimed.

✷

Lemma 4.4 [push-pull of weak ∆-collection]. (1) Let f : Y → Y ′ be a dominant

morphism that does not map an irreducible component of Y to a point in Y ′, then the

pull-back of a weak ∆-collection on Y ′ is a weak ∆-collection on Y .

(2) Let f : Y → Y ′ be a projective birational morphism between schemes of the same

uniform dimension. Assume that Y ′ is irreducible and that f is an isomorphism out-

side a closed subscheme of codimension ≥ 2 in Y ′ - in notation, f |U : U
∼→ U ′ -. Let

(Lρ, uρ, cm)ρ,m be a weak ∆-collection on Y and define L′
ρ := det f∗Lρ. Then there

exists a unique weak ∆-collection (L′
ρ, u

′
ρ, c

′
m) on Y ′ that extends the weak ∆-collection

(f |U )∗(Lρ, uρ, cm)ρ,m|U on U ′.

(3) Let f : Y = Y0 ∪ Y1 ∪ · · · → Y ′ be a projective morphism between schemes of the same

uniform dimension that satisfies

(i) Y ′ is a Noetherian integral (separated ) scheme which is regular in codimension-1 (cf.

[Ha1 : II.6]),

(ii) the restriction f : Y0 → Y ′ is an isomorphism outside a closed subscheme of codi-

mension ≥ 2 in Y ′ - in notation, f |U : U
∼→ U ′ -, and

(iii) each Yi, i = 1, . . ., is mapped to a codmension-1 subscheme D′
i in Y

′, whose corre-

sponding divisor is also denoted by D′
i , (i.e. Yi → D′

i is a flat family of curves).

Let (Lρ, uρ, cm)ρ,m be a weak ∆-collection on Y such that none of uρ|Yi are zero-sections,

where ρ ∈ ∆(1) and i = 1, . . . , and let L′
ρ := det f∗Lρ. Then there exists a canonically

constructed weak ∆-collection (L′
ρ, u

′
ρ, c

′
m)ρ,m on Y ′ that extends the weak ∆-collection

(f |U−Y1∪···)∗(Lρ, uρ, cm)ρ,m|U−Y1∪··· on U
′ −D1 ∪ · · · .

Remark 4.5. In Item (1), any condition that prevents mapping an irreducible component

of Y to the variety V (I) in C
∆(1) will do. The condition stated here gives the kind of

morphisms that appear in Jun Li’s proof. Note that in Item (2) it is allowed that some uρ
are zero-sections while in Item (3) it is required that none of uρ|Yi , where ρ ∈ ∆(1) and

i = 1, . . . , are zero-sections.

Proof. Statement (1) is clear and its counter statement for ∆-collections over SpecC is

stated in [Cox2].

22



For Statement (2), observe that ⊗ρL
′
ρ
⊗〈m,nρ〉 ≃ OY ′ as abstract OY ′-modules since

the former is an invertible OY ′-module that is free outside a locus of codimension ≥ 2 in

Y ′. The isomorphisms (f |U )∗cm extend to unique isomorphisms ⊗ρL
′
ρ
⊗〈m,nρ〉 ≃ OY ′ by

Hartogs extension theorem since, once fixing a trivialization of the two rank-1 globally free

OY ′-modules in question, (f |U)∗cm is given by multiplication of a regular function. The

sections u′ρ are given by the canonical morphism H0(Y,Lρ) → H0(Y ′, L′
ρ) arising from the

combination of the definition of f∗ and the canonical morphism f∗Lρ → L′
ρ = det f∗Lρ .

The cocycle conditions c′m1
⊗ c′m2

= c′m1+m2
follow by continuity.

For Statement (3), let us first show that ⊗ρL
′
ρ
⊗〈m,nρ〉 ≃ OY ′ as abstract OY ′-modules.

By the assumption in Statement (3), Yi → Di, i = 1, . . . , are flat families of curves and

the relative degree of rel-degDi(Lρ|Y i) is well-defined. Moreover, recalling the definition

of Div, one concludes that

L′
ρ = det f∗Lρ = det

(
(f |Y0)∗(Lρ|Y0)

)
⊗ OY ′


 ∑

i=1, ...

rel-degDi (Lρ|Yi) · Di




since all uρ|Yi are non-zero sections. By definition, the restriction (Lρ|Yi , uρ|Yi , cm|Yi)ρ,m
of (Lρ, uρ, cm)ρ,m to each component Yi of Y is a weak ∆-collection on Yi. In particular,

cm|Yi : ⊗ρ Lρ| 〈m,nρ〉
Yi

≃ OYi and

∑

ρ∈∆(1)

〈m,nρ〉 · rel-degDi (Lρ|Yi) = 0 .

Furthermore, the restriction f |Y0 : Y0 → Y ′ is in the situation of Statement (2) and one

can define the weak ∆-collection (L′
ρ,0, u

′
ρ,0, c

′
m,0)ρ,m on Y ′ as in Statement (2) as the

push-forward of (Lρ, uρ, cm)ρ,m|Y0 via f |Y0 . It follows that

⊗ρ∈∆(1) L
′
ρ
⊗〈m,nρ〉 = ⊗ρ∈∆(1) L

′
ρ,0

⊗〈m,nρ〉
c′m,0−→ OY ′ .

This defines also the sought-for c′m. The sections u′ρ and the cocycle conditions on c′m
follow by the same reasoning as in the case of Statement (2). This concludes the proof.

✷

The collapsing morphism.

Proposition 4.6. Let X be a convex smooth toric variety and Md(X) be the moduli stack

M0,0(P
1 ×X, (1, d)) of genus 0 stable map into P

1 ×X of degree (1, d). Then there exists

a natural morphism Υ :Md(X) → AM0(X)d of stacks.

Remark 4.7. Composition of Υ with the morphism φ : AM0(X)d → Wd in the proof of

Lemma 3.6 gives the morphism ϕ :Md(X) →Wd in [L-L-Y : II, Sec. 2.5, Lemma 2.7].
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Proof of Proposition. We split the discussions to two cases.

Case (1) : Md(X) is a compactification of the component of Hom (P1,P1 ×X) that cor-
responds to genus 0 curves in P

1 ×X of degree (1, d).

Let (Sch /C) be the category of Noetherian schemes of finite type over C and ξ be an

object in Md(X)(S) given by

F : X −→ S × P
1 ×X

ց ւ
S .

Let pi (resp. pij) be the composition of F with the projection of S × P
1 × X to its i-th

component (resp. the product of its i-th and j-th components).

Assume first that (S, ξ) is an atlas ofMd(X), then S is smooth and outside a divisorDS

of S (i.e. the boundary locus of S) the defining family of stable maps over S parameterizes

morphisms from P
1 into P

1 ×X. The map

p12 : X −→ S × P
1

is a projective birational morphism that is an isomorphism outside a locus of codimension

≥ 2 in S × P
1. Let (Lρ, zρ, cm)ρ,m be the universal ∆-collection on X and

(Lρ,ξ, uρ,ξ, cm,ξ)ρ,m = p∗3(Lρ, zρ, cm)ρ,m .

Then (Lρ,ξ, uρ,ξ, cm,ξ)ρ,m is a ∆-collection on X over S. The construction satisfies the base

change property that, if f : T → S be a morphism of C-schemes, then there is a canonical

isomorphism of ∆-collections

(Lρ,f∗ξ, uρ,f∗ξ, cm,f∗ξ)ρ,m ≃ (f × Id P1)
∗(Lρ,ξ, uρ,ξ, cm,ξ)ρ,m .

In particular, if one equipsMd(X) with the étale topology, then one obtains a ∆-collection

on the stack Md(X) by considering the étale morphisms among atlases.

Let Lρ,ξ = p12∗Lρ,ξ. Since p12 is an isomorphism over the complement U ′ of a codi-

mension ≥ 2 locus in S ×P
1, by Lemma 4.4 (2) there exists a unique weak ∆-collection of

the form (detLρ,ξ, σρ,ξ, c ′
m,ξ) on S × P

1 (over SpecC) such that the restriction of p12∗ over

U ′ is an isomorphism of weak ∆-collections on U ′ (over SpecC). Since each fiber P
1 of

S×P
1 over S comes from pinching rational subcurves of the corresponding fiber of X over

S and the restriction of (detLρ,ξ, σρ,ξ, c ′
m,ξ) to a fiber P1 defines a morphism from P

1 to X

(of possibly lower multi-degrees), (detLρ,ξ, σρ,ξ, c ′
m,ξ) must satisfy the nonvanishing con-

dition of Definition 2.1.3 when restricted to each fiber P1 of S ×P
1 over S. Consequently,

(detLρ,ξ, σρ,ξ, c ′
m,ξ) is a weak ∆-collection on S×P

1 over S as well and one obtains a map

Ω : { atlases (S, ξ) of Md(X) } −→ AM0(X)d

that commutes with the étale base change among atlases of Md(X).
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Fix now an atlas (T, ξT ) for Md(X) and let ξ ∈Md(X)(S) for a general S ∈ (Sch /C).

Since Md(X) is a smooth Deligne-Mumford stack, the pair (ξT , ξ) determines a commu-

tative diagram
S′ := Isom (ξT , ξ)

α−→ S
↓ β ↓
T −→ Md(X) ,

where α is étale and surjective. The canonical isomorphism α∗ξ ≃ β∗ξT induces a canonical

isomorphism α∗(Lρ,ξ, uρ,ξ, cm,ξ)ρ,m ≃ β∗(Lρ,ξT , uρ,ξT , cm,ξT )ρ,m. The weak ∆-collection

β∗Ω(T, ξT ) on (S′ × P
1)/S′ is a descent datum with respect to α and hence descends to a

weak ∆-collection on (S × P
1)/S. One can check that different choices of atlases (T, ξT )

give rise to the same descent on (S × P
1)/S, thus one obtains a well-defined morphism of

stacks from Md(X) to AM0(X)d. This concludes the proof for Case (1).

Case (2) : General Md(X).

Again, let S be an atlas of Md(X), which is smooth. Then there is a stratification of S

labelled by the dual graphs of the prestable domain curves of stable maps in question.

We shall assume that the graph for the maximal stratum is not a point, i.e. we are not in

Case (1). Then the projective morphism p12 are now in the situation of Statement (3) of

Lemma 4.4. Convexity of X implies that the restriction of uρ,ξ, as defined analogous to

the discussion in Case (1), to each component of X is not a zero-section. The proposition

now follows from Lemma 4.4 (3) and the same argument as in Case (1) above.

✷

We conclude the notes with three themes along the line for further study.

Theme 1. Further properties and details of the A-twisted moduli stack AMg(X).

Theme 2. Construction of natural morphisms between the moduli stack of stable maps

and the A-twisted moduli stack that generalize the construction in [L-L-Y].

Theme 3. Generalization of the twisted moduli stack AMg(X) to the case of open

strings, e.g. [G-J-S].

Appendix. Witten’s gauged linear sigma models for mathematicians.

Witten’s gauged linear sigma model (GLSM) [Wi1] is one of the universal frameworks

or structures that lie behind stringy dualities (e.g. [Gre]). A mathematical review of the

related part of [Wi1] (cf. also [M-P]) to the current work is given in this subsection.

• Introduction to the superland. [Po2 : vol. II. Appendix B] (resp. [Fr]) gives a concise

introduction of spinor representations, supersymmetry (SUSY), supermultiplets, and su-

perfields and their component fields from a string theorist’s (resp. mathematician’s) aspect.
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A formulation of superspaces/manifolds/schemes that is close in spirit to Grothendieck’s

formulation of algebraic geometry is given in [Ma : Chapter 4]. This formulation provides

a geometry behind the standard text [W-B] on supersymmetry. Kähler differentials and

tangent vectors can be defined as in [Ha1]. Fermionic integration is discussed in [We : Sec.

26.6] and [W-B : IX], whose mathematical formulation Berezin integral is discussed in [Fr]

and [Ma]. R-symmetry is discussed in [Fr : Lecture 3] and [We]. Central extensions of a

supersymmetry algebra and its BPS representations are discussed in [Fr], [Po2 : vol II],

and [We]. Super linear algebra, in particular the parity change functor
∏
, is discussed in

[Fr : Lectures 1 and 2] and [Ma : Chaper 3]. See also [Arg] and [DEFJKMMW].

• Supermanifolds and line bundles. For the purpose of this article we have reduced

the role played by the parity change functor
∏

in the description as much as possible.

(1) ([Ma : Sec. 4.1]; also [Ha1].) A supermanifold X = (X,OX ) (in smooth, analytic, or

algebraic category) is a Z/2Z-graded ringed topological space (X,OX ) such that

(a) The stalk OX,x of OX at any point x ∈ X is a local ring.

(b) X is covered by a collection of open sets {Uα}α∈I such that each (Uα,OM |Uα) is

isomorphic to (U 0
α , Sym

•
O

U0
α

(
∏ Eα) ), where U 0

α is an ordinary manifold (in the

corresponding category), Eα is an ordinary locally free coherent OU 0
α
-module,

and
∏ Eα is the OU 0

α
-module Eα with odd parity.

(c) Xrd is a manifold (in the corresponding category), cf. Remark below.

Remark. Let OX = O(0)
X ⊕ O(1)

X be the decomposition of OX into the even (i.e.

grade 0) and the odd (i.e. grade 1) component and JX := O(1)
X + (O(1)

X )2 (the ideal

of “superfuzz”, cf. [Fr : Lecture 1]). Then Xrd is by definition the submanifold of X

associated to JX . Note also that Sym•(
∏ Eα) ≃

∧• Eα as OU 0
α
-modules with all the

parities after tensor products erased. X is called decomposable if in Condition (b)

one can choose Uα = X for some α. In this case there is a surjective affine morphism

X → Xrd such that the composition Xrd →֒ X → Xrd is the identity map.

(2) A line bundle L on X is a locally free rank 1 OX-module. Associated to L is a finite

filtration of OX -modules : L ⊃ L · JX ⊃ L · J 2
X ⊃ · · · ⊃ 0 . Global sections of the

associated graded object GrL := ⊕ i (L · J iX/L · J i+1
X ) are called component sections

of L. The restriction Lrd of L to Xrd is a usual line bundle on Xrd. When X is

decomposable, GrL ≃ OM ⊗Lrd as OXrd
-modules with all the parities erased. One

may define also the Picard group Pic (X) of X.

• N : the count of minimal collections. ([Fr : Lecture 3] and [Po2 : vol. II, Appendix

B].) The real dimension of a minimal real spin representation at d-dimensional Minkowski

space is given by

d 1 2 3 4 5 6 7 8 9 10 11 12

dim R 1 1 2 4 8 8 16 16 16 16 32 64
.
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In even dimensions, there are two such irreducible representations, distinguished by left

and right . The N that appears in every SUSY literatures counts the number of collec-

tions of the odd generators of a SUSY algebra with each collection in a minimal spinor

representation of the Lorentz subalgebra of the SUSY algebra.

Example A.1 [d = 4, N = 2]. The complexified d = 4, N = 2 SUSY algebra (as in the

Seiberg-Witten theory) contains 8 odd generators in collections of 4. Each collection of

odd generators spans an irreducible represenation, 2 or 2′, of Spin (1, 3) ≃ SL(2,C). For

d = 4, though there are two different minimal spinor representations, they give the same

complexification 2 + 2′. In physics literature SUSY algebras are ususally complexified;

thus it is not necessary to distinguish whether it is 2 or 2′ that appears in the SUSY

algebra at d = 4. In contrast, at d = 2, complexifications of 1 and 1′ give inequivalent

representations of Spin (1, 1) and the distinction of left and right is necessary. E.g. N =

(1, 1) and N = (0, 2) label different complexified SUSY algebras at d = 2 with 2 odd

generators. The distinction is also needed at d = 10, cf. the mod-8 periodicity of many

properties of spinor representations.

• Physical supermanifolds. For simplicity and sufficiency of this paper, we shall assume

that the supermanifold X is decomposable, i.e. OX = Sym•
OXrd

(
∏ E) for some locally free

OXrd
-module E . To link X with supersymmetry from physics, it is then required that Xrd

is a Lorentzian manifold and E is a spinor bundle on Xrd. Superfields on X are defined to

be global sections of locally free sheaves, e.g. OX = Sym•
OXrd

(
∏ E), on X.

Example A.2 [d = 4, N = 1]. (1) The supergeometry. Xrd = the Minkowski space

(with coordinates x = (x0, x1, x2, x3)) equipped with the standard metric of signature

(−1, 1, 1, 1) and E = (OXrd
⊗ 2)C = (OXrd

)C ⊗C (2 + 2′), the complexified spinor bun-

dle on Xrd. Fix a set of (anticommuting) generators θα, θ
α̇
, α = 1, 2, for

∏ E as an

(OXrd
)C-module. Recall the decomposition (2 + 2′)

∧
(2 + 2′) = 1 + 1 + 4, where 1 is

the (complexified) 1-dimensional trivial representation and 4 is the (complexified) vector

represenattion of SO (1, 3), the Pauli matrices σm, m = 0, 1, 2, 3 and the ε matrices (cf.

[W-B : Appendix B] and [Fr : Lecture 3]). Then a superfield from (OX)C can be expressed

as (cf. [W-B : Appendix A] for summation conventions)

F (x, θ, θ) = f(x) + θφ(x) + θχ(x) + θθm(x) + θθn(x) + θσmθvm(x)

+θθθλ(x) + θθθψ(x) + θθθθd(x)

with the component fields from representations of SO (1, 3) :

1 θ θ θθ θθ θσmθ θθθ θθθ θθθθ

f(x) φ(x) χ(x) m(x) n(x) vm(x) λ(x) ψ(x) d(x)

1 2 2′ 1 1 4 2′ 2 1

(cf. [W-B : Eq.(4.9)]). The d = 4, N = 1 SUSY algebra can be realized as an algebra

of (differential) operators acting an F (x, θ, θ). In particular the four odd generators are
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realized as : (This is what physicists call SUSY generators of the SUSY algebra.)

Qα =
∂

∂θα
−

√
−1σmαα̇ θ

α̇ ∂

∂xm
and Qα̇ = − ∂

∂θ
α̇
+

√
−1σmαα̇ θ

α ∂

∂xm
, α, α̇ = 1, 2 ,

([Wi1 : Eq.(2.1)] and [W-B : Eq.(4.4)]).

(2) Chiral superfields and chiral multiplets. A superfield Φ (resp. Φ) that satisfies

Dα̇Φ = 0 ( resp. DαΦ = 0 ) ,

where

Dα =
∂

∂θα
+

√
−1σmαα̇ θ

α̇ ∂

∂xm
and Dα̇ = − ∂

∂θ
α̇
−

√
−1σmαα̇ θ

α ∂

∂xm
,

is called chiral superfield (resp. antichiral superfield). In terms of ym = xm+
√
−1θσmθ in

the coordinate ring of X, such Φ (resp. Φ) can be expressed as

Φ(y, θ) = φ(y) +
√
2 θψ(y) + θθF (y)

(resp.

Φ(y, θ) = φ(y) +
√
2 θψ(y) + θθF (y) ,

) in component fields. The part (φ,ψ) is a section of the vector bundle associated to

a d = 4, N = 1 chiral multiplet representation (cf. [Fr : Lecture 5, Table 7]). When

the Lagrangian for d = 4, N = 1 SUSY quantum field theory (SQFT) is considered, the

equation of motion for (φ,ψ) will involve differential operators while that for F will be

purely algebraic. We say that φ and ψ are dynamical component fields and F auxiliary

component field in the chiral multiplet Φ.

(3) Vector superfields and vector multiplets. A superfield V that satisfies the reality con-

dition

V = V † ,

where V † is the Hermitian conjugate of V ([W-B : Appendix A]), is called a vector super-

field. In the Wess-Zumino gauge, its component field expansion is

V = −θσmθvm +
√
−1 θθθλ−

√
−1 θθθλ+

1

2
θθθθ D ,

([W-B : Eq.(6.6)] and [Wi1 : Eq.(2.11)]). The dynamical components (λ, λ, vm) is a section

of the vector bundle associated to the d = 4, N = 1massless vector multiplet representation

(cf. [Fr : Lecture 5, Table 7]) while D is an auxiliary component, which plays an important

role in defining the vacuum manifolds in each phase of a gauged linear sigma model [Wi1].

• Dimensional reduction (d = 4, N = 1) ⇒ (d = 2, N = (2, 2)) and R-symmetry.

(Cf. [DEFJKMMW], [H-V], [We], and [Wi1].)
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(1) The d = 4, N = 1 SUSY algebra is given by generators with (anti-)commutation

relations : ((ηmn) = Diag (−1, 1, 1, 1).)

[Lmn, Lm′n′ ] = ηnm′Lmn′ − ηmn′Lnn′ − ηn′mLm′n + ηn′nLm′m , ( Lorentz algebra )

[Lmn, Pm′ ] = ηm′nPm − ηm′mPn ( vector representation )

[Lmn, Qα] = (σmn)
β

α Qβ , [Lmn, Qα̇] = Qβ̇ (σmn)
β̇
α̇ , ( spinor representation )

{Qα, Qα̇} = 2σm
αα̇ Pm (Clifford-type algebra )

{Qα, Qβ} = {Qα̇, Qβ̇} = 0

[J,Qα] = Qα , [J,Qα̇] = −Qα̇ ( R-symmetry U(1) )

[Pm, Pn] = [J, Pm] = [J, Lmn] = 0 .

(m, n, m′, n′ = 0, 1, 2, 3 ; α, β = 1, 2 ; α̇, β̇ = 1̇, 2̇ , [W-B : Eq.(A.14)] . )

It is customary to call Qα, Qα̇ the SUSY generators of the SUSY algebra.

(2) The dimensional reduction of the d = 4, N = 1 SUSY algebra to d = 2 is obtained

by considering the subalgebra that leaves a specified R
1+1 subspace, e.g. the (x0, x3)-

coordinate plane, in R
1+3 invariant. This corresponds to setting the extra conditions

P1 = P2 = L01 = L02 = L13 = L23 = 0

to the d = 4, N = 1 SUSY algebra since these generators generate Lorentz trans-

formations that do not leave the (x0, x3)-coordinate plane invariant. The resulting

algebra is the d = 2, N = (2, 2) SUSY algebra. Its generators with renamings are

L := L03, H := −P0, P := P3, Q− := Q1, Q+ := Q2, Q− := Q1̇, Q+ := Q2̇,

J1 := J, J2 := − 2
√
−1L12 ,

with commutation relations :

[L,H ] = −P , [L, P ] = −H ,

[L,Q+] = 1
2
Q+ , [L,Q−] = − 1

2
Q− , [L,Q+] = 1

2
Q+ , [L,Q−] = − 1

2
Q− ,

{Q+, Q+} = 2 (H − P ) , {Q−, Q−} = 2 (H + P ) ,

[J1, Q+] = Q+ , [J1, Q−] = Q− , [J1, Q+] = −Q+ , [J1, Q−] = −Q−

[J2, Q+] = Q+ , [J2, Q−] = −Q− , [J2, Q+] = −Q+ , [J2, Q−] = Q−

Q2
+ = Q2

− = Q
2

+ = Q
2

− = {Q−, Q+} = {Q−, Q+} = {Q+, Q−} = {Q−, Q+} = 0 ,

[H,P ] = [J1,H ] = [J1, P ] = [J1, L] = [J2,H ] = [J2, P ] = [J2, L] = [J1, J2] = 0 .

Q− and Q− (resp. Q+ and Q+) are the d = 2, N = (2, 0) (resp. N = (0, 2)) SUSY

generators and the Lorentz generator L12 in the original algebra has now become

the second R-symmetry generator J2 of the new SUSY algebra.

Define

JL = 1
2 (J2 − J1) , ( left-moving R-symmetry generator )

JR = 1
2 (J2 + J1) . ( right-moving R-symmetry generator )

Then

[JL, Q−] = −Q− , [JL, Q−] = Q− , [JL, Q+] = 0 , [JL, Q+] = 0

[JR, Q−] = 0 , [JR, Q−] = 0 . [JR, Q+] = Q+ , [JR, Q+] = −Q+ ,
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(3) The dimensional reduction of a superfield on d = 4 Minkowski space-time to d = 2

superfields is obtained by setting two spatial directions, say x1 and x2, to be constant

and take fields to depend only on x0 and x3. Recall Example A.2. Then the rule of

conversion of fields from d = 4, N = 1 to d = 2, N = (2, 2) are given by :

y0 := x0 , y1 := x3 , (for space-time coordinates)

σ := (v1 −
√
−1v2)/

√
2 , σ := (v1 +

√
−1v2)/

√
2 (reduced vector components in d = 4

⇒ complex scalors in d = 2){
(ψ−, ψ+) := (ψ1, ψ2) , (ψ−, ψ+) := (ψ1, ψ2) ,

(ψ
−
, ψ

+
) := (ψ1̇, ψ2̇) , (ψ

−
, ψ

+
) := (ψ1̇, ψ2̇) .

(for spinorial components)

The d = 2N = (2, 2) chiral superfields and vector superfields can be obtained from

d = 4, N = 1 ones via these conversions, cf. Example A.2 and the next item.

• Gauged linear sigma models. ([Wi1 : Sec. 2].) Given d = 2, N = (2, 2) chiral

superfields (Φi here is the Φ0 in [Wi1 : Eq.(2.13)])

Φi = φi +
√
2θ+ψi,+ +

√
2θ−ψi,− + θ2Fi , i = 1, . . . , n ,

in d = 2, N = (2, 2) chiral coordinates (Φi here is the Φ0 in [Wi1 : Eq.(2.13)])

( y0 −
√
−1(θ−θ

−
+ θ+θ

+
) , y1 +

√
−1(θ−θ

− − θ+θ
+
) ) ,

vector superfields, in Wess-Zumino gauge, (cf. connections)

Va = −
√
2 (θ−θ

+
σa + θ+θ

−
σa) + (θ−θ

−
+ θ+θ

+
)va,0 − (θ−θ

− − θ+θ
+
)va,1

+
√
−2 θ+θ−(θ

+
λa,+ + θ

−
λa,−)−

√
−2 θ

+
θ
−
(θ−λa,− + θ+λa,+)− 2 θ+θ−θ

+
θ
−
Da ,

a = 1, . . . , n− d ,

gauge group U(1)n−d (parameterized by (t1, . . . , tn−d)), and a U(1)n−d-action on Φi by

Φi −→
(
n−d∏

a=1

t
Qi,a
a

)
Φi .

Define ([Wi1 : Eq.(2.16)]), (cf. curvatures)

Σa :=
1√
2
D+D−Va

= σa −
√
−2θ+λa,+ −

√
−2 θ

−
λa,− +

√
2θ+θ

−
(Da −

√
−1va,01)

−
√
−1 θ

−
θ−(∂0 − ∂1)σa −

√
−1θ+θ

+
(∂0 + ∂1)σa

+
√
2θ

−
θ+θ−(∂0 − ∂1)λa,+ +

√
2θ+θ

−
θ
+
(∂0 + ∂1)λa,− − θ+θ

−
θ−θ

+
(∂2

0 − ∂2
1)σa ,

where va,01 = ∂0va,1−∂1va,0 . The associated gauged linear sigma model is a 2-dimensional

supersymmetric quantum field theory (SQFT) with action

L = L kinetic + LW + L gauge + LD,θ ,
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where

L kinetic =

∫
d2y d4θ

n∑

i=1

Φi exp

[
2
n−d∑

a=1

Qi,aVa

]
Φi ,

LW = −
∫
d2y dθ+ dθ−W (Φi)|θ+=θ

−
=0

− (Hermitian conjugate ) ,

L gauge = −
n−d∑

a=1

1

4 e2a

∫
d2y d4θΣaΣa ,

and

LD,θ =
n−d∑

a=1

∫
d2y (−raDa +

θa
2π
va,01)

=

√
−1 ta

2
√
2

∫
d2y dθ+ dθ

−
Σ|
θ−=θ

+
=0

−
√
−1 ta

2
√
2

∫
d2y dθ− dθ

+
Σ|
θ+=θ

−
=0

with

ta =
√
−1 ra +

θa
2π

.

The real-valued numerical parameters ea, ra, and θa are called the coupling constants of

the theory.

Performing the Fermionic integrations
∫
d4θ,

∫
dθ+dθ−, and

∫
dθ

+
dθ

−
renders L a com-

plicated expression in terms of component fields on Φi and Va ([Wi1 : Eq.(2.19), Eq.(2.21),

and Eq.(2.23)]). The d = 2, N = (2, 2) SUSY algebra without R-symmetry generators can

be realized as an algebra of derivations acting on Va and on Φi with gauge transformations

taken into account while the R-symmetry acts on fields via global abelian transformations

on the fields. In particular, the SUSY transformations in terms of component fields are

given in [Wi1 : Eq.(2.12) and Eq.(2.14)] (Cf. Example A.2 (1), [W-B Chapters III-VII],

and [We : Sec. 2.7.8]). The action L is invariant under these transformations (and hence

supersymmetric).

• Wick rotation. Field theories on Riemannian manifolds behave better than those on

Lorentzian manifolds. A Wick rotation is meant to be an analytic continuation between

theories in the two categories (e.g. [P-S]). Some of its geometry is studied in [Liu]. In

the current case of flat space-times, such an analytic continuation is realized by setting

y0 = −iy2 and taking (y1, y2) as the coordinates of the Wick rotated d = 2 space-time.

The latter has the Euclidean metric −(dy0)2 + (dy1)2 = (dy2)2 + (dy1)2 and the tangent

bundle group SO (1, 1) now becomes SO (2).

•The A-twist and the B-twist. ([Wi2], [Wi1], [DEFJKMMW: vol. 2, Witten’s lecture,

Sec. 14.3], and [F-S : Chapter 7].) Consider the two different twisted embeddings of the

d = 2 rotation algebra, generated by L, into the d = 2, N = (2, 2) SUSY algebra :

A-twist : L 7→ LA := L− 1
2JL + 1

2JR

B-twist : L 7→ LB := L+ 1
2JL + 1

2JR .
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Since both JL and JR commute with all the SUSY algebra generators except Q± and Q±,

the commutation relation of LA and LB with SUSY algebra generators are the same as

those for L except the following ones :

[LA, Q+] = Q+ , [LA, Q−] = 0 , [LA, Q+] = 0 , [LA, Q−] = −Q− ,

[LB , Q+] = Q+ , [LB, Q−] = −Q− , [LB , Q+] = 0 , [LB , Q−] = 0 .

This implies that all the SUSY generators are now of integral spin with respect to either

of the twisted tangent bundle groups.

From the commutation relations of the Lorentz generator with SUSY generators, the

supermanifolds associated to the Wick-rotated d = 2, N = (2, 2) SUSY algebra are

X =

(
C, Sym•

∏(
(K

1
2
C )

⊕2 ⊕ (K
− 1

2
C )⊕2

))
,

where C is a Riemann surface and KC is the canonical line bundle of C while the super-

manifolds associated to either A-twisted or B-twisted SUSY algebra are

X twist =
(
C, Sym•

∏(
O ⊕2
C ⊕KC ⊕K−1

C

))
.

When C is the complex plane, a cylinder, or an elliptic curve, K
± 1

2
C ∼ OC admit nontrivial

global sections. Thus both SQFT and its twists can be built on such C. For general C,

K
± 1

2
C have no global sections except the zero-section and, hence, only twisted SQFT can

be defined on C.

• Phase structure. ([Wi1] and [M-P] for GLSM; [Al], [Arg], [Po1], [R-S-Z], and [W-

K] for general field-theoretical aspects.) When the coupling constants (ea, ra, θa)a in the

action L of the gauged linear model given earlier vary, the nature of the field theories may

also vary. Thus (ea, ra, θa)a can be thought of as the coordinates for a space MGLSM

that parameterizes a family of d = 2 field theories. MGLSM is called the (Wilson’s)

theory space of the model. Quantities (e.g. 2-point functions) of the field theories may

be turned into defining geometric data (e.g. Zamolodchikov metric) on MGLSM . There

exists a stratification of MGLSM according to the nature of the field theory a point in

MGLSM parameterizes. Each stratum of this stratification is called a phase of the GSLM.

In general, for quantum considerations of the theory, cutoffs (e.g. of energy) may have to

be introduced. These cutoff parameters may also be added in to enlarge the theory space.

(Cf. The recent work of Borchard [Bo] enlarges Wilson’s theory space by adding also the

space of renormalization prescriptions. His work should be important to understanding

the quantum phase structure on the theory space.)

• The moduli space of the A-twisted theory in the geometric phase. Either twist

breaks half of the 4 supersymmetries in general. The resulting d = 2 SQFT has the same

expression as the action L but each of the component fields in the superfield involved

lives in a new bundle determined by the twisted spin discussed in Item (The A-twist

32



and the B-twist) above. For the A-twist, the remaining supersymmetries of the twisted

gauged linear sigma model are generated by Q− and Q+ . These are the SUSY generators

that are of A-twisted spin 0. Recall the realization of SUSY algebra with R-symmetry

generators removed as an algebra of derivations acting on fields. A field configuration that

is annihilated by both Q− and Q+ is called a supersymmetric field configuration of the

twisted gauged linear sigma model. When the gauge coupling constants ea are all set equal

to some e and the superpotentialW is set to zero, the bosonic part of SUSY configurations

for the A-twisted theory are given explicitly by the solutions to the following system of

equations ([Wi1 : Eq.(3.33), Eq.(3.34), Eq.(3.35)] and [M-P : Eq.(3.54 a-d)])

dσa = 0 , a = 1 , . . . , n− d ,∑n−d
a=1 Q

a
i σa φi = 0 , i = 1 , . . . , n ,
Dz φi = 0 , i = 1 , . . . , n , ( ∗1 )

Da + va,12 = 0 , a = 1 , . . . , n− d , ( ∗2 )

with Dz a covariant derivative constructed from the U(1)n−d gauge connection (va,1, va,2)a
and

Da = −e2
(

n∑

i=1

Qai |φi|2 − ra

)

from the equation of motion for Da.

When (ra)a is in the geometric phase, for which the solution set to the subsystem

{Eq.(∗1), Eq.(∗2) } is non-empty, the only solution for σa is σa = 0 for all a. Following

the study in [Brad], [B-D], and [GP] on vortex-type equations, Witten and Morrison-

Plesser thus conclude that the moduli space of the A-twisted theory for (ra)a in this phase

is given by

∐
~d
M~d

=

{
common solutions to
Eq. (∗1) and Eq. (∗2)

}/{
unitary abelian gauge transformations
and global complex abelian transforma-
tions

}

=

{
solutions to Eq. (∗1) that satisfy
appropriate stability condition

}/{
complex abelian gauge
transformations

}

= the toric variety
∐

~d
(Y~d

− F~d
) /G ,

where Y~d, F~d, and G are explained in Explanation/Fact 2.1.2 and Sec. 3 in terms of toric

geometry ([M-P : Sec. 3.1]). (Cf. See also [Fr : Lecture 4 and Lecture 5] on the moduli

space of vacua of a SQFT.)

As already mentioned in [M-P : Sec. 3.7], the above construction, in particular the

moduli space
∐
~d
M~d

, has a generalization to higher genus Riemann surfaces as well,

following [Cox2]. The main theme of this paper is the study of this generalization of∐
~d
M~d

to higher genus.
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[F-S] P. Fré and P. Soriani, The N = 2 wonderland : From Calabi-Yau manifolds to topological field
theories, World Scientific, 1995.

34



[Gie] D. Gieseker, Lectures on moduli of curves, Springer-Verlag, 1982.

[Gil] H. Gillet, Intersection theory on algebraic stacks and Q-varieties, J. Pure Appl. Algebra, 34

(1984), pp. 193 - 240.
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