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1. INTRODUCTION

The purpose of this paper is twofold. The first one is to solve an old problem posed
by Strominger in constructing smooth models of superstring theory with flux. These are
given by non-Kéahler manifolds with torsion. To achieve this, we solve a nonlinear Monge-
Ampere equation which is more complicated than the equation in the Calabi conjecture. The
estimate of the volume form gives extra complication, for example. The second one is to
point out the connection of the newly constructed geometry based on Strominger’s equations
in realizing the proposal of M. Reid [20] on connecting one Calabi-Yau manifold to another
one with different topology. In Reid’s proposal, the construction of Clemens-Friedman (see
[10]) is needed where a Calabi-Yau manifold is deformed to complex manifolds diffeomorphic
to connected sums of S3 x S3. These are non-Kihler manifolds.

There is a rich class of non-Kahler complex manifolds for dimension greater than two. It
is therefore important to construct canonical geometry on such manifolds. Since for non-
Kahler geometry, the complex structure is not quite compatible with the Riemannian metric,
it has been difficult to find a reasonable class of Hermitian metric that exhibit rich geometry.
We believe that metrics motivated by theoretic physics should have good properties. This is
especially true for those metrics which admit parallel spinors. The work of Strominger did
provide such a candidate. In this paper, we provide a smooth solution to the Strominger
system. This is an important open problem in the past twenty years. Our method is based
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on a priori estimates which can be generalized to elliptic fibration over general Calabi-Yau
manifolds. However, in this paper, for the sake of importance in string theory, we shall
restrict ourselves to complex three-dimensional manifolds. The structure of the equations
for higher-dimensional Calabi-Yau manifolds are little bit different. They are also more
relevant to algebraic geometry and hence will be treated in a later occasion.

The physical context of the solutions is discussed in a companion paper [4] written jointly
with K. Becker, M. Becker and L.-S. Tseng.

Acknowledgement. The authors would like to thank K. Becker, M. Becker and L.-S.
Tseng for useful discussions. J.-X. Fu would also like to thank J. Li and X.-P. Zhu for useful
discussions. J.-X. Fu is supported in part by NSFC grant 10471026. S.-T. Yau is supported
in part by NSF grants DMS-0244462, DMS-0354737 and DMS-0306600.

2. MOTIVATION FROM STRING THEORY

In the original proposal for compactification of superstring [6], Candelas, Horowitz, Stro-
minger and Witten constructed the metric product of a maximal symmetric four-dimensional
spacetime M with a six-dimensional Calabi-Yau vacuum X as the ten-dimensional space-
time; they identified the Yang-Mills connection with the SU(3) connection of the Calabi-Yau
metric and set the dilaton to be a constant. Adapting the second author’s suggestion of us-
ing Uhlenbeck-Yau’s theorem on constructing Hermitian-Yang-Mills connections over stable
bundles [23], Witten [25] and later Horava-Witten [I4] proposed to use higher rank bundles
for strong coupled heterotic string theory so that the gauge groups can be SU(4) or SU(5).

At around the same time, Strominger [21] analyzed heterotic superstring background
with spacetime supersymmetry and non-zero torsion by allowing a scalar “warp factor” for
the spacetime metric. He considered a ten-dimensional spacetime that is a warped product
of a maximal symmetric four-dimensional spacetime M and an internal space X; the metric
on M x X takes the form

0 _ _2D(y) g,w(éE) 0 > .
=e , r e M, € X;
I < 0 g5y /
the connection on an auxiliary bundle is Hermitian-Yang-Mills connection over X:

FAw?=0, F*°=F"=0.

Here w is the Hermitian form w = —V2_1 gijdzi A dZ defined on the internal space X. In this
system, the physical relevant quantities are

h=—v—-1(0 — 0w,

1
6 = —5log 9] + do.
and
g5y = €)1 " gij,
for a constant ¢g.

In order for the ansatz to provide a supersymmetric configuration, one introduces a
Majorana-Weyl spinor € so that

1
My = VM€ — ghMNP'YNPE =0,

1
X =M O e — EhMNP'YMNPE =0,

5)( = ")/MNFMNe = O,
2



where s is the gravitino, A is the dilatino, x is the gluino, ¢ is the dilaton and h is the
Kalb-Ramond field strength obeying

/

dh = %(trF/\F—trR/\R).

Strominger [21] showed that in order to achieve spacetime supersymmetry, the internal six
manifold X must be a complex manifold with a non-vanishing holomorphic three-form 2;
and the anomaly cancellation demands that the Hermitian form w obey?

/
V100w = %(trR AR —trF A F)

and supersymmetry requires?
d*w = /—1(0 — 9) log |||
Accordingly, he proposed the system

(2.1) Fu Aw? =0;

(22) Fp'=Fy" =0

(2.3) V=100w = %/(trR AR~ trF A Frp);
(2.4) d*w = V=1(9 - 9) In || Q..

This system gives a solution of a superstring theory with flux that allows non-trivial dilaton
field and Yang-Mills field. (It turns out D(y) = ¢ and is the dilaton field.) Here w is the
Hermitian form and R is the curvature tensor of the Hermitian metric w; H is the Hermitian
metric and F' is its curvature of a vector bundle E; tr is the trace of the endomorphism
bundle of either £ or T X.

In [IR], Li and Yau observed the following:

Lemma 1. Equation (24) is equivalent to
(2.5) d(| @ || w?) = 0.

In fact, Li and Yau gave the first irreducible non-singular solution of the supersymmetric
system of Strominger for U(4) and U(5) principle bundle. They obtained their solutions
by perturbing around the Calabi-Yau vacuum coupled with the sum of tangent bundle and
trivial line bundles. In this paper, we consider the solution on complex manifolds which do
not admit Kéhler structures. Study of non-Kéhler manifold should be useful to understand
the speculation of M. Reid that all Calabi-Yau manifolds can be deformed to each other
through conifold transition.

An example of non-Kéhler manifolds X is given by 72-bundles over Calabi-Yau varieties
B, B, [T, T3] [15]. Since we demand that the internal six manifold X is a complex manifold
with a non-vanishing holomorphic three form €2, we consider the T?—bundle (X,w, Q) over
a complex surface (5,wg,g) with a non-vanishing holomorphic 2-form Qg. According to
the classification of complex surfaces by Enriques and Kodaira, such complex surfaces must

IThe curvature F of the vector bundle E in ref. [21] is real, i.e., c1(E) = % But we are used to taking
the curvature F such that c¢i(E) = —Vz:rl F'. So this equation corrects eq. (2.18) of ref. [2I] by a minus sign.
2See eq. (56) of ref.[22], which corrects eq. (2.30) of ref.[Z1] by a minus sign.
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be finite quotients of K3 surface, complex torus (Kéhler) and Kodaira surface (non-Kéhler).
If (X,w,Q) satisfies Strominger’s equation [Z4]), Lemma 1 shows that d(|| Q ||, w?) = 0.

Let w’ =| ||31) w. Then dw'? = 0, i.e., ' is a balanced metric [I9. The balanced metric
was studied extensively by Michelsohn. She proved that the balanced condition is preserved
under proper holomorphic submersions. Note that Alessandrini and Bassanelli [T] proved
that this condition is also preserved under modifications of complex manifolds. Hence if a
holomorphic submersion 7 from a balanced manifold X to a complex surface S is proper,
S is also balanced (actually 7,w? is the balanced metric on S, see proposition 1.9 in [I9]).
When the dimension of complex manifold is two, the conditions of being balanced and
Kihler coincide. Hence there is no solution to Strominger’s equation (1.4) on 7 bundles
over Kodaira surface and we consider T?-bundles over K3 surface and complex torus only.

On the other hand, duality from M-theory suggests that there is no supersymmetric
solution when the base manifold is a complex torus (see [d]). This class of three manifolds
includes the Iwasawa manifold. But the solution to Strominger’s system should exist when
the base is K3 surface. In this paper we do prove the existence of solutions to Strominger’s
system on such torus bundles over K3 surfaces.

3. STATEMENT OF MAIN RESULT

Let (S,ws,Qs) be a K3 surface or a complex torus with a Kéhler form wg and a non-
vanishing holomorphic (2,0)-form Qg. Let w; and we be anti-self-dual (1,1)-forms such that
wi w2

5+ and 32 represent integral cohomology classes. Using these two forms, Goldstein and

Prokushkin [IT] constructed a non-Kéhler manifold X such that 7 : X — S is a holomorphic
T?-fibration over S with a Hermitian form wy = m*wg + g@ A0 and a holomorphic (3,0)-
form ©Q = Qg A6 (for the definition of 0, see section 3). Note that (wp, ) satisfies equation
&3).

Let u be any smooth function on S and let

wy =7 (e"wg) + gﬁ AG.

Then (w,, ) also satisfies equation (ZH) (see [II] or Lemma M), i.e., w, is conformal
balanced. The stability concept can be defined on a vector bundle over a complex manifold
using the Gauduchon metric [I7, and hence for complex manifolds with balanced metrics.
Note that the stability concept of the vector bundle depends only on the conformal class of
metric. Let V' — X be a stable bundle over X with degree zero with respect to the metric
wy. (Such bundles can be obtained by pulling back stable bundles over a K3 surface or a
complex torus, see Lemma 16.) According to Li-Yau’s theorem [I7], there is a Hermitian-
Yang-Mills metric H on V', which is unique up to positive constants. The curvature Fg
of the Hermitian metric H satisfies equation Il and ZZ). So (V, Fy, X,w,) satisfies
Strominger’s equations 1)), (Z2) and ). Therefore we only need to consider equation
E3). As w; and we are harmonic, Owy = dws = 0. According to 0-Poincaré Lemma, we
can write wy and wy locally as

w1 = 06 = 0(&1dz1 + &adza)
and

wo = 0¢ = O(Crdz1 + (ad2o),
where (21, 22) is a local coordinate on S. Let

B_<§1+\/—_1C1>
S +vV-16 )
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We can use B to compute trRy A Ry of the metric wy (see Proposition B) and trR,, A R,, of
the metric w,, (see Lemma [[dl). Then We reduce equation Z3) to

/ /
V—100e" A wg — %85(67“tr(5B ANOB*-g™1)) — %85u A 00u
(3.1)

Oé/

o 1 9 N
= ZtrRS A\ RS — ZtrFH /\FH — 5(” w1 st + H w2 ||w5)§,
where g = (g;;) is the Ricci-flat metric on S associated to the Kéhler form wg and g~! is the
inverse matrix of g; Rg is the curvature of g. Taking wedge product with w,, and integrating
both sides of the above equation over X, we obtain
w§

o A wy = 0.

(3.2) o// {trRs NRs —trFy AN Fr} Aw, — 2/ (wi 125 + w2 [I12,)
p's p's

When S = T%, Rg = 0. We obtain immediately

Proposition 2. There is no solution of Strominger’s system on the torus bundle X over
T* if the metric has the form e“wgs + @9 NG,

This situation is different if the base is a K3 surface. If E is a stable bundle over S with
degree 0 with respect to the metric wg, then V = 7n*F is also a stable bundle with degree 0
over X with respect to the Hermitian metric w,,. In this case, equation BII) on X can be
considered as an equation on S. Integrating equation [BII) over S,

2
w

(33) o//{trRs A Rs —trF A Fy} = 2/(|| wi 2+l ws 255
S S :

As fS trRs A Rg = 8m%ca(V) = 872 x 24, and fs trFy A Fp = 872 x (c2(E) — %C%(E)) >0,
we can rewrite equation ([B3) as

L,

(3.4) o/ (24— (c2(E) = 5 (B)) = /S (5= 126 + 1 5= 120052

For a compact, oriented, simply connected four-manifold .S, the Poincaré duality gives rise
to a pairing

Q: Hy(S;Z) x Hy(S;Z) - Z
defined by

Q(ﬁ,w=/sﬁm.

We shall denote Q(B,3) by Q(3). Then for an integral anti-self-dual (1,1)-form X, the

2
intersection number Q(£) can be expressed as — [ || & ||* 4. On the other hand, the
intersection form on K3 surface is given by [§]

3( - ) & 2(—Ey),

2 0 -1
0 2 0 -1
-1 0 2 -1
-1 -1 2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2

where

Eg




Hence Q(52) € {—2,—4,—6,---}.
We shall use the following convention for vector bundles over a compact oriented four-

manifold:
K(E) = ca(E) for SU(r) bundle E,

=c(FE) — %cf(E) for U(r) bundle FE,

= —-p(E) for SO(r) bundle E.
Then [BA) implies

(3.5) o«i-rE)+(Q(52)+Q(5)) =0,

which means that there is a smooth function p such that

o/ o/ 1 5 N2 wS
and [ ug—!z = 0. Inserting (B0) into ([B]), we obtain the following equation:
w?

/!
(3.7) V—100e" N wg — %85(6‘“‘51‘(53 ANOB*-g71)) — Bau A O0u + u ' =0,

2!

where tr(0B A OB* - g7') is a smooth well-defined (1, 1)-f0rm on S. In particular, when
we = nw1, N € 7,

_ . 1+ n?
tr(0BAOB* - g71) =V —1 7 e 56 ws

see Proposition . Hence if we set f = 1in® w1 ||?., we can rewrite equation as
p 4 wg? q
the standard complex Monge-Ampére equation:
det u,z

(3.8) Ale — —fe*“)+4a deig — +u=07

where u;; denotes 88 L and A = 29”

. We shall solve equation ([B) by the continuity
method [Zh]. Our main theorem is

Theorem 3. The equation ([377) has a smooth solution u such that
/
W = e'wg — %\/ —le “tr(OBAOB* - g~ ') + o/vV/—190u
defines a Hermitian metric on S.

1
Our solution u satisfies (fS 6_4“)4 = A << 1. Actually we can prove that infu >
—1In(Cy A) (see Proposition Ell) where A must be very small (see Proposition EII) and our
solution u must be very big.

Theorem 4. Let S be a K3 surface with a Ricci-flat metric ws. Let wy and ws be anti-
self-dual (1,1)-forms on S such that $%,%2 € H?(S,Z). Let X be a T?-bundle over S
constructed by wy and wy. Let E be a stable bundle over S with degree 0. Suppose w1,
we and k(E) satisfy condition (FZA). Then there exist a smooth function w on S and a
Hermitian- Yang-Mills metric H on E such that (V = 7*E,7n*Fg, X,w,) is a solution of

Strominger’s system.

Since it is easy to find (wy,ws, kK(F)) which satisfies condition [BH), this theorem provides
first examples of solutions to Strominger’s system on non-Kéahler manifold.
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4. GEOMETRIC MODEL

In this section, we take the geometric model of Goldstein and Prokushkin for complex
non-K&hler manifolds with an SU(3) structure [L1]. We summarize their results as follows:

Theorem 5. [1] Let (S,ws,Ng) be a Calabi-Yau 2-fold with a non-vanishing holomorphic
(2,0)—form Qg. Let wy and wy be anti-self-dual (1,1)-forms on S such that &+ € H?(S,Z)
and 42 € H?(S,Z). Then there is a Hermitian 3-fold X such that ©: X — S is a holomor-
phic T?-fibration over S and the following holds:

1. For any real 1-forms oy and ao defined on some open subset of S that satisfy daq = wy
and dag = wa, there are local coordinates x and y on X such that dz +idy is a holomorphic
form on T?-fibers and a metric on X has the following form:

(4.1) go =79 + (dz + m*a1)® + (dy + 7% 2)?,

where g is a Calabi- Yau metric on S corresponding to the Kdhler form wg.
2. X admits a nowhere vanishing holomorphic (3,0)-form with unit length:

Q= ((dx+7"a1) +i(dy + m%az)) A" Q5.

3. If either wy or wo represents a non-trivial cohomological class then X admits no Kdhler
metric.
4. X is a balanced manifold. The Hermitian form

(4.2) wo = Twg + (dz + 7 a1) A (dy + 7 az)

corresponding to the metric {1) is balanced, i.e., dwi = 0.
5. Furthermore, for any smooth function u on S, the Hermitian metric

wy =7 (e"wg) + (dx + 7" aq) A (dy + 7" ag)
is conformal balanced. Actually (wy,$Y) satisfies equation (Z3).
Goldstein and Prokushkin also studied the cohomology of this non-Kéahler manifold X:
hHO(X) = h10(S),
ROY(X) = hOL(S) + 1;

In particular
RN (X) = hMO(X) + 1.

Moreover,
hi(X) = b1(S)+1, when wy = nwy,
h(X) = bi(9), when wy # nws;
bao(X) = b2(S)—1, when wy = nwy,
bao(X) = b2(S)—2, when wy # nwy
and
X(X) = 0.
The above topological results can be explained as follows. Let L; be a holomorphic line
bundle over S with the first Chern class ¢1(L1) = [-52]. Then we can choose a Hermitian

metric hy on Lj such that its curvature is /—1w;. Let Sy = {v € Ly | hy(v,v) = 1} which
is a circle bundle over S. Locally we write w1 = dajy for some real 1-form a1y on some
open subset U on S. Such ajy define a connection on S, i.e., there is a section £y on Sy
such that

Véu = vV—1lay ® &y
7



The section &y defines a local coordinate xzy on fibers of Sy |y, i.e., we can describe the

circle S by e\/—_lwng. If we write w; = dagy on another open set V' of S, then there is
another section &y such that

(4.3) Vv = V—laiy ® &y

and this section ¢y defines another coordinate zy on fiber of Sy |y. OnUNV, d(cip—aqy) =
0 and there is a function fyy such that

(44) deV = iy —1v.

On the other hand, on UNV/, there is also a function gy on UNV such that £y = e\/?lgU‘/ﬁU.
We compute

Vév = v (Vv gy)
=(vV—=1dguy + vV—=Tlayy) @ (eV 190V ey)
=(v—1dgyy +V—1lagy) @ &y

Comparing the above equality with {3), we get

(4.5) —dguy = oy — arv.
So combining (). we find
(4.6) guv = fuv +cuv,

where cyy is some constant on UNV. On U NV, from

eingU — eizvgv — e\/flmve\/flnggU,

we obtain

(4.7) zu =2y + guv + 2km = 2y + fuv + cuv + 2k,
ED) and D) imply

(4.8) dry — dxy = dfyy = —aqy + a1v.

So dxy + a1y is a globally defined 1-form on X. We denote it by dz + a;.

We construct another line bundle Ly with the first Chern class [-%2]. Similarly, we write
locally we = das, and define a coordinate y on fibers such that dy + oo is a well-defined
1-form on the circle bundle S; of L. On X, wy = d(dz + 1) and wy = d(dy + a3), and
so [w1] = [wa] = 0 € H*(X,R). When wy = nwi, d(n(dr + a1) — (dy + a2)) = 0. So
[n(dx + a1) — (dy + a2)] € HY(X,R). Finally we define

0 =dr+ o +v—1(dy + az).
Then 6 is a (1,0)-form on X | see [IT] or the next section. Because df = w; — v/— 1w, is a
(1,1)-form on X, its (0,2)-component 96 = 0. So [] € Hy'' (X) = H'(X,0).

5. THE CALCULATION OF TRRA R

In order to calculate the curvature R and trR A R, we express the Hermitian metric 1)
in terms of a basis of holomorphic (1,0) vector fields. Hence we need to write down the
complex structure on X. Let {U,z; = z; + v—1y;,j = 1,2} be a local coordinate in S.
The horizontal lifts of vector fields a%j and a%j, which are in the kernel of dz + 7"« and
dy + 7" g, are

0 0 0 0 0 .
Xj—%j—a1<%j)%—a2<%j)a—y for j=1,2,
8



0 0 0 0 0 ,
gy (o) e (o) oy oot

The complex structure I on X is defined as

IX; =Y, IY;=-X; forj=1,2,
9 _ 9 0 __ 0
or Oy’ oy Oz

Let
Ui = X;-—V—1IX;=X; —v/-1Y;,
0 -0 0 0
- 2 yaLt-2 a3z
Yo or dr Ox oy
Then {U;,Up} is the basis of the (1,0) vector fields on X. The metric ) takes the
following Hermitian form:

(5.1) ( (965) (1) )

as Uy and Us are in the kernel of dz 4+ 7*«a; and dy + n*as. Let
(5.2) 0 =dx+v—-1dy + 7" (a1 + V—1az).
It’s easy to check that {7*dz;,0} annihilates the {U;,Up} and is the basis of (0, 1)-forms
on X. So {r*dz;,0} are (1,0)-forms on X. Certainly 7*dz; are holomorphic (1,0)-forms
and 6 is not. We need to construct another holomorphic (1,0)-form on X. Because wy and
wo are harmonic forms on S, Owi; = Ows = 0. By 0-Poincaré Lemma, locally we can find
(1,0)-forms & = &1dz + Eadze and ¢ = (1dz1 + Cadze on S, where & and (; are smooth
complex functions on some open set of S, such that w; = 9¢ and wy = 9¢. Let
bo = 0—m(¢+V10)
= (de++vV-1dy) + 7" (a1 + V—1laz) — 7" (£ + V—1().
We claim that 6 is a holomorphic (1,0)-form. By our construction, 6y is the (1,0)-form.
But df = d(dz + v —1dy + 7* (a1 + vV—1ag)) = 7* (w1 + vV —1ws) is a (1, 1)-form on X. So
(5.3) 00 =0 and 00 = df = 7* (w1 + iws).
Thus
B = 80— Tr* (€ +v=10)
= w*(wl + vV —1&)2) - W*(Wl + vV —1&)2) =0.
So 6 is a holomorphic (1, 0)-form and {7*dz;, 6y} forms a basis of holomorphic (1, 0)-forms
on X. Let
gﬁjzgj—l—\/—lcj‘ for j:1,2
and 5
Ui=U;+¢jUy for j=1,2.
Then {U;,Up} is dual to {r*dz;,00} because U, is in the kernel of §. It’s the basis of
holomorphic (1, 0)-vector fields. The metric g then becomes the following Hermitian matrix:

qitler P gzt e ¢ X
_ +B-B* B
(54)  Hx=| gi+ep gatle2l® @2 | = ( g B 1 ) ,
2 [P 1

where g is the Calabi-Yau metric on S and B = (g1, @2)*.
9



According to Strominger’s explanation in [21], when the manifold is not Kéahler, we should
take the curvature of Hermitian connection on the holomorphic tangent bundle 77X . Using
the metric (B4), we compute the curvature to be

Rzg(aHX 'H)}l) _ ( Rli Rli >7

Roi Ras
where
Ry Rs+dBA(OB*- g~ ')+ B-0(0B* - g,
Ry = —RsB+ (g9 ")AOB-0BA (0B -g")B,
~BI(OB" -9~ )B+ B(OB" -g~') N\OB+09B,
Ry = 09(0B*-g7 "),
Ry, = —0(0B"-g ")B+(9B"-g~') A DB,

and Rg is the curvature of Calabi-Yau metric g on S. It is easy to check that tr(0B A (0B* -
g+ B-00B*-g71))—9(0B* - g )B+ (0B* - g7 ') A\OB = 0. So trR = 7*trRs.

Proposition 6. [I2] The Ricci forms of the Hermitian connections on X and S have the
relation trR = 7*trRs.

Remark 7. In the above calculation, we don’t use the condition that the metric g on S is
Calabi- Yau.

Proposition 8.
(5.5) trRA R = 7*(trRs A Rg + 2tr09(0B A OB* - g™ 1)).

Proof. Fix any point p € S, we pick B such that B(p) = 0. Otherwise, B(p) # 0 and we
simply replace B by B — B(p). Hence in the calculation of trRA R at p, all terms containing
the factor B will vanish. Thus

trRAR
= trRs A Rs +2trRs AOB A (OB* - g7 1)
+2trdg - g~ AOB A O(OB* - g~1) + 2tr00B A (0B* - g~ 1)
+trdB A ((0B* - g Y ) AOB A (OB* - g7 1))
+((0B* - g Y Y NOB A (0B* -g~1)) A OB
= trRs ARg+2trRs ANOB A (0B* - g™ 1)
+2trdg - g ' AOB AO(OB* - g7 1) 4 2trd0B A J(OB* - g7 1).

Proposition 8 follows from the next two lemmas. O

Lemma 9.

trdd(OBAOB* -g7') = trRs AOBA(OB*-g7')
+trdg - g ' ANOBAO(OB* -9 )
+trd0B AN O(OB* - g~ 1.
10



Proof.

tr0d(0B A OB* - g~ 1)

= —trd(OBAO(OB* - g™ 1))

= trd0B ANI(OB* - g~ ') +trdB A 09(0B* - g™ 1)

= tr00B AO(OB* - g~1) + trdB A 9(OB* A 89*1)

= tr00BAO(OB* -g~') —trdB A 9(OB YAdg-g7)

= trd0B AJ(OB* - g~') — trdB A B(BB* Hrog-gt
+trdB A (OB* - g ') AD(0g -9 ")

= trd0BAO(OB* - g~ ') —trdBAJ(OB* - g ') ANdg-g "
+trdB A (OB* - g~ ') A Rg

= tr(00BAIJ(OB* - g~ ")) +tr(Rs N\OBAOB* - g~ 1)
+tr(dg-g ' ANOB AD(OB* - g~ 1).

Lemma 10. tr(0B A OB* - g~ ') is a well-defined (1,1)-form on S.
Proof. We take local coordinates (U, z;) and (W,w;) on S such that U NW # 0. Let
J = (%2) and

(w1 + V—1ws) lu= 9(p1dz1 + padza) = p1 A dz1 + Opa A dza,

(wl + v - CLJQ) |W (*yldwl + ’}/Qd’LUQ) 5")/1 A dwi + 8’}/2 A dws.
Then on UNW,

(on au)n(go) = (9o dea)n( gt ).
So
(5.6) (0pr Opa ) =(0n Oy )J
On the other hand, we have
(5.7) 9(2) = J'g(w)J,

where g(2) = (g;5(2)) and g(w) = (g;5(w)). Then on UN W, using (&8), &), we have

which proves that tr(0B A OB* - g~!) is a well-defined (1, 1)-form on S. O
11



Although tr(9B A OB* - g71) is a well-defined (1,1)-form on S, we can not express it by
w1 and we. But in some particular case, we can.

Proposition 11. When wy = nwy, n € Z,

(5.8) tr(OBAOB* - g~ ') = —V4_1(1 +n?) |wr |2, ws,

where g is the given Calabi- Yau metric on S and wg is the corresponding Kdhler form.
Proof. We recall that locally,

wi = 0 &=&dan + Edz,

w2 ¢, (= Gdz1 + (adza,

pj = §H+v-1g, for j=1,2,

B = (9"1>,B*:(¢1 @2 ).

P2
When wy = nwi,we take ( = n€. Then 5@- = négj,

() e ()

and
O0B* = ( 8@1 P2 ) e (1 —n\/—l)( (951 (952 )
Using above equalities, we find

tr(OJBAOB* - g™ 1)

—(1+n)tr ( gig ) NE T S
60 L () (B B ) ()
(B )0 (B B e
In order to get the global formula, we need to calculate wy. As ws is real,
(5.10) S—Z = —g—z for i,j=1,2.

Since w; is anti-self-dual, i.e., w3 A wg = 0, we have

06 06 02 06

5.11 0% 04 06 04
( ) 911 9%, + 923 o7, 913 9% go1 9%,
Because

2 w%
(5.12) Wi Awp = —wy Akwy = —wy x 01 = — || w [|5, o

locally we also have

(5.13)

071020 07 0%
12

1 (351 05 06 352) _ 1

- 2
det(g) ] || w1 ||ws .



Now using above (BI0), (&I1l) and ([&I3)), we calculate the component of dz; A dz; in (B3
to be
Lin? ( 060G 0606 060G | 0606
det(g) 922 071 071 921 071 071 912 071 071 911 071 071
L (0606 0606 (04 0504
det(g) 921 071 079 912 071 071 071 911 071 079

i (06 (06, d6)_ (06)'_  duon
_det(g) Z1 921622 912821 92z 071 911821 07

(5.14) g >
e (06 (e oa)_ ()’ 06oe
_det(g) Z1 911622 922821 92z 071 911821 07
1w (0606 0606
“det(9) M\ 92,07, 07 0%
14 n?
= 8 H Wl ||3JS gli'

Similarly, the components of dza Adz1, dz; Adze and dza Adzs in (B3) are 1*'8"2 | wi 12, 913,

1-|-n2 1-|-n2
8 8

tr(DAN DA - g1

| w1 |25 go1 and | w1 |2, g2z respectively. So we obtain

1+n? _ _ _ _
= S | wi |2, (g17d21 A dz1 + g1adZa A dz1 + gordZi A d2a + goadZa A d22)
1+n?
= VT |2, ws.

6. REDUCTION OF THE STROMINGER’S SYSTEM

Consider a 3-dimensional Hermitian manifold (X, wp,2) as described in the section 2.
Let wg be the Calabi-Yau metric on S. Let

0 = dz + ar + V—1(dy + as),
then the Hermitian form wp in {2 is

o) _
wo = T wg + T@ NG.

Because || Q ||= 1, and w; and wo are anti-self-dual,we use (B3)) to compute
d(]l 2 J|wo w5)
= dw? = d(7*w% + V—-11*ws NI A D)
(6.1) =V=1r*wg AdO NG — /—1r*ws A O A dE
= /—1r*wg A (w1 + \/—_1w2) ANO— v/ —1r*wg A (w1 — \/—_1o.)2) AO
=0.

According to Lemma 1, (wg,€?) is the solution of equation ([ZZl). Let u be any smooth
function on S and let
V=1

-1
(6.2) wy = 7" (e"wg) + TG NG.
13



Then

3
2 _ Wy _ 1
|2 15,= il
and
| Q o, w2 = e “(e"w? 4+ vV—letwg A0 A D)

= wi+(e"—1)wi
Using (&), we obtain
d(]| Q ||w, w2) = dwi +d(e* —1) Awg =0
because e" is a function on S. Hence we have proven the following

Lemma 12. [TI] The metric (6A) defined on X satisfies equation (ZA) and so satisfies

equation ([Z4).

Let V' be a stable vector bundle over X with degree 0 with respective to the metric w,,.
According to Li-Yau’s theorem [I7], there is a Hermitian-Yang-Mills metric H on V', which
is unique up to constant. Then (V, H, X, w,,) satisfies equation 1), ZZ) and @) of the
Strominge’s system. Hence to look for a solution to Strominger’s system, we need only to
consider equation (Z3):

!
(6.3) V100w, = %(trRu ARy — trFy A Fy),

where R, is the curvature of Hermitian connection of metric w,, on the holomorphic tangent
bundle 7" X. Define the Laplacian operator A with respective to the metric wg as
2

Dp=E = /=100 Aws.
Lemma 13. /=190w, = Ae" - 55 + (|| w1 |12, + | w2 [|24)%5-
Proof. Using (3)) and (&I2), we compute
V=100w, = +—100(e“ws + T_lﬁ A 0)

_ 1. _
= V=100e" N wg — 569 A 08

w? 1
= Ne*. 2—*'9 — 5(&)1 + \/—1&)2) A (w1 — \/—1602)
2
1
= Ae“-ﬁ——(wl/\wl—kwg/\wz)
2! 2
“ w? 1 w?
S Y Y PYERE

|
Lemma 14. trR, AR, = n*trRg A Rs +27*(00u A 90u) + 27*(09(e " “tr (0B AOB* - g~ 1))).

Proof. In the proof of the Proposition B we don’t use the condition that wg is Kéhler. So if
we replace metric g by e*g, we can still obtain:

trRy, A R, =7* (trR% A R% + 2trd0(0B A OB* - (e'g)™ 1))

=7*(trRY% A RY% + 209(e“tr(dB A OB* - g 1)),
14
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here RY denotes the curvature of Hermitian connection of the metric ¢“g on holomorphic
tangent bundle 7"S. So

Ry = 9(9(e"g) - (e"g)™h)
= 00u-I+0g-g7 "
= 00u-I+ Rs
and
trR% A R% =trRg A Rs + 200u A 00u + 200u A trRs

(6.5) ~ i
=trRg A Rg + 200u A Q0u,

here we use the fact that trRg = 0 because the Hermitian metric g is the Calabi-Yau metric
on S. Inserting (GH) into (G4]), we have proven the lemma. O

From Lemma [[3 and [ we can rewrite equation ([B3]) as

! /!
V—100¢e" A wg — %65(6‘“‘51‘(53 ANOB* - g71)) — %85u A 00u
(6.6)

Oé/

a/
= SrtrRs ARs — trFy AP —1/2(|wr |2 + || w |2,)w/2!

Proposition 15. There is no solution of Strominger’s system on the torus bundle X over
T* if the metric is e“wg + @9 AG.

Proof. Wedging left-hand side of equation () by w, and integrating over X, we get

/ /
/ {V/~100e" N ws — %85(67“tr(3B ANOB*-g™1)) — %8(§u A QOu} Aw!,
(6.7) X / /
:/ {V—10e" A wg — %5(67%1"(53 ANOB*-g71)) — %5u A QOu} A Ow!, =0
X

because Ow, = d(e*) Aws + 20 A (w1 — v/—1wz). When S =T%, Rpa = 0. Integrating both
sides of ([EH) and applying ), we get

2
w

o A wy = 0.

1
(6.8) o// trFH/\FH/\wu+—/ (lewr I+ [ w2 I2)
X 2 X

Certainly

2 2 W?‘; —2u 2 2 \Wa
69) 2 [ Uor 2, + w2 BT nww=2 [ = (lan |2, + wa I2,)5E >0
On the other hand, it is well-known that

t;if _ %cg(m (V)= W) - ir(zrcz(m —(r=1)&(V)),

where 7 is a rank of the bundle V' and that

r w
@r(ea(V) = (r = DEV) Awa = 15 | Fo
where F() = FH - %tI‘FH ldv So

872 wd
15



Now according to equation [Z2), Fy A w? = 0 and so ¢1(V) Aw2 = 0. Therefore c;(V) is
an anti-self-dual (1,1)-form on X. Thus

2 2 W
AV) A =~ [ ea(V) P L0
and
A2 3 3
(6.10) /trFEIAwuz—i/ | en(V) |2&—/ 1By 2% <.
Inserting (E9) and @I0) into @), we get a contradiction. O

This situation is different if the base is K3 surface. At first we observe

Lemma 16. Let E be a stable vector bundle over S with degree 0 with respective to the
Calabi-Yau metric wsg. Then V = 7m*E is also a stable vector bundle over X with degree O
with respective to Hermitian metric w, for any smooth function u on S.

Proof. According to the Donaldson-Uhlenbeck-Yau theorem, there is an unique Hermitian-
Yang-Mills metric H on F up to constant. Since we assume that the degree of F is zero,
the curvature Fy of H satisfies the equation

Fyg ANwg =0.
For the metric 7*H on V = 7*E, the curvature 7*(Fy) satisfies
T Fy Aw? = 7" (Fg Awg) A (1% (e wg) + (") A G) = 0.

So 7*H is also the Hermitian-Yang-Mills metric on V' = #*E with degree 0. Thus V is
a stable vector bundle over X with respective to the Hermitian metric w,, for any smooth
function wu. |

When we restrict ourselves to consider such a vector bundle (V = n*E, 7* Fr) over X, we
see that equation () on X can be considered as an equation on S. Integrating equation

ED) over S, we get

2
w

(6.11) o//{tng ARg —trFy A Fy} = 2/(|| wi |2, + || wa ||3s)—2'5.
S S :

As fS trRs A Rg = 8m%ca(V) = 872 x 24, and fs trFy A Fg = 872 x (c2(E) — %C%(E)) >0,
we can rewrite equation (EI1]) as
1 w1 wo w?
/ 2 _ w1 2 W2 9 \Wg
(6.12) o (24 = (2(B) = 3 EN) = [ 52 1B+ I 2 1305
Using notations of section 1, above equation implies:
w1 w2
6.13 ‘a-rE)+(Q(52)+Q(52)) =0
(613) o'24-n(B) + (@ () + (2
This equation implies that there is a smooth function px such that
o 1 w? w?
(6.14) ~rRs A Rs — a'trFu A Fy — (]| wn 2 + || w2 ||is)2—!5 - 2_;5

and [ u% = 0. Inserting (EI4) into (L), we obtain the following equation:
_ o~ B o _ B w2
(6.15)  /—100e* A wg — - 00(e™"tx(9B N OB" - g ) — — 00u A 09u + u2—,5 =0

where y is a smooth function satisfying the integrable condition |, gi = 0 and tr(0B A
OB* - g~ 1) is a smooth well-defined real (1,1)-form on S. In the next section we will use
16



the continuity method to solve equation [{EIH). We will prove that equation (EIH) has a
smooth solution u.

Theorem 17. Let S be a K3 surface with a Calabi-Yau metric wg. Let wy and wy be
anti-self-dual (1,1)-forms on S such that ¥+ € H?(S,Z) and 42 € H*(S,Z). Let X be a
T2-bundle over S constructed by wy and we. Let E be a stable bundle over S with degree 0.
Suppose that w1, wa and k(E) satisfy the condition [@I3). Then there exist a smooth func-
tion u on S and a Hermitian- Yang-Mills metric H on E such that (V = n*E, 7*Fg, X, w,)
is a solution of Strominger’s system.

Proof. Because we assume that F is a stable bundle over S with degree 0 with respective
to the Calabi-Yau metric wg, according to the Donaldson-Uhlenbeck-Yau theorem, there is
an unique Hermitian-Yang-Mills metric H on F up to constant such that the curvature Fg
of metric H satisfies

FF'=FY? =0, FyAws=0.
So we have F*FI?I’O = 7T*FIO{’2 = 0 and according to Lemma [[f, we also have 7* Fy A w? =
0. Now according to our assumption, (wy,ws, E) satisfies the condition [EIJ), and hence
there is a function p satisfying equation (EIZl). Then we solve equation ([EIH). According
to Theorem 18 in the next section, there exists a smooth solution u of equation (EIH).
Combining equation (EIH) with (EId), we know that w is the solution of equation (EH).
So (m*Fpr,w,) satisfies equation ([Z33). On the other hand, according to Lemma [[A the

metric w, = e“ws + @6‘ A @ on X satisfies equation [ZZ). Thus we have proven that
(V=n*E,n*Fy, X,w,) satisfy all equations of Strominger’s system. a

7. SOLVING THE EQUATION

In this section, we want to prove

Theorem 18. The equation

! / 2
(7.1) V—100e" A wg — %65(6‘“&(53 ANOB* - g71)) — %Béu A Ou + u% =0

has a smooth solution u such that W' = e“wg — gto/e’“tr(gB ANOB* - g71) + o//=100u
defines a Hermitian metric on S.

Proof. We solve equation ([[Il) by the continuity method. More precisely we introduce a
parameter ¢ € [0, 1] and consider the following equation

(7.2) V—100e" A wg — tadd(e “tr(OB A IB* - g~1)) — addu A 0u + tuw? /2! = 0,
where we have replace %/ by a. Let
p=—v—1tr(0BAOB* - g~ 1),

then according to Lemma [0, p is a well-defined real (1,1)-form on S. We can rewrite the
equation as

2

(7.3) V—=100e" N wg — tay/—180(e""p) — addu A d0u + tu% =0.
We shall impose the following:

(7.4) Elliptic condition : w’ = e"wg + tae™“p + 2a+/—190u > 0
17



and

2\ % 2
(7.5) Normalization : e“luﬂ = A, 1ﬁ =1.
S 2! S 21

Let C*20(8) be the space of functions whose k-derivatives are Holder continuous with
exponent 0 < ag < 1. We consider the solution in the following space

(7.6) Ba = {u € C**(S) | u satisfies the normalization ([Z3)}
and

(7.7) Ba, ={u € Ba|u also satisfies the elliptic condition (Z)}.
Let

(7.8) T ={se[0,1] |for ¢t€]0,s] equation [L3)) admits a solution in Ba,}.

Obviously 0 € T with a solution u = —In A. Hence we need only to show that T is both
closed and open in [0,1]. This will imply that 1 € T and that our original equation has
a solution in C?®. To see that the set T is open, we use the standard implicity function
theorem.

Let to € T and uy, be a solution of equation [Z3). Let Bjgq) = {(t,u) € [0,1] x Ba |u €

Ba,t}. Then By is an open set of [0,1] x B4. Let CP(S) = {1 € C%eo | fsw% =0}.
We have a map: L : By 1) — Cy*(S),

(7.9) L(t, 1) = %o (V=190 A wg — V/—1tadd(e™"p) — addu A ddu + tpw? /2!).

According to the definition of to, L(to,us,) = 0. The differential dL of L at uy, evaluated
at ¢ is L(), where the linear operator L from C?20(S) to C%(S) is defined as:

(7.10) L(p) = #us (V=100(e"0 ) A ws + V—1tgadd(e™ "0 pp) — 2a00us, A 0Op).

SodL =1L |Tut0 Ba, where Ty, Ba = {p € C*(S) | [e " = 0} is the tangent space of
B4 at ug,. The principle part of the operator 4L is

(7.11) V—=100p A (e“0ws + tgae™ "0 p + 20/~ 100uy,).
From the elliptic condition ([Z4)), we get:

(7.12) wy, = e"ow + tgoe "0 p + 2ay/—100uy, > 0.
wj, can be taken as a Hermitian (not Kéhler !) metric on S. Let

(7.13) P= \/—1Aw;085.

Then P is an elliptic operator on S. Because uy, is a solution in €% and our p and p are
smooth, according to Schauder theory, u, is smooth. So the operator P is smooth and can
be defined by

(7.14) V=100y A w;, = P(¢)w)? /2!

18



for any C?(S) function 1 on S. For any ¢, € 0% (S,R), we compute
2 2
* Wg _ Ws
Jrwez = [v s

m/¢w{V—485@“m¢)Aws4—V—1ma85@‘“mwp)—2a85m0A35w}

= /90\/ —100Y A (e*owg + toce "0 p + 200/ —10uy, )
V-1 / OO0 A wy,

[epwa - [puth.

Thus using the Corollary in page 227 of [I6], we obtain

ker L* =kerP =R

and

ker L = ker P* = {Ryy | ¢o is a nonzero function that has constant sign}.

Now we are ready to prove dL is invertible. Because dL = L |Tut0 B., we only need to
Tuyy Ba® TuyBa — Cy*(S) is invertible. It is clearly that ker L N Ty,,Ba = 0.
So dL = L |Tut0 B, is injective. Next we prove that dL = L |Tut0 B, Is surjective. For any
Y e CP™(S), we have ¢ L ker L*. Tt is well known that there is a weak solution ¢; of
linear elliptic equation L(¢1) = 1. The Schauder theory shows that ¢ € C*%(S) when

—4ug
¥ € CO0(S). Take co = —L %1 then ¢y + copo € Tu,,Ba and L(g1 + copo) = ¥.

_ / e Mo o’ R B ~
SodL =1L |Tut0 B, is surjective. Hence dL of L at uy, is invertible and L maps an open
neighborhood of (o, u¢,) in By ) to an open neighborhood of L(to, ug,) in Co®°(S). This
proves the set T is open.

prove L

It remains to prove that T is closed. Let p = @ pijdzi A\ dzj, then we can write gz’.j as
gé; =e"g;; +tae” "p; + dau;.

By directly computation, we get

det g ) - ) B w?
WJ =e™" 4+ 2ae" Au+tag” p; + 2tate(V—190u A p, ?)
et g,z !
(7.15) Jij ot ot
et p;= et u,z
1120262 Pij 11602 i

We can rewrite equation ([C3)) as

det u;;

2
8a =—c"ANu—2e"|yul? —tu—taefu(\/—laau/\p,(;—f)

det g;;

2 2
(7.16) + tae™"(v/=10u A du A p, C;—?) — tae™"(v/=10u A Op, %)

2 2
+ tae™"(v/=10u A dp, C;—f) + tae " (v/~100p, %)
L, 2 !



Then inserting [ZI8) into [ZIH), we find the Monge-Ampere-type equation:

det(e"g;; + tae " p;5 + dau,;)

(7.17) =F.,

where

det p;7
Ft ut —62u —I—tozg”p +t2 2 72“# — 2e" | Yu |2

j
- w? - w?
+2tae " (v/—10u A Ou A p, 2—5) — 2ta’e™"(v/—10u A dp, 2—'5)
L2
+ 2tae " (v/—=10u A 8p, ) + 2ta’e™"(v/—190p, %) — 2ta.

In particular, when wy = nws,

Fion, =(e" + tafe)? = 2a(e" — tafe™) | u P
—4tateT g u- U f + 2tateT A f — 2tap.

If ¢, is a sequence in T, then we have a sequence u, € C%*°(S) such that

det(etng; + tyae " pj + dass)
det g;;

(7.18) = Fipoa, -

Differentiating equation ([ZI8), we have
?u = 02 ou
dadet | e gz +t 4 " —
ade (e 9ij +tqae " pi & aazlazj) ' Ja 07,07, (8zk
ij

(7.19) = —det (e“‘? g5 + tgae " ps + 4a > Zg’” “"gg +tgae”"p;)

0
+ Tk{det 915 . th7utq }

Proposition 24 ( and Proposition P22 for a special case wa = nwy) shows that the operator
on the left-hand side of [ZI) is uniformly elliptic. Proposition 25 (and Proposition
for the special case) shows that the coefficients are Holder continuous with exponent « for
any 0 < ap < 1. The Schauder estimate then gives an estimate for the C?®0-estimates
of Quy/0zy. Similarly we can find C*%-norm of du,/0zx. Therefore the sequence {u,}
converges in the C%®°-norm to a solution of the equation

det(evg;; + toae ™" p5 + 4a 182 )
det g;;

:Ft07

where g = lim, o t,. Thus we find a C%%0(S) solution u of equation (ZI7). But equation

[CTD) is equivalent to equation (5.3). Hence T is closed. So there is a solution u of equation

) in C%20(S). Because our function p and (1, 1)-form —/—1tr(9BAOB*-g~!) is smooth,

again by the Schauder theory, we get the smooth solution of equation ([ZTl). O
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8. ZEROTH ORDER ESTIMATE

From this section to the section [[Il we do a priori estimates of u up to the third order.
We deal with the simpler case ws = nwy, where w; is an anti-self-dual (1,1)-form on S. We

let f = —12"2 | w1 [|25- Then the equation is
det u;>
Ale* —tafe ™) +8 Y4ty =0,
(e — tafe™) +8a i o

ij

where f and p are smooth functions on S such that f > 0 and |, S u% = 0. According to
our assumption, u € C%?(S). So by the Schauder theory, the solution v is smooth. We

denote partial derivatives by u;; = 0;;u = aajg,‘ . If we replace taf by f and tu by u, then
K}

the equation can be written as

det u,;
1 Ale® — —u 1] —0.
(8.1) (e" — fe )+8adetg-*— +u=0

)

We impose the elliptic condition
W= (" + fe "ws + 204/ —100u > 0

and the normalization condition

2\ 1 2
(8.2) (/ e4u°’_f) = A, /1“_f —1.
T s 2l

In this section we prove that if A is small enough, then the solution u has an upper bound
and a lower bound depending only on «, f, u, Sobolev constant of metric wg and A. In the
next section, we shall prove that if A is small enough, then the determinant of w’ has a lower
bound greater than 0 and the metric w’ is uniformly positive. Let g’ = @ ggjdzi A dz;,
where
o5 = (" + fe ") + daug,

We note that

w?  detgps 2
21 det 9i 20

The matrix (¢'"7) satisfies the equation
> 9795 =9

/ ! / /
ni_ Y92 nz _ Y1 2l _ Y19 911
- /0 /0
det 955 det 955

So

* det 9is 927 et 9is '

Hence from the definition [IA) of the operator P, we have P(p) = 2¢'" @;5. We apply
equation ([Bl) to compute

p det gz’.j i3 det g’.j
i (9l ) —

(8.3) =2(ghg017u + g17023u — g15021u — ghyOr3u) - (det 9i3)71
' det u;;

=(e" A 16
(e"+ fe ™) Au+ adetgi3

="+ fe ") Au—2A(e" — fe ™) —2pu.
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In the following, the volume form will be ws unless it is clear from the context. We can use
E3) to compute

2 2
N 07 N
[P :2/9”@'3(6 ey

2 2

- kz/e (29" 9; u&u)w k/ “(24'7 0, u)a;'
det g/~ ,2

> k/e‘k“P = —k/e—’f“P(u) iy

k/e (e“ + fe~ )Au+2k/eik"A(e“—f67“)+2k/efk“u.

(8.4)

On the other hand, we can also use ([LId) to compute
/P(e—’f“) \/_/aa )
=\/—_1/ D0(e P A ((e* + fe “ws + 2av/—19du)
= [ gy aet
=— k/e*k“(e“ +fem) Au+ kz/e*k“(e“ + fem) | wu |3,
where | u [>= 2g%u;u;. Combing (BF) and (&3),
b [ s e gu
22/6716“ A (e — fe) + 2/6716“[1
:2/6”““(6" + feT) Au+ 2/6’]““(6“ —fe ) | wu 2
—2/6*(’““)“Af+4/ (k1w 7 gy vf+2/ “kuy,

where vu- v f = ¢ (uif; +ujzfi). When k > 2, we integrate by part and obtain

(8.6)

2/6716“(6“ +feT) Au

(8.7) =2(k — 1)/6*““*1)“ | vu > +2(k + 1)/fe*<k+1>“ | vu |?
2 C(ktlyu A WE —(k+1)u
+k——|—1 e Afi—él e Vu-\/f.
Inserting (&) into (&5,

k/e—(k—l)u | Tu |2 _|_k/fe—(k+l)u | Ju |2

_L (k+1)u /—ku
<2(1 k+1)/e RVANY e e~ .
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Because f > 0, above inequality implies

(88) k/ef(kfl)u | Tu |2§ OO/ —(k+1)u v O / 7ku,

where Cj depends only on f (so also depends on «) and u. In the following, Cy may depend
on «, f, p and the Sobolev constant of S about the metric wg. We use the constant Cy
in the generic sense. So Cy may mean different constants in different equations. Now from
above inequality, if we replace k£ — 1 by k, then when k& > 1,

(8.9) /Iv )7 2< cok/e—<k+2>U+cok/e—<’f+1>U.

We apply the Sobolev inequality

e 5" or< Colll e =" lloo + || Ve~ 2" 1o

AP — 4. In the case p = 2, we have

(Jor)’ ot 1ot

Inserting (BH) into above inequality, we get

(/(e )2k>1 <CO/( )k+Ook/(67u>k+2+Ook/(€7u)k+1.

2
Because we have normalized the metric wg such that [( 1% = 1, we apply the Holder
inequality to above inequality to get

(8.10) (/(e )2k> : < Cy (/(e“)k+2> o + Cok (/(e“)k+2> o + cok/(e*“)k“.

Note that when k& = 2, above inequality has no use. This explains why we need the normal-
ization [BZ). In the following we assume that

(8.11) </(e“)4)i =A<, /51“’2—% =1

There are two cases:
Case (1): For any k >4, [(e=*)* < 1. Then (8I0) implies

(8.12) </(e )2k>1<(}0 (/(e“)“?)k%.

Applying the Holder inequality,

Jeme = [
o) (o)
(ferr) T (fer)

Inserting above inequality into [BI2), we see

(8.14) /( —u)2k < O k2R ( k> (/(e")k>2.

with r =



Take k = 28 for § > 2. Then 3 > 2 and rewrite (814 as

/ (=2 < 228 ( / (e—uﬁ‘*)z.

Iterating above inequality, we get

(8.15) (/(e—uﬁ‘*“) S (/(e—uy*)i .

We fix the constant Cjy and denote it by C7, which depends only on f, 4, @ and the Sobolev
constant of S with respective to the metric wg. Letting 8 — oo, we find
(8.16) exp(—infu) =[] ™" || < C1 A.

Case(2). There is an integer k such that [(e=")* > 1. Let ko be the first such an integer.
According to the assumption 8IIl), ko > 4. Then for any k > ko, by the Holder inequality,
we have [(e=")* > 1. For any k > ko > 4, inequality (8I0) and (§I3) imply

1

([ ) < cak [l

k—2

sca(fior)” (fiom)’

We can see from above inequality:

el
N

2%
/(67u>2k S Ook2 (/(eu)k> for k Z ko > 4.

Using above inequality for k& > ko and the inequality (&Id) for k < ko, we can still get the
estimate &I of inf u, because A* < A when A <1 and a > 1.

Next we estimate supg u. Similar to the way we estimate inf u, we compute || 5 P(ef)
by two methods and get

(8.17) p/(eu T fem et | gu 2> _2/ew A (e — fe~) — 2/6%.

Integrating by part, when p > 2,

/ v A (e — fe )

1
_ _p/e<p+1>u | u |? _p/e@—l)uf lu|? - (1+ 1) /e<p—1>u N
-

and when p =1,

(8.19) /e“A(e“—fe—“):—/e%|vu|2—/f|vu|2—/uAf.
Inserting (BIX) or BI9) into [BTIM), because f > 0, we get

(8.20) p/e(p+l)“ | vu|?< Co/ep“ —l—Co/e(p_l)“ for p>2.
When p =1,

(8:21) [erigupse fen-z2 funr<e [evc [1ul.
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Remark 19. Whent =0, f and p (actually actually taf and tup) are equal to zero. From
above inequality we have

/62“|Vu|2§2/e"u—2/uﬁf:(),

which implies | Ju 0. So when t = 0, there is an unique constant solution under the
normalization and the elliptic condition.

|2i

We choose A small enough such that
(8.22) A<crt
Then from e~ ™% < C1A < 1, w > 0. (8Z]) implies

(8.23) /|ve“ |2< Co/e“
and (82Z0) implies
(8.24) / | e [2< Cop/ep“ when p > 3.

Applying the Sobolov inequality and using [B23)), [824)), we obtain

(/(e“)2p) < Cop/ep“, for p>2.

Take p = 27 for 3 > 1. Then

/ (€)™ < 2% ( / <e“>2‘3)2.

Iterating above inequality and take the limit 8 — oo, we get

1
3
(8.25) exp(supu) < Cp (/ 62“) .
Let [e" = M,, then [(e* — M,) = 0. The Poincaré inequality and ([B2Z3) imply

(5.26) /(eu)Q— (/e“) :/(eu_Mu)2
<Oo/|V6— |<Co/|v6 |2<OO/

Let Uy ={z € S|e™® >4} and Uy = {x € S | e ®) < 4}, Then

A4:/6_4u:/ e—4u_|_/ e—4u
S U, U,
S/ €—4infu+/ (A/2)4
U1 U2

ef4mf“vO1(U1) (A/2)* Vol(Us)
[(e=Fu)d — (A4/2)*] Vol(Uy) + (A/2)".

So
A —(A/2)% At— (A2t 2t—-1
Volllh) = =mrayt — a2 @Ay — (@2t - o1

Thus
VOl(UQ) =1 —VOl(Ul) <1l—mg<l1.
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Applying the Young inequality, the Holder inequality, and then using ([B20l), we find

(o) =(L )

() () o ()
(8.27) < (1 + %0) (/U e2“> Vol(Uy) + (1 + o) Vol(Uz) /U e
< (1 + %0) (%)2 +(1+ eo)Vol(UQ)/Se?“
2

Take ¢y small enough such that
(1 + 60)(1 — mo) < 1.
Then from B27),
2
(8.28) (/ e“>2— (L1 )1 —mo)Ch /e“+ (H%) %) <0
' s 1—(1+eo)(1—mo) 1—(L+e)(l—mo) =~

which implies an upper bound of [ e*. Now the estimate of [ e?* follows from (BZH) and the
estimate of sup u then follows from &2ZH). We summarize above discussion in the following

Proposition 20. Lett € T andwu is a solution of equation (Bl) under the elliptic condition

w' = (e"+tafe ) ws+2ay/—109u > 0 and and normalization ( [ 674“)% =Aand [ 1% =
1. If A < 1, then there is a constant C1 which depends on «, f, i and the Sobolev constant
of ws such that

irgf u > —In(C1 A).

Moreover, if A is small enough such that A < (C1)™1, then there is an upper bound of supg u
which depends on «, f, p, the Sobolev constant of ws and A.

9. AN ESTIMATE OF THE DETERMINANT

In this section, we want to obtain a lower bound of the determinant, which is equal to

det g; det u;;

— =(e" + tafe )% + 2a(e* + tafe ™) Au+ 160> ——2

det g5 (e" +tafe ™) +2a(e" +tafe™™) Au+ 16a det g;;

(e +tafe™)? + 2a(e" + tafe ™) Au—2a(A(e" —tafe ™) + tu)
=(e" +tafe ™)? — 2a(e" — tafe ™) | vu|?

—4tate Ty u - f + 2tateT A f — 2tayp.

9.1)

From (@), we see
(9.2) e HF =1-2ae™" | yu |* +e72*0(1),
where

(9.3) O(1) = 2taf+t2a® fPe 2" +2ta’ fe " | yu |* —4tale  “yu-v f+2tae " A f—2tap.
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Our elliptic condition is w’ > 0, which is equivalent to F' > 0. The first step is to derive an
upper bound of | yu |?. In the above section we have proven that e~ ™% < C; A and have
assumed that C1 A < 1. Applying this assumption, we estimate

e HE =120 | yu|* +e7240(1)
<1 —2ae " | yu |2 +(2ta® fe 3" + 2ta?e ") | yu |?

+e 2 2taf + 2ol fRem v 4 2tate ™ | f [P F2taleT A f — 2tau}
<1 —2a{l — ta(1l +sup fle 2™ e | Gu |2

+ e 2nfu 0 sup f + o (sup f)? + 2% sup | v f |2 +2a%sup | Af | +2asup | p |}
<1 —2af{1 — a1 +sup f)(C1A)*}e™ | yu |? +Ca(C1 A)?,
where
(9.5) Cy = 2asup f + a?(sup f)? + 202 sup | v f | +2a?sup | Af | +2asup | u | .
Applying F > 0 to [@4)), we get

(9.4)

(9.6) 1—2a{1 —a(l +sup f)(CrA)*}e ™ | yu |* +C2(C1A)? > 0.
If we take )
A< {2a(1+sup f)} 2071,
then
1
(9.7) 1 — a1l +sup f)(C1A)* > 5>0

Then from ([@8) and ([@7), we can get

2

(9.8) | vu|?< we“ < 1+—Cze“.

2cv - 3 «

So | svu |* has an upper bound. In the following we want to prove that for any given
constant k satisfying 0 < k < 1, we can choose A small enough (depending on k) so that
e 2“F(t,-) > k. In the above section, we have seen that when ¢ = 0, the equation has an
unique solution u = —In A. So e 2“F(0,-) = 1. By the continuity assumption (ZH), we
only need to prove that there is not ¢ = ¢y € T such that inf(e "2“F(tg,)) = &. If not, there
is a tp € T and ¢; such that F(tg,q1) = inf(e"2“F(to,-)) = . We fix this ¢y and will get
the contradiction if we choose A small enough. So when ¢t = t(, we assume

(9.9) inf(e ™ F) = k.

Applying ([@3) to @), we get

(9.10) 1 — 201 —a(l +sup f)(C1A)*}e ™ | u |* +Co(C1A)? > k.
Then (@) and ([@I0) imply

1—rk+ Cg(clA)2
2a{1l — a(1 +sup f)(C14)?}
11—k n Ca(C1A)? + (1 — k)1 +sup f)(CLA)?

e | vul’<

9.11 =
(0-11) 2 2a{1 — a(1 +sup f)(C1A4)?}
11—k C
< + <—2 +1 —|—supf> (C1A)2.
2a o
We apply the maximum principle to the function
(9.12) G=1-2ae"|u|* +20e " — 200,

27



where ¢ is some constant satisfying 0 < € < 1 which will be determined later. Comparing
G [@X12) to e 2*F @), we get
(9.13) e"E — G = e 0(1) — 200" 4 200
and from inf(e "2“F) = k, we see
(9.14) K —sup(e 2" | O(1)|) — 2ae =" <inf G < k +sup(e 2* | O(1) |) + 2ae =",
We can use (@H) and ([@F)) to estimate
sup | O(1) |[<2asup f + a?(sup f)*(C1A)? + 2asup f {(1 + Co)}
+2a{(1+ Cy)} +2a%(C1A)sup | 7 f |2
+20%(CLA)sup | Af | +2asup | p |
<2asup f + &?(sup f)? + 2a(1 +sup f) (1 + Cs)
+20%sup | v P +20sup | Af | +20sup | 4|
<Cy+2a(1l +sup f)(1 + Cy).

So
sup(e 2" | O(1) |) + 2ae =@
(9.15) <(C1A){C2 + 2a(1 +sup f)(1 + Co)} + 20(C1 A)°
<2{C5 + 2a(1 + sup f)}(C1 A)*
=C5(C1A),
where

Ch=2{Cy+2a(1 +sup f)}
depends only on «, f and p. Combining (@I4) and ([@IH), we get
(9.16) k— Cy(C1A)® <inf G < k + CH(CLA)".

Let G achieve the minimum at the point g2 € S. At the point g2, we apply (IIH) and (@I6)
to (@I3)) to estimate

e 2R P (go) =G(q2) + e 22 O(1)(g2) — 20e ™54 ®2) 4 9g~cinfu

(9.17) <inf G +sup(e™2* | O(1) |) + 2ae=infu
<k +2C%(C1A)".

We apply [@I4) to ([IIZ) to estimate

e ") | gu ? (q2) =(20) {1 — G(g2) + 20e~="(%) — 20~}
(2a)"H1 — inf G — 2ae—cnf¥}
(2a) M1 — Kk — CH(C1 A — 2a(CL A}
(1-#5)/(20) = (1 + (20) 7' C) (1 A)".

(9.18)

v 1V

Take
C3 = max{a " 'Cy + 1 +sup f,2C%, 1+ (2a) " *Ch}.
Then (@) and [@TI0) imply
(9.19) k< e 2R P(gy) < K+ C3(CLA)S;
@1T) and (@TIF) imply

(020)  (1-#)/(20) = C5(C1AY < e @ | u? (g2) < (1 - 1)/(20) + C3(CL A",
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We now compute P(G)F at the point go. In the following we replace taf by f and tu by
1. At the point g9, from 7G(g2) = 0, we have

(9.21) vl vul?) =( vu? —ee' ) v,

Because wg is Kéahler, we can choose the normal coordinate (z1,22) at the point ¢o, i.e.,
9;; = 0ij and dg;; = 0. At the same time , we can assume g—zul # 0 and g—zuz = 0. Because u
is real, we can further assume that 88_;1 >0 and 88—;1 = 0. So at the point g2, u; = u and

(9.22) Quiuy = 2uiug = 2uqui =| vu |? .
If we assume
1
1—-k\*
A crt
< (20&03) Lo
then
11—k

— Cg(clA)E > 0.

Hence [Z0) implies | yu [*> 0 and (IZI)) implies
| vu P —72) /2

ui2 + uge = U1z + ugz = 0.

From &3] and @), we can see

U1l + U7 = U + Ui
(9.23) 11 11 11 11

det u,;;

P)F =(c" + fe™") Au+1 i

(W) F =(e*+ fe ) Au+ 16 detgi:
. 1 u —u\2 u —u 2det ui;

—a e F fe )2 — (e + fe ) Au
= 'F—a "+ fe ") (" + fe "+ a Au).
We then compute
P2ae™)F = — 2aee” " P(u)F + 2ae?e ™" - (29”3%“3) - F
= —2aee "P(u)F + 2ae%e =" - g™ | u | -F
= — 2 UF 4+ 2ee (e + fe ) (e + fe U +a Au)
+2ae?e™ | yu |2 (e + fe " + daugs).

(9.25)

Using (ZZT), we derive
P(—2ae™ | yu |*)F
=2ae" | yu | P(u)F — 2ae “P(| yu |*)F
—20e™" | yu |? 29" uuz F
(9.26) +2ae™" - 29" 9uds (| u |?) + d5udy(| u 1)} - F
=2¢ " | yu |* F—2e “(e"“ + fe ) | wu |? (e“ + fe “+a Au)
+ {2067 | vu [* —dace™" | yu [P} + fe " + dauys)

—2ae " P(| vu |*)F.
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Combining [IZ0) and ([@Z0), we get

P(G)F =P(1 — 2ae™ | yu |* +20e % — 2ae M) F
={2¢7" | vu |? —2ce”“}F
(9.27) —{2e7 (" + fe ) | wu [* —2ee (e + fe ") He" 4 fe A u)
+ {2067 | vu [* +(2ae? — dag)e™" | yu [P} 4 fe " + daugs)
—2ae " P(| vu |*)F.

We now compute the term

aP(| yu )F =dag (¢ upup) 5 F

ij
:4ozg’i5{ui5ku,; + ul-;,;uk}F

(9.28) + dag" {ugpug; + wug; + 0:05(g urug } F

24049”5{%'31@% + ugpur }F + 4049/i5{ui15“k3}F

+ 4agij{ui1uij}F + 4ag'i3{8i63 (gli)ului}F.

We deal with the first term in ([IZ2Z8) by applying the definition of gz’.j,

dag' T {ugrug + ugpug ) F
=da{g| umnk + Ghstiix — JizUaik — Jortizk buj(det g;) 7"
+ daf g guosr, + 9haUaTE — 91aUath — Yo1tizk yur(det g;7)
=da(e" + fe~"){gTugrug + g7 ugpux}
+ 160 {ug1tgzy, + UsaUpig — Ursliagy — UailUiay Huz(det g;5) "
+ 160 {uy1Ugsg + Ugaliy1f — Uraliatk — Unilszg Juk det g;7) "

=2a(e" + fe ") v Au - yu + 16a% (d -
et gw

Using the equation to the last term of above equality, we find

4049/15{%%“1% + ugrugF
=2a(e" + feT) v Au-yu—2ay Ale — fe™) - yu—2a v 1 u
— —2a(e" — fe) | yu 2 Au—2a(e” + fe) | yu !
—2a(e" — fe ")V | vu|? -V u—dae™" v (Vu- V) vu
+6ae™ | yu > yu - f —2ae7 | yu |2 Af
+2ae ' Af - vu—2a p-vu —2ae” H(u - f) A w.

From (@), we see e % | yu |*>< Cy, where Cy only depends on «, f and p and does not

depend on A. In the following we use Cj in the generic sense. We have gotten | yu [2< Cye®.

Our assumptions of A implies e* > 1, | yu |[< Cye®. In the following we will deal with such
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small terms. So we have

(9.29)

4ag’i5{ui3ku,; + ugrur }F

> —2a(e" — fe ) | vu |2 Au—2a(e* + fe %) | vu |*
—2a(e" — fe ")V | vu [P v u—dae™" v (Vu- Vf) - u
—Cye = Cy(e" + fe™ +a A u)

Applying [@Z3), we find

(9.30)

u

—dae™ v (Vu-vf) vu
= —dae” " {(uif; + ui fi)wug + (uif; + uifi)rur}
= — dae” “fu frug + ug fiug + i frur + wig fiue}
— doe™ " {u; frpug + wifivug + wi fipur + uifipu}
= —dae” " {ui f; + uir fi + vz fi + uit fi}wa
—2ae "{fi1 + fu1 + fi1 + fii} | vu P
> —doe™ " {(uin +u;1) f; + (uz; +uzp) fitur — Cy

1 1
——tac { S0 9u P~ i+ 5 Tu P 19 fua - 4

> — Cye".

Inserting (@30) into (@I2Y) and applying ([@ZTI), we find

(9.31)

dag' T {ugug + ugpug ) F
> —2a(e" — fe') | u [P Au—2a(e + fe™) | vu |
—2a(e" — fe ") | vu |* +2ae(e” — fe ") | gu |?
—Cye” —Cy(e" + fe " +a A u)
>=2(e" = fem) [ vu |? (e + fe " +abu)+2(e” — feT)(e" + feT) | vu |?
—dae® | gu [* +2ae(e” — fe )7 | gu |?
— Cye" —Cy(e" + fe " +aAu)
=20~ feT) [vu [ (" + fe " +abu)+ 2| vu? (F-0(1))
—2f%7 % | yu |? +2ae(e” — fe_“)e(l_g)“ | vu |?
— Cye" —Cy(e" + fe " +a A u)
>2 | vu P F—2(e" — fe ) | vu |? (e* + fe ™" + a Au)

+ 207" | u | —Cyuet — Cyle" + fe ' + a Aw).
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Next we deal with the second term in [IZZ). We compute

dog" () F
=da(e" + fe™ ") (upur)
+ 1607 {ur1Uagups + UngUs Ukt — Uralofliyg — UoilypUss }
(9.32) =da(e" + fe~ ") (ur1 + ug3)® — 8afe” + fe ") (urtugs — urzusy)

+ 160* (uy1 + ugs) (Ur1tss — UraUsT)

det u,z det u,>
_ u —u 2 _ u —u 1) 2 1] .
ale" + fe ") (Au)® — 8afe” + fe™) (detgij> +8a” Awu <detgij)

Using the equation, we have

det -
8042Au<ﬂ> =—alul(e"—fe ") —aulu

det g5
=—ale" + fe ") (Au)? —ale" — fe ) | vu |* Au

(9.33) —a{2e*yu-vf—e " Af+tautAu
> —ale" + fe ") (Au)? —ale” — fe ) | vu |* Au
— Cye" — Cy(e" + fe " + a Au),

and
det u,=
~Saet + fe ) gD
=(e"+ fe ") A(e" = fe ") + (e + fe ")
(934) :(eu + fe—u)2 A + (eu + fe_u)(eu — fe_u) | Yu |2

+(e“+ fe "2 vu-vf —e T A f+ )
>(e" + fe_“)2 Au+ (e + fe ) (e" — fe ) | vu |2 —Cye.

Inserting ([@33) and @34) into [@32F), we get the following estimate of the second term:

4ag" (ugug) F
> —ale" = fe ) | vu |2 Au+ (e + fe )2 Au
+ (" + fe) (" — fe ) | wu | —Cue® — Cyle™ + fe ™ +a Awu)
>{a7 (e + fem)? = (" = feT) | vu PHe" + fe T +a D)
(9.35) 1w a3 u —uns u 9
—a(e"F fem")  +2(e" + feT ) (e — feT) [ vu |
— Cye” — Cy(e" + fe "+ a A u)
a7l + fe)? = (" — fe™) [ vu PHe" + feT" +a D)
—a HNe" + fe )F — Cyet — Cyle + fe “ + a Au).
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Then we compute the third term in (28). By denoting a = (| u [ —ee=9*), we can

use [@23) to prove

4ag' (uirug;)F
=da(e" + fe™" + daugs )unugy — 1607 ussus1usy
— 160 usruriugs + dafe” + fe™ " + dauqg )ugiuis
=da(e 4 fe™ + daugs)(a — ur7)? + 160U 3us1(a — ugg) X 2
+4da(e® + fe™" + dau1)uzus;
=da(e" + fe~")a® — 8aa(e" + fe")uig + da(e” + fe ")u?; + 16a%a’uq;

(9.36)

det u;> det u,;;
4 U —u _ _ 16 2 _ o 2 2 Z]'
+4da(e" + fe ")ujzust + 160 uqg det g detgi:
Using the equation again, we have
det u,z _
160%u,1 o g:; = —20u 1 {A(e" — fe ) + u}

— — 2auyg(e® + fe) Au—2afe” — fe) | yu [P ury
(9.37) —2a{2e7"Vu-vf—e A f+ptus
> —dafe! + fem")ui; — dafe" + fe " Jurtugs
—afet — fev) | vu P Du+20(et — fe) | yu P uz
— Cye" — Cy(e" + fe ™ + dauy7)

and

—3202a——1 =daa{A(e" — fe™") + u}

=4aa(e" + fe ") Au+daale” — fe™ ) | vu |?
+d4aa{2e " Ju-7f —e " A f 4+ u}
>8aa(e" + fe “)uir + 8aale” + fe *)ugsz

+4aa(e” — fe™) | wu | —Cye®
33
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Inserting (@37) and @38 into [@I30) and simplifying, we get
4ozg’i5ui1ui3F
> —ale — fe ) | vu |? Au
+ {160%a® + 8aa(e" + fe™*) + 2a(e" — fe™) | vu |*Jugs
+ 4aa®(e" + fe ") + daale® — fe™ ") | vu |?
det u;z

Jot gi; —Cye” — Cy(e" + fe ™" +a )

—da(e* + fe )

2o(e o fe P Bu—ale’ — fe) | vu P du
+ {1602a® + 8aa(e® + fe ) +2a(e" — fe™) | wu [*}uss
+ daa®(e" + fe ") + daale” — fe™ ) | vu |2
1
b A(e 4 fe (e o) | u P —Cae® = Cale” + fe +a )

1 1
>_ u u _ u u _
5 Fe"+ fe " +alu) 5 (e“+ fe")F — 2aF

1
+ {4aa’® + 2a(e" + fe™") + S (e" = fe™) | Vu [He" + fe " + dau)
— Cye — Cy(e" + fe "+ a A u)

Now putting a = %(| vu |? —56(1_5)“) into above inequality and simplifying, we conclude
an estimate of the third term:

dagupui; F

1
>%F(e“ +fe ' +alu)

(939)  + {eel = (e 4 fe) - | vu P
+ {ge“ | vu |? +a | vu | —2aeet% | u |2 —ee? U (" + fet 4 dauys)
— Cye® — Cy(e" + fe "+ a A u).

The last term of [I2]) is

(9.40) 4ag'i36i5(gli)u1uiF > —Cy | vul? (e“+ fe " +aAu)

where C} also depends on the curvature bound of the given metric wg. Inserting (311 B30,
039 @40) into [I2]) and simplifying, we get

aP(| 7u|*)F
>{| vu|? —%e“ + eI E 4 202?79 | u |2
O41) 4 {gF b (e 4 fe ) = 3" — fe ) | Tu P} + fe o +a du)
+ {ge“ | vu |* 4o | yu [t —2aee(l—e)u | vu |? —56(2*5)“}(6“ + fe7" + dauys)

— Cye® — Cye"(e" + fe "+ aAu).
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In order to get above inequality, we have used e F < Cse*. Then inserting (ZZI) into

@22), we find finally
(9.42)

P(G)F < {% — dee U F — daee I | gu |2 +Cy
— {%e*“F — 2gell=e)u _ Ca}e" + fe ™ +aAu)
— 3] u [* —2ee "9 — 20’ | u [P}(e" + fe + dauss)
S%F — 2ee UF — 2¢e(279) 4 0y
e + fe™" + daugg

3
—{ZeUF — 2eel v — 0y}

@ 2
- {ge_uF — 6eell=)v 1 6 | vu |? —dag?e ™" | yu |? —04}eu + fe_;‘ + 40‘“22'
Let
a; = %F — 2ce UF — 2¢O 4 Oy
(9.43) ag = %equ —2eell=9)v _ ¢,

3
az = E(f“F — 621 46 | vu > —dace ™" | u |2 —Cy.

Because at the point ¢z, P(G)F > 0. Then ([@Z2) implies

(944) al Z ag

We fix & such that 0 < k < 1. We choose € > 0 satisfying

(9.45) £ < min {1, a2, (204)71,%}
Then
3—2ae? >0
and
3
—k — 6 > 0.
«
We assume
3
2k —6
(9.46) A<l "o
Cy

Then k,e and A satisfy

3
—Kk — 6 — C4C1A > 0.
«

We find

as Ze“{éefzuF —2ee” " — Cye "}
o
Ze“{%ﬂ —2e(C1A) — C4C1 A}

Ze“{%ﬂ —6e — C4C1A} >0
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and
as zeu{ﬁm — 6e(C1A)" — C4C1AY +2 | yu |2 (3 — 2082 (Cr A))
a

3
>e'{=k —6c — C4C1A} +2 | vu > (3 —2ag?) > 0.
«
Applying arithmetic-geometric inequality to (@IZ4]), we find
u —u u —u 2
02> aze + fe " +4ug +a3e + fe™" +douss
2 2
>azaz(e” + fe™ " 4 4uir)(e" + fe " + dauys)
>asasF.

(9.47)

Using ([@2), we can write ag as

3
a3 =—e"F +6 | yu|? =617 — dag?e " | gu |? —C4
(9.48) o
3 u (1—e)u 2 —ceu 2 —u
=—e" — 6ee —daee™" | yu |* —e7*0(1) — Cy.

a
Inserting ([@Z3)) and @Z]) into [@TZQ) and simplifying , we can get
4526—28uF2 4 45262(2—6)%& + 12526—(1-‘1-5)1,& | v,u |2 F2 4 0411621,&

>§€e(275)uF _ ggefsuFQ + 48262(175)711_7
T o

(9.49) >§ae*€“F(eQ“ —F)

o

6
zaeewa@ae“ | vu|? —0(1))
>12ee(179 | gu |2 F — Che?,

where C) may be bigger than C; and we shall denote it by C4. Dividing (@EI) by
dee U F | we get
—eu e—(2—a)u

(9.50)
ce (e + E;—HF +3e(e™™ | wu |?) (e F) + C4m >3 | wu ).
Using the inequalities ([@T9) and ([@20) to two sides of above inequality, we obtain
—eu e—(2—€)u

—eu/,—2u e —u 2 —2u
ce (6 F)—FEW—F&?(E |Vu| )(6 F)+O4W
(C1A)*

SE(OlA)E(H + Cg(ClA)E) + ST

1—«x C1A)* ¢
051 +3el CalcnA)) (T 4 ca(eray ) + B2
€ 1—x 5 (4 . | OER
< g ke +eC3 + — + 3exC3 + 3¢ C3+3cC5 + — ; (C1A)° + —(1 —R)
K 2« ER 2«
§{1+5+s (1+3m+3+303) C3+%}(01A)8+3€—K(1—m)
K 2a ER 2«
and
(9.52) 3= | u [?) > %(1 k) — 3CH(CLAY.
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Applying (@21 and [IE2) to [@T20), we see
{1 +< +3Cs3+¢ (1 +3k+ 3 +303> Cs + %} (CLA)* > 3(1 —k)(1 —ek).
K 2a ER 2a

So at last we get at the point (¢, q2),

o=

(9.53)

%(1—&)(1—5&) ) Cfl.

Az B 3 Ca -
{1+£43C3+c(1+3r+ 55 +3C3) C3 4+ 2} (C14)
Now it is easy to prove the following

Proposition 21. Lett € T and w is a solution of equation (Bl) under the elliptic condition

_ 1
(e" + tafe ")ws + 2av/—100u > 0 and the normalization ([ e **)* = A and [ 1% =1.
Given any constant k € (0, 1), we fix some positive constant € satisfying

(9.54) e <min{l,a"2,(2a) 'k}
Suppose that A satisfies

. -1 ~to- (L=n : e
(9.55) A<m1n{1,Cl ;{2a(1+sup f)} 20 =<2003 Cr C, G
and
(956) A< 2 (1= R)(1 —<r) o
{1+ 2430 +c(143m+ 55 +3C5) s+ 2} (C1A) ) 1

where C is determined in above section and depends on «, f and p, and also depends on
the Sobolev constant; Cs and Cy are determined in above discussion and depend on «, f, u,
and Cy also depends the curvature bound of wg. Then F > ket > /{(C’lA)_2.

Proof. When t = 0, the equation has an unique solution u = —In A and so e 2“F(0,-) = 1.
According to our continuity assumption, we claim that for any t € T, e 2“F(t,-) > k.
Otherwise if there is a ty € T such that the equation has a solution u and inf(e=2“F) = &.
Fix this to and apply the maximum principle to the function G = 1 — 2ae™ | yu |?
+2ae~ " — 20~ ¥  Let G achieve the minimum at the point ¢. Then at point g,
P(G)F > 0. From above discussion, we have gotten the inequality [@Ih3) at point go under
assumptions @5 and {IEH), which contradicts to the assumption [@EH). So e 2“F > k
and then F > re?* > r(C1A) "2 O

10. SECOND ORDER ESTIMATE

We now consider the second order a priori estimate of u. Since we have proved F >
K(C1A)™2 >0, "+ fe " +aAu> F2 > 52(C1A)"! > 0. It is sufficient to have an upper
estimate of e + fe™" + a A wu. We fix some point and choose the normal coordinate (z1, 22)
at this point for the given metric g;;, i.e., at this point, g;; = d;; and dg,; = 0. We replace
taf by f and tu by u. We can rewrite the equation as

det ggj

(10.1)

)

where

F=(e"+ fe ) —2a(e" — fe ") | vu |? —dae “ 7 u-7f + 20 " A f — 2ap.
37



Differentiating ([l), we have

/
(10.2) g/ii% _ %95  10F
(9Zk (9Zk F (9Zk

We differentiate ([ILZ) again to obtain

/ ’_ _ 0%q'-
sig 107 99a 995 | 7 9 Y

0z, Oz 021,07
a5, 5 Pos 1 PF 1 oFoF
0z Oz 021,07 F 02,07 F2 9z, 0z ’

-9

or
/ u —Uu —
dag'i d'u = iy 99, 9935 _ i *[(e" + fe™")g;3]
8Zi82j82k821 0z; Oz 021,07
i} 2
(10.3) _ a9 995 | 5 079

0z; Oz g 021,07
1 0°F 1 OF OF
F 02,0z F? 9z, 07 '
Contracting ([I3) with ¢" and using the fact that the metric wg is Ricci-flat and the
coordinate is normal, we have

/ _
4049”5 gkf d*u _ kL rig 1pj 89;:717 6gi3 KD rif 0? (e" + fe ")
8zi82j 021,07

0z Oz g9 021,02 i
wl O°F g1 OF OF
F 02,07z F2 9z, 0z
(92ng 924
821'8,%‘ 021,07

+ 4049”5

Timing F' to above equation, we see
aP(Au)F =—271 A (e + fe) > g F + dag™ (g")5 - upy - F
+27 N AF = F) | OF [P 49" g g g F
=—(e"+ fe talu) A (e + fe ) + dag'V (gk[)ij Sugr - F
+2 VAR — (2F) N [ OF 2 +gMggigl gl o F

(10.4)

We shall apply the maximum principle to the function
e—)\1u+>\2\vu\2 . (eu + fe—u + CMA’U,),

where A1 and A9 are some positive constants which will be determined later. By computa-
tion,

Pe~MutRlvul® (gu 4 femu 4 g Ay)) - e (Thrutdelvul)
=(e“+ fe " +au)- (=M Pu)+ X P(| vu |?))
(10.5) +Pe"+ fe " +alu)
+ (e + fe " +alu) |V (= u+ | vul?) |§,

+2V (“Mu+ X | Vul?) g V(e + feT Fa D),
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where we denote 29”51/)1-1/13 by | /¢ |2, and g’ij(z/)igpi +1504) by 7' -g V'p. Applying the
Schwarz’ inequality to the last term of ([ILH), we have

2 (= Au+ X | vu ?) g V(e + feT Fa Au)
> 2|V (Mt | vuP) g | V(e fe Tt a D) |y
>—(e"+ fe " +alu) | V(=Mut A | vul?) [

—(e"+ fe " +al u)_l | V(" + fe " +alu) |§, .

(10.6)

Inserting ([LH) into ([ILH), we have

P(e—A1u+Az\vu\2 e+ fet +aAu))- e~ (=Arutz|vul?)
S 4 fe 4 a bu)- (“AP) + APl Tu )

+Pe"+ fe " +alu)

—(e“+ fe rahu) | V(e F fe Fanu) .

g’

(10.7)

In computing the last term of ([IL7), we assume that g;; = d;; and u;; = u;;0;; at a point.
Then using the method of [26], we find

(e“+ fe " +adu) [V (" + fe " +alu) |
=(e"+ fe " +alu)t 207 (e + fe +ahu)(et + fe A u);

= %(eu +fet +au)! Zglﬁ <Z gkki) <Z glﬁ>
i k ]

10.8 1, . u _ G 11 95 11
B8 _ (et fervanwy S ST [ S g ) S (A0
i k ng l gl[
<

1 ) ) ’
St e tahu) Y gD (g™ D gir
i k !

rii tkk 1

=> 9" g0
1k

Note that when i # k,

(10.9) Gpki = Gigre T (€ + fe™)i = [(e" + fe™")gixli = gigp, + (€ + fe™);
and
(10.10) 9w = G + (€ + fe™ )i = [(e" + fe ") guiln = ghap + (€ + fe™);
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Inserting (IY) and ([II0) into [LF), we see
(e“+ fe " +ahu) | V(e + fe " +au) |§/
<9 9" gl
+ 9" g (g0 (" + feT)1 + ghrz(e + fe )
+ 9" g (ghry (" + fe")a + giar(e + fe™)2)
+g™M g (" + Fem (e + Fem)i + (€ + fem")a(e" + feT")s)
<9 9" gl ki
+ g g2 (ghsy (" + fe™™)1 + ghai (e + fe "))
+ 9" g (g + feTM)a + ghrz(e + fe)2)
— g + fem (e + fem)i + (€ + fem")a(e" + feT)s)
<9 9" gl ki
+ (0 02) (" (" + fe ")) + (9 521) (0 (" + fe )
)
1

By the Schwarz inequality, we can estimate

(e“+ fe " +ahu) | V(e + fe " +au) |§/

rii tkk 1 ’ 122 122 1 ’ 11 11 s ’
<99 G Ikin 99 9omY921 T 99 91129113

—l—g/liglli(eu +fe—u)1(eu +f€_u)1 +g/2ig/2i(eu+f€—u)2(eu +f€_u)§
Sg/ﬁg/kfcggkjg;ﬁj 1+ Cs (g/liglli + g/2ég/2é)
2 2
<g/ﬁ 1kk 1 glli + g/2§

!
9" Yk T O =573
11922

(10.11)

<g" 9" g 9 + CsF 2 (911 + 9h2)”

Sgliig/kkggfgjg;ﬁj + 05(eu + fe—u +a A u)2,
where C5 is some constant. In this section we will use the constant Cs in the generic
sense which depends on f, «a, u, the curvature bound of the metric wg, and u up to first

order derivation. It can also depend on the lower bound of F' as we have proven that
F > ke?" > k(C1A)~2. Note when we assume that 9i7 = 0ij and u;5 = u;;0;5, the last term

of (L4 is g'ﬁg'k’;g;]—cjg;ﬁj. Multiplying (7)) by F and then inserting (L)) and (LTI
into it, we obtain

P(ef)\lu+)\2|vu|2 . (eu + feiu +aA u)) . e,(,)\lquh‘Vup) F
>— A"+ fe " +aAu)P(u) - F

+ X"+ fe " +aAu)P(| yu|?) - F

—(e“+ fe " +au) A (e + fe ) + dag'V (gk[)ijuk;- F

+ 27V AF - 2F) | F |2 +P(e" + fe ") - F

— Cs(e" + fe "+ a Au)
40
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We assume that e~ 122Vl (¢ 4 fe=% 4 o A u) achieve the maximum at the point gs.
Taking the normal coordinate (z1, z2) at the point g3 with respect to the given metric wg, we

estimate every term in ([ILTF). At the point g3, 7 {e(-Mutdalvul®) . (e fe=uyqAu)} =0.
We can get

(10.13) vAu=a Y+ fe"+alhu)( M vu—Idov|vul?)—a (e + fe ).

At first we derive some inequalities which will be used to estimate terms in ([ILIZA). Using
the equation we compute

40429“9“%1’”1@3 = 40” Z | i 2
0,J
=40®(u3; + uj; + 2uiaust)
=40?(uy1 + ug3)? — 8 det U5
(10.14) =a®(Au)® +a A (e — fe™) +ap
<(e* + fe " +aAu)? —2a(e" 4 fe ) Au
—(e“+ fe ") +ale + fe ) Au+Cs
=(e"+ fe " +aAu)? —(e"+ fe ) (e" + fe +a Au)+ Cs
<(e"+ fe " +aAu)®+Cs.
Let
= 4gi3gk[uﬁiku1ﬁ
where indices preceded by a comma, e.g., u ;; indicate covariant differentiation with respect
to the given metric wg. At the point g3, we use the normal coordinate. Therefore at g3,
uix = uik and u ;= uz (see p.345 of [26] paper or the next section). Hence I' = 4u;puz; =
43 | wik |?. We use the inequality ([ILIZ) to estimate
| v | v PP=20"( 7u )p (] vu [*)g
(10.15) =2g"1(29" uiuz)p(29" urur)g
=8(uipuz + uiuz, ) (ukpuy + urtgy)

:8(uipukﬁu;u,; + UipUgpUi Uk + UipUkpUi U + u;pu,;ﬁuiuk).

As was done in above section, we take the normal coordinate at the point g3 such that
u; = ug and ug = uz = 0. Then applying the Schwarz inequality and ([[II4) to (LIH), we
get

| v | vu |2 P=4(uipuip + UTHUTp + ULpUip + UTpUip) | VU |2

<A( wap P+ [ugp [P+ Tup [P+ [urp [2) | 7u

(10.16)
=8(| urp [* + [ wip ) | wu [?
<2 | wu |? {F—Foz_z(e“ +fe_“+ozAU)2} +Cs.
So,
(10.17) v | vu 1< V2| vu | {1"% +a (et + feu +aAu)} +Cs.
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We also need to estimate
| V(vu-vf) P=2g"1(7u- 7 f)p(Vu- Vg
=2979(g" (ui f5 + uj f1))p - (9" (urfr + uifi)g
=2(wip f; + wi fip + wip fi + uifip) (urp fr. + vk frp + wppfe + ug frp)
=2(wipUnp f3.fx + WipUpp fi fr + wipupy fifi + wipunp fiff)
+ 2(uip frun frp + Urpfrti fip + wip frug fep + ugp frwi frp)
+ 2(uzp fiur frp + wrp [z fip + wip fivg frp + urp fruifip)
+ 2(uiun fip frp + wivi fip frp + wivn fip frp + wivg fip frp)-
Changing the indices 4 and k in some terms and then applying the Schwarz inequality, we
can get
| V(vu- 2 f) P=2(wipurp fifr + urpuipfifr)
+ (wipugp fifr + urptsp frfi) + (Wipunp fi fr + wipug, fr.f7)
+ 2(uipur f3 frp + wiptg frp i + wipup frp fi + vipur frp fi)
+ 2(uzpun frp fi + wipug frp i + wipug frp fi + wipur fr, f7) + Cs

(10.18) <C5(2 | wip || e | + | wip gy | + | iy || s |
+Csl] wip | + | ugp |) + Cs
<Cs(| iy 2+ | ugp 2) + Cs
<OsT + Cs(e" + fe ™ +a Au)? + Cs.
Then,
(10.19) | V(| vu-vf)|< CsT2 + Cs(e + fe "+ a Au) + Cs.

Applying (ILT4), (LT3 and ([LID), we can estimate
A | 7u P=297 (2" )5
=49 gM (ugu7 + Wty + Wity + ;) + 49" (g*)5unu;
:29k[{(2gi3ui3)ku[ + (29i3ui5)[uk} + 4gi3gk[uizuk5 + 4gijgkiuikuj[
Ly Au-gu+T+a (e + fe " +alu)*+Cs
=207 (" + fe " taldu) M | vu =Xy | vu v u)
207ty (e F fe ) - yu+T +a (e + fe " aAu)? +Cs
<27 [ yu P M(e" + fet Fa Aw)
+207 Ng(e" + e taldu) [ v [ vul?l | vl
+T+a (" + fe " +au)? +Cs
< {072 + 22072 | yu |? /\2} (e + fe " +aAu)?
+2v2a7 | gu |? Aa(et 4+ fe t 4 a A u)l"% +T
+Cs e+ fe"+alu)+Cs
<(C5A3 + Csha + Cs)(e" + fe " +a Au)? + 2T

+CsM(e"+ fe " +aAu)+ Cs.
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For the same reason we can also estimate
A(u - 7f) =2(ui f; + i fi) g + 2097 g (i f5 + uj i)
<2(upgifi + upri fi) + 2(win fi + wig fi)
+ 2(wg fir + winfig) + Cs
<V Du-7f 42 | wi |2 42 | ug P +Cs
<ol + fet tahu) (M vu-vf = v | vul? v f)
+ 27+ (20%) e + fe " +Fa A u)? + Cs
<T + (C5A3 + Csho + Cs) (e + fe " +a Au)?
+Cshi(e" + fe"+aAu)+ Cs.

(10.21)

We now deal with every term in ([ILIZ). For the first term, we use [@Id) to obtain
—M(e“+ fe " +ahu)P(u)F
=M+ fel+ahu)a'F—a e+ fe ) (e" + fe " +a Au))
a (e + fem ) (e + feTh Fa A u)? — Oshi (e + fe +a Au)
(@C1A) A (e + fe " +aAu)? —Cshi(e" + fe " +a Au).

10.22
(10.22) .
>

Next we deal with the second term Ay(e® + fe™* + a A u)P(| yu |?)F:

(10.23) P(| Vu |2)F :49/15(%%“15 + URUE + WipUg; T Uikqu)F + 49/i3(9k[)ijukul’F
' 249/6(%51@“% +ugpur) F + 4gli3uiku;;3F —Cs(e" + fe "+ alu).

From ([@Z9), we know
4g/i3(uijkul} +ugpur) F
Z=2e" = fer )V | vu P vu—de" v (Vu-vi) v
(10.24) —Cs(e*+ fe " +alu)—Cs
>=Cs [ vIvull-|vul=C5|v(vu-vi) || vul
—Cs(e" + fe "+ aAu)—Cs.
Applying (LTD) and ([T, we get
(10.25) 4g’i3(uijku,; + ugrug) F > —CsT2 — Cy(e* + fe " +a Au) — Cs.
Inserting ((L24)) into (IL23)), we obtain
Ao(e" + fe " +a Au)P(| vu |*)F
>ho(e"+ fe T +a u)(4g’i3uiku,;3)F
—Csha(e" + fe " +a Au)2 — Cshale™ + fe * + a Au)?
(10.26) —CsXa(e" + fe " +a A u)
>ho(e"+ fe T +a u)(4g’i3uiku,;3)F
—T = Cs5(\3 4+ X)) (" + fe " + a A u)?

— Csx2(e" 4+ fe " +a A u).
43



We assume that g;; = d;; and u;; = u;;0;; at the point g3. Then
Xo(e¥ + fe " +a u)(4g”5uiku7€3)F
=4NoF - g (" + fe " 4+ a A ) (uapusz)

1 (i1 + 95
:4/\2F—/ (7911 922> Uik Ug;

ii 2
10.27 - r_
( ) =2X\o F { (1 + g/ﬂ> U pUET + (1 + @) u2kuk2}
911 923

1
ZQ/\QF’UJM’U,H Z 5/\2FF
1
25 (Cl A)_zli)\gl—‘.

Inserting ([LZ7) into (LZH), we find an estimate of the second term in ([LT2)
Ao(e" + fe " +a Au)P(| vu *)F
(10.28) > (271HC1A) PkA2 — 1) T — C5(A3 + Xo)(e" + fe " + a A u)?
— Csra(e" + fe ™" +a Au).
The third term is
—(e"+ feT"+alu) A (e + fe )

(10.29) >—(e"+ fer"+aLu){(e" — fe ) Au+Cs}
' >—a e = fer ) (e + fe b Fau)? — Cs(e" + fe " +a Au)
> Cs(e" + fe " +aAu)? —Csle" + fe " +aAu)

and the forth term is

dag"l (gki)ijuk[ F
=da (gii(g”)zz + 3911 — g15(9")a1 — 931(9”)12) Uit
—da(e" + fe)g" (M) Gurr

+ 16a° (Uli(gkf)zi +usa(g")11 — w1a(g")ar — U2i(gki)12) Uy
> — 64a® max | Risir | Z | u;; |2
>—Cs(e" + fe " +aAu)? - Cs,

(10.30)

where C5 depends the curvature of wg. Next we deal with the fifth term. From the definition
of F', we have
(10.31)
27PAF =27 A {(e" + fe )% —2a[(e" — fe ) | vu |? 20 g u-f +ae A f— ]}
=—a(e" = fe A | u P 4207 A (Vu- V)
—av (e —fe ) v |vul? 227" vu-v(vu-vf)
—Cs(e"+ fe " +alu)—Cs
=—Cs | A vu | =Cs | A(vu-vf) | =Cs | v | vu | =Cs | v(vu-vf) |

—Cs(e" + fe "+ a A u)—Cs.
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We note that the inequalities (2Z0) and ([IZI) are also true for | A | yu || and |
A(vu-7f) |- Applying ([I20), ([0.2T), (LTD) and ([LI), we get
(1032) 27EAF >~ CsT — (C5)3 4+ Csha + Cs) (e + fe ™™ + a A u)?

- —(CsM +Cs)(e*+ fe " +alLu)—Cs.

We also observe that
VF=-Csv | vul? =Cs v (vu- vf) = C5 v u—Cs.
Then applying the Schwarz inequality,
—@F) T OF P2 =G5 [ v vu PP =Cs | v | vul’|- | v(ve vf) |
= Cs | v(vu-vf) P =Cs | v | vu P
-G [ v(vu-vf) | =Cs.
Then applying ([[ILI6)- ([II9), we can get
(10.33) —(2F) ' | YF |>?> —CsT = Cs(e" + fe " +aAu)> = Cs(e" + fe " +aAu) —Cs.
The last term is
Pe" + fe " )F =(e" — fe ")P(u)F + (e" + fe™™) - 2g/i3uiu;F
(10.34) — 720" (ui fj + uj fi)F + e " P(f)F
>—Cs(e"+ fe " +alu)—Cs.
Inserting (I22)), (I2X), (I29), (030),[@32), @33) and [I34) into [IIZ), at last

we get

Pe MutRlvul® (g 4 fe 4oy Au))F - e (Chiutralvel)
>{(aC1A) "N = Cs(A3 + Ao+ 1)} (e + fe " +a Au)?

—{CsA1 + Cs22 + Cs} (e + fe ™" +a A wu)

+ (27 YCLA)2kAy — C5)T — Cs2 — Cs.
Fix the constant C5. Take Ay big enough such that

27HC1A)2kAg — C5 > 0
and then take A\; big enough such that
(@01 A) A — C5(A\3 + X2 +1) > 0.

Fix A1 and A2. Then we can now estimate e_’\1“+)‘2|vu|2(e“ + fe " + a Awu). In fact, it
must achieve its maximum at some point g3 so the right-hand side of ([IL3H) is non-positive.
At this point,

(10.35)

0>{(aC1A™' A\ = Cs(A3 + A2 + 1)} (e“ + fe " + a Au)?
—{CsA\1 4+ Csha + Cs} (e + fe "+ a Au)
+ (27 Y(CLA)2kAg — C5)T — CsT'2 — Cs
>{(aC1A) "N = Cs(A3 + Ao+ 1)} (e + fe " +a A u)?
—Cs(M+ A+ D"+ fe " +alu)
Cs

4(271(C1A)2kAg — Cs)
45

—Cs.




Hence (e* + fe " 4+ a A u)(gs) has an upper bound Cf depending on «, f, i, the curvature
bound of metric wg, A. Since e_’\1“+’\2‘vu‘2(e“ + fe " 4+ a A u) achieves its maximum at
the point q3, we get the estimate

o Sup(e—)\lu+)\2|vu|2) , e~ A1 infu+As sup|wu|?

(e"+ fe"+alu) <

5 inf(e—)\lu+)\2|vu|2) — 5 e—Aisupu

As | s7u |? has the upper bound (7.8), we get an upper bound of e* + fe ™ + a A wu. In
conclusion, we have proved the following
Proposition 22. Let S be a K3 surface with Calabi-Yau metric wg such that fS 1% =

Let u € C4(S) be the solution of the equation A(e* — tafe™™) + 80432:9@ + tu = 0 which

satisfies the condition (e* + tafe™*)ws + 204/=100u > 0 and ([g 6_4“)i =A<< 1 (see
@23) and ([@24)). Then e + tafe ™ + a A u has an upper bound depending only on «,
fs u, ws and A. Moreover, combing with the Proposition [Z1, e* + tafe™™ 4+ 4aug;, for
i = 1,2, have the positive lower and upper bounds depending only on «, f, u, ws (both
Sobolev constant and curvature bound) and A.

11. THIRD ORDER ESTIMATE

In this section we use indices to denote partial derivatives, e.g., u; = Oju = %, u;; =
i

O5u = %. Indices preceded by a comma, e.g., u ;; indicate covariant differentiation
i0Zj
with respect to the given metric wg. Let

=kl
r = g¢gYg Uik W 57

_ 17 1sj 1kt _
O = g"g79"ugru s
1ij 1kl Ipg, L
= g9 g u,zkpuhj[*

[1]
|

_ rij 1kl _1pq irs, ~
= 979 979 UiprUjkgs

)
Vo= g g st gy

We shall apply the maximum principle to the function

(11.1) A3 +aAu)O + X (m+aAu)T + s | vu [>T+ AT,

where all \; for ¢« = 3,4,5,6 are positive constants and will be determined later; m is a
fixed constant such that m + o A u > 0. At first we assume that \3 + a A u > 1. We
shall use Cg as a constant in generic sense which depends only on «, f, u, ws and u up
to the second order derivations. Let the function ([[II]) achieve the maximum at a point
qa € S. Before computing P(([[TT]) at g4, we need to derive some relations between partial
derivatives and covariant differentiations. Pick a normal coordinate at g4 such that g;; = d;5,
0g;57/0z = 09,3/0Zx = 0. Then at g4, we have
Uyij = Uijs Uyij = Wij,  Ugj = Usj,
Uik = Wijk> Uik = Wik, Uik = Wijks UGk = Uik
8,;1 (u,ij) = U ijkts e
We also have
Wiky = Uik + Us Ry w05 = 067 + us g
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Now we compute every term in P(([[TI)).
P(| vu|?) = 49"709505(g" uiu;)
> 49/6;791'3 (izsu; + uitjss + wintjs + uisuzs) — Co
(11.2) > 46"°7 g {u j5u 55 + U ivsu5 + Uit 505} — Co
>ml — CGZ | wivs || uj | —Cé
>miT — Cs0% — Cg.

Since Proposition B2 shows that the metric w’ is uniformly equivalent to wg, we see that
such an my > 0 exists. Next we estimate P(a A u). From ([L4]) we know

(11.3) aP(Au) > g7 g P g gy gt s+ (2F) TN AF — (2F%) 7 [ F [P =Ce.

We compute

ij 1P 1qF ) ’
97979 95519545

>g" g g'" (dausy) (daupg;)
(11.4) + 979" g7 {((e" + fe™ ") gqp); (harusss) + (Ao (€ + fe™)gsr)i)}

216a2gijg'5ﬁglﬂu,§mu7ﬁq; —Cs Z | (eu + fe_u)j || Ussi |

>me® — Cs03.
From ([II31),
(11.5) AF > —Ce Y uy || uj | —CoT — Cg > —Cg0? — Gl — C.
Inserting (([TAl), ((TH) and ([I33) into (I3, we get
(11.6) PlaAu) > me® — Cs07% — CT' — Cg > ma® — CgT — C;,

where we have used ms in the generic sense. We also calculate:
P(T) = 2¢"79505T
> 29777 g {(win) 350 57 + i (1 j)s7 }
+20"799 9" {(wak)s(u 57)5 + (k)5 (w55} — CoT
= Qg/éﬁgiigklf{uﬁikfygu)ﬁ + Uik G155+ UiksU G5 + WikaU 515 ) — Ol
= 297 9" M {w iost 355 + W ikgsu 57 + Uik G155 )
(11.7) i 29/5791'59’“[(1”% +usRis ) (u g5 + ung-zg) — Cgll
> 29"079% gM (w5 57 + Uigiitisr)
- Cs Z(| Wikys || wgr |+ [ wisk || us Ry [) — Gl
> my= + mz® — Ce®3T7 — CgT

> maZ 4+ mz0 — e1\g ' ® — Cohge; T
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Combining [(II2) and ([[I7), we find

P(|vu’T)

= P(| vu ))I'+ | vu|* P(T)

+29"7(05(| vu [)O5T + 05(] vu |*)9sT)

> mil? — C602T — CoI+ | vu [ (msE + m3® — Cg®2T7 — CgT)
— Cs(T'? +1)(O2T2 + Z2T2 +T'2)

> mil? — e A5 10 — Codse] 'T — C6= — C6O — Cs.

(11.8)

Combining ([[TH) and ([[I7), we get

P((m+a A u)l)
=Pla A + (m+a A u)P(T) + 2097 {95(Au) 05T + 95(Au)dsT}
(11.9) > (me® — CT — Co)T + (m + o A u)(ms= + ms® — Ce®2T2 — Cgl)

— 0% (07 + 2 4+ 1)I2
Z m2®1" — CGFQ — 51)\4;1(1) — Cﬁ)\4€l_lr — CGE — CGG)
Now we deal with

P((As +CYAU)@) =PAs+alu)©+ ()\3 +04AU)P(9)
11.10 _
( ) + 2ag’57{85(Au)8§® + (%(Au)&;@}.
Applying ([[TT), we get
(1111) P(/\g +OZA’U,)® > m2@2 — ('O — (0.

Let A3 +a Auw)O + M(m+aAu)l + X5 | vu |? T + XD’ achieve the maximum at the
point g4. Then at the point g4, we have,

1

and
2097 {95(A3 + e A u)d50 + 05 (A3 + a A u)d;0}
402 -
+Mm+adu)+ s | vu ? +X6]T5}

(11.12) —Cs 1 3 1 3

>_ 7 @93 2 3 2

> )\3+aAu® x {02 + \02T 4+ AT

+ (A A5+ A6) (O + 32 +T2)2}
—C

{©%+ (A + X5+ 26)(OT + O +T + E) + A\sT%} — Cs.
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Inserting ([TTT)) and ([TI1J) into ([TIM), and then combing [[I70)-([[TI), we obtain

P(A3+aAu)O+M(m+aAu)l + s | vu 2T + AeD)

Cs 9
> -
_()\3+CYAU)P(@)+{’ITLQ /\3—|—04Au}6
Cs
+ 9 Adamo — Cs — 7()\4 + X5+ Xg) p OT
MtalAu
(11.13) O
+ {)\57)@1 /\ —I—GOZSA 06>\4}F2
06(/\4 + A5 + >\6) =
+{>\6m3—06 >\4+/\5) Nt ol =

61(1) 079 C71—‘ C7,

where C7 depends also on \; and €; at point g4. At last we can estimate P(0). We follow
paper [26] to obtain:
(11.14)

P(©) :29/6;@63 (QIWQ/SJQ/ktu z]ku,rst)
:29/&7[ 2g/za lbpg/qrgls_]glkt + 2g/ng/qag/brg/5] g/kf
P N W L
4 gl P gl KT 1T 156 108 4] ok
4 gyl g KT | 15 g1a] 1K T
X 05 Gha 03 9pq ik, rst (first class)
— 2¢07[29/P /9T g'%I KT 4 g'iT /oD g0 g/H]
X [0y 95U ik, rst + O5Gypt sty th 5] (second class)
— 2¢07[29/P /9T g'*I KT 4 g'iT /oD g0 g/H]
X [0595qU, ik, 7st5 + 059450, ijryt,rst] (third class)
— 29'7[2g' g g oK 4 g7 /P g8 ™M X D50590u ikt rsr (orth class)
+29"79"7 9" ™ X [ k50, U gt i) (fifth class)

+ 29/6'Yglwglsjg/kt [ U ijky W, 7sts + u,ijkéufsff] (SiXth ClaSS)
— Cs0,

where when we use normal coordinate so that at this point we have dgu 5, = u ;5,5 and
003t 51 = U ijpfa + Wisk 5, Comparing with (A.8) in [26], we should deal with first
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five classes in ([IId]). The first class is:

167 _1ia  1bp 1qF 1s] Ikt ! ! _
29°7g" 9" g" 1" 9" " 05 Ghq 05 G 5k st

= 2"7¢/ g™ ¢/ T /%1 "M (Aevugas ) (Atpgs YU 5 st
+4Re{g"Tg" g P g ' g K (" + fe )5 - (40Upgy U ik, rst) }
+ 29/ g8 g Py PTG T g K (e + fe)s (" + feT)au ikl rr)
> 29/ g/ 9P g ' g™ (Ao pas) (A0t pgs U35t s
+ dRe{g" g% g" P g e /T g K (" + fe )5 - (40U gy ) iy st) }
> 2¢'7g"1%g"P g'T T g™ (Ao pias ) (A0t g )i ot

—e/12(M3 + a Au)TrO% — Coey ' (N3 +a A u)O.

The second class is:

(11.15)

165 1P I1qT 1] Ikt / _ _ / _ _
—29"7g"g"" 9" g {05 954U kot rst + 05 gt sty W iGh b

= —4Re{g"Tg""g'"g" T g1 05 ((e" + fe ") gpq + A0tpg)U 1 5trst}
—29"77g""P g g7 g { (40t gy 1 kst s + (400t g5 Uiyt i}
—a1/3M3+ahu)'® — Cs(\z + a Au)e; 'O,
The third class is:
— 29" 9P T g% G F D5 gl ik st + D59t kU st
(11.17) > —29"%7 P g7 g% gL (Ao g5 i rsr + (AU gy U 1540 rsts }
—e1/3M3+au)" — Cs(A\3 + a Au)e 'O,

Next we deal with the forth class. By ([L3),

(11.16)

Y

167 1ip 1qT 15 Ikt / _ _
—2¢°7g"g" 1" g g 0505 g5 ijr U 7t

1118) >— 29"‘?9”’? g"f’ig’si g/ki(4oiu'76;5q)u,ijkufsf - Cs®
> — 2" g"P g g% g™ 059, 0 g5t i1 st — C6©
—2¢/"Pg' g g {F T Fyp — FT2F, Fpf gt o

Then from ([[T4), (ITXH) and [[I3H), we can see

167 1ip 1qT I1s] Ikt ’ _ _
—2¢°7g"g" 1" 9" g 0505 g a7 st

—2¢""Pg'7 g "M %% g (davuanp) (Ao 5q ) st ot
(11.19) — (507 — 00Tz — C4TO — C0

— 2/P g g1 R 6100 6T (Yo gpp) (A 50 VU 51U T
- Cﬁ@F - m2/24()\3 + « A u)71®2 - 06(/\3 + « A u)@ - CGF.

Now we deal with the fifth term. By direct calculation, we have

v

Y

_ _ _ _ g p _ S _ S
Uijkss = Uikas + Upis Rips + waiph R, 5 — 150505 (97 Okgis) — tpj505(97° Ok gis)-

So the fifth class can be expressed

(11 20) gmglﬁglsjglkt{U,ijka[su,m{ + u,ijkufsfé"y}

Zg/wglﬁglsjg/kt{Uijkwu,mt’ + U 5, urstsy ) — Ce©.
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Differentiating (L3, we can get

dag Mgz, =4ag P g gty + (979" 900951 )k
(11.21) + 9797 gop((€" + fe")g55)i5 — 97 (" + fe™ ") g5%)ijn
+ F~'Fyjp — F3(FpFyj + F;Fjy, + FjFy) + 2F° FF; Fy..

Inserting ([[TZT)) into ([[TZ0), we get
(11.22)

977979 M st st + U7 ey )
Zg/ﬁglsjglkgg/éﬁglq:y{Q;ﬁkuéﬁiju,mt’ + gfjpfufyéfsu,ijk} - Cg0

+ () T g T g (9P g T gl 5 G kit + (9T Gpgs G ein

+2(40) T Re{g g T g M (F T F,, — FA(F Fy + FiF5y, + F5Fy) + 2R FiFS Fy)u par)

We observe

157 155 1kt 16D 1q7 [ 1 B ~ / o B
99" 9" g g Gypetsii U rst T Ggprtiaerst e b

> /17 g5 g™ g0 U { (Aot g1 YU 557 st + (AU g U 76750 55 }
(11.23) —C6 Y N gyij Il wrsi | —Co Y | thgpn | wrst | —=Co D | w i |
> g% g™ P (A8, gk )47 s + (AU pigr) U 35750 5}

— CeW202 — (060,

and
P S
(40) " g""g" T g (9P gV g s kit + (9P 9" Gy G5 )itz
—1_tir 1] 1kE 15D 1q7
>(40) 71 g g g GOP G T (G 5k 9550 G it Ut
+ (g;/ﬁq§fgt/57y7‘ + g;?qggzli”yrf)u,ijk}
_ (4a)—1g/ifg/sjg/kf(gléag/bﬁg/qﬁ + gléﬁglq&g/bﬁ/)
(11.24) “(GbarTpq;957itrst T+ GupiTpgsIssrt,ijr)

>0 9" oM g PG T [ g (v 55:) + (400 g V1t skt
+ [(u,pq§5(4au,5»7r) + (405u,;5q§)u,6»7rf]u,i3k}
— g g GGG + P g g}
Ao par) (Ao 55 )u 65w msi + (4w gpp) (4w 550 ) U, pgst i b

— (0% — 05020 — 40203 — 4O — Cf.

Then we estimate
(11.25)

(404)71Re{g/ﬁg/sjg/k£(F71Fl‘5k — F72(F;F, + FiF5, + FFy) + 2F °FF5 F)u rg7}
> Ced2OF — Cg020% — CT20 — CsI'202 — 050 — O,
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Inserting ((T2Z3))- ([T2H) into ([T2Z), we get

185 1iF 155 1kt _ _ - _
979" 9" g U ey s pst UG Rsts

g7 g7 g™ 9P g T (At g it ot + (40 pgr)u st i1}

+979" g™ 9P g {[u oz (4o g5:) + (4o o3 ) s3] s

+ [u pgsi(dau syr) + (4ot pgs ) 5508l U 7}
_ glifglsjglkf{g/6ég/bﬁglqﬁ/ + g/6ﬁg/qég/bﬁ/}
A{(daupar) (4o po5)u,s5it mst + (Ao app) (dons, 550 ), pgs i b

— /20 +ahu) H®+T) — Coe; (N3 +a A u)O

—ma/16(\3 +a Au)'O% — Cs(A3 + a A u)O — Cs0OT — CeT2.
Inserting ([(TTH)-(CT4), ((TT9) and ([[T26) into ([[TId), diagonalizing and simplifying,

then comparing to (A.8) and (A.9) in [26], we obtain

(11.26)

(11.27) o
P(@) > Zg/iig/jjg/kkglééx | Uiihs — 4oezuipku5pgg’pﬁ |2
p
+ Z g/iig/jjg/kkglééx | Uiins — 4oy Z(ui;ﬁéupjk + Uiﬁkupja)glpﬁ |2
P
! {2 O+ 26,0+ ( +m2)®2} CsOr — 070 — 4T
— T | 2€ € € — — — _
Ast+alu ! ! 2Ty 6 7 7

=Y g g g% | VT2 (s + @ Au) Tugs

-1 _
— 4o (\/1 —2c1(A3 +a A u)*l) Z Uipkugpgg/pp |2
P

+ Zg'ﬁg/jjg'%glégx | \/1 —5e1(As +a A u)*luiiké

1 B
— 4o (\/1 —be1(A3+a A u)—l) Z(Uiﬁéupjk + Uipkpis) 9P |2
p

3eq 9 ma/4 + €2 Cser 2
— ¢ - I' = Cgl'* — — 0+T
+)\3+aAu €60 Co <)\3+aAu+)\3+aAu—5el 07— Cr(6+1)
361 2 m2/4—|—€2 0661 2
> — P — I' — Cgl'* — — I).
T Mtalu 6O Co <A3+O<Au A3+ a A u—bey © C7(©+1)

Inserting ([T.27) into ([[T.I3)), at last we obtain

P(M3+aAu)O+M(m+aAu)l + s | vu 2T + D)
Cs MtalAu

mao 5
> Lt ey -
‘{m2 1T Nrabdu Cﬁel)\3+aAu—561}
Cs
(11.28) +{)\4m2_c6_mo‘4+)\5+)\6)_Cﬁ()\3+OéAu)}@l—‘
e - oo G ta s b
T N aAu T

06()\4 + A5 + >\6)

A3 +aAu
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Note the generic constant Cs does not depend on ¢; and \;. So we can fix it, because we
can take the blggest one. Fix €; and ez such that ez +2Cse; < 7. Take A3 big enough

such that y—=0 + S < 72 and % < 2, then
mao 06 )\3—|—O[A’UJ 2 ma .o
11.29 ——— - —— —C © —0°.
( ) {m2 4 € A3 +alAu 661)\3+O<Au—561} - 4
Let
M — M for i=45.6
T s t+alu R
We choose 5\4, 5\5 and 5\6 such that
~ C
/\4>—6+1
ma
Cs C
)\5>—)\4+—6+1
mi
and
A
)\6>Cﬁ 4+ 5 + 1.
m3

Then if we take A3 big enough such that
mi(/\g—l—ozAu)—06(5\44—5\54—:\6)—06>mi, for i:1,2,3,

we can estimate

(11,50 {A4m2—cﬁ—ﬁ(xw&m@—CG(A3+aAu)}®F
>{ma(As + @ Au) — Co(As + A5 + Ag) — C6}OT > moOT;
(11.31) {A5m1 - % — O\ —Cﬁ()\3+aAu)}F2
> {mi(As + a A u) — Cers ) T2 > mI'2
and
{mgAG - L(M + X5+ X6) — Co( A + A5)} =
(11.32) As+alu

> {m3()\3 +al u) — 06(5\4 + 5\5 + 5\6)}5 > maZ=.

Inserting ((T29), (II30)-[T32) into (9.28), we see that
0>P((As+alAuw)O+A(m+aAu)l + s | 7u [>T+ AD)

> %92 4+ maOT + my T2 4+ maE — €70 — C5T — Cs.

Above inequality gives an estimate of the the quantity supg © and supgI'. This in turn
gives the estimates of 5, and wu;; for all 4, j, k.

Proposition 23. Let ws be a given Calabi- Yau metric on a K3 surface with fS 5 = 1.

Lett € T and u € C°(S) is a solution of the equation /\(e* —tafe™™) + 8a dct:ff_ +tu=0
_ vy

under the elliptic condition w' = (" +tafe " )ws + 2a4/—190u > 0 and the normalization

1
(fs 674u) T =A<< (see (TZA) and [@FD)). Then there is an estimate of the derivatives
ui;k in terms Of «, f7 M, Ws and A.
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12. ESTIMATES FOR THE GENERAL CASE

In general case, the equation is

2
V—100e" A wg — tadd(e “tr(OB AOB* - g~ 1)) — addu A du + tu% =0.

Let
p=—v—1tr(0BAOB* - g 1),

then p is a well-defined real (1, 1)-form on S. We replace tap by p and tu by p. Then we
can rewrite the equation as

2
V—=100e" A ws — v/ —100(e”"p) — addu A JOu + ,LLC;—'S =0.

The elliptic condition is

W = e%wg + e “p+ 2av/—100u > 0.
If we let p = @pﬁdzi A dZz;, then ggi = e"g;; + e “p;; + 4au,;. Using the definition of P
and the equation, we compute
/2

—ku W_I2 > _ / —ku w_
/SP(e )2! > —k Se P(u) 51
=— V—lk/ “kugou A (e'ws + e "p 4 20/ —190u)

e
s
=— k/ e~ (B=Du A g — \/—1k/ e~ FDadu A p+ Qk/ e ke A et
s 5 5
—2k\/—1/eikuaé(efup)—i—Qk/e*k“u
5 5
:k/ e k=hu Ay 4 Zk/ e~k | Gy |2 —|—\/—1k/ e~ *+DuHdu A p
5 5 5
— 2\/—1k/ e~ FHDU G A du A p + 2\/—1k/ e~ FHDU gy A dp
5 s

—2\/—1k/ef(kJrl)“gu/\ap—%/—lk/ef(kJrl)"aép—l—Zk/e*k“,u.
S S

S

On the other hand, we can also compute
w/2 _
/ Ple™M)—— = \/—1/ e M AW
s 2! s
=v-1 / e~k A (etwg + e %p + 2v/—1addu)
s

_ k/ e (F=Du Ay 4 kz/ e~ (k=D | oy |2
s s

— v—lk/ e~ FTDY9u A p 4+ =1k / e~ FFDYGu A du A p.
s s
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Combing above two inequalities, we get

k/ e~ (E=Du | Gy |2 +\/—1k/ e~ * DG A du A p
s s
22/ e~ (F=Du A g 4 2/ e~ (F=Du | Gy |2 +2\/—1/ e~ *+DuHIu A p
s s s
—2v-1 / e~ DU Gu A Du A p + 2V —1/ e~ FFDugu A Dp
s s
— 2\/—1/ e~ UGy A Dp — 2\/—1/ e~ D99 + 2/ e k.
s s s

Integrating by part and then simplifying it, when k > 2, we get

k/ e~ (b= | oy 2 _,_«/_1;3/ e~ DU Gy A du A p
s s

1 _
<2v-1(1— —)/ e~k DUy + 2k/ e kuy,
Using the notation in section 3, we have

p=—+—1tr(OBAOB* - g7 ')

(12.1)

5f _ _ gli g2i
Z—V—ltf< 5f; >/\ (0fi 0f2) '(gu g2
=V —19i36—]_[i . 8_{‘}de A dz
321 8Zk
and
V=10uAOu A p
TR Y Ty S V) sV X A B
det g;; Y0z10z 1?07 0z0 10207 202,07 2
ofn  Of of  of2 \ " S\ w2
=4( u; ug )- gfi gfé - gii gfé (ul)_s
So

\/—lk/ e~ FEDUGu A du A p > 0.
s

Then ([ZTl) implies the inequality &) in section 6:

1 —
k/ ef(kfl)u | Vu |2§2 /_1(1 _ —)/ e*(k+1)uaap+2/ e*kuu
s 1+k S S

SCO/ef(lvFl)u_i_CO/efku'
S S

We follow the discussion in section 6 to get the estimate infu > —1In(C1A). If A is small
enough, we can get inf u big enough. Then we can check all other estimates can be derived

using the same method because the term e* can always control terms such as e | tr(0B A
OB* - g) |. Thus we get

Proposition 24. Proposition 20, 21, 22 are also true for the equation of general case:
B B B B B 2
(12.2)  V—=100e" Aws — tadd(e~"“tr(dB A OB* - g~1)) — addu A 9du + tu% =0

55



if we replace f by —/—1tr(OB AOB* - g71).
Proposition 25. Proposition 23 is also true for the equation [IZ2).
13. FURTHER REMARK-GENERALIZATION

Let X be a (n+1)-dimensional complex manifold with Hermitian metric w and a nowhere
vanishing holomorphic (n+1,0)-form Q. As we state in the introduction, the string theorists
consider the following Strominger’s system:

(13.1) FgAw"=0; Fp'=Fy*=0;
_ o
(13.2) V—=100w = Z(trR/\R—trFH/\FH);
(13.3) d*w=+v/=1(0—-9)In|Q| ..
The third equation is equivalent to
(13.4) a()l @ [ls w™) = 0.

Let n > 2. Motivated by the constructions in section 2 nd 4, we propose to study the
following system

(13.5) FgAw'=0; F5°=Fy =0;
— a/
13.6 V=100w — —(trRA R —trFy A Fy) » Aw" ™2 =0;
4
n—1
(13.7) Q5™ w") =o0.

Then we can generalize our construction to complex manifolds with dim > 3. Let K be a
Calabi-Yau n-fold with a Ricci-flat metric wx and a nowhere vanishing holomorphic (n,0)-
form Qg. Let wy,wy be a primitive harmonic (1,1)-forms such that £, 42 € HV(K,Z).
Using these two forms, we can construct an (n 4+ 1)—dimensional complex manifold X:

1. m: X = K is a T?-fibration over K. If we write locally w; = da; and ws = das for real
1-forms a; and s, then there is a coordinate that  and y of fiber T2 such that dx ++/—1dy
is a holomorphic 1-form on T2-fibers and dz + o and dy + ao are globally defined 1-forms
on X.
2. Let

0 = (dz +o1) +vV—1(dy + a2)
and let

Q=Qx AN0.

Then  defines a nowhere vanishing holomorphic (n + 1,0)-form on X.
3. Let u € C?(K) function on K and

o) _
(13.8) wy = e"wg + TG N
Then (Q,w,,) satisfies equation ().
As in section 4, we have
oz, wn
56

:e_ 5



and
W = el + v/ —Ine VUL A G A

Then
d(| @ |*

n—1

W) = d(e"wik) + V—Indwi Tt AOAD)
= VoInwU V(Awr + V=Tws) A G+ 6 A (wi — V—Tws)) =0,

as wy,wse are primitive (1, 1)-forms on K. So (Q,w,) satisfies equation ([Z).

As wq,wy are harmonic, we can find (1,0)-forms & = > 1, &1;dz; and & = > Eaidz,
locally where &1; and &; are smooth complex function on some open set of K, such that
w; = 0¢; and wy = 0&;. Let

¢i:§1i+§2i7 for j:1727"'n7

and let
B = (¢17¢27"' 7¢n)

Let R, be the curvature of Hermitian connection of metric w, of the holomorphic tangent
bundle 7'X and Ry be the curvature of metric wg. Then in section 3, we have

trRy A Ry, = trRx A Ry +200(e OB A OB* - g~ 1) 4+ nddu A ddu,

where g is the Calabi-Yau metric associated to Kahler form wg. Let E be the stable vector
bundle over (K,wg) with degree zero. According to the Uhlenbeck-Yau theorem, there is a
unique Hermitian-Yang-Mills metric H up to constants. Hence

(7*E, 7" H, X, w,)

satisfies the equation (I33) and [3). So we only need to consider equation ([I38), which
can be decomposed to the following two equations

n—2)! W o _
and
(13.10) V=108uAw™ ! — 208(e~“trdB AB*) A K™% — nddu A ddu A K" +“C;_I'< =0,

where p is a smooth function on K and | K u% = 0. In the next paper, we will continue
to consider this problem.
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