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D(5): B-field effect

Nontrivial Azumaya noncommutative schemes, morphisms therefrom,

and their extension by the sheaf of algebras of differential operators :

D-branes in a B-field background à la Polchinski-Grothendieck Ansatz

Chien-Hao Liu and Shing-Tung Yau

Abstract

In this continuation of [L-Y1], [L-L-S-Y], [L-Y2], and [L-Y3] (arXiv:0709.1515 [math.AG],
arXiv:0809.2121 [math.AG], arXiv:0901.0342 [math.AG], arXiv:0907.0268 [math.AG]), we
study D-branes in a target-space(-time) with a fixed B-field background (Y, αB) along the
line of the Polchinski-Grothendieck Ansatz, explained in [L-Y1] and further extended in the
current work. We focus first on the gauge-field-twist effect of B-field to the Chan-Paton
module on D-branes. Basic properties of the moduli space of D-branes, as morphisms from
Azumaya schemes with a twisted fundamental module to (Y, αB), are given. For holomor-
phic D-strings, we prove a valuation-criterion property of this moduli space. The setting is
then extended to take into account also the deformation-quantization-type noncommutative
geometry effect of B-field to both the D-brane world-volume and the superstring target-
space(-time) Y . This brings the notion of twisted D-modules that are realizable as twisted
locally-free coherent modules with a flat connection into the study. We use this to realize the
notion of both the classical and the quantum spectral covers as morphisms from Azumaya
schemes with a fundamental module (with a flat connection in the latter case) in a very
special situation. The 3rd theme (subtitled “Sharp vs. Polchinski-Grothendieck”) of Sec. 2.2
is to be read with the work [Sh3] (arXiv:hep-th/0102197) of Sharp while Sec. 5.2 (subti-
tled less appropriately “Dijkgraaf-Holland-Su lkowski-Vafa vs. Polchinski-Grothendieck”) is
to be read with the related sections in [D-H-S-V] (arXiv:0709.4446 [hep-th]) and [D-H-S]
(arXiv:0810.4157 [hep-th]) of Dijkgraaf, Hollands, Su lkowski, and Vafa.
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D-Branes in a B-Field Background à la Polchinski-Grothendieck Ansatz

0. Introduction and outline.

Since the work [Pol1] of Polchinski, D-branes have become a central object of study in superstring

theory. It has also motivated numerous related works on the mathematical side. (Cf. References

of [L-Y1], [L-L-S-Y], [L-Y2], [L-Y3] for a brief list relevant to the project.)

Azumaya structure on D-branes as an origin of D-brany phenomena.

The emergence of an Azumaya structure on a D-brane world-volume follows directly from a

comparison of (1) the behavior of the open-string-induced field on the D-brane that governs its

deformation and (2) Grothendieck’s contravariant equivalence of algebras and local geometries

([Pol2: vol. I, Sec. 8.7], [L-Y1: Sec. 2], and Sec. 2.1).1 If we turn the history around to take such

a structure as a fundamental definition of D-branes, and consider morphisms from such objects

to a string-target-space(-time), then we see that basic D-brane phenomena, e.g., Higgsing/un-

Higgsing of gauge field theory on D-brane world-volume, deformation and resolution of a singular

Calabi-Yau space via a D-brane probe, can be reproduced; [L-Y1], [L-L-S-Y], [L-Y2], and [L-Y3].

This is an indication that Azumaya structure is fundamentally/solidly carved into a D-brane

world-volume as part of its substantial building structures. This gives an Azumaya origin of

many D-brany phenomena.

B-field and its effect on fields and geometry in string theory.

A B-field on a space-time Y is a connection on a gerbe Y over Y . It can be presented as a Čech

0-cochain (Bi)i of local 2-forms Bi with respect to a cover U = {Ui}i on Y such that on Ui ∩Uj,

Bi − Bj = dΛij for some real 1-forms Λij that satisfies Λij + Λjk + Λki = −
√
−1d log αijk on

Ui ∩ Uj ∩ Uk, where (αijk)ijk is a Čeck 2-cocycle of U(1)-valued functions on Y In the algebro-

geometric language, (αijk)ijk is given by a presentation of an equivalence class αB ∈ Č2
ét (Y,O∗

Y )

of étale Čech 2-cocycles with values in O∗
Y . Through its coupling to the open-string current on

an open-string world-sheet with boundary on a D-brane world-volume X ⊂ Y , a background

B-field on Y induces2 a twist to the gauge field A on the Chan-Paton vector bundle E on X

that renders E itself a twisted vector bundle with the twist specified by αB |X ∈ Č2
ét (X,O∗

X ).

(Cf. [Al], [Br], [Ch], [F-W], [Hi2], [Ka], and [Wi1].) Furthermore, the 2-point functions on the

open-string world-sheet with boundary on X indicate that the D-brane world-volume is deformed

to a deformation-quantization type noncommutative geometry in a way that is governed by the

B-field (and the space-time metric). (Cf. [C-H1, C-H2], [C-K], [Schmo], and [S-W].)

1Azumaya structure on D-brane world-volume has already been brought to string theorists’ attention in late
1990s, for example, from the effect of the background B-field on the open-string target-space-time, as explained in
[Ka: Sec. 1.2] of Kapustin. However, it should be noted that the emergence of Azumaya structures on a D-brane
world-volume is at a more fundamental level than this. It is purely an open-string-induced effect that is enforced
on a coincident D-brane world-volume whether or not there is a supersymmetry in the field theory on the D-brane
world-volume (or on the open-string world-sheet with boundary on this brane-world-volume, or on the space-time)
or a B-field background on the space-time. Rather, the latter extra SUSY requirement or B-field data comes to
constraint the class of Azumaya structures that can occur on the D-brane world-volume. For example, in complex
geometry language we are discussing holomorphic Azumaya algebra over a complex manifold. This comes from a
supersymmetry constraint. B-field will then select further a class of such Azumaya algebras, cf. [Ka] and Sec. 2.

2Unfamiliar mathematicians are highly recommended to read [Zw] of Zwiebach for a very down-to-earth ex-
planation of this.

1



Remark 0.1. [open-string world-sheet anomaly]. There is a further effect on D-branes that arises

from the global world-sheet anomaly on the open-string world-sheet with the boundary on the

D-brane world-volume ([F-W]). This anomaly effect is ignored in the current work. See ibidem,

[C-K-S], [Ka], and [K-S] for more discussions.

D-brane as a master object in superstring theory vs. morphism from Azumaya

schemes with a fundamental module as a master object in geometry.

In this continuation of [L-Y1], [L-L-S-Y], [L-Y2], and [L-Y3], we study D-branes in a fixed

B-field background (Y, αB) along the line of the Polchinski-Grothendieck Ansatz, explained in

[L-Y1] and further extended in the current work. We focus first on the twist effect of B-field

to the Chan-Paton module on D-branes. Basic properties of the moduli space of D-branes, as

morphisms from Azumaya schemes with a twisted fundamental module to (Y, αB), are given.

For holomorphic D-strings, we prove a valuation-criterion property of this moduli space. The

setting is then extended to take into account also the deformation-quantization effect of B-field

to both the D-brane world-volume and the target-space Y . This brings the notion of twisted

D-modules that are realizable as twisted locally-free coherent modules with a flat connection

into the study. We use this to realize the notion of both the classical and the quantum spectral

covers as morphisms from Azumaya schemes with a fundamental module (with a flat connection

in the latter case) in a very special situation. The 3rd theme (subtitled “Sharp vs. Polchinski-

Grothendieck”) of Sec. 2.2 is to be read with the work [Sh3] of Sharp while Sec. 5.2 (subtitled

less appropriately “Dijkgraaf-Holland-Su lkowski-Vafa vs. Polchinski-Grothendieck”) is to be read

with the related sections in [D-H-S-V] and [D-H-S] of Dijkgraaf, Hollands, Su lkowski, and Vafa.

From this, we see once again:

· the master nature of morphisms from Azumaya schemes with a fundamental module

in geometry in parallel to the master nature of D-branes in superstring theory.

This would be highly surprising/un-anticipated on the mathematics side if not because of the

Polchinski-Grothendieck Ansatz, which realizes morphisms from Azumaya manifolds/schemes/

stacks with a fundamental module as the lowest level presentation of D-branes, and superstring

theory dictates the master nature of such an object. Together with [L-L-S-Y] (D(2)), [L-Y2]

(D(3)), and [L-Y3] (D(4)), the following diagram of unity emerges:

Hurwitz schemes
Bundles/sheaves
on varieties

Stable maps,
e.g. in Gromov-Witten theory

Morphisms from Azumaya manifolds/schemes/stacks
with a fundamental module
(possibly with a flat connection)

ggPPPPPPPPPPPPPPPP

OO 88pppppppppppp

wwnnnnnnnnnnnnn

&&NNNNNNNNNNNN

Deformations and resolutions
of singular varieties

Classical and quantum spectral pairs,
Hitchin systems
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It is anticipated that this is only a part of a to-be-understood complete diagram of unity in

geometry in view of the ubiquity of D-branes in superstring theory.

Convention. Standard notations, terminology, operations, facts in (1) physics aspects of D-

branes ; (2) algebraic geometry and stacks can be found respectively in (1) [Pol2], [Jo], and [Zw];

(2) [Ha] and [L-MB].

· All schemes are Noetherian over C unless otherwise noted..

· B-field (in the sense of quantum field theory) vs. base scheme B vs. D-branes of type B.

· D-branes for Dirichlet-branes vs. D-modules for modules of the sheaf D of algebras of

differential operators.

· The word “twist/twisting” has two different meanings: (1) in the sense of twisted sheaves

as a presentation of sheaves on gerbes and (2) the operation of tensoring by (usually) a

(twisted or ordinary in the sense of (1)) line bundle.

Outline.

0. Introduction.

· Azumaya structure on D-branes as an origin of D-brany phenomena.

· B-field and its effect on fields and geometry in string theory

· D-brane as a master object in superstring theory vs. morphism from Azumaya schemes with
a fundamental module as a master object in geometry.

1. Gerbes, twisted sheaves, and Azumaya algebras over a scheme.

1.1 Gerbes and twisted sheaves over a scheme.

1.2 (General) Azumaya algebras over a scheme.

2. Azumaya geometry and D-branes à la Polchinski-Grothendieck Ansatz revisited:
the twist from a B-field background.

2.1 Polchinski-Grothendieck Ansatz revisited with the étale topology.

2.2 D-branes in a B-field background as morphisms from Azumaya schemes with a twisted
fundamental module.

3. The moduli stack of morphisms.

3.1 Family of D-branes in a B-field background, twisted Hilbert polynomials, and boundedness.

3.2 MAz(XS/S,αS)f (Y, αB) is algebraic.

4. The case of holomorphic D-strings.

4.1 The moduli stack MAz(g,r,χ)f (Y, αB ;β) of morphisms from Azumaya prestable curves
to (Y, αB).

4.2 Fillability/valuation-criterion property of MAz(g,r,χ)f (Y, αB;β).

5. The extension by the sheaf D of differential operators.

5.1 Azumaya schemes with a fundamental module with a flat connection.

5.2 Deformation quantizations of spectral covers in a cotangent bundle.
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1 Gerbes, twisted sheaves, and Azumaya algebras over a scheme.

To fix terminology and notations, essential definitions of gerbes and twisted sheaves are given

in this section. Readers are referred to [Br: Chap. 5], [Că: Chap. 1], [Lie1: Chap. 2], [Mi:

Chap. IV] and also [Ch], [Gir], [Hi2] for further details and to, e.g., [Sh2] and [C-K-S] to get a

glimpse of gerbes and twisted sheaves in string theory. We will assume that the schemes X and

Y in the following discussions are quasi-projective3 over C.

1.1 Gerbes and twisted sheaves over a scheme.

Gerbes over a scheme and coherent sheaves thereupon.

Let X be a (Noetherian) scheme (over C). Given a stack S over the category Scheme /X of

schemes over X, we will denote the groupoid S(U) assigned by S to a (U → X) ∈ Scheme /X

also by SU . An element s ∈ SU will be called a section of S over U . s defines a morphism

s : U → S, and conversely. Thus, we will denote s ∈ SU and s : U → S interchangeably. We

will equip Scheme /X with the fppf topology unless otherwise noted. This induces a topology

on a stack over Scheme /X.

Definition 1.1.1. [gerbe over X]. A gerbe over X is a stack X over Scheme /X that has the

following two properties:

(1) étale local existence of a section : For any U → X, there exists an étale cover U ′ → U of

U such that XU ′ is nonempty.

(2) sections étale locally isomorphic : For any U → X and s1, s2 ∈ XU , there exists an étale

cover p : U ′ → U of U such that p∗s1 ≃ p∗s2 in XU ′ .

We will denote a gerbe X over X also by X/X to manifest the underlying scheme4 X, particularly

when there are different underlying schemes involved in the discussion.

Lemma/Definition 1.1.2. [sheaf of automorphism groups and its right action]. Given

a gerbe X/X, the assignment s ∈ XU 7→ Aut (s) = Mor (s, s) ⊂ Mor (XU ) is a sheaf A(X ) on

the stack X . We will call A(X ) the sheaf of automorphism groups on X . Let F be a sheaf on

X . Then the operation of pulling-back by automorphisms defines a natural right group action5

µ : F ×A(X )→ F of A(X ) on F .

Let X be a gerbe over X and O∗
X be the sheaf of invertible elements of OX . Denote the

pull-back of O∗
X to X via the structure morphism X → X also by O∗

X . This is the sheaf on X
that assigns to each s ∈ XU the (multiplicative) abelian group O∗

U (U).

3This technical assumption is imposed to render the étale Čech cohomology Ȟ∗
et(X,F) and the étale cohomology

H∗
et(X,F) identical for F a sheaf on Xét .
4The reason we call X the underlying scheme of the gerbe X is that when X arises as the moduli stack of a

moduli problem of a class of objects, the scheme X becomes the coarse moduli space of the moduli problem. X
parameterizes all the C-points of X while X encodes in addition the data of automorphisms of the objects these
C-points represent. See Definition/Lemma 1.2.3 for an example.

5Explicitly, let s ∈ XU , f ∈ F(s), and h ∈ Aut (s). Then, µ(f, h) = h∗f ∈ F(s).
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Definition 1.1.3. [gerbe with band O∗
X ]. A gerbe over X with band O∗

X is a gerbe X/X
with an isomorphism O∗

X
∼→ A(X ).

Lemma 1.1.4. [gerbe as algebraic stack]. ([Lie1: Lemma 2.2.1.1].) Let X be a gerbe over

X with band O∗
X . Then X is an (Noetherian) algebraic stack6 over Scheme /X.

An atlas for such an X/X is given by an étale cover U → X with the property that for any

x ∈ X, there is a connected component Ux of U that gives an étale neighborhood of x ∈ X such

that XUx is nonempty.

The notion of a (Cartesian) coherent sheaf F on a gerbe X/X with bandO∗
X is then defined as

that for algebraic stacks, given in [L-MB]. Its (stacky) support SuppF , defined by the annihilator

ideal sheaf Ker (OX → End OX
(F)) of F , is a closed substack of X .

Twisted sheaves à la Căldăraru.

Given an étale cover p : U (0) := ∐i∈IUi → X of X, we will adopt the following notations:

· Uij := Ui ×X Uj =: Ui ∩ Uj , Uijk := Ui ×X Uj ×X Uk =: Ui ∩ Uj ∩ Uk ;

· · · · // ////// U
(2) := U ×X U ×X U

p12, p13, p23 ////// U (1) := U ×X U
p1, p2 //// U (0)

p // X

are the projection maps from fibered products as indicated; the restriction of these pro-

jections maps to respectively Uijk and Uij will be denoted the same;

· the pull-back of an OUi
-module Fi on Ui to Uij, Uji, Uijk, · · · via compositions of these

projection maps will be denoted by Fi|Uij
, Fi|Uji

, Fi|Uijk
, · · · respectively.

Definition 1.1.5. [α-twisted OX-module on an étale cover of X]. ([Că: Definition 1.2.1].)

Let α ∈ Č2
ét (X,O∗

X ) be a Čech 2-cocycle in the étale topology of X. An α-twisted OX -module

on an étale cover of X is a triple

F = ({Ui}i∈I , {Fi}i∈I , {φij}i,j∈I)

that consists of the following data

· an étale cover p : U := ∐i∈IUi → X of X on which α can be represented as a 2-cocycle:

α = {αijk : αijk ∈ Γ(Uijk,O∗
X) with αjklα

−1
iklαijlα

−1
ijk = 1 on Uijkl for all i, j, k, l ∈ I } ,

such a cover will be called an α-admissible étale cover of X;

· Fi is a sheaf of OUi
-modules on Ui;

· (gluing data) φij : Fi|Uij
→ Fj|Uij

is an OUij
-module isomorphism that satisfies

(1) φii is the identity map for all i ∈ I;

6I.e. Artin stack.
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(2) φij = φ−1
ji for all i, j ∈ I;

(3) (twisted cocycle condition) φki ◦ φjk ◦ φij is the multiplication by αijk on Fi|Uijk
.

F is said to be coherent (resp. quasi-coherent, locally free) if Fi is a coherent (resp. quasi-coherent,

locally free) OUi
-module for all i ∈ I. A homomorphism

h : F = ({Ui}i∈I , {Fi}i∈I , {φij}i,j∈I) −→ F ′ = ({Ui}i∈I , {F ′
i}i∈I , {φ′

ij}i,j∈I)

between α-twisted OX -modules on the étale cover p of X is a collection {hi : Fi → F ′
i}i∈I , where

hi is an OUi
-module homomorphism, such that φ′

ij ◦hi = hj ◦φij for all i, j ∈ I. In particular, h

is an isomorphism if all hi are isomorphisms. Denote byMod (X,α, p) the category of α-twisted

OX -modules on the étale cover p : U (0) → X of X.

Given an α-twisted sheaf F on the étale cover p : U → X of X. let p′ : U ′ → X be an étale

refinement of p : U → X. Then α can be represented also on p′ : U ′ → X and F on p defines

an α-twisted OX -module F ′ on p′ via the pull-back under the built-in étale cover U ′ → U of U .

This defines an equivalence of categories:

Mod (X,α, p) −→ Mod (X,α, p′) .

([Că: Lemma 1.2.3, Lemma 1.2.4, Remark 1.2.5].)

Definition 1.1.6. [α-twisted OX-module on X]. An α-twisted OX -module on X is an

equivalence class [F ] of α-twisted OX -modules F on étale covers of X, where the equivalence

relation is generated by étale refinements and descents by ëtale covers of X on which α can

be represented. An F ′ ∈ [F ] is called a representative of the α-twisted OX -module [F ]. For

simplicity of terminology, we will also call F ′ directly an α-twisted OX -module on X.

Cf. [Că: Corollary 1.2.6 and Remark 1.2.7].

Standard notions of OX-modules, in particular

· the scheme-theoretic support Supp E ,

· the dimension dim E , and

· flatness over a base S

of an α-twisted sheaf E on X (or on X/S) are defined via a(ny) presentation of E on an α-

admissible étale cover U → X.

Standard operations on O•-modules apply to twisted O•-modules on appropriate admissi-

ble étale covers by applying the operations component by component over the cover. These

operations apply then to twisted OX -modules as well: They are defined on representatives of

twisted sheaves in such a way that they pass to each other by pull-back and descent under étale

refinements of admissible étale covers. In particular:

Proposition 1.1.7. [basic operations on twisted sheaves]. ([Că: Proposition 1.2.10].) (1)

Let F and G be an α-twisted and a β -twisted OX -module respectively, where α, β ∈ Č2
ét (X,O∗

X ).

Then F ⊗OX
G is an αβ-twisted OX -module and Hom OX

(F ,G) is an α−1β-twisted OX -module.

In particular, if F and G are both α-twisted OX-modules, then Hom OX
(F ,G) descends to an

(ordinary/untwisted) OX -module, still denoted by Hom OX
(F ,G), on X.

6



(2) Let f : X → Y be a morphism of schemes/C and α ∈ Č2
ét (Y,O∗

Y ). Note that an α-

admissible étale cover of Y pulls back to an f∗α-admissible étale over of X under f , through

which the pull-back and push-forward of a related twisted sheaf can be defined. If F is an α-

twisted OY -module on Y , then f∗F is an f∗α-twisted OX -module on X. If F is an f∗α-twisted

OX -module on X, then f∗F is an α-twisted OY -module on Y .

1.2 (General) Azumaya algebras over a scheme.

Definition 1.2.1. [Azumaya algebra of rank r over X]. An Azumaya algebra A of rank7

r over a scheme X/C is a locally free OX -algebra such that its fiber A⊗OX
k(x) at each closed

point x ∈ X is isomorphic to End (Cr) (= the r×r matrix algebra Mr(C) over C) as C-algebras.

Proposition 1.2.2. [local trivialization of Azumaya algebra]. ([Mi: IV, Proposition 2.1].)

Let A be a sheaf of OX -algebras on X. The following statements are equivalent:

(1) A is an Azumaya algebra of rank r on X;

(2) there is an étale cover U → X such that A⊗OX
OU ≃ End OU

(O⊕r
U )(=: Mr(OU ));

(3) there is a flat cover U → X such that A⊗OX
OU ≃ End OU

(O⊕r
U ).

Definition/Lemma 1.2.3. [gerbe associated to Azumaya algebra]. Given an Azumaya

algebra A over X, the stack of trivializations of fibers of A, defined by the assignment

U ∈ Scheme X 7−→ the category with

· objects:
the pairs (E , a), where E is a locally free OU -module and a
is an isomorphism End OU

(E)
∼→ A⊗OX

OU of OU -algebras,

· morphism:
a morphism (E1, a1) → (E2, a2) is an isomorphism h : E1 ∼→
E2 such that the induced h∗ : End OU

(E1)
∼→ End OU

(E2) sat-
isfies a2 ◦ h∗ = a1.

is a gerbe, denoted by XA, over X with band O∗
X . We will call it the gerbe over X associated to

A. The collection of objects (E , a) define a locally-free coherent OXA
-module F on XA. We will

call it the tautological fundamental module on XA. The pull-back of A on X to XA is canonically

isomorphic to End OXA
(F). We will call this the tautological Azumaya algebra over XA.

Given an α-twisted locally-free OX-module E of rank r, it follows from Proposition 1.1.7

that A := End OX
(E) is an Azumaya algebra over X. Let U → X be an α-admissible étale cover

of X. Then a presentation of E on U corresponds to a morphism s : U → XA. In terms of this,

E = s∗F , where F is the tautological fundamental module on XA.

7Note that there are two conventions in the literature: rank as an OX -module vs. rank as an OX -algebra. Here
we take the latter convention.
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Definition/Lemma 1.2.4. [Brauer group Br ( • )]. Two Azumaya algebras, A1 and A2, are

said to be (stably) equivalent if there exist locally-free coherent OX -modules, E1 and E2, such

that A1 ⊗OX
End OX

(E1) ≃ A2 ⊗OX
End OX

(E2) as OX -algebras. Denote the equivalence class

of A by [A]. Then, the set of equivalence classes of Azumaya algebras over X form an abelian

group, in notation Br (X), under [A1] · [A2] := [A1⊗OX
A2], identity = [OX ], and [A]−1 := [A◦],

where A◦ is the opposite algebra8 of A. Br (X) is called the Brauer group of X.

The set of isomorphism classes of Azumaya algebras of rank r over X is given by the étale

cohomology group H1
ét (X,PGL r(C)). The exact sequence

1 −→ O∗
X −→ GLr(OX) −→ PGL r(OX) −→ 1

of sheaves on Xét defines an exact sequence of pointed-sets

· · · −→ H1
ét (X,O∗

X ) −→ H1
ét (X,GLr(OX)) −→ H1

ét (X,PGL r(OX))
d−→ H2

ét (X,O∗
X ) .

Theorem 1.2.5. [Br (X) ⊂ H2
ét (X,O∗

X)]. ([Mi: IV, Theorem 2.5].) The connecting homomor-

phism H1
ét (X,PGL r(OX))

d→ H2
ét (X,O∗

X) induces a canonical injective group-homomorphism

Br (X) →֒ H2
ét (X,O∗

X ).

2 Azumaya geometry and D-branes à la Polchinski-Grothendieck
Ansatz revisited: the twist from a B-field background.

2.1 Polchinski-Grothendieck Ansatz revisited with the étale topology.

Polchinski-Grothendieck Ansatz: Azumaya-type noncommutativity on D-branes.

Recall how the Polchinski-Grothendieck Ansatz for D-branes is reached in [L-Y1: Sec. 2.2].9

Consider a D-brane (or a D-brane world-volume) in a space(-time) that is geometrically realized

as an embedded submanifold f : Z →֒M in an open-string target space(-time) M . The boundary

of open-string world-sheets are mapped to f(Z) in M . Through this, open strings induce

additional structures on Z, including a Chan-Paton bundle on Z that supports the gauge field

created from the vibrations of open-strings with end-points on f(Z). Let ξ := (ξa)a be local

coordinates on Z and X := (Xa;Xµ)a,µ be local coordinates on M such that the embedding

f : Z →֒M is locally expressed as

X = X(ξ) = (Xa(ξ);Xµ(ξ))a,µ = (ξa,Xµ(ξ))a,µ ;

i.e., Xa’s (resp. Xµ’s) are local coordinates along (resp. transverse to) f(Z) in M . This choice

of local coordinates removes redundant degrees of freedom of the map f , and Xµ = Xµ(ξ) can

be regarded as (scalar) fields on Z that collectively describes the postions/shapes/fluctuations

8I.e. the Azumaya algebra with the same OX -module A but with the reversed product ·′ defined by a1 ·
′ a2 :=

a2 · a1 in the Azumaya algebra A.
9Readers are referred to Polchinski [Pol2: vol. I, Sec. 8.7] and [L-Y1: Sec. 2.2] for more thorough discussions

and comparison. In this theme, we use as close notation to Polchinski as possible for a direct comparison. For all
other parts of the work, we will use the more standard X → Y to represent a D-brane (or D-brane world-volume)
X that is mapped to a target-space(-time) Y .
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of Z in M locally. Here, both ξa’s, Xa’s, and Xµ’s are R-valued. The gauge field on Z is locally

given by the connection 1-form A =
∑

aAa(ξ)dξa of a U(1)-bundle on Z.

When r-many such D-branes Z are coincident, from the associated massless spectrum of

(oriented) open strings with both end-points on f(Z) one can draw the conclusion that

(1) The gauge field A =
∑

aAa(ξ)dξa on Z is enhanced to u(r)-valued.

(2) Each scalar field Xµ(ξ) on Z is also enhanced to matrix-valued.

Property (1) says that there is now a U(r)-bundle on Z. To understand Property (2), one has

two perspectives:

(A1) [coordinate tuple as point] A tuple (ξa)a (resp. (Xa;Xµ)a,µ) represents a point on the

world-volume Z of the D-brane (resp. on the target space-time M).

(A2) [local coordinates as generating set of local functions] Each local coordinate ξa of Z (resp.

Xa, Xµ of M) is a local function on Z (resp. on M) and the local coordinates ξa’s (resp.

Xa’s and Xµ’s) together form a generating set of local functions on the world-volume Z

of the D-brane (resp. on the target space-time M).

While Aspect (A1) leads one to the anticipation of a noncommutative space from a noncom-

mutatization of the target space-time M when probed by coincident D-branes, Aspect (A2) of

Grothendieck leads one to a different/dual conclusion: a noncommutative space from a noncom-

mutatization of the world-volume Z of coincident D-branes, as follows.

Denote by R〈ξa〉a (resp. R〈Xa;Xµ〉a,µ) the local function ring on the associated local co-

ordinate chart on Z (resp. on M). Then the embedding f : Z → M , locally expressed as

X = X(ξ) = (Xa(ξ);Xµ(ξ))a,µ = (ξa;Xµ(ξ)), is locally contravariantly equivalent to a ring-

homomorphism

f ♯ : R〈Xa;Xµ〉a,µ −→ R〈ξa〉a , generated by Xa 7−→ ξa , Xµ 7−→ Xµ(ξ) .

When r-many such D-branes are coincident, Xµ(ξ)’s become Mr(C)-valued. Thus, f ♯ is pro-

moted to a new local ring-homomorphism:

f̂ ♯ : R〈Xa;Xµ〉a,µ −→ Mr(C〈ξa〉a) , generated by Xa 7−→ ξa · 1 , Xµ 7−→ Xµ(ξ) .

Under Grothendieck’s contravariant local equivalence of function rings and spaces, f̂ ♯ is equiv-

alent to saying that we have now a map f̂ : Znoncommutative → M . Thus, the D-brane-related

noncommutativity in Polchinski’s treatise re-read from the viewpoint of Grothendieck implies

the following ansatz:

Polchinski-Grothendieck Ansatz [D-brane: noncommutativity]. The world-volume of

a D-brane carries a noncommutative structure locally associated to a function ring of the form

Mr(R), where r ∈ Z≥1 and Mr(R) is the r × r matrix ring over R.

Note that R can be either commutative or noncommutative, cf. Remark 5.1.9.

Cf. [L-L-S-Y: Figure 1-2].
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Polchinski-Grothendieck Ansatz with the étale topology adaptation.

In the smooth differential-geometric setting of Polchinski, the word “locally” in the ansatz means

“locally in the C∞-topology”. This can be generalized to adapt the ansatz to fit various settings:

“locally” in the analytic (resp. Zariski) topology for the holomorphic (resp. algebro-geometric)

setting. These are enough to study D-branes in a space(-time) without a background B-field.

The Azumaya structure sheaf OAz
Z that encodes the matrix-type noncommutative structure on

Z in these cases is then of the form End OZ
(E) with E the Chan-Paton module, a locally free

OZ -module of rank r on which the Azumaya OZ -algebra OAz
Z acts tautologically as a sim-

ple/fundamental (left) OAz
Z -module. This is the case studied in the previous part [L-Y1], [L-L-

S-Y], [L-Y2], [L-Y3] of the project. OAz
Z in this case corresponds to the zero-class in the Brauer

group Br (Z) of Z.

On pure mathematical ground, one can further adapt the ansatz for Z equipped with any

Grothendieck topolgy/site. On string-theoretic ground, as recalled in Sec. 0, when a background

B-field B on M is turned on, the Chan-Paton module E on Z becomes twisted and is no longer

an honest sheaf of OZ -modules on Z. The interpretation of “locally” in the ansatz in the sense

of (small) étale topology on Z becomes forced upon us. This corresponds to the case when the

Azumaya structure sheaf OAz
Z on Z represents a non-zero class in Br (Z).

We now turn to the algebro-geometric aspect of D-branes, following Polchinski-Grothendieck

Ansatz but with this étale topology adaptation on the D-brane or D-brane world-volume.

2.2 D-branes in a B-field background as morphisms from Azumaya schemes
with a twisted fundamental module.

Recall the twisting effect of B-field from string theory highlighted in Introduction. We now

study D-branes in a B-field background along the line of the adapted Polchinski-Grothendieck

Ansatz. Except the additional involvement of étale topology, twisted sheaves, and the matching

of twists, the setting/study in [L-Y1: Sec. 1] and [L-L-S-Y: Sec. 2] carries over directly to the

current situation.

D-branes in a B-field background.

Definition 2.2.1. [Azumaya scheme with a fundamental module]. An Azumaya scheme

with a fundamental module in class α is a tuple

(XAz , E) := (X, OAz
X = End OX

(E), E) ,

where X = (X,OX ) is a (Noetherian) scheme (over C), α ∈ Č2
ét (X,O∗

X ) represents a class

[α] ∈ Br (X) ⊂ H2
ét (X,O∗

X ), and E is a locally-free coherent α-twisted OX -module on X. A

commutative surrogate of (XAz, E) is a scheme XA := SpecA, where OX ⊂ A ⊂ End OX
(E) is

an inclusion sequence of commutative OX -subalgebras of End OX
(E). Let π : XA → X be the

built-in dominant finite morphism. Then E is tautologically a π∗α-twisted OXA
-module on XA,

denoted by OXA
E . We say that XAz is an Azumaya scheme of rank r if E has rank r and that

it is a nontrivial (resp. trivial) Azumaya scheme if [α] 6= 0 (resp. [α] = 0).
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Remark 2.2.2. [ the twisted sheaf OXA
E on XA ]. Explicitly, let p : U → X be an α-admissible

étale cover of X on which the α-twisted OX -module E is represented as an ordinary OU -module

and pA : UA := U ×X XA → XA be the pull-back étale cover of XA :

UA

eπ
��

pA // XA

π

��
U

p // X .

Then OU ⊂ p∗A ⊂ p∗OAz
X = End OU

(E) = OAz
U is a sequence of OU -subalgebra inclusions and

π̃ : UA → U is nothing but the commutative surrogate Spec (p∗A) → U of UAz = (U,OAz
U ).

In terms of this, E is canonically a p∗A = OUA
-module, which defines then the π∗α-twisted

OXA
-module OXA

E on XA in the above definition.

Remark 2.2.3. [ noncommutative-space viewpoint ]. It is instructive to think of OAz
X as the struc-

ture sheaf O of a noncommutative space SpaceOAz
X , SpaceOAz

U as an étale cover of SpaceOAz
X ,

E as an ordinary sheaf of (left) modules on SpaceOAz
U that defines a (left) twisted O-module

on SpaceOAz
X , and that there is a dominant morphism SpaceOAz

X → XA, under which E on

SpaceOAz
X is pushed forward to the π∗α-twisted OXA

-module OXA
E on XA.

Let Y be a (commutative, Noetherian) scheme/C and αB ∈ Č2
ét (Y,O∗

Y ) be the étale Čech

cocycle associated to a fixed B-field on Y . Then a proto-typical definition of D-branes (of

B/holomorphic type) in (Y,B) is given by morphisms ϕ : (XAz , E)→ (Y, αB), defined as follows.

Definition 2.2.4. [morphism from Azumaya scheme with fundamental module to B-

field background]. Let (XAz, E) be an Azumaya scheme with a fundamental module in the

class α ∈ Č2
ét (X,O∗

X ). Then, a morphism from (XAz, E) to (Y, αB), in notation ϕ : (XAz , E) →
(Y, αB), is a pair

(OX ⊂ Aϕ ⊂ OAz
X , fϕ : Xϕ := SpecAϕ → Y ) ,

where

· Aϕ is a commutative OX -subalgebra of OAz
X ,

· fϕ : Xϕ → Y is a morphism of (commutative) schemes,

that satisfies the following properties:

(1) (minimal property of Xϕ) there exists no OX -subalgebra OX ⊂ A′ ⊂ Aϕ such that fϕ
factors as the composition of morphisms Xϕ → SpecA′ → Y ;

(2) (matching of twists on Xϕ) let πϕ : Xϕ → X be the built-in finite dominant morphism,

then π∗
ϕα = f∗

ϕαB in Č2
ét (Xϕ,O∗

Xϕ
).

Xϕ is called the surrogate of XAz associated to ϕ. Condition (2) implies that ϕ∗E := fϕ ∗(OXϕ
E)

is an αB-twisted OY -module on Y , supported on Im (ϕ) := ϕ(XAz) := fϕ(Xϕ), where the last

is the usual scheme-theoretic image of Xϕ under fϕ.10

Given two morphisms ϕ1 : (XAz
1 , E1) → (Y, αB) and ϕ2 : (XAz

2 , E2) → (Y, αB), a morphism

ϕ1 → ϕ2 from ϕ1 to ϕ2 is a pair (h, h̃), where

10In other words, a morphism from (XAz, E) to (Y,αB) is a usual morphism ϕ : XAz → Y from the (possibly
nontrivial) Azumaya scheme XAz to Y subject to the twist-matching Condition (2) so that ϕ∗E remains a twisted
sheaf in a way that is compatible with the B-field background on Y .
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· h : X1 → X2 is an isomorphism of schemes with h∗α2 = α1, where αi is the underlying

class of Ei in Č2
ét (Xi,O∗

Xi
);

· h̃ : E1 ∼→ h∗E2 be an isomorphism of twisted sheaves on X1 that satisfies

· h̃ : Aϕ1

∼→ h∗Aϕ2 ,

· the following diagram commutes

Xϕ2

fϕ2

''NNNNNNNNNNNNN

bh
��

Xϕ1

fϕ1 // Y .

Here, we denote both of the induced isomorphisms, OAz
X1

∼→ h∗OAz
X2

and Aϕ1

∼→ h∗Aϕ2 ,

of OX1-algebras still by h̃ and ĥ : Xϕ2

∼→ Xϕ1 is the scheme-isomorphism associated to

h̃ : Aϕ1

∼→ h∗Aϕ2 .

This defines the category Morphism Azf (Y, αB) of morphisms from Azumaya schemes with

a fundamental module to (Y, αB).

Definition 2.2.5. [D-brane and Chan-Paton module]. Following the previous Definition,

ϕ(XAz) is called the image D-brane on (Y, αB) and ϕ∗E the Chan-Paton module on the image D-

brane. Similarly, for image D-brane world-volume if X is served as a (Wicked-rotated) D-brane

world-volume.

Remark 2.2.6. [ fundamental vs. solitonic D-brane ]. The setting here treats D-branes in string

theory more as a fundamental/soft extended object. For solitonic/hard D-brane in space-time,

one may require in addition that fϕ : Xϕ → Y be an embedding.

Azumaya without Azumaya and morphisms without morphisms.

Similar to the case of trivial Azumaya curves studied in [L-L-S-Y: Sec. 2], Definition 2.2.4 has

an equivalent version in terms of twisted sheaves on the related product space as follows.

Given a morphism ϕ : (XAz, E)→ (Y, αB) as in Definition 2.2.4, the minimal property of the

surrogate Xϕ of XAz associated to ϕ implies that (πϕ, fϕ) : Xϕ → X×Y embeds Xϕ in X×Y as

a subscheme Γϕ. Let pr1 : X × Y → X and pr2 : X × Y → Y be the projection maps. Then the

π∗
ϕα-twisted OXϕ -module OXϕ

E on Xϕ is pushed forward to a pr∗1α-twisted OX×Y -module Ẽ on

X × Y that is supported on Γϕ. The matching condition of twists on ϕ says that pr∗1α = pr∗2αB

on Γϕ. By construction, Ẽ on X × Y is flat over X with relative length r.

Conversely, given a (α,αB) ∈ Č2
ét (X,O∗

X )×Č2
ét (Y,O∗

Y ) as before and a coherent pr∗1α-twisted

OX×Y -module Ẽ on X × Y that satisfies the following two conditions:

(a) Ẽ is flat over X with relative length r;

(b) pr∗1α = pr∗2αB on Supp Ẽ =: Γ.
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Then, E := pr1∗Ẽ is an α-twisted OX -module on X. This defines an Azumaya scheme with

a fundamental module, i.e. (X,OAz
X := End OX

(E), E), over X in the class α. The defining

OΓ-algebra homomorphism OΓ → End OΓ
(Ẽ) realizes OΓ as an OX-algebra A that fits into

OX ⊂ A ⊂ OAz
X canonically. By construction, XA := SpecA ≃ Γ canonically and the restriction

X Γ
pr1oo pr2 // Y of the projection maps defines morphisms X XA

πoo f // Y that satisfies

both Condition (1) (minimal property) and Condition (2) (matching of twists) in Definition 2.2.4.

f thus defines a morphism ϕ : (XAz , E)→ (Y, αB) with Xϕ = XA and fϕ = f .

Let Coh product 0(Y, αB) be the category with objects coherent twisted modules Ẽ on a product

X×Y that is flat over X with relative dimension 0 and satisfies Condition (b) above. A morphism

Ẽ1 → Ẽ2 from Ẽ1 on X1 × Y to Ẽ2 on X2 × Y is a pair (h, h̃) where

· h : X1 → X2 is an isomorphism of schemes with h∗α2 = α1, where αi is the underlying

class in Č2
ét (Xi,O∗

Xi
) in question;

· denote the induced isomorphism X1 × Y
∼→ X2 × Y also by h, then h̃ : Ẽ1 ∼→ h∗Ẽ2 is an

isomorphism of α1-twisted OX1 -modules on X1.

The discussion above defines two functors

Morphism Azf (Y, αB)
F // Coh product 0(Y, αB) .
G

oo

Lemma 2.2.7. [Azumaya without Azumaya, morphisms without morphisms]. (F,G)

defines an equivalence of categories Morphism Azf (Y, αB) and Coh product 0(Y, αB).

The description in terms of morphisms from Azumaya gerbes with a fundamental

module to a target gerbe.11

Given an Azumaya algebra A = End OX
(E) over X, where E is an α-twisted locally free OX -

module defined on an α-admissible étale cover p : U → X of X, recall the O∗
X-gerbe XA over

X and the tautological fundamental module F on XA. Then E defines an atlas p̆ : U → XA of

the algebraic stack XA, with p̆∗F = E . The pull-back Ă of A to XA is canonically isomorphic

to OAz
XA

:= End OXA
(F) on XA. The latter defines the tautological trivial Azumaya structure on

XA with the tautological fundamental module F .

· [notation] We will denote the gerbe XA by X and the Azumaya algebraic stack with a

fundamental module (XA,OAz
XA

,F) by (XAz ,F) for simplicity in the following discussion.

The notion of surrogates of an Azumaya scheme generalizes directly to that of an Azumaya

algebraic stack and the notion of morphisms from a trivial Azumaya scheme with a fundamental

module generalizes directly - after the combination with the notion of morphisms of algebraic

stacks - to that from a trivial Azumaya algebraic stack with a fundamental module.

11This theme is written with the work [Sh3] of Eric Sharpe, particularly [Sh3: Sec. 6.3 D-brane “bundles”]
and [Sh3: Sec. 7 Conclusions] concerning the equivalence of “turning on the B-field” and “compactifying on a
generalized space (i.e. a gerbe or a sheaf on a gerbe)”, also in mind and, hence, goes with a hidden subtitle:
Sharpe vs. Polchinski-Grothendieck. Readers are highly recommended to read ibidem alongside. We thank him
for comments on [L-Y1] and sharing with us his insights on various subtle issues in string theory in fall 2007.
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In our case, let ϕ : (XAz , E)→ (Y, αB) be a morphism, specified by a pair

(OX ⊂ Aϕ ⊂ OAz
X := End OX

(E) , fϕ : Xϕ := SpecAϕ → Y ) .

Let Xϕ = X ×X Xϕ. This is a gerbe over Xϕ in the class π∗
ϕα, with an atlas

p̆ϕ : Uϕ := UAϕ := U ×X Xϕ −→ Xϕ

induced by pϕ := π∗
ϕp : Uϕ → Xϕ. The OX -subalgebra Aϕ of OAz

X induces an OX -subalgebra Ăϕ

of OAz
X . This defines a surrogate XĂϕ

of XAz that is precisely Xϕ. Let Y = YαB
be an OY -gerbe

over Y that represents αB and q̆ : V → Y be an atlas of Y with the following properties:

(1) the underlying q : V → Y gives an αB-admissible étale cover of Y ;

(2) Isom (q̆, q̆) := V ×Y V has a global section over V ×Y V .

(Note that Y is non-empty on each connected component of V .) Let p′ϕ : U ′
ϕ → Xϕ be an étale

refinement of pϕ of Xϕ so that:

(1) p′ϕ refines also the étale cover f∗
ϕq : Xϕ ×Y V → Xϕ of Xϕ;

(2) Isom (p̆′ϕ, p̆
′
ϕ) := U ′

ϕ ×Xϕ U ′
ϕ has a global section over U ′

ϕ ×Xϕ U ′
ϕ, where p̆′ϕ : U ′

ϕ → Xϕ is

the new atlas of Xϕ associated to the refinement U ′
ϕ → Uϕ.

Then, one has the following diagram

U ′
ϕ

p′ϕ
��

f̂ϕ // V

q

��
Xϕ

fϕ // Y ,

where f̂ϕ is the composition U ′
ϕ → Xϕ ×Y V → V .

Fix a global section of the O∗
Xϕ

-torsor U ′
ϕ ×Xϕ U ′

ϕ over U ′
ϕ ×Xϕ U ′

ϕ and a global section of

the O∗
Y -torsor V ×Y V over V ×Y V . This trivializes the O∗

•-torsors (U ′
ϕ ×Xϕ U ′

ϕ)/(U ′
ϕ ×Xϕ U ′

ϕ)

and (V ×Y V )/(V ×Y V ), the O∗
• ×O∗

∗-torsors (U ′
ϕ ×Xϕ U ′

ϕ ×Xϕ U ′
ϕ)/(U ′

ϕ ×Xϕ U ′
ϕ ×Xϕ U ′

ϕ) and

(V ×Y V ×Y V )/(V ×Y V ×Y V ), · · · , etc. and it follows that f̂ϕ lifts to a commutative diagram

of multi-arrows:12

...
f̂

(•)
ϕ //

�� �� �� ��

...

�� �� �� ��
U ′
ϕ ×Xϕ U ′

ϕ ×Xϕ U ′
ϕ

f̂
(2)
ϕ //

�� �� ��

V ×Y V ×Y V

�� �� ��
U ′
ϕ ×Xϕ U ′

ϕ

f̂
(1)
ϕ //

�� ��

V ×Y V

�� ��
U ′
ϕ

p′ϕ
��

f̂ϕ // V

q

��
Xϕ

fϕ // Y

12Here, it is understood that a commutative diagram applies only to a square in the tower with same-type
projection maps for its vertical arrows. E.g. f̂

(1)
ϕ ◦ p′ϕ,13 = q13 ◦ f̂

(2)
ϕ .
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that covers - indeed trivialized trivial torsor over - the f̂ϕ-induced tautological tower

...
//

�� �� �� ��

...

�� �� �� ��
U ′
ϕ ×Xϕ U ′

ϕ ×Xϕ U ′
ϕ

//

�� �� ��

V ×Y V ×Y V

�� �� ��
U ′
ϕ ×Xϕ U ′

ϕ
//

�� ��

V ×Y V

�� ��
U ′
ϕ

p′ϕ
��

f̂ϕ // V

q

��
Xϕ

fϕ // Y .

A standard decent-data argument implies then that:

Lemma 2.2.8. [presentation as morphism from Azumaya gerbe]. fϕ : Xϕ → Y induces

a morphism f̆ϕ : Xϕ → Y of O∗
•-gerbes via the induced scheme-morphism f̂ϕ on their atlases; f̆ϕ

is independent of the choices in the above discussion.

It follows that the morphism ϕ : (XAz , E) → (Y, αB) can be presented also as a morphism

ϕ̆ : (XAz ,F)→ Y from an Azumaya O∗
X -gerbe with a fundamental module, specified by a pair

(OX ⊂ Ăϕ ⊂ OAz
X := End OX

(F) , f̆ϕ : Xϕ → Y) .

The αB-twisted sheaf ϕ∗E on Y presented on the αB-admissible étale cover q : V → Y of Y is

given then by q̆∗f̆ϕ,∗(OXϕ
F). Define ϕ̆∗F := f̆ϕ,∗(OXϕ

F) and let Z = Imϕ ⊂ Y Then, ϕ̆∗F is

supported on a substack of Y that is a O∗
Z -gerbe over Z.

In summary:

morphisms from Azumaya schemes
with a twisted fundamental module
ϕ : (XAz , E)→ (Y, αB)

uuuuuuuuuuuuuuu

GGGGGGGGGGGG

twisted sheaf Ẽ on the product X × Y ,
flat over X of relative dimension 0

morphisms from Azumaya gerbes
with a fundamental module
ϕ̆ : (XAz ,F)→ Y

Cf. [L-L-S-Y: Figure 2-2-1].
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3 The moduli stack of morphisms.

3.1 Family of D-branes in a B-field background, twisted Hilbert polynomials,
and boundedness.

Some preparations toward the moduli problem of D-branes in a B-field background are given in

this subsection.

Family of D-branes in a B-field background.

The discussion in Sec. 2.2 applies also to a family.

Definition 3.1.1. [family of D-branes in B-field background]. Let S be a base scheme/C.

An S-family of morphisms from Azumaya schemes with a fundamental module to (Y, αB) consists

of the following data:

· a flat family XS/S of schemes over S;

· a twisted coherent locally-free OXS
-module ES on XS/S of class αS ∈ Č2

ét (XS ,O∗
XS

);

· a morphism ϕS : (XAz
S , ES) := (XS ,OAz

XS
:= End OXS

(ES), ES) −→ (Y, αB) as defined in

Definition 2.2.4.

Let (OXS
⊂ AϕS

⊂ OAz
XS

, fϕS
: XϕS

:= SpecAϕS
→ Y ) be the pair underlying ϕS and

πϕS
: XϕS

→ X be the built-in morphism.

Let h : T → S be a morphism of C-schemes, XT = h∗XS := T ×S XS with the built-in

ĥ : XT → XS that lifts h, ET = ĥ∗ES the pull-back ĥ∗αS(=: αT )-twisted coherent locally-free

OXT
-module, and (XAz

T , ET ) = (XT ,OAz
XT

:= End OXT
(ET ), ET ). Then, the pull-back h∗ϕS of ϕS

to T is the morphism ϕT : (XAz
T , ET )→ (Y, αB) with the underlying pair

(OXT
⊂ AϕT

⊂ OAz
XT

, fϕT
: XϕT

:= SpecAϕT
→ Y ) ,

where

· AϕT
is the image OXT

-subalgebra of ĥ∗AϕS
→ ĥ∗OAz

XS
= OAz

XT
,

· fϕT
is the composition of the morphisms SpecAϕT

�

� // h∗XϕS
= Spec (ĥ∗AS)

h∗fϕS // Y .

Note that the minimal property of XϕT
is automatic and the matching π∗

ϕT
αT = f∗

ϕT
αB follows

from the matching π∗
ϕS

αS = f∗
ϕS

αB on XϕS
and the built-in inclusion XϕT

→֒ h∗XϕS
. In

particular, let ιs : s→ S be a closed point of S. Then the fiber ϕs of ϕS over s is defined to be

the morphism ι∗sϕS : (XAz
s , Es)→ (Y, αB).

Remark 3.1.2. [surrogates in family]. Note that in general Xϕs , s ∈ S, do not form a flat family

of schemes over S. See [L-L-S-Y: Remark 2.1.16] for more comments.

It follows from Lemma 2.2.7 that:

16



Lemma 3.1.3. [equivalent description via Azumaya-w/o-Azumaya-’n’-morphisms-

w/o-morphisms]. An S-family of morphisms from Azumaya schemes with a fundamental

module to (Y, αB) can be described equivalently by the following data:

· a flat family XS/S of schemes over S;

· a pr∗1αS-twisted coherent OXS×Y -module ẼS on XS × Y that satisfies:

(a) ẼS on (XS×Y )/XS is flat over XS of relative dimension 0 and of fixed relative length;

(b) pr∗1αS = pr∗2αB on Supp ẼS.

Here, pr1 : XS × Y → XS and pr2 : XS × Y → Y are the projection maps.

Twisted Hilbert polynomials of a morphism.

Definition/Lemma 3.1.4. [twisted Hilbert polynomial of sheaf]. (Cf. [Yo: Sec. 2.1].)

Let (W,OW (1)) be a projective scheme with a fixed α-twisted coherent locally-free OW -module G
in the class α ∈ Čét (W,O∗

W ) with [α] ∈ Br (W ). Let F be an α-twisted coherent OW -module.

Then the function

PG,F : m 7−→ χ((F ⊗OW
G∨)(m)) , m ∈ Z ,

is a polynomial in m of degree dimF . We shall call it the G-twisted Hilbert polynomial of F on

(W,OW (1)).

As tensoring by a twisted locally free sheaf leaves the flatness property of a twisted sheaf

intact, one has the following proposition:

Proposition 3.1.5. [invariance under flat deformation]. (Cf. [H-L] and [Ha].) Let S be

a base scheme, WS → S be a projective morphism with a relative ample line bundle OWS/S(1)

on WS, GS be an αS-twisted coherent locally-free OWS
-module in the class αS ∈ Čét (WS ,O∗

WS
)

with [αS ] ∈ Br (WS). Let FS be an αS-twisted coherent OWS
-module. Denote by Gs (resp. Fs)

the restriction of GS (resp. FS) to the fiber Ws of WS/S at a closed point s ∈ S. Then, if FS

is flat over S, the twisted Hilbert polynomial PGs,Fs is locally constant as a function of s ∈ S.

When S is reduced, the converse also holds.

Lemma 3.1.3 motivates then the following definition:

Definition 3.1.6. [twisted Hilbert polynomial of morphism]. Assume that Y is projective

with a very ample line bundle OY (1). Fix an α-twisted locally free coherent OX-module G on

(X,OX (1)) in the class α with [α] ∈ Br (X). Let ϕ : (XAz , E) → (Y, αB) be a morphism in the

class α and Ẽ be the pr∗1α-twisted sheaf on X×Y that represents ϕ. (Here, pr1 : X×Y → X and

pr2 : X × Y → Y are the projection maps.) Then, the G-twisted Hilbert polynomial PG,ϕ of ϕ is

defined to be P
pr∗1G,

eE
, where OX×Y (1) is taken to be OX(1) ⊠OY (1) := pr∗1OX(1)⊗ pr∗2OY (1).

Lemma 3.1.7. [invariance in a family]. Fix an αS-twisted locally free coherent OXS
-module

GS on (XS ,OXS/S(1)) in the class αS with [αS ] ∈ Br (XS). Let ϕS : (XAz
S , ES) → (Y, αB) be

an S-family of morphisms from Azumaya schemes with a fundamental module to a projective

(Y, αB) in the class αS. Then, the Gs-twisted Hilbert polynomial PGs,ϕs of ϕs is locally constant

as a function of s ∈ S.

17



This is a consequence of Proposition 3.1.5. Thus, a twisted Hilbert polynomial of a morphism

gives the notation of combinatorial type of a morphism ϕ : (XAz, E)→ (Y, αB).

Boundedness.

Recall first the following theorem from Căldăraru [Că]:

Theorem 3.1.8. [equivalence of Mod (W,α) and Mod -A]. ([Că: Theorem 1.3.7].) Let

α ∈ Č2
ét (W,O∗

W ) with [α] ∈ Br (W ), A be an Azumaya algebra on W with [A] = [α], Mod (W,α)

be the category of α-twisted OW -modules, and Mod -A be the category of right A-modules on

W . Let G be an α-twisted coherent locally-free OW -module on W such that A ≃ End OW
(G)

(≃ G ⊗OW
G∨ canonically) as OW -algebras. Note that G is naturally a left A-module. Then, the

following pair of functors defines an equivalence of categories:

Mod (W,α) //oo Mod -A
• � // • ⊗OW

G∨
• ⊗A G �oo • .

The following proposition generalizes [L-L-S-Y: Proposition 2.3.1]:

Proposition 3.1.9. [boundedness of morphisms]. Assume that Y is projective with a very

ample line bundle OY (1). Let (XS/S,OXS/S(1)) be a flat family of projective schemes, GS
be an α-twisted locally free coherent OX -module on XS in the class αS with [αS ] ∈ Br (XS),

(XAz
S , ES)/S be a flat family of Azumaya schemes with a fundamental module over XS/S in the

class αS, and P be a polynomial in one variable. Then the set {ϕ•}• of morphisms from fibers

(XAz
s , Es) of (XAz

S , ES)/S to (Y, αB) with Gs-twisted Hilbert polynomial PGs,ϕs = P is bounded.

Proof. Let pr1 be the projection map Xs × Y → Xs for s ∈ S. Observe that for the pr∗1αs-

twisted OXs×Y -module Ẽs that represents a morphism ϕs : (XAz
s , Es) → (Y, αB), there is an

surjective homomorphism pr∗1Es → Ẽs of pr∗1αs-twisted modules. As pr∗1G∨s is locally free, one

has the following exact sequence of the underlyingOXs×Y -modules of the right End OXs×Y
(pr∗1Gs)-

modules in question:

pr∗1Es ⊗OXs×Y
pr∗1G∨s −→ Ẽs ⊗OXs×Y

pr∗1G∨s −→ 0 .

The proposition follows now from Theorem 3.1.8 and [H-L: Lemma 1.7.6], which says that a

family {Fi}i∈I of (ordinary) coherent sheaves on a projective scheme is bounded if and only if

the set of Hilbert polynomials {P (Fi)}i∈I is finite and there is a coherent sheaf F such that all

Fi admits surjective homomorphisms F → Fi.

3.2 MAz(XS/S,αS)f (Y, αB) is algebraic.

Let XS/S be a (fixed) flat family of projective schemes over S, αS ∈ Č2
ét (XS ,O∗

XS
) with [α] ∈

Br (XS), and MAz(XS/S,αS)f (Y, αB) be the moduli stack of morphisms from (non-fixed) Azumaya

schemes with a fundamental module on (fixed) fibers Xs of XS/S to a (fixed) projective (Y, αB)
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in the class αs. As a sheaf of groupoids on the category Scheme S of schemes over S with the

fppf topology,

MAz(XS/S,αS)f (Y, αB)(T ) = {ϕT : (XAz
T , ET )→ (Y, αB)} ,

for T ∈ Scheme S . Here, XT = T ×S XS with a built-in XT → XS , αT ∈ Č2
ét (XT ) the pull-back

of αS, and ET is a αT -twisted coherent locally free OXT
-module. A morphism ϕT,1 → ϕT,2 for

(ϕT,1 : (XAz
T,1, ET.1)→ (Y, αB)) , (ϕT,1 : (XAz

T,1, ET.1)→ (Y, αB)) ∈ MAz(XS/S,αS)f (Y, αB)(T )

is an isomorphism h : ET,1 ∼→ ET,2 of αT -twisted OXT
-modules that satisfies h̃(AϕT,1

) = AϕT,2

and the diagram

XϕT,1

fϕT,1 // Y .

XϕT,2

fϕT,2

77ppppppppppppp

bh

OO

commutes. Here, h̃ : OAz
XT,1

∼→ OAz
XT,2

and ĥ : XϕT,2

∼→ XϕT,1
are h-induced isomorphisms

of OXT
-algebras and XT -schemes respectively. The goal of this subsection is to prove that

MAz(XS/S,αS)f (Y, αB) is an algebraic stack, locally of finite type.

Denote by T((XS ×Y )/S, pr∗2αB)0/XS/S the moduli stack of pr∗2αB-twisted coherent OXs×Y -

modules on Xs × Y , s ∈ S, that are flat over Xs of relative dimension 0.

Recall first the following proposition of Lieblich [Lie1]: (in the special case of schemes and

with the sheaf µr of groups of r-th roots of unity replaced by O∗
•)

Proposition 3.2.1. [stack of twisted coherent sheaves algebraic]. ([Lie1: Proposition

4.1.1.1]). Let W be a scheme/C, α ∈ Č2
ét (W ), and T(W,α) be the stack of α-twisted coherent

OW -modules. Then, T(W,α) is algebraic, locally of finite type.

The proof follows from Artin’s criteria for algebraic stacks, [Art] and [Schl].

Proposition 3.2.2. [T((XS × Y )/S, pr∗2αB)0/XS/S algebraic]. T((XS × Y )/S, pr∗2αB)0/XS/S

is an algebraic stack, locally of finite type.

Proof. This follows from Proposition 3.2.1 and the observation that T((XS×Y )/S, pr∗2αB)0/XS/S

can be identified with the stack of morphisms from the fibers of the fixed XS/S to the connected

components of T(Y, αB) that parameterizes 0-dimensional αB-twisted OY -modules.

Corollary 3.2.3. [MAz(XS/S,αS)f (Y, αB) algebraic]. MAz(XS/S,αS)f (Y, αB) is an algebraic

stack, locally of finite type.

Proof. Let pr1 : XS×Y → XS and pr2 : XS×Y → Y be projective maps and U → XS×Y be an

étale cover of XS×Y that is both pr∗1αS- and pr∗2αB-admissible. Then the pair (pr∗1αS , pr∗2αB) ∈
Č2
ét (XS × Y,O∗

XS×Y )× Č2
ét (XS × Y,O∗

XS×Y ) of 2-cocycles with value in O∗
XS×Y determines the

2-cochain pr∗1αS − pr∗2αB of ideal sheaves13 of OXS×Y , and hence a 2-cochain (Zijk)ijk of closed

subscheme, presented via U . The matching condition π∗
ϕs
αs = f∗

ϕs
αB of twists on Xs,ϕs for a

ϕs : (XAz
s , Es)→ (Y, αB) is equivalent to the condition that

13In this language, we have to allow the term “ideal sheaf” to include also the nonproper one, i.e. O• itself.
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(†) the lift of the closed subscheme Supp Ẽs of XS × Y to U ×XS×Y U ×XS×Y U is contained

in the 2-cochain (Zijk)ijk of closed subschemes

on the corresponding pr∗1αs-twisted sheaf Ẽs on XS ×Y that represents ϕs. Note that each Zijk

projects to a constructible subset of XS ×Y under the étale morphism U ×XS×Y U ×XS×Y U →
XS × Y . Note also that, given a Ẽs that represents a ϕs, it follows from the projectivity of

XS/S and Y and a generalization of the construction in [H-L: Sec. 2.2 and Chap. 4] to twisted

sheaves, e.g. [H-S: Sec. 2], [Lie1: Sec. 4.1], [Yo: Sec. 2], that a small enough local chart T

of T((XS × Y )/S, pr∗2αB)0/XS/S around [Ẽs] comes from a Quot-scheme construction on a pair

of pr∗2αB-twisted locally free OXS×Y -modules on XS × Y for a local chart of [Ẽs] in T(XS ×
Y, pr∗2αB). In other words, T is realized as the subscheme of the variety of homomorphisms

F1
h→ F0 for two fixed pr∗2αB-twisted locally free OXS×Y -modules, whose coker h correspond

to objects of T(XS × Y, pr∗2αB). Condition (†) imposes now a system of determinantal-type

constructible-subset conditions on T . Thus, it selects a local chart T ′ of MAz(XS/S,αS)f (Y, αB)

around [Ẽs] as the intersection of a system of determinantal-type constructible subset of T .

Functoriality of the construction realizes MAz(XS/S,αS)f (Y, αB) then as a constructible substack

of T((XS × Y )/S, pr∗2αB)0/XS/S . The proposition now follows from Proposition 3.2.2.

The following discussion shows that the twist-matching condition is a closed condition from

the nature of the basic lemma below, which is immediate:

Lemma 3.2.4. [basic]. Let T be a discrete valuation ring with the field of fraction K, R be a

T -algebra, M be an R-module that is flat over T , and MK := M ⊗T K. Let r ∈ R such that

r ·MK = 0. Then, r ·M = 0.

Lemma 3.2.5. [matching of twists as closed condition]. Let T = SpecR, R a discrete

valuation ring, with the generic point η and the closed point 0, h : T → S, XT = h∗XS = T×SXS

with the built-in map ĥ : XT → XS, αT = ĥ∗αS ; pr1 : XT ×Y → XT and pr2 : XT × Y → Y be

the projection maps, and π : XT × Y → T be the built-in morphism. Let FT be a pr∗2αB-twisted

coherent OXT×Y -module on XT × Y such that

· FT is flat over T ,

· pr∗1αη = pr∗2αB on Supp (FT |η).

Then, pr∗1αT = pr∗2αB holds on SuppFT over T . The same statement holds also for FT being a

pr∗1αT -twisted coherent OXT×Y -module on XT × Y .

Proof. Let p : U → XT × Y be an étale cover of XT × Y that is admissible to both pr∗1αT

and pr∗2αB and p(2) : U (2) := U ×XT×Y U ×XT×Y U → XT × Y be the built-in morphism

from the fibered product. Then, the pullback family p(2),∗FT on U (2) is flat over 0 ∈ T . The

pair (pr∗1αT , pr∗2αB) on U (2), each of which takes values in O∗
U (2) , determines the principal ideal

sheaf14 pr∗1αT − pr∗2αB of OU (2) . The lemma now follows from Lemma 3.2.4.

14Here, we allow a local generator of a principal ideal sheaf to be invertible, cf. footnote 13.
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Corollary 3.2.6. [closed substack]. MAz(XS/S,αS)f (Y, αB) is a closed substack of T((XS ×
Y )/S, pr∗2αB)0/XS/S.

We remark that in general T((XS × Y )/S, pr∗2αB)0/XS/S and, hence, MAz(XS/S,αS)f (Y, αB) are

not closed in T(XS × Y, pr∗2αB).

4 The case of holomorphic D-strings.

In this section15, we consider the case when X is a nodal/prestable curve and Y is a smooth

projective variety.

4.1 The moduli stack MAz(g,r,χ)f (Y, αB; β) of morphisms from Azumaya prestable
curves to (Y, αB).

The big vs. the small moduli problem.

Recall the following lemma, which follows from the normalization sequence and Tsen’s Theorem:

(see [Lie1: Sec. 5.1.1] for more general discussions.)

Lemma 4.1.1. [Br (C) vanishes]. (Cf. [Lie1: Lemma 5.1.1.1].) Let C be a nodal curve. Then

Br (C) = 0.

Thus, for C a prestable curve and α ∈ Čét (C,O∗
C ) with [α] ∈ Br (C), [α] indeed vanishes and

· there is an α-twisted line bundle L on C and the correspondence

Mod (C,α) // Mod (C)

F � // F ⊗OC
L∨

is an equivalence of categories,

· any Azumaya algebra A over C is isomorphic to End OC
(E) for some (ordinary) locally free

OC -module E .

Despite the fact that these special features reduce the study of Azumaya schemes and modules

on prestable curve to the case as in [L-L-S-Y], the moduli stacks Mα(Y, αB) of morphisms from

Azumaya prestable curves with an α-twisted fundamental module to (Y, αB) in general are not

isomorphic for different choices of α’s. The image of such morphisms for different α are in

general distinct due to the effect of αB via the twist-matching condition. Thus, one has two

moduli problems:

(1) The big moduli problem : moduli of morphisms from Azumaya prestable curves with

a possibly twisted fundamental module to (Y, αB).

(2) The small moduli problem : moduli of morphisms from Azumaya prestable curves with

an ordinary/untwisted fundamental module to (Y, αB).

15The current section continues the previous work [L-L-S-Y] (D(2)) with Si Li and Ruifang Song, fall 2008.
C.-H.L. thank them for the participation of the biweekly Saturday D-brane working seminar, spring 2008, and
Liang Kong and S.L. for a communication/conversation on further issues while editing the current manuscript.
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While Problem (1) is a final goal, in this work we address only Problem (2), a sub-problem to

Problem (1).

The small moduli problem.16

Let MAz(g,r,χ)f (Y, αB ;β) be the moduli stack of morphisms ϕ : (CAz, E)→ (Y, αB) from (unfixed)

Azumaya prestable curves with a fundamental module to (Y, α) (cf. Definition 2.2.4) of type

(g, r, χ, |β) in the sense that:

· C has (arithmetic) genus g,

· E has rank r and Euler characteristic χ = deg E + r(1− g),

· the image curve class ϕ∗[C] = β ∈ N1(Y ).

([L-L-S-Y: Definition 2.1.11, Definition 2.1.12, Definition 2.1.13, Remark 2.1.14, and Lemma 2.2.4].)

Then

Proposition 4.1.2. [MAz(g,r,χ)f (Y, αB ;β) algebraic]. MAz(g,r,χ)f (Y, αB ;β) is an algebraic

stack, locally of finite type.

This follows from [L-L-S-Y: Sec. 3.2] and Corollary 3.2.3.

4.2 Fillability/valuation-criterion property of MAz(g,r,χ)f (Y, αB; β).

We prove in this subsection the following fillability/valuation-criterion property of the moduli

stack MAz(g,r,χ)f (Y, αB ;β). This indicates that MAz(g,r,χ)f (Y, αB ;β) is a sufficiently large moduli

space for the study of more restrictive moduli problems for curves.

Proposition 4.2.1. [valuation-criterion property]. Let S = SpecR, R a discrete valuation

ring, with the generic point η and the closed point 0 and f : η → MAz(g,r,χ)f (Y, αB ;β) be a

morphism. Then, after a base change on S if necessary, f extends to a morphism f̂ : S →
MAz(g,r,χ)f (Y, αB ;β).

(However, the extension in general is not unique.)

Proof. Let Cη be a flat family of prestable curves (of genus g) over η and Ẽη be the coherent

OCη×Y -module on Cη × Y , flat over Cη with relative dimension 0 (and of relative length r),

that corresponds to the morphism f : η → MAz(g,r,χ)f (Y, αB ;β). Let pr1 : Cη × Y → CS and

pr2 : Cη×Y → Y be the projection maps. From the projection formula, pr1,∗(F⊗OCη×Y
pr∗1L) ≃

(pr1,∗F) ⊗OCη
L for an OCη×Y -module F and a coherent locally free OCη -module L, we may

assume, after tensoring pr∗1L for an appropriate relative ample line bundle L on Cη/η, that

Eη := pr1,∗Ẽη fits into the exact sequence

O ⊕N
Cη

−→ Eη −→ 0 .

16This theme is taken/adapted from [L-L-S-Y]. Readers are referred ibidem for more details.
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for some N ≫ 0. It follows from the built-in exact sequence pr∗1Eη → Ẽη → 0 that

O ⊕N
Cη×Y −→ Ẽη −→ 0 .

Regarding this as an exact sequence of OCη×Y -modules on (Cη × Y )/Cη/S, one obtains a mor-

phism

f̃η : Cη/η −→ QuotY (O⊕N
Y , r) ,

where QuotY (O⊕N
Y , r) is the Quot-scheme that parameterizes the 0-dimensional quotient sheaves

of O⊕N
Y with length r. Rigidifying f̃η as a prestable map from a curve over η if necessary, the

properness property of the moduli stackM•(QuotY (O⊕N
Y , r), • ) of stable maps to the projective

scheme QuotY (O⊕N
Y , r) implies that, subject to a base change17 on S, f̃η extends to a morphism

f̃S : CS/S → QuotY (O⊕N
Y , r), where CS/S is a flat family of prestable curves that extends Cη/η

(after the above base change). The associated quotient sheaf ẼS on CS×Y extends Ẽη on Cη×Y

and has the property that ẼS is flat over CS of relative dimension 0 and relative length r. This

defines thus f̂ : S →MAz(g,r,χ)f (Y, β). Corollary 3.2.6 implies then that f̂ indeed has the image

in MAz(g,r,χ)f (Y, αB ;β) and, hence, is an extension of f : S − {0} → M
f
Az(g,r,χ)(Y, αB ;β), after

a base change. This proves the proposition.

5 The extension by the sheaf D of differential operators.

In this section, the second effect - namely, the deformation quantization of both the target space(-

time) and D-brane world-volumes - of the background B-field to a smooth D-brane world-volume

X along the line of the Polchinski-Grothendieck Ansatz is brought into consideration as well. We

focus on the case when the deformation quantizations that occur are modelled directly on that for

the phase space in quantum mechanics and when the study in Sec. 2.2 can be extended/applied

immediately. The special case of morphisms from X with the new structure to a target-space

Y being the total space ΩW of the cotangent bundle ΩW of a smooth variety W is considered.

An application of this gives the notion of deformation quantizations of the spectral curves that

appear in Hitchin’s integrable systems. For language simplicity, we use the analytic topology

for smooth varieties in the discussion below whenever it is more convenient.

5.1 Azumaya schemes with a fundamental module with a flat connection.

The discussion in Sec. 2.2 has a direct generalization to incorporate the sheaf D of algebras of

differential operators and D-modules.

Weyl algebras, the sheaf D of differential operators, and D-modules.

Let X be a smooth variety over C, ΘX = DerC(OX ,OX) be the sheaf of C-derivations on OX ,

and ΩX be the sheaf of Kähler differentials on X. We recall a few necessary objects and facts

for our study. Their details are referred to [Be3], [Bj], and [B-E-G-H-K-M] : 18

17For the simplicity of notation and expressions, a base change on S and the new family over S will still be
denoted by S and CS/S respectively.

18See Bernstein [Be3: §0. Introduction], Björk [Bj: Introduction], and Borel [B-E-G-H-K-M: Introduction] for
a list of people who contribute to the early development of the subject.
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(1) the Weyl algebra

An(C) := C〈x1, · · · , xn, ∂1, · · · , ∂n〉/([xi, xj ] , [∂i, ∂j ] , [∂i, xj ]− δij : 1 ≤ i, j ≤ n) ,

which is the algebra of differential operators acting on C[x1, · · · , xn] by formal differentia-

tion; here, C〈 · · · 〉 is the unital associative C-algebra generated by elements · · · indicated,

[ , ] is the commutator, δij is the Kronecker delta, and ( · · · ) is the 2-sided ideal generated

by · · · indicated;

(2) the sheaf DX of (linear algebraic) differential operators on X, which is the sheaf of unital

associative algebras that extends OX by new generators from the sheaf ΘX ;

(3) DX -modules (or directly D-modules when X is understood), which are sheaves on X on

which DX acts from the left.

Lemma 5.1.1. [An(C) simple]. An(C) is a simple algebra: the only 2-sided ideal therein is

the zero ideal (0).

Proposition 5.1.2. [O-coherent D-module]. Let M be a DX -module that is coherent as an

OX -module. Then, M is OX -locally-free. Furthermore, in this case, the action of DX on M
defines a flat connection ∇ : M → M⊗ ΩX on M by assigning ∇ξ s = ξ · s for s ∈ M and

ξ ∈ ΘX ; the converse also holds. This gives an equivalence of categories:

{
OX -coherent DX -modules

}
←→

{
coherent locally free OX -modules
with a flat connection

}
.

D as the structure sheaf of the deformation quantization of the cotangent bundle.

From the presentation of the Weyl algebra An(C), which resembles the quantization of a clas-

sical phase space with the position variable (x1, · · · , xn) and the dual momentum variable

(p1, · · · , pn) = (∂1, · · · , ∂n), and the fact that DX is locally modelled on the pull-back of

An(C) over A
n under an étale morphism to A

n, the sheaf DX of algebras with the built-in in-

clusion OX ⊂ DX can be thought of as the structure sheaf of a noncommutative space from the

quantization19 of the cotangent bundle, i.e. the total space ΩX of the sheaf ΩX , of X.

Definition 5.1.3. [canonical deformation quantization of cotangent bundle]. We will

formally denote this noncommutative space by SpaceDX =: QΩX and call it the canonical

deformation quantization of ΩX .

A special class of morphisms from or to SpaceDX can be defined contravariantly as homo-

morphisms of sheaves of C-algebras.

19The word “quantization” has received various meanings in mathematics. Here, we mean solely the one
associated to quantum mechanics. This particular quantization is also called deformation quantization.

24



Example 5.1.4. [An(C)]. The noncommutative space Space (An(C)) defines a deformation

quantization of ΩAn . Recall the presentation of An(C). The C-algebra homomorphism

f ♯
(k) : C[y1, · · · , yn] −→ An(C)

yi 7−→ xi , i = 1, . . . , k,

yj 7−→ ∂j , j = k + 1, . . . , n ,

defines a dominant morphism f(k) : Space (An(C)) → A
n, k = 0, . . . , n. The C-algebra au-

tomorphism An(C) → An(C) with xi 7→ ∂i and ∂i 7→ −xi defines the Fourier transform on

Space (An(C)). Note that, since An(C) is simple, any morphisms to Space (An(C)) is dominant

(i.e. the related C-algebra homomorphism from An(C) is injective).

α-twisted OX-coherent DX-modules and enlargements of OAz
X by DX .

Let α ∈ Čét (X,O∗
X ) and F = ({Ui}i∈I , {Fi}i∈I , {φij}i,j∈I) be an α-twisted OX -module.

Definition 5.1.5. [connection on F]. A connection ∇ on F is a set {∇i}i∈I where ∇i : Fi →
Fi ⊗OUi

ΩUi
is a connection on Fi, that satisfies φij ◦ (∇i|Uij

) = (∇j |Uij
) ◦ φij . ∇ is said to be

flat if ∇i is flat for all i ∈ I.

Note that the existence of an α-twisted OX -module with a connection imposes a condition on

α that α has a presentation (αijk)ijk with dα := (dαijk)ijk = (0)ijk; i.e. αijk ∈ C
∗ for all i, j, k.

As the proof of Proposition 5.1.2 is local, it generalizes to α-twisted OX -coherent DX-

modules :

Proposition 5.1.6. [α-twisted O-coherent D-module]. Let M be a DX-module that is α-

twisted OX -coherent. Then, M is an α-twisted OX -locally-free. Furthermore, in this case, the

action of DX on M defines a flat connection ∇ :M→M⊗ΩX on M by assigning ∇ξ s = ξ · s
for s ∈ M and ξ ∈ ΘX ; the converse also holds. This gives an equivalence of categories:

{
α-twisted OX -coherent DX-modules

}
←→

{
α-twisted coherent locally free OX -
modules with a flat connection

}
.

Let E be an α-twisted OX -coherent DX-module. Then the DX-module structure on E induces

a natural DX -module structure on the (ordinary) OX -module OAz
X := End OX

(E). We will denote

both the connection on E and on OAz
X by ∇. As both OAz

X := End OX
(E) and DX act now on E

and DX acts also on OAz
X , one can define a sheaf OAz,D

X of unital associative algebras generated

by OAz
X and DX as follows:

· Over a (Zariski) open subset U of X, OAz,D
X (U) is the unital associative C-algebra generated

by OAz
X (U) ∪ DX(U) subject to the following rules :

(1) for φ1, φ2 ∈ OAz
X (U), φ1 · φ2 ∈ OAz,D

X (U) coincides with the existing φ1φ2 ∈ OAz
X (U) ;

(2) for η1, η2 ∈ DX(U), η1 · η2 ∈ OAz,D
X (U) coincides with the existing η1η2 ∈ DX(U) ;

(3) (Leibniz rule) for φ ∈ OAz
X (U) and ξ ∈ ΘX(U) ⊂ DX(U),

ξ · φ = (∇ξ φ) + φ · ξ .
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In notation, OAz,D
X := C〈OAz

X ,DX〉∇.

Definition 5.1.7. [Azumaya quantum scheme with fundamental module]. The non-

commutative space

(XAz,D, E∇) := (X, OAz,D
X = C〈End OX

(E),DX 〉∇, (E ,∇))

will be called an Azumaya quantum scheme with a fundamental module in the class α.

Caution that OX ⊂ OAz,D
X in general does not lie in the center of OAz,D

X .

Remark 5.1.8. [ E∇ as a module over Space (OAz,D
X ) ]. The full notation for XAz,D in Defini-

tion 5.1.7 is meant to make two things manifest:

(1) There is a built-in diagram of dominant morphisms of X-spaces :

XAz,D := SpaceOAz,D
X

uujjjjjjjjjjj

**UUUUUUUUUUUU

��

XAz := SpaceOAz
X

**UUUUUUUUUUUUUUU QΩX := SpaceDX .

tthhhhhhhhhhhhhhhhh

X

SpaceOAz,D
X is the major space one should focus on. The other three spaces - SpaceOAz

X ,

SpaceDX , and X - should be treated as auxiliary spaces that are built into the construction

to encode a special treatment that takes care of the issue of localizations of noncommutative

rings in the current situation; cf. the next item.

(2) Despite the fact that OX is in general not in the center of OAz,D
X , there is a notion of

localization and open sets on SpaceOAz,D induced by those on X. I.e. SpaceOAz,D
X has a

built-in topology induced from the (Zariski) topology of X. Thus, one can still have the

notion of gluing systems of morphisms and sheaves with respect to this topology.

In particular, E∇ is a sheaf of OAz,D
X -modules supported on the whole SpaceOAz,D with this

topology.

Remark 5.1.9. [ Azumaya algebra over DX ]. Note that OAz,D
X can also be thought of as an

Azumaya algebra over DX in the sense that it is a sheaf of algebras on X, locally modelled on

the matrix ring Mr(DU ) over DU for U an affine étale-open subset of X.

Remark 5.1.10. [ partially deformation-quantized target ]. From the fact that Weyl algebras are

simple, it is anticipated that a morphism to a totally deformation-quantized space Y = ΩW is a

dominant morphism. In general, one may take Y to be a partial deformation quantization of a

space along a foliation. E.g. a deformation quantization of ΩW/B along the fibers of a fibration

W/B. For compact Y , one may consider the deformation quantization along torus fibers of a

space fibered by even-dimensional tori.20 (Cf. Example 5.1.11.)

20Though we do not touch this here, readers should be aware that this is discussed in numerous literatures.
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Higgsing and un-Higgsing of D-branes via deformations of morphisms.

Same as the situation studied in [L-Y1], [L-L-S-Y], [L-Y2], and [L-Y3], the Higgsing and un-

Higgsing of D-branes can occur when we deform morphisms in the current situation.

Example 5.1.11. [Higgsing/un-Higgsing of D-brane]. Let (XAz,D, E∇) be the affine Azu-

maya quantum scheme with a fundamental module associated to the ring R := C〈M2(C[z]), ∂z〉
(with the implicit relation [∂z , z] = 1 and the identification of C[z] with the center of M2(C[z]))

with the R-module N := C[z] ⊕ C[z], on which M2(C[z]) acts by multiplication and ∂z acts by

formal differentiation, and Y be the partially deformation-quantized space QλΩA2/A1 associated

to the ring Sλ := C〈u, v, w〉/([v,w], [u, v], [u, w] − λ), where λ ∈ C. Note21 that the action of

∂z on N induces an action of ∂z on M2(C[z]) by the entry-wise formal differentiation and the

A
2/A1 corresponds to C[v] →֒ C[v,w]. Consider the following special class of morphisms:

X
ϕ(A,B) // Y

R
ϕ♯

(A,B)oo Sλ

λ∂z + A �oo u

B �oo v

z �oo w

, A, B ∈ M2(C[z]) ,

subject to [λ∂z +A,B] = 0 . (The other two constraints, [B, z] = 0 and [λ∂z +A, z]− λ = 0 ,

are automatic.) Let

A =

[
a1 a2
a3 a4

]
and B =

[
b1 b2
b3 b4

]
,

where ai, bj ∈ C[z] and assume that λ 6= 0. Then, the associated system λ∂zB + [A,B] = 0 of

homogeneous linear ordinary differential equations on B has a solution if and only if A satisfies

(a1 − a4)2 + 4a2a3 = 0 .

Under this condition on A, the system has four fundamental solutions:

B1 =

[
1 + λ−2a2a3z

2 λ−1a2z − 1
2λ

−2(a1 − a4)a2z
2

−λ−1a3z − 1
2λ

−2(a1 − a4)a3z
2 −λ−2a2a3z

2

]
,

B2 =

[
λ−1a3z − 1

2λ
−2(a1 − a4)a3z

2 1− λ−1(a1 − a4)z − λ−2a2a3z
2

−λ−2a23z
2 −λ−1a3z + 1

2λ
−2(a1 − a4)a3z

2

]
,

B3 =

[
−λ−1a2z − 1

2λ
−2(a1 − a4)a2z

2 −λ−2a22z
2

1 + λ−1(a1 − a4)z − λ−2a2a3z
2 λ−1a2z + 1

2λ
−2(a1 − a4)a2z

2

]
,

B4 =

[
−λ−2a2a3z

2 −λ−1a2z + 1
2λ

−2(a1 − a4)a2z
2

λ−1a3z + 1
2λ

−2(a1 − a4)a3z
2 1 + λ−2a2a3z

2

]
.

21Also, we take the convention that ∂z · m means the product in C〈M2(C[z]), ∂z〉 and ∂zm means entry-wise
formal differentiation of m, for m ∈ M2(C[z]).
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Denote this solution space by C
4
A with coordinates (b̂1, b̂2, b̂3, b̂4) and the correspondence

(b̂1, b̂2, b̂3, b̂4) ←→ b̂1B1 + b̂2B2 + b̂3B3 + b̂4B4 =: B(b̂1,b̂2,b̂3,b̂4)
.

Then,

· the degree-0 term B(0) of B = B(b̂1,b̂2,b̂3,b̂4)
(in z-powers) is given by

[
b̂1 b̂2

b̂3 b̂4

]
,

· the characteristic polynomial of B is identical to that of B(0).

It follows that the image Imϕ(A,B) of ϕ(A,B) is a (complex-)codimension-1 sub-quantum scheme

in Y whose associated ideal in Sλ contains the ideal

(
v2 − trB(0) v + detB(0)

)
.

Let µ− and µ+ be the eigen-values of B(0).

Case (a) : ν− 6= ν+. In this case, the above ideal ((v − ν−)(v − ν+)) coincides with Kerϕ♯
(A,B)

and, hence, describes precisely Imϕ(A,B) ⊂ Y . Since ϕ♯
(A,B)(v) = B, let N− := Ker (B − ν−) ⊂

N . This is a rank-1 C[z]-submodule of C[z] ⊕ C[z] that is invariant also under ϕ♯
(A,B)(Sλ).

This gives N− a Sλ/(v − ν−)-module structure that has rank-1 as C[w]-module. Similarly,

N+ := Ker (B − ν+) ⊂ N is invariant under ϕ♯
(A,B)(Sλ) and has a ϕ♯

(A,B)-induced Sλ/(v − ν+)-

module structure that is of rank-1 as C[w]-module. Let

Z := Imϕ(A,B) = Space (Sλ/((v − ν−)(v − ν+)))

= Space (Sλ/(v − ν−)) ∪ Space (Sλ/(v − ν+)) =: Z− ∪ Z+

be the two connected components of the quantum subscheme Imϕ(A,B) ⊂ Y and denote the

OZ−
-modules associated to N− and N+ by (Sλ

N−)∼ and (Sλ
N+)∼ respectively. Then

ϕ(A,B),∗E = (Sλ
N−)∼ ⊕ (Sλ

N+)∼ with (Sλ
N−)∼ supported on Z− and (Sλ

N+)∼ on Z+ .

Case (b) : ν− = ν+ = ν. In this case, Kerϕ♯
(A,B) can be either (v − ν) or ((v − ν)2) and both

situations happen.

· When Kerϕ♯
(A,B) = (v − ν), N = C[z] ⊕ C[z] has a ϕ♯

(A,B)-induced Sλ/(v − ν)-module

structure and ϕ(A,B),∗E has support Imϕ(A,B) = Space (Sλ/(v − ν)) ⊂ Y .

· When Kerϕ♯
(A,B) = ((v − ν)2), N = C[z] ⊕ C[z] has a ϕ♯

(A,B)-induced Sλ/((v − ν)2)-

module structure and ϕ(A,B),∗E has support Z := Imϕ(A,B) = Space (Sλ/((v − ν)2)) ⊂ Y .

It contains an OZ -submodule (Sλ
N0)∼, associated to N0 := Ker (v − ν) ⊂ N , that is

supported on Z0 := Space (Sλ/(v − ν)) ⊂ Z. In other words, in the current situation,

ϕ(A,B),∗E not only is of rank-2 as a C[w]-module but also has a built-in ϕ(A,B)-induced

filtration (Sλ
N0)

∼ ⊂ ϕ(A,B),∗E .
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Thus, by varying (A,B) in the solution space of λ∂zB+[A,B] = 0 so that the eigen-values of B(0)

change from being distinct to being identical and vice versa, one realizes the Higgsing and un-

Higgsing phenomena of D-branes in superstring theory for the current situation as deformations

of morphisms from Azumaya quantum schemes to the open-string quantum target-space Y :

deformations of morphisms ϕ
from Azumaya deformation-quantized
schemes with a fundamental module
to a deformation-quantized target Y

+3
Higgsing and un-Higgsing
of Chan-Paton modules
on (image) D-branes on Y

Cf. [L-L-S-Y: Figure 2-1-1] for a similar phenomenon.

This concludes the example.

5.2 Deformation quantizations of spectral covers in a cotangent bundle.

We employ the notions from the previous subsection to discuss the notion of “quantum spectral

covers”22 from the viewpoint of Azumaya geometry and the Polchinski-Grothendieck Ansatz. A

special case of this gives the notion of deformation quantizations of spectral curves in Hitchin’s

integrable systems.

A 1-parameter family of deformation quantizations of the cotangent bundle ΩW .

Let W be a smooth variety of dimension n over C, ΩW be its sheaf of Kähler differentials,

and ΩW be the total space Spec (Sym• Ω∨
W ) = Spec (Sym• ΘW ) of ΩW . One may construct a

1-parameter family of deformation quantizations of ΩW as follows.

Let p ∈ W be a geometric point on W . Then there exists a Zariski open neighborhood

U of p in W such that ΩU is a free OU -module and that there admits an étale morphism

π : U → A
n = Spec (C[w1, · · · , wn]). Denote the lifting of wi and ∂wi

on A
n to U under

π also by wi and ∂wi
respectively, for i = 1, . . . , n. Then as both U and π are smooth,

DU as an OW (U)-algebra given by C〈OW (U), ∂w1 , · · · , ∂wn〉. This is abstractly the algebra

C〈OW (U), p1, · · · , pn 〉/I with I the two-sided ideal ([pi, pj ], [pi, wj ]− δij : 1 ≤ i, j ≤ n). Here,

we think of pi as a local section of the tangent sheaf TW of W without a pre-assigned action

on OW . Note that, as OW (U) is integral over an open subset of An under π and both U and

π are smooth, the set of equations [pi, wj ] = δij , 1 ≤ i, j ≤ n, determine the commutator

[pi, f ] ∈ OW (U), which is ∂wi
f , for all f ∈ OW (U) and i = 1, . . . , n .

22The current subsection is written with the particular works [D-H-S-V] and [D-H-S] of Dijkgraaf, Hollands,
Su lkowski, and Vafa in mind. We thank Cumrun Vafa for the illuminations of [D-H-S-V]. These works involve
several mathematical themes. Here we focus on a particular one: the notion of quantum spectral curves from the
viewpoint of D-branes. For that reason, it is not very appropriate to attach a sub-title like Dijkgraaf-Holland-
Su lkowski-Vafa vs. Polchinski-Grothendieck to this subsection though this is indeed what this subsection is meant
to be for the relevant part of [D-H-S-V] and [D-H-S]. Readers are referred ibidem and references therein for related
stringy contents/pictures.
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Notation 5.2.1. [unital associative algebra generated by module]. (1) Let S be a

commutative ring and R be a commutative S-algebra with a built-in S ⊂ R, and M be a

finitely generated R-module. Denote by S〈M〉 the unital associative S-algebra generated by

elements of M with the requirement that S be in the center, and by S〈R,M〉 be the unital

associative S-algebra generated by R∪S〈M〉 with a built-in S-algebra inclusions, R ⊂ S〈R,M〉
and S〈M〉 ⊂ S〈R,M〉. Note that S is in the center of S〈R,M〉 while R in general is not.

(2) Let Z be a scheme over a base C-scheme B and F be a coherent OZ -module. Denote by

OB〈OZ , F〉 the sheaf of unital associative OZ -algebras from the enlargement of OZ by elements

of F with the requirement that the built-in OB ⊂ OB〈OZ , F〉 be in the center. Over an

affine open subset U of Z that sits over an affine open subset V of B, OB〈OZ , F〉(U) is the

unital associative algebra OB(V )〈OZ(U),F(U)〉. Note that the image of the built-in inclusion

OZ ⊂ OB〈OZ , F〉 in general does not lie in the center.

(3) Let ΘZ/B be the sheaf of OB-derivations on Z/B and TZ/B be the relative tangent sheaf

of Z/B. They are canonically isomorphic OZ -modules. However, for convenience, we take the

convention that OB〈OZ , ΘZ/B〉 is the sheaf DZ/B of algebras of differential operators on OZ/B

(i.e. the ΘZ/B-action on OZ via derivations is already included into its construction by setting

[pi, f ] = ∂wi
f) and that OB〈OZ , TZ/B〉 is constructed as Item (2) above, with TZ/B treated only

as an abstract coherent OZ -module.

Let T(A1×W )/A1 be the relative tangent sheaf of (A1 ×W )/A1. Consider the OA1×W -algebra

OA1〈OA1×W , T(A1×W )/A1〉. Here, we take A
1 as Spec (C[λ]). Let I be the two-sided ideal sheaf

of OA1〈OA1×W , T(A1×W )/A1〉 whose value over A
1 × U , for U being an affine open subset of W

over which TW is trivialized by (p1, · · · , pn) corresponding to (∂w1 , · · · , ∂wn), is given by

([pi, pj], [pi, wj ]− λ : 1 ≤ i, j ≤ n) .

Note that, by definition, [λ, pi] = 0, for i = 1, . . . , n, and that [pi, f ] = λ∂wi
f , where f ∈

OA1×W (A1 × U), in the quotient OA1×W -algebra OA1〈OA1×W , T(A1×W )/A1〉/I. This gives a

noncommutative space

QA1ΩW := Space (OA1〈OA1×W , T(A1×W )/A1〉/I)

over A
1. It has the following properties:

(1) The fiber QλΩW over λ 6= 0 is isomorphic to the noncommutative space SpaceDW .

(2) The fiber over λ = 0 is the commutative scheme ΩW .

(3) There is no local section of OA1〈OA1×W , T(A1×W )/A1〉 that is annihilated, either from the

left or from the right, by a non-zero element of C[λ]. Thus, we may think of QA1ΩW /A1

as a flat family of generically noncommutative spaces over A
1, parameterized by λ.

Definition 5.2.2. [canonical family of deformation quantization]. We shall call the

noncommutative space QA1ΩW over A
1 the canonical family of deformation quantizations of

ΩW .
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Spectral covers via fibered morphisms from Azumaya schemes.23, 24

Let W be as above and E and N be coherent locally free OW -modules. Then one has the

canonical isomorphisms

Hom OW
(E , E ⊗ N ) ≃ Γ(E∨ ⊗ E ⊗N ) ≃ Hom OW

(N∨, End OW
(E)) .

Here, ( • )∨ denotes the dual OW -module of ( • ).

Definition 5.2.3. [commutativity-admissible φ : E → E ⊗ N ]. An OW -module homomor-

phism φ : E → E ⊗ N is said to be commutativity-admissible if its corresponding φ̂ : N∨ →
End OW

(E) has image contained in a commutative OW -subalgebra of End OW
(E).

A commutativity-admissible φ : E → E ⊗N induces an OW -algebra homomorphism

ϕ♯ : Sym• (N∨) −→ End OW
(E) ,

which defines a morphism ϕ from the Azumaya scheme with a fundamental module (WAz, E) :=

(W,OAz
W := End OW

(E), E) to the total space N= Spec (Sym• (N∨)) of the OW -module N . Note

that, in this case, both WAz and N are spaces over W and ϕ : (WAz, E) → N is a morphism

between spaces over W . Let π : N → W be the built-in morphism. Then, by construction,

π∗ϕ∗E ≃ E canonically.

Lemma 5.2.4. [φ vs. ϕ]. Given coherent locally free OW -modules E and N , there is a canonical

one-to-one correspondence





commutativity-admissible
OW -module homomorphisms
φ : E → E ⊗N



 ←→

{
morphisms ϕ : (WAz, E)→ N

as spaces over W

}
.

Lemma 5.2.5. [generalized spectral cover from morphisms from Azumaya scheme].

When N is a line bundle L on W , any φ : E → E⊗L is commutativity-admissible and the image

scheme Imϕ ⊂ N of the corresponding ϕ lies in the spectral cover Σ(E,φ) in N associated to the

pair (E , φ). If furthermore Σ(E,φ) is smooth, then Imϕ = Σ(E,φ).

23Readers are referred to [Hi1], [B-N-R], [Ox], [Ni], and [Ma], [Don], [Do-M] for the classical study of Higgs pairs
and their associated spectral curves/covers. The current theme continues the discussion of the theme “Comparison
with the spectral cover construction and the Hitchin system” in [L-Y1: Sec. 4.1]. Here, we see one more example
of the ubiquity of Azumaya geometry in mathematics and its recovering of D-brane phenomena. As illustrated
in the precedent D(1) - D(4), Azumaya geometry is a very fundamental nature and geometry a D-brane world-
volume carries. It gives the common origin of many of the D-brany phenomena. Furthermore, like what happens
here, such a structure is actually hidden in many mathematical problems as well. Despite the introduction of
the notion of “maximally central algebra” by Prof. Goro Azumaya in [Az] in year 1951, which later came to
be called “Azumaya algebra”, and the study of it from the viewpoint of algebras and representation theory, the
investigation of it as a geometric object started only much later, cf. related reference in [L-Y1], [L-Y2], and [L-Y3].
The full richness of Azumaya geometry remains to be explored.

24From C.-H.L. : The setting here rewrites and generalizes some discussions with Mihnea Popa on the connection
between the D-brane Higgsing/un-Higgsing phenomenon and spectral covers in spring 2002 ([Liu] and [Popa]).
During years 2001 - 2005, Mihnea was giving lectures on a wide span of topics in algebraic geometry: from
Grothendieck’s foundation to geometric topics at the frontier, while Shiraz Minwalla was giving lectures on an
equally wide span of topics in theoretical high energy physics: from quantum field theory and supersymmetry
foundation to stringy topics at the frontier. Their systematic lectures in these four years were filled with insight
and enthusiasm and played a definite role for the revival of the project in early 2007.

31



This is consistent with the fact that, in the case of the Lemma, the morphism ϕ carries the full

information of the pair (E , φ) while the spectral cover Σ(E,φ) may not. When N is a general

coherent locally-free OW -module, then ϕ can be thought of interchangeably as a generalized

Higgs pair (E , φ) for N with φ commutativity-admissible.

Remark 5.2.6. [general φ : E → E ⊗ N ]. Let E and N be as above. Let OW 〈N∨〉 be the

unital associative OW -algebra generated by N∨ with the requirement that OW be in the center.

Its associative “space” Space (OW 〈N∨〉) can be thought of as a noncommutative-affine-space

bundle over W . A general OW -module homomorphism φ : E → E ⊗ N corresponds then to an

OW -algebra homomorphism ϕ♯ : OW 〈N∨〉 → End OW
(E). This can be thought of as defining a

morphism ϕ : (WAz, E)→ Space (OW 〈N∨〉) over W .

Deformation quantization of spectral covers via morphisms from Azumaya

schemes with a fundamental module with a flat connection.

Let W be a smooth variety over C, E andN be coherent locally freeOW -modules, φ : E → E⊗ΩW

be a commutativity-admissible OW -module homomorphism, and ϕ : (WAz, E) → ΩW be the

associated morphism between spaces over W . Let EA1 be the locally-free OA1×W -module on

A
1 ×W from the pull-back of E under the projection map A

1 ×W → W . Here we take A
1 as

Spec (C[λ]) and EA1 as a constant family of OW -modules over A
1. Denote Spec (C[λ, λ−1]) by

A
1−{0} and the restriction of EA1 to over A

1−{0} by EA1−{0}. For convenience, we will denote

a number in C also by λ.

Definition 5.2.7. [λ-connection]. ([Ari: Definition 2.1 and Example 2.2].) For λ ∈ C, a

λ-connection on E is a C-linear map ∇ : E → E ⊗ ΩW which satisfies the λ-Leibniz rule:

∇(fs) = λ · s⊗ df + f∇s

for any f ∈ OW , s ∈ E . Note that a 0-connection on E is an OW -module homomorphism and,

for λ 6= 0, ∇ is a λ-connection if and only if λ−1∇ is an (ordinary) connection. A λ-connection

∇ on E is said to be flat if the connection λ−1∇ is flat.

The notion of λ-connection was introduced by Deligne; it gives an interpolation between a Higgs

field and a connection on E , cf. [Sim].

Definition 5.2.8. [λ-connection deformation of φ]. An OA1−{0}-module homomorphism

∇ : EA1−{0} −→ EA1−{0} ⊗ Ω((A1−{0})×W )/(A1−{0})

that satisfies :

(1) on each Eλ := EA1 |λ over a closed point, parameterized by λ, of A1 − {0},
∇λ := ∇|λ : Eλ → Eλ ⊗ ΩW is a λ-connection on Eλ ,

(2) ∇|λ=0 = φ ,

is called a λ-connection deformation of φ. If furthermore each ∇λ is flat, then ∇ is called a flat

λ-connection deformation of φ.
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Let XA1 = Space (D(A1×W )/A1), (EA1 , ∇ on EA1−{0}) be as above, and YA1 = QA1ΩW be the

canonical family of deformation quantizations of ΩW . Let

XA1

ϕ
A1 // YA1

OA1〈OA1×W , Θ(A1×W )/A1〉
ϕ♯

A1oo R
λ �oo λ

wi
�oo wi

λ∂wi

�oo pi .

Here we adopt the notation in the construction of QA1ΩW . Then, ϕA1 is a morphism of spaces

over A
1 with the following the properties:

· ϕ0 := ϕA1 |λ=0 is the composition (WAz,D, E∇′

) −→ (WAz, E)
ϕ−→ ΩW ; here, as λ−1∇

does not extend over λ = 0, we take ∇′ to be an arbitrary auxiliary flat connection on

E to render E a DW -module and let (WAz,D, E∇′

) −→ (WAz, E) be the built-in dominant

morphism;

· ϕλ := ϕA1 |λ : (WAz,D, Eλ−1∇λ) −→ QλΩW , for λ ∈ A
1 − {0} .

Note that ϕ0 ∗E = ϕ∗E is a OΩW
-module flat over W with relative dimension 0 and relative

length = rank E . Supp (E) = Imϕ, which is identical to the spectral curves Σ(E,φ) when W

is a smooth curve C and Σ(E,φ) is smooth. On the other hand, for λ 6= 0, ϕλ∗E has support

Imϕλ, which is the whole QλΩW . The characteristic variety for the OQλΩW
-module ϕλ∗E is the

zero-section of ΩW/W .

Remark 5.2.9. [existence/interpretation of quantum spectral covers]. Due to the fact that the

Weyl algebras are simple algebras, the spectral curve Σ(E,φ) in ΩC in general do not have a direct

deformation quantization into QλΩC by the ideal sheaf of Σ(E,φ) in OΩC
since this will only give

OQλΩC
, which corresponds to the empty subspace of QλΩC . The setting above replaces the

notion of quantum spectral curves by quantum deformation ϕλ of the morphism ϕ associated

to the Higgs/spectral pair (E , φ).
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[Il] L. Illusie, Complexe cotangent et déformations I, Lect. Notes Math. 239, Springer, 1971.

[Jo] C.V. Johnson, D-branes, Cambridge Univ. Press, 2003.

[Ka] A. Kapustin, D-branes in a topologically nontrivial B-field, Adv. Theor. Math. Phys. 4 (2000), pp. 127 -
154. (arXiv:hep-th/9909089)

[K-M] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracks Math. 134, Cam-
bridge Univ. Press, 1998.

[K-O] A. Kapustin and D. Orlov, Vertex algebras, mirror symmetry, and D-branes: The case of complex
tori, Commun. Math. Phys. 233 (2003), pp. 79 - 136. (arXiv:hep-th/0010293)

[K-S] S. Katz and E. Sharpe, D-branes, open string vertex operators, and Ext groups, Adv. Theor. Math.

Phys. 6 (2002), pp. 979 - 1030. (arXiv:hep-th/0208104)

[Lie1] M. Lieblich, Moduli of twisted sheaves and generalized Azumaya algebras, Ph.D thesis at MIT, June
2004.

[Lie2] ——–, Moduli of twisted sheaves, Duke Math. J. 138 (2007), pp. 23 - 118. (arXiv:math.AG/0411337)

[Liu] C.-H. Liu, notes communicated to Mihnea Popa, spring 2002.

35

http://arxiv.org/abs/0810.4157
http://arxiv.org/abs/0709.4446
http://arxiv.org/abs/hep-th/0309270
http://arxiv.org/abs/alg-geom/9507017
http://arxiv.org/abs/math/0306213
http://arxiv.org/abs/alg-geom/9608011
http://arxiv.org/abs/hep-th/9907189
http://arxiv.org/abs/math/9907034
http://arxiv.org/abs/hep-th/0005247
http://arxiv.org/abs/math/0411094
http://arxiv.org/abs/hep-th/9611233
http://arxiv.org/abs/hep-th/9909089
http://arxiv.org/abs/hep-th/0010293
http://arxiv.org/abs/hep-th/0208104
http://arxiv.org/abs/math/0411337
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