
The Cutting Pattern Problem for Tetrahedral Mesh

Generation

Xiaotian Yin1, Wei Han1, Xianfeng Gu2, and Shing-Tung Yau1

1 Mathematics Department, Harvard University, MA, U.S.A. {xyin,weihan,yau}@math.harvard.edu
2 Computer Science Department, Stony Brook University, NY, U.S.A. gu@cs.sunysb.edu

Summary. In this work we study the following cutting pattern problem. Given a triangulated surface
(i.e. a two-dimensional simplicial complex), assign each triangle with a triple of ±1, one integer per
edge, such that the assignment is both complete (i.e. every triangle has integers of both signs) and
consistent (i.e. every edge shared by two triangles has opposite signs in these triangles). We show
that this problem is the major challenge in converting a volumetric mesh consisting of prisms into a
mesh consisting of tetrahedra, where each prism is cut into three tetrahedra. In this paper we provide
a complete solution to this problem for topological disks under various boundary conditions ranging
from very restricted one to the most flexible one. For each type of boundary conditions, we provide
efficient algorithms to compute valid assignments if there is any, or report the obstructions otherwise.
For all the proposed algorithms, the convergence is validated and the complexity is analyzed.

Key words: cutting pattern, graph labeling, tetrahedral mesh, prism

1 Introduction

1.1 Motivation

Volumetric meshes are widely used in various areas, such as geometric modeling, computer
aided design and physical simulation. Tetrahedral mesh is one of the most commonly used
representations, because it is a simplicial complex that allows many topological algorithms and
finite element solvers to be applied. There are many methods to generate tetrahedral meshes,
such as Advancing Front techniques [1, 2], Octree methods [3] and Voronoi Delaunay based
methods [4, 5, 6].

In this work we look at a specific problem: converting a prismal mesh to a tetrahedral
mesh without introducing new vertices. A prismal mesh consists of a set of prisms, which are
volumetric elements bounded by two triangles from top and bottom and three quadrilaterals
from sides. A typical example is a 3D space-time slab, which is generated by extruding a 2D
triangular mesh in temporal direction. It has been shown in [7] that such a prismal mesh needs
to be split into a tetrahedral mesh to adapt existing unstructured tetrahedral solvers. It has
also been shown in [8, 9] that such a conversion is necessary in computer graphics, especially
when one wants to apply efficient algorithms for volume rendering and iso-contouring that exist
for purely tetrahedral meshes.

The conversion from a prismal mesh to a tetrahedral mesh has been addressed in a lot of
work, such as [8, 9, 10, 11, 12]. However, none of these methods allows the user to control the
triangulation on the boundary of the output volumetric mesh. In another word, they only solve

2 Xiaotian Yin, Wei Han, Xianfeng Gu, and Shing-Tung Yau

the free boundary version of this problem. In this work, we aim at tackling this problem in
a more general setting that includes both free boundary and fixed boundary cases, where the
latter incurs more challenges than the former.

In order to do this conversion without introducing new vertices, an intuitive way is to cut
each prism into three tetrahedra using two planes passing through certain corners of the prism
(figure 1b-d). The options of cutting a prism can be encoded as a 3-tuple of ±1, where +1 (or
−1) means the corresponding wall is sliced along the diagonal (figure 1a left) or anti-diagonal
(figure 1a right). Therefore, the conversion of the whole volumetric mesh can be reduced to
assigning the underlying triangular surface mesh with a set of 3-tuples of ±1.

This ±1 assigning task is challenging in multiple aspects.

• In a local consideration, not every combination of three ±1 represents a valid cutting, see
figure 1(e) for a counterexample. A valid cutting should have both +1 and −1 in each
triangle.

• In a global consideration, the cutting must be consistent; i.e. for any pair of prisms adjacent
to each other by a quadrangular wall, their cutting lines must meet on that wall. It means
the cutting options in the bottom triangles should have opposite signs across any common
edge shared by two triangles.

• From the user’s point of view, the user should be able to control the cutting options on the
boundary surface of the volumetric mesh, and the internal cutting should be subject to the
boundary values.

Considering all these requirements, we convert this mesh conversion problem to an equivalent
2D graph problem in the next section.

Bi Bi+1

Ti Ti+1

Bi Bi+1

Ti Ti+1

+1 -1
B0 B2

B1

T0
T1

T2

-1 -1

+1
B0 B2

B1

T0
T1

T2

+1 -1

-1
B0 B2

B1

T0
T1

T2

+1 +1

-1 B0 B2

B1

T0
T1

T2

+1 +1

+1

(a) (b) (c) (d) (e)

Fig. 1. Options of cutting a prism into tetrahedra are encoded by assigning +1 or -1 to each edge of
the bottom triangle B0B1B2 (a). A valid cutting pattern consists of both signs (b, c and d), while an
invalid one consists of only one sign (e).

1.2 Problem Statement

The major problem that we need to solve is as follows.

Definition 1 (The Cutting Pattern Problem). Given a triangular mesh D, assign each
triangle with a 3-tuple of ±1, one integer per edge, such that:

• Every triangle has both +1 and −1 in its 3-tuple;
• Every edge shared by two adjacent triangles is assigned with opposite values in these trian-

gles;

The Cutting Pattern Problem for Tetrahedral Mesh Generation 3

In practice, the assignments on boundary edges may or may not be prescribed. If they are
prescribed, there are various ways to set the boundary values. In this work, we consider the
following types of boundary conditions, varying from the most restricted one to the most flexible
one.

Definition 2 (Boundary Conditions). The cutting pattern problem can be subject to the
following types of boundary conditions:

1. Restricted boundary: Every boundary edge of D has a prescribed ±1 assignment. In partic-
ular,
• For any triangle with only one edge exposed on the boundary of D, the prescribed as-

signment for this boundary edge can take an arbitrary value of ±1;
• For any triangle with at least two edges exposed on the boundary of D, two of such

boundary edges must have opposite prescribed assignments.
2. General boundary: Every boundary edge of D has a prescribed assignment that can take an

arbitrary value of ±1;
3. Free boundary: None of the boundary edges has a prescribed assignment.

These boundary conditions reflect different levels of user control in the original problem
of triangulating a prismal mesh, that is, whether and how one wants to control the boundary
triangulation of the output tetrahedral mesh. And as discussed later, different boundary condi-
tions result in different solvability of the problem and different ways to find a solution if there is
any. If the boundary triangulation is prescribed without any special constraint, it corresponds
to the general boundary condition and the problem may or may not have a solution. If the
boundary triangulation is prescribed and satisfies the restricted boundary condition, the prob-
lem can always be solved using our algorithm. If the user does not want to specify the boundary
triangulation, our algorithm can automatically specify the boundary and is guaranteed to find
a triangulation of the whole volume.

1.3 Contributions

The cutting pattern problem is the major challenge of converting a prismal mesh to a tetrahedral
mesh. If the former can be solved, so is the latter. Meanwhile, the cutting pattern problem itself
is an interesting graph problem that can be categorized as graph labeling (see [13] for a survey).
To our best knowledge, however, this specific problem has not been addressed in the literature.

In this paper we make efforts to tackle this problem for topological disks with a single
boundary, and propose a complete set of solutions under all kinds of boundary conditions. In
particular:

1. For restricted boundary conditions, we show that solution always exists and can be found
using an efficient algorithm proposed in the paper. (section 2)

2. For general boundary conditions, we show that solution exists if there is no cutting pattern
obstruction (definition 6). We also propose an efficient algorithm that either reports such
an obstruction if there is any or outputs a valid solution otherwise. (section 3)

3. For free boundary conditions, we show that the problem can be always turned into a
restricted one, therefore solution always exists and can be found using an algorithm modified
from the restricted one. (section 4)

For the algorithm proposed for each case, the convergence is validated and the complexity
is analyzed.

4 Xiaotian Yin, Wei Han, Xianfeng Gu, and Shing-Tung Yau

1.4 Definitions and Notations

Here we introduce the concepts and notations used in later elaborations.

(a) (b) (c)

Fig. 2. Separating edges (a), breaking edges (b) and a minimal set of breaking edges (c).

In a triangular mesh D consisting of a set of triangles F = {f1, f2, · · · , fn}, the edge-valence
(or valence in short) of a triangle fi ∈ F is the number of triangles adjacent to fi across some
edges. It should be a non-negative integer that is at most 3. A triangle is called a dangling
triangle if its valence is 1. A dangling triangle has exactly two edges exposed on the boundary
of D. A triangle is called a singular triangle if its valence is 0. In a singular triangle, all three
edges are on the boundary of D.

For an edge e shared by two triangles f1, f2 ∈ D, we say it is of (i, j)-type if f1 and f2 have
valence i and j respectively (1 ≤ i ≤ j ≤ 3). An edge e is called a separating edge if it is shared
by two triangles and the end vertices of e are both on the boundary of D (figure 2a). An edge
e is called a breaking edge if it is a separating edge and at least one of its adjacent triangles has
valence 3 (figure 2b and 2c).

A sub-component C is a sub-mesh of D that is edge-connected (or connected in short),
meaning that every triangle in C is adjacent to at least one other triangle in C across a
common edge.

Given an edge e in triangle f , its assignment (denoted as a (e, f)) is an integer 0 (unsolved)
or ±1 (solved). An edge e is completely solved (or solved for short) if and only if it is solved in
every triangle enclosing e. An triangle f is completely solved (or solved for short) if and only
if all three edges of f have been solved. A mesh D (or sub-component C) is completely solved
(or solved for short) if and only if all its triangles are solved. Obviously, a valid cutting pattern
over a given mesh D is a set of ±1 assigned to every edge in every triangle such that both
completeness and consistency are satisfied.

Given a mesh D (or sub-component C), its boundary assignment is the set of assignments
of its boundary edges. A boundary assignment is safe if and only if every dangling or singular
triangle f (if there is any) has two boundary edges with opposite non-zero assignments +1 and
−1 (figure 3a). It is moderately dangerous if and only if it is not safe and at least two boundary
edges have opposite non-zero assignments (figure 3b). It is extremely dangerous if and only
if it is not safe and all the non-zero assignments on boundary edges equal to a single value
a ∈ {+1,−1} (figure 3c), which is called the forbidding value of this boundary assignment. The
last two cases are both called dangerous boundary assignments.

2 Solution for Restricted Boundary Conditions

For the cutting pattern problem under restricted boundary conditions, we propose the following
algorithm to look for a valid cutting pattern. We will show that this algorithm always ends up

The Cutting Pattern Problem for Tetrahedral Mesh Generation 5

+1

−1 +1

+1

−1 +1

+1 +1

−1

+1 +1

+1 +1

+1

+1

(a) (b) (c)

Fig. 3. Sub-components with different types of boundary assignments: (a) safe, (b) moderately dan-
gerous, (c) extremely dangerous.

with a valid cutting pattern and therefore gives a constructive proof for the existence of solutions
under restricted boundary conditions.

Given a topological disk represented as a triangular mesh D, the goal is to compute a valid
cutting pattern for D, i.e. to assign every edge in every triangle with an integer b ∈ {+1,−1}.
Upon input, all the boundary edges have prescribed assignments ±1 while all the other edges
are initialized with assignment 0. The input mesh D is processed iteratively. In each iteration,
the unsolved part of D is partitioned into a set of sub-components that have special types, and
each sub-component is either completely solved or partially solved. After this, the remaining
unsolved triangles will be brought into another iteration. Repeat this process until the whole
mesh is solved.

Algorithm 2.1 (Cutting Pattern Algorithm - I)

• Input: A triangular mesh D with a restricted boundary condition.
• Output: A valid cutting pattern for D.
• Procedures:

1. Initialize all the internal edges of D with assignment 0 (i.e. unsolved).
2. Repeat the following procedures on D until no unsolved triangle left.

a) Partition D into a minimal set of sub-components of basic types and solve the newly
exposed boundary edges (section 2.1).

b) Solve each sub-component completely or partially according to its type (2.2 and 2.3).
c) If there is no unsolved triangle, exit; otherwise, set D to be the unsolved part and go

back to step 2a.

2.1 Constructing Sub-components

In step 2a we partition mesh D into a set of sub-components {Ci | 1 ≤ i ≤ k} that are triangle-
disjoint (i.e. there is no triangle f ∈ Si ∩ Cj , i 6= j) and covering (i.e. D = ∪k

i=1Ci). Figure
4 shows several examples of mesh partitioning. Furthermore, each sub-component should have
one of the following basic types:

Definition 3 (Classification of Sub-components).

• Aggregated sub-component (figure 6): a sub-component where every triangle has edge-valence
at least 2;

• Linear sub-component (figure 5): a sub-component consisting of a sequence of triangles,
where two triangles at the ends have edge-valence 1 (i.e. dangling triangles) and all the
others have edge-valence 2;

• Singular sub-component: a sub-component consisting of only one triangle with edge-valence
0 (i.e. a singular triangle).

6 Xiaotian Yin, Wei Han, Xianfeng Gu, and Shing-Tung Yau

(a) (b) (c) (d)

Fig. 4. Partition a mesh into a minimal set of sub-components. (a) to (d) show several different meshes
and their partitions.

One can get such a partition by slicing D along all the breaking edges. However, such a
partition may have unnecessary small pieces (figure 2b). What we need in the algorithm is a
minimal set of sub-components of basic types, or equivalently a set of maximal sub-components,
meaning that the union of any two or more sub-components in this set is not of any basic type
(figure 2c). Therefore, we need to find a minimal set of breaking edges, meaning that a smallest
set of breaking edges so that the resulting sub-components are all maximal. This can be done
by addressing all the breaking edges in D and then exclude unnecessary ones by checking other
edges in two enclosing triangles.

The major reason of choosing a minimal set rather than the full set of breaking edges is to
simplify the algorithm and the analysis. For example, as we will show later, this will result in
simple cases to be considered when solving a breaking edge, and therefore simplify the proof of
convergence of the algorithm.

Once the minimal set of breaking edges (denoted as Eb) is addressed, we partition the given
mesh into a set of sub-components, and every edge e ∈ Eb will be exposed on the boundary of
two sub-components and needs to be solved here. In order to solve edges in Eb, we first classify
them based on their positions in the mesh and the types of their adjacent sub-components.

Definition 4 (Classification of Breaking Edges). A breaking edge e shared by sub-components
C1 and C2 can only have one of the following types:

• A2A: if both C1 and C2 are aggregated;
• A2Lm (or Lm2A): if C1 is aggregated and C2 is linear, and e belongs to a triangle in the

middle of C2;
• A2Le (or Le2A): if C1 is aggregated and C2 is linear, and e belongs to a triangle at one end

of C2;
• A2S (or S2A): if C1 is aggregated and C2 is singular;
• Lm2Lm: if both C1 and C2 are linear, and e belongs to a middle triangle in C1 and another

middle triangle in C2;
• Lm2Le (or Le2Lm): if both C1 and C2 are linear, and e belongs to a middle triangle in C1

and an end triangle in C2;
• Lm2S (or S2Lm): if C1 is linear and C2 is singular, and e belongs to a middle triangle in

C1;

Note that these are not all the combinations of two sub-components with basic types.
However, other combinations, including Le2Le, Le2S and S2S, are impossible in our algorithm.

The Cutting Pattern Problem for Tetrahedral Mesh Generation 7

For example, a Le2Le combination means that two linear sub-components connect to each
other at one end and can thus form a larger linear sub-component; therefore it breaks the rule
of maximal sub-components and is not a valid combination. The combination of Le2S and S2S
can be excluded in a similar way.

Once the breaking edges are classified, they can be solved according to their types using the
following procedure.

Procedure 2.1 (Solving A Breaking Edge) Given a breaking edge e shared by two trian-
gles f1 and f2 in sub-components C1 and C2 respectively, do the following:

• If e is A2A (i.e. between aggregated C1 and aggregated C2): Assign e with +1 on C1 side
and −1 on C2 side.

• If e is A2Lm or Lm2Lm: similar to the A2A case.
• If e is A2Le (i.e. between aggregated C1 and linear C2): We will first solve e on C2 side and

then on C1 side. On C2 side, e is a boundary edge in an end triangle f2. Let e
′ be the other

boundary edge in f2;
– If e′ is already solved in f2, suppose its assignment is a′2 ∈ {+1,−1}, then assign e in

f2 with a2 = −a′2.
– If e′ is not solved in f2 yet, then assign e with an arbitrary value a2 ∈ {+1,−1} (so that

e′ can be solved later with assignment a′2 = −a2).
Once e receives assignment a2 ∈ {+1,−1} in f2 ∈ C2, we assign e with a1 = −a2 in f1 ∈ C1.

• If e is Lm2Le: similar to the A2Le case.
• If e is A2S (i.e. between aggregated C1 and singular C2): We will first solve e on C2 side

and then on C1 side. On C2 side, there is only one triangle f2 ∈ C2, and e is one of the
three edges in f2, let e

′ and e′′ be the other two. Then within f2,
– If at least one other edge (say e′) is already solved in f2, suppose its assignment is

a′2 ∈ {+1,−1}, then assign e with a2 = −a′2 in f2.
– If neither e′ nor e′′ is solved in f2, then assign e with an arbitrary value a2 ∈ {+1,−1}

(so that e′ and e′′ can be solved later with assignment a2
′ = −a2 and a2

′′ = −a2).
Once e receives assignment a2 ∈ {+1,−1} in f2 ∈ C2, we assign e with a1 = −a2 in f1 ∈ C1.

• If e is Lm2S: similar to the A2S case.

This procedure guarantees that every breaking edge in Eb receives opposite assignments
on two sides, and every resulting sub-component has a safe boundary assignment. After this
process, every sub-component C has a solved boundary that satisfies the restricted boundary
condition and is ready to be solved for the inner edges based on the type of C. For a singular
sub-component, all the edges are on the boundary and are already solved, no further process is
needed. For linear and aggregated sub-components, their inner edges need extra efforts to solve
(see section 2.2 and 2.3 respectively).

2.2 Solving Linear Sub-components

A linear sub-component C consists of a sequence of triangles,

f0, f1, · · · , fn

where f0 and fn are end triangles (with valence 1) that each has two edges eBi,1 and eBi,2 on
the boundary of C (i = 0, n), while any other fi is a middle triangle (with valence 2) that has
only one edge eBi on the boundary of C (1 ≤ i ≤ n − 1). These boundary edges are already
solved. Meanwhile, each pair of consecutive triangles fi−1 and fi (1 ≤ i ≤ n) share a common
internal edge eIi ; these internal edges need to be solved here.

8 Xiaotian Yin, Wei Han, Xianfeng Gu, and Shing-Tung Yau

−1

+1 +1

−1

−1

+1

−1
−1

+1 +1

−1

−1

+1

−1

+1

−1

−1

+1

+1

−1

−1

+1

Fig. 5. A linear sub-component can be completed solved via a stabbing line (dotted).

In order to solve the internal edges, we stab the sequence of triangles with a line from f0 all
the way to fn (figure 5). Let’s take an arbitrary value b ∈ {+1,−1} as an initial assignment.
When the line penetrates an internal edge eIi , we assign b and −b to its entrance side (in fi−1)
and exit side (in fi) respectively. In the end, all the internal edges are completely solved and
the whole sub-component is thus solved.

2.3 Solving Aggregated Sub-components

Since every sub-component in our algorithm is guaranteed to be a topological disk, every
aggregated sub-component C must have only one boundary, and there must be a layer of most
outside triangles (the frontier) that can be distinguished from the rest (the interior) in the
following way (see figure 6).

Consider the dual graph C∗. Any triangular face fi ∈ C corresponds to a vertex v∗i ∈ C∗,
edge ej ∈ C to edge e∗j ∈ C∗, vertex vk ∈ C to face f∗

k ∈ C∗. Note that C is a topological disk
and every face fi ∈ C has at most one boundary edge. Accordingly, C∗ is also a topological disk
and its boundary is a loop connecting n vertices sequentially: v∗1 , v

∗

2 , · · · , v
∗

n, v
∗

1 . This boundary
loop of C∗ corresponds to a looping sequence of n triangular faces in C:

f1, f2, · · · , fn, (f1)

These triangles are called the frontier of C, denoted as CF , and the remaining triangles the
interior, denoted as CI . In this step we will solve CF completely.

Edges in CF can be grouped into three sets EB, EI and EO, where EB consists of edges
on the boundary loop of C, EO consists of edges on the border between CF and CI , and EI

consists of edges eIi shared by consecutive triangles fi−1 and fi in CF . Edges in EB have already
been solved, while the other two sets need to be solved here.

To solve EI , we use a stabbing process similar to that for linear sub-components. We take
arbitrary b ∈ {+1,−1} as the initial assignment, stab the sequence of triangles in CF with a
circle; when penetrating an edge eIi ∈ EI , assign it with b on the fi−1 side and −b on the fi
side.

To solve EO, we first consider the CI side, where EO serves as the boundary of CI . Check
every face f ∈ CI that contains at least one edge in EO. If f contains only one such edge, we
assign it with +1. If f contains at least two such edges, we assign +1 to one of them and −1
to the rest. Once an edge e ∈ EO is solved on the CI side with assignment b, we assign it on
the CF side with an opposite value −b.

Once all the edges in EI ∪EO are solved, the whole frontier CF is completely solved, while
CI is only solved on its boundary and the remainder will be recursively solved later.

2.4 Validation and Analysis

In this part we discuss the convergence and complexity of algorithm 2.1. From the above
discussion about the algorithm, several invariants of the algorithm can be induced.

The Cutting Pattern Problem for Tetrahedral Mesh Generation 9

−1

+1

+1

−1
−1

+1+1

+1 +1

+1

−1

+1

+1

−1
−1

+1+1

+1 +1

+1

+1

−1

+1

−1

+1

−1

+1

−1

+1
−1+1

−1
+1

−1

+1
−1+1

−1

+1
−1

+1−1

+1

−1

−1

+1

−1
+1

−1

+1

−1

+1

−1
+1

−1
+1

Fig. 6. An aggregated sub-component is only solved in the frontier (in yellow); the interior (in green)
is left to later iterations.

Definition 5 (Invariants of Algorithm 2.1).

• Completeness: whenever a triangle is completely solved, its 3-tuple of edge assignments
should consist of both +1 and −1;

• Consistency: whenever an internal edge (shared by two triangles) is completely solved, it
should have opposite assignments in two enclosing triangles;

• Safeness: the unsolved part (a sub-mesh) should have a safe boundary assignment at the
beginning of step 2a, and every sub-component should also have a safe boundary assignment
at the end of step 2a.

We can prove that all these invariants hold in the algorithm. To do this, we need to guarantee
that none of these invariants can be violated in our algorithm.

Completeness and consistency can only be violated when an edge or a face is solved. In
algorithm 2.1 there are three procedures that need to be checked. The first is in step 2a, where
breaking edges between adjacent sub-components are solved (section 2.1). The second and third
are both in step 2b, where linear and aggregated sub-components are solved (section 2.2 and
2.3). These violations are guaranteed not to happen by Lemma 1, 2 and 3 respectively.

Safeness can only be violated when edges are newly exposed to the boundary of a sub-mesh
or a sub-component. In algorithm 2.1 there are two procedures that need to be checked. The
first is in step 2a, where breaking edges between adjacent sub-components are solved (section
2.1). The second is in step 2b, where aggregated sub-components are solved in the frontier (2.3).
These violations are guaranteed not to happen by Lemma 4 and 5 respectively.

Lemma 1. The completeness and consistency invariants hold when solving a breaking edge
using procedure 2.1.

Proof. In procedure 2.1, we solve all the breaking edges along which the unsolved sub-mesh is
partitioned into basic type sub-components. Given such a breaking edge e shared by f1 ∈ C1

and f2 ∈ C2,

• If e is A2A: e is assigned with +1 and −1 in f1 ∈ C1 and f2 ∈ C2 respectively, therefore
consistency holds on e.

• If e is A2Lm or Lm2Lm: similar to the A2A case.
• If e is A2Le: On C2 side, f2 is an end triangle that has two boundary edges, e and e′. In

f2, e always receives an assignment opposite to that of e′, therefore completeness holds for
f2. On C1 side, e in f1 always receives an assignment opposite to that of e in f2, therefore
consistency holds for e.

10 Xiaotian Yin, Wei Han, Xianfeng Gu, and Shing-Tung Yau

• If e is Lm2Le: similar to the A2Le case.
• If e is A2S: On C2 side, f2 is a singular triangle that all three edges are on the boundary.

In f2, e always receives an assignment opposite to that of another edge e′ ∈ f2, therefore
completeness holds for f2. On C1 side, e in f1 always receives an assignment opposite to
that of e in f2, therefore consistency holds for e.

• If e is Lm2S: similar to the A2S case.

Lemma 2. The completeness and consistency invariants hold when solving a linear sub-
component.

Proof. In section 2.2 we use a stabbing procedure to solve all the internal edges {eI1, e
I
2, · · · , e

I
n}

in a linear sub-component C and thus solve all the triangles {f0, f1, · · · , fn}.
Every internal edge eIi = fi−1 ∩ fi (1 6 i 6 n) receives assignment b and −b in fi−1 and

fi respectively, where b is an initial assignment arbitrarily chosen from {+1,−1}. Therefore
consistency holds for every newly solved eIi .

Every middle triangle fi (1 6 i 6 n − 1) has two internal edges eIi and eIi+1 and receives
opposite assignments on them during the stabbing. In addition, due to the safeness invariant,
every end triangle (f0 and fn) already has opposite assignments on two boundary edges before
the stabbing. Therefore completeness holds for every triangle in C.

Lemma 3. The completeness and consistency invariants hold when solving an aggregated sub-
component.

Proof. In section 2.3 we solve the internal edges EI of the frontier layer CF and the edges EO

between the frontier CF and the interior CI , thus all the faces {f1, f2, · · · , fn} in CF are solved.
EI are solved by a stabbing procedure, where every eIi = fi−1 ∩ fi receives assignment b

and −b in fi−1 and fi respectively, where b is an initial assignment arbitrarily chosen from
{+1,−1}. Therefore consistency holds for every edge in EI .

EO are first solved on CI side and then on CF side, and every edge in EO receives opposite
assignments on two sides. Therefore consistency holds for every edge in EO as well.

Every triangle fi in CF has two internal edges eIi and eIi+1 and receives opposite assignments
on them during the stabbing. Therefore completeness holds for every triangle solved in this
process.

Lemma 4. The safeness invariant holds when solving a breaking edge using procedure 2.1.

Proof. In procedure 2.1, we partition the unsolved sub-mesh along a set of breaking edges.
These edges are exposed on the boundary of resulting sub-components. Given such a breaking
edge e shared by f1 ∈ C1 and f2 ∈ C2, we need to check whether their assignments violate the
safeness of the boundary of C1 and C2.

• If e is A2A: since C1 aggregated, f1 is not singular or dangling, therefore any assignment
will be safe; i.e. safeness holds for C1. The same argument holds for C2 as well.

• If e is A2Lm or Lm2Lm: similar to the A2A case.
• If e is A2Le: On C1 side, f1 is not singular or dangling, therefore any assignment will be

safe. Therefore safeness holds for C1. On C2 side, f2 is an end (dangling) triangle containing
two boundary edges e and e′, they receive opposite assignments. By definition this does not
violate the safeness on the boundary of C2.

• If e is Lm2Le: similar to the A2Le case.
• If e is A2S: On C1 side, f1 is not singular or dangling, therefore any assignment will be

safe. Therefore safeness holds for C1. On C2 side, f2 is a singular triangle containing three
boundary edges, two of them receive opposite assignments. By definition this does not violate
the safeness on the boundary of C2.

The Cutting Pattern Problem for Tetrahedral Mesh Generation 11

• If e is Lm2S: similar to the A2S case.

Lemma 5. The safeness invariant holds when solving an aggregated sub-component.

Proof. In section 2.3 we completely solve the frontier CF of a sub-component C and expose
the edges in EO as the boundary of the interior CI . Those new boundary edges EO are solved
on CI side. Recall that for face f ∈ CI that has at least two boundary edges (in EO), this f

receives assignments of both signs. By definition this gives a safe boundary assignment for CI ,
therefore safeness holds for CI .

Based on the above lemmas, we have the following conclusion about the convergence of the
algorithm:

Theorem 1. Algorithm 2.1 always terminates (due to the safeness invariant); at termination,
all the triangles are solved and the resulting assignments represent a valid cutting pattern (due
to the completeness and consistency invariants).

Now consider the time complexity of this algorithm. Let |V |, |E| and |F | be the number of
vertices, edges and triangles in the input mesh D. The cost of the algorithm lies in the following
aspects.

• Addressing breaking edges to partition the unsolved part of D. Since a breaking edge is
always connecting boundary vertices, we only need to check the boundary vertices of C;
and to avoid unnecessary breaking edges, we only need to check its two adjacent triangles.
Therefore the cost in each iteration is bounded by the number of boundary vertices of the
unsolved part of D in that iteration. Since every vertex in the original mesh D appears at
most once on the boundary of the unsolved part, the total cost for partitioning is bounded
by O(|V |).

• Solving edges. This happens when we solve a linear sub-component completely or solve an
aggregated sub-component in its frontier. From an overall view, every edge in the original
mesh D is solved only once; therefore this part is bounded by O(|E|).

• Addressing the frontier of aggregated sub-components. From an overall view, every triangle
in D will appear in the frontier of an aggregated sub-component for at most once; therefore
this part is bounded by O(|F |).

In summary, the time complexity of algorithm 2.1 is O(|V |+ |E|+ |F |), which is linear.

3 Solution for General Boundary Conditions

A general boundary condition is different to a restricted one in that the boundary assignment
for the input mesh is allowed to be dangerous, and it degenerates to the latter if the boundary
assignment is safe. Inspired by this fact, we design an algorithm that tries to resolve all the
danger and tries to turn this general problem into a restricted one. If the danger cannot be
removed from some part of the mesh, the algorithm will report this part as an obstruction and
terminate. Otherwise, it will continue to run as the restricted algorithm.

Algorithm 3.1 (Cutting Pattern Algorithm - II)

• Input: A triangular mesh D with a general boundary condition.
• Output: A valid cutting pattern for D or an unsolvable sub-mesh.
• Procedures:

12 Xiaotian Yin, Wei Han, Xianfeng Gu, and Shing-Tung Yau

1. Check the boundary assignment. If it is safe, jump to step 4; otherwise, do the following.
2. Partition mesh D into a minimal set of basic type sub-components, try to solve the

breaking edges between sub-components. If any obstruction is detected, report it and exit.
(section 3.1)

3. Solve moderately dangerous sub-components. (section 3.2)
4. Run algorithm 2.1 on the unsolved sub-mesh from the previous step.

In this algorithm there are two steps where we need to resolve danger, step 2 (section 3.1)
and step 3 (section 3.2).

3.1 Resolving Danger via Partition

The first place that we can resolve danger in algorithm 3.1 is step 2. In this step, we first
partition the input mesh D into a minimal set of basic type sub-components (as in section 2.1)
along a set of breaking edges (which will be initialized with assignment 0), then try to solve
these breaking edges using the following procedure.

Procedure 3.1 (Resolving Danger via Partition) Given a minimal set of basic type sub-
components, solve the breaking edges between sub-components as follows.

1. Repeat the following until all the extremely dangerous sub-components (if there is any) have
been transformed into moderately dangerous or safe ones:

a) Address all the extremely dangerous sub-components, put them in a set C;
b) For every extremely dangerous sub-component C ∈ C, check each adjacent sub-component

C′

i as the following, where we use eBi to denote the boundary edge between C and C′

i.
• If there is an adjacent C′

i that is safe, then assign eBi with ai = −b in C (thus C

becomes moderately dangerous or safe) and a′i = b in C′

i (thus C′

i remains safe).
Remove C from C.

• Otherwise, if there is an adjacent C′

i that is moderately dangerous, then assign eBi
with ai = −b in C (thus C becomes moderately dangerous or safe) and a′i = b in C′

i

(thus C′

i remains moderately dangerous or becomes safe). Remove C from C.
• Otherwise, if there is an adjacent C′

i that is extremely dangerous with opposite for-
bidding value −b, then assign eBi with ai = −b in C (thus C becomes moderately
dangerous or safe) and a′i = b in C′

i (thus C
′

i becomes moderately dangerous or safe).
Remove C from C.

• Otherwise, all the adjacent sub-components must be extremely dangerous and have
the same forbidding value b; Then keep C in C to wait for a second chance at a later
point when some adjacent sub-component is transformed into a less dangerous one.

c) Check the set C:
• If C is empty, jump to step 2 of this procedure.
• Otherwise, if C contains less sub-components than it does before this iteration, go

back to step 1a and start another iteration.
• Otherwise, no one in C can be resolved, report C and exit the procedure.

2. For every sub-component C that is moderately dangerous, do the following:
a) For every new boundary edge eBi in C that has assignment 0 (i.e. still unsolved):

• If the corresponding adjacent sub-component C′

i is moderately dangerous, then assign
eBi with an arbitrary value ai ∈ {+1,−1} in C (thus C remains moderately danger-
ous or becomes safe) and a′i = −ai in C′

i (thus C
′

i remains moderately dangerous or
becomes safe).

The Cutting Pattern Problem for Tetrahedral Mesh Generation 13

• Otherwise, the corresponding adjacent sub-component C′

i must be safe, then assign
eBi with arbitrary value ai ∈ {+1,−1} in C (thus C remains moderately dangerous
or becomes safe) and a′i = −ai in C′

i (thus C′

i remains safe).

As one can see from the procedure, solving breaking edges will make a dangerous boundary
assignment less or equally dangerous but not more dangerous. For example, an extremely dan-
gerous one can be transformed to another extremely dangerous one, a moderately dangerous
one, or even a safe one; A moderately dangerous one can be transformed to another moderately
dangerous one or a safe one, but not to an extremely dangerous one; A safe one can only remain
safe and cannot be transformed to a dangerous one.

−1 −1
−1 −1

−1

−1 −1

−1

+1

+1

+1

+1

+1 +1

+1

+1+1

Fig. 7. Two examples of cutting pattern obstruction (definition 6).

At the end of step 1c in procedure 3.1, we detect a set of sub-components with extremely
dangerous boundary assignments that cannot be transformed to less dangerous ones (figure 7).
This set of unsolvable sub-components is an obstruction that keeps the algorithm from finding
a valid solution.

Definition 6 (Cutting Pattern Obstruction). A cutting pattern obstruction in an input
mesh D is a maximal edge-connected component D′ ⊆ D consisting of a set of sub-components
C = {Ci | 1 ≤ i ≤ m}, such that:

• Every pair of sub-components Ci and Cj are triangle-disjoint to each other.
• Every Ci is a maximal basic type sub-component of basic types. Or equivalently, the set C

is a minimal set of basic type sub-components.
• All of the sub-components in C have extremely dangerous boundary assignments and share

the same forbidding value a ∈ {+1,−1}.

3.2 Solving Moderately Dangerous Sub-components

After the previous step, if no obstruction is detected, we will reach step 3 in algorithm 3.1,
which is a second place where we can resolve danger. At this point, all the extreme dangerous
sub-components have been transformed, only moderately dangerous and safe ones are left. In
this step, we will solve all the moderately dangerous sub-components.

A moderately dangerous sub-component, by definition, must be linear. Recall that a linear
sub-component with safe boundary conditions can be completely solved using a stabbing pro-
cedure (section 2.2). As we will show in below, moderately dangerous sub-components can also
be completely solved using a different stabbing procedure.

Given a moderately dangerous sub-component C, it contains a sequence of triangles
[f0, · · · , fn]. And by definition there must be two boundary edges eBi1 and eBi2 in two different

triangles fi1 and fi2 (i1 < i2) that have opposite assignments, a
(

eBi1 , fi1
)

= −a
(

eBi2 , fi2
)

= b ∈
{+1,−1}. Taking fi1 and fi2 as two intermediate stops, we can partition C into three segments
(in general) that can be stabbed separately (see figure 8).

14 Xiaotian Yin, Wei Han, Xianfeng Gu, and Shing-Tung Yau

• C01 = [f0, · · · , fi1]: stab this segment with a line from f0 to fi1 using initial assignment
−a(eB0,1, f0) (i.e. opposite to the assignment for one of the boundary edges in f0).

• C12 = [fi1 , · · · , fi2]: stab this segment with a line from fi1 to fi2 using initial assignment
−b (i.e. opposite to the assignment for boundary edge eBi1 in fi1).

• C2n = [fi2 , · · · , fn]: stab this segment with a line from fn to fi2 using initial assignment
−a(eBn,1, fn) (i.e. opposite to the assignment for one of the boundary edges in fn).

Note that if there are more than one pair of (eBi1 , e
B
i2
) with opposite signs, one can choose an

arbitrary pair and there is no impact on the convergence and correctness of the above algorithm.
As another note, if eBi1 (or eBi2) appears in an end triangle of C, segment C01 (or C02) would
degenerate and therefore only two segments left, the algorithm can also work. With all these
considerations, after this step there is no dangerous sub-components left. All the reminders are
safe ones and can be solved using algorithm 2.1.

+1

+1

−1 +1

+1 +1

+1

+1
+1

+1

−1 +1

+1 +1

+1

+1+1

−1 +1
+1−1

−1 −1

−1
+1

+1

Fig. 8. A moderately dangerous sub-component must be linear; it can be completely solved via a
stabbing line with three segments (separated by solid dots).

3.3 Validation and Analysis

In this part we discuss the convergence and complexity of algorithm 3.1. From the above
discussion, this algorithm differs from the restricted algorithm 2.1 by several extra preprocessing
steps 1, 2 and 3. As we will see in Lemma 6, this part of the algorithm always terminates.

Lemma 6. The preprocess part (step 1, 2 and 3) of algorithm 3.1 always terminates; at termi-
nation, it either reports a cutting pattern obstruction, or outputs an unsolved sub-mesh with a
safe boundary assignment.

Proof. We check each preprocess step separately.

• In step 1: we check whether the boundary assignment is safe. If it is safe, the given mesh is
left to step 4; otherwise, goes to step 2.

• In step 2: from the discussion of procedure 3.1 in section 3.1, if there is any cutting pattern
obstruction in the input mesh D, it will be reported from step 1c in procedure 3.1, and the
whole algorithm terminates. Otherwise, all the extremely dangerous sub-components are
downgraded to moderately dangerous ones or safe ones (step 1), and then all the moderately
dangerous sub-components are transformed to either moderately dangerous ones or safe ones
(step 2). After this process, we have a set of basic type sub-components with completed
boundary assignments, either moderately dangerous or safe.

• In step 3: based on the discussion in section 3.2, all the moderately dangerous sub-
components are completely solved using a stabbing procedure, which guarantees to produce
a valid set of assignments on those linear sub-components. After this process, the unsolved
sub-mesh consists of a set of basic type sub-components with safe boundary conditions.

The Cutting Pattern Problem for Tetrahedral Mesh Generation 15

After step 3, if no obstruction is reported, the algorithm will get into step 4 with an unsolved
sub-mesh with a safe boundary assignment, which has been proved in Theorem 1 to be solvable
using algorithm 2.1. Therefore we can conclude:

Theorem 2. Algorithm 3.1 always terminates; at termination, it either reports a cutting pat-
tern obstruction or generate a valid cutting pattern for the original mesh.

Now consider the time complexity of the algorithm. The cost of the algorithm lies in the
following aspects.

• Step 1. This step only involves the boundary edges and is therefore bounded by O(|E|).
• Step 2. The major cost lies in procedure 3.1. Step 1 in this procedure checks every extremely

dangerous sub-component (for at most twice) and its adjacent sub-components, the cost is
bounded by the total number of breaking edges in D. Similarly, step 2 in this procedure
checks every moderately dangerous sub-component and its adjacent sub-components, the
cost is also bounded by the total number of breaking edges in D. The total cost of this part
is therefore bounded by O(|E|).

• Step 3. Solving a moderately dangerous sub-component has the same complexity as that for
solving a linear sub-component. Therefore this part is bounded by O(|E|).

• Step 4. This step runs algorithm 2.1, which is bounded by O(|V |+ |E|+ |F |) according to
section 2.4.

In summary, the time complexity of algorithm 3.1 is O(|V |+ |E|+ |F |), which is linear.

4 Solution for Free Boundary Conditions

Under a free boundary condition, the boundary edges of the input meshD will not be prescribed
with ±1. Instead, these values can be set by the algorithm. It turns out that for a topological
disk D, we can always generate a safe boundary assignment for D, so that the problem is
converted to a restricted one (section 2). The algorithm pipeline is outlined in below.

Algorithm 4.1 (Cutting Pattern Algorithm - III)

• Input: A triangular mesh D with a free boundary condition.
• Output: A valid cutting pattern for D.
• Procedures:

1. Generate a safe boundary assignment for D.
2. Run algorithm 2.1 on D with restricted boundary condition.

Step 1 can be easily implemented. Check every triangle f ∈ D that contains at least one
boundary edge. If f contains only one boundary edge, assign it with +1. If f contains at least
two such edges, assign +1 to one of them and −1 to the rest.

Obviously step 1 is guaranteed to terminate in time of O(|F |). Therefore the convergence
and complexity of this algorithm follows the results in section 2.4 for algorithm 2.1.

5 Conclusion and Discussion

In this paper we study the cutting pattern problem, a 2D graph labeling problem that is the
major challenge of converting a prismal mesh to a tetrahedral mesh. We solve this problem
for topological disks with a single boundary under three different boundary conditions. For

16 Xiaotian Yin, Wei Han, Xianfeng Gu, and Shing-Tung Yau

restricted and free boundary conditions, we propose algorithms that is guaranteed to find a valid
cutting pattern, therefore prove that solution always exists under these conditions. For general
boundary conditions, we show that solutions exist if there is no cutting pattern obstruction; an
algorithm is proposed to detect such obstructions if there is any or find a valid cutting pattern
otherwise.

Note that for general boundary conditions, we only show that the absence of obstructions
is a sufficient condition for the existence of solutions; but we are inclined to believe it is also
necessary, and this will be an interesting topic for future exploration. Another interesting topic
would be generalizing this work to other input meshes with more complicated topologies.

Acknowledgement

This work was partially supported by ONR N000140910228, NSF CCF-1081424, NSF Nets
1016829, NIH R01EB7530 and DARPA 22196330-42574-A. The first two authors were also
supported by Harvard University Mathematics Department Funds. The authors would like to
acknowledge and thank the anonymous reviewers for their insightful and constructive comments.

References

1. Rainald Löhner and Paresh Parikh. Generation of three-dimensional unstructured grids by the
advancing-front method. International Journal for Numerical Methods in Fluids, 8(10):1135–1149,
1988.

2. Peter Möller and Peter Hansbo. On advancing front mesh generation in three dimensions. Inter-

national Journal for Numerical Methods in Engineering, 38(21):3551–3569, 1995.
3. Mark S. Shephard and Marcel K. Georges. Automatic three-dimensional mesh generation by the

finite octree technique. International Journal for Numerical Methods in Engineering, 32(4):709–
749, 1991.

4. Nigel P. Weatherill and Oubay Hassan. Efficient three-dimensional delaunay triangulation with
automatic point creation and imposed boundary constraints. International Journal for Numerical

Methods in Engineering, 37(12):2005–2039, 1994.
5. Herbert Edelsbrunner. Geometry and topology for mesh generation. Cambridge University Press,

2001.
6. Tamal K. Dey. Delaunay mesh generation of three dimensional domains. In Technical report. Ohio

State University, 2007.
7. A. M. Froncioni, P. Labbé, A. Garon, and R. Camarero. Interpolation-free space-time remeshing

for the burgers equation. Communications in Numerical Methods in Engineering, 13(11):875–884,
1997.

8. Nelson Max, Barry Becker, and Roger Crawfis. Flow volumes for interactive vector field visualiza-
tion. In Proceedings of the 4th IEEE conference on Visualization, pages 19–24, 1993.

9. Guy Albertelli and Roger A. Crawfis. Efficient subdivision of finite-element datasets into consistent
tetrahedra. In Proceedings of the 8th IEEE conference on Visualization, pages 213–219, 1997.

10. Shahyar Pirzadeh. Advancing-layers method for generation of unstructured viscous grids. In the

11th AIAA Applied Aerodynamics Conference, pages 420–434, 1993.
11. Rainald Löehner. Matching semi-structured and unstructured grids for navier-stokes calculations.

In the 11th AIAA Computational Fluid Dynamics Conference, pages 555–564, 1993.
12. Julien Dompierre, Paul Labbé, Marie-Gabrielle Vallet, and Ricardo Camarero. How to subdivide

pyramids, prisms, and hexahedra into tetrahedra. In Proceedings of the 8th International Meshing

Roundtable, pages 195–204, 1999.
13. Joseph A. Gallian. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics,

17, 2010.

