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Abstract

In this sequel to [L-Y1], [L-L-S-Y], and [L-Y2] (respectively arXiv:0709.1515 [math.AG],
arXiv:0809.2121 [math.AG], and arXiv:0901.0342 [math.AG]), we study a D-brane probe on
a conifold from the viewpoint of the Azumaya structure on D-branes and toric geometry.
The details of how deformations and resolutions of the standard toric conifold Y can be
obtained via morphisms from Azumaya points are given. This should be compared with
the quantum-field-theoretic/D-brany picture of deformations and resolutions of a conifold
via a D-brane probe sitting at the conifold singularity in the work of Klebanov and Witten
[K-W] (arXiv:hep-th/9807080) and Klebanov and Strasser [K-S] (arXiv:hep-th/0007191). A
comparison with resolutions via noncommutative desingularizations is given in the end.
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In memory of a young string theorist Ti-Ming Chiang,

whose path I crossed accidentally and so briefly.†

†From C.-H.L. During the years I was attending Prof. Candelas’s group meetings, I learned more about Calabi-Yau
manifolds and mirror symmetry and got very fascinated by the works from Brian Greene’s group. Because of this, I felt
particularly lucky knowing later that I was going to meet one of his students, Ti-Ming, - a young string theorist with a PhD
from Cornell at his very early 20’s - and perhaps to cooperate with him. Unfortunately that anticipated cooperation never
happened. Ti-Ming had become unwell just before I resettled. Except the visits to him at the hospital and some chats when
he showed up in the office, I didn’t really get the opportunity to interact with him intellectually. Further afterwards I was
informed of Ti-Ming’s passing away. Like a shooting star he reveals his shining so briefly and then disappears. The current
work is the last piece of Part 1 of the D-brane project. It is grouped with the earlier D(1), D(2), D(3) under the hidden
collective title: “Azumaya structure on D-branes and its tests”. Here we address in particular a conifold from the viewpoint
of a D-brane probe with an Azumaya structure. This is a theme Ti-Ming may have felt interested in as well, should he still
work on string theory, since conifolds have play a role in understanding the duality web of Calabi-Yau threefolds - a theme
Ti-Ming once worked on - and D-brane resolution of singularities is a theme Brian Greene’s group once pursued vigorously.
We thus dedicate this work to the memory of Ti-Ming.



Deformations and Resolutions of a Conifold via a D-Brane Probe

0. Introduction and outline.

Conifolds, i.e. Calabi-Yau threefolds with ordinary double-points, have been playing special

roles at various stages of string theory.1 In this sequel to [L-Y1], [L-L-S-Y], and [L-Y2], we

study a D-brane probe on a conifold from the viewpoint of Azumaya structure on D-branes

and toric geometry. This should be compared with the quantum-field-theoretic/D-brany picture

of deformations and resolutions of a conifold in the work of Klebanov and Strasser [K-S] and

Klebanov and Witten [K-W].

Effective-space-time-filling D3-brane at a conifold singularity.

In [K-W], Klebanov and Witten studied the d = 4, N = 1 superconformal field theory (SCFT)2

on the D3-brane world-volume X (≃ R
4 topologically) that is embedded in the product space-

time M
3+1 × Y as M3+1 × {0},3 and its supergravity dual - a compactification of d = 10, type-

IIB supergravity theory on AdS5 × (S3 × S2) - along the line of the AdS/CFT correspondence

of Maldacena [Ma]. Here M
3+1 is the d = 3 + 1 Minkowski space-time, Y is the conifold

{z1z2 − z3z4 = 0} ⊂ C
4 (with coordinates (z1, z2, z3, z4)), 0 is the conifold singularity on Y , and

AdS5 is the d = 4 + 1 anti-de Sitter space-time.

In the simplest case when there is a single D3-brane sitting at the conifold point of Y ,

the classical moduli space of the supersymmetric vacua of the associated U(1) super-Yang-Mills

theory coupled with matter on the D3-brane world-volume comes from the D-term of the vector

multiplet and the coefficient ζ ∈ R of the Fayet-Iliopoulos term in the Lagrangian.4 By varying

ζ, one realizes the two small resolutions, Y+ and Y−, of Y as the classical moduli space Yζ of

the above d = 4 SCFT.5 A flop X+
//___ Y− happens when Yζ crosses over ζ = 0.

To describe the physics for N -many parallel D3-branes sitting at the conifold singularity,

Klebanov and Witten proposed to enlarge the gauge group for the super-Yang-Mills theory on

the common world-volume of the stacked D3-brane to U(N) × U(N) (rather than the naive

U(N)) and introduce a superpotential W for the chiral multiplets. The classical moduli space of

the theory comes from a system with equations of the type above (i.e. D-term equations) and

equations from the superpotential term W (i.e. F-term equations). In particular, the N -fold

symmetric product SymnY of Y can be realized as the classical moduli space of the d = 4 SCFT

on the D3-brane world-volume with ζ = 0.

In [K-S], Klebanov-Strassler studied further d = 4, N = 1 supersymmetric quantum field

theory (SQFT) on the D3-brane world-volume that arises from a D3-brane configuration with

both N -many above full/free D3-branes and M -many new fractional/trapped D3-branes6 sitting

1Readers are referred to, for example, [C-dlO] (1989); [Stro], [G-M-S], [C-G-G-K] (1995); [G-V] (1998); [Be],
[C-F-I-K-V] (2001) and references therein to get a glimpse of conifolds in string theory around the decade 1990s.

2There will be a few standard physicists’ conventional notations in this highlight of the relevant part of [K-
W] and [K-S]: N that counts the number of supersymmetries (susy) via the multiple number of minimal susy
numbers in each space-time dimension vs. N that appears in the gauge group U(N) or SU (N) vs. N that counts
the multiplicity of stacked D-branes.

3In string-theorist’s terminology, the D3-brane is “sitting at the conifold singularity”. We will also adopt this
phrasing for convenience. Note that in such a setting, the internal part is a D0-brane on the conifold Y . The
latter is what we will study in this work.

4ζ is part of the parameters to give local coordinates of the Wilson’s theory-space in the problem; cf. [L-Y2:
Introduction] for brief words. See also [W-B] for the standard SUSY jargon.

5See also [Wi] and [D-M] for details of such a construction.
6See [G-K] and references therein for the detail of such fractional D-branes.
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at the conifold singularity 0 of Y . For infrared physics, the theory now has the gauge group

SU(N +M) × SU(N). It follows from the work of Affleck, Dine, and Seiberg [A-D-S]7 that an

additional term to the previous superpotential W is now dynamically generated. This deforms

the classical moduli space of SUSY vacua of the d = 4 SQFT on the D3-brane world-volume. In

the simplest case when N = M = 1, this enforces a deformation of the classical moduli space

from a conifold to a deformed conifold Y ′ (≃ T ∗S3 topologically). Cf. Figure 0-1.



Y YY

0 0

a  D-brane  configuration
without  fractional  branes

a  D-brane  configuration
with  a  fractional  brane

the  moduli  space  of  
its  supersymmetric  vacua

,

Figure 0-1. (Cf. [Stra: Figures 25, 26, 27].) When a fractional/trapped D3-brane sits
at the conifold singularity 0 ∈ Y , the full/free D3-brane “sees” a smooth deformed
conifold Y ′ (≃ T ∗S3 topologically) as its classical vacua manifold. I.e., in very low
energy for this situation the free D3-brane “feels” as if it lives on Y ′ instead of Y ! In
the figure, a full D3-brane is indicated by • while a fractional D3-brane by ◦.

While giving only a highlight of key points in [K-W] and [K-S] that are most relevant to

us, we should remark that, in addition to further quantum-field-theoretical issues on the gauge

theory side, there is also a gravity side of the story that was studied in [K-W] and [K-S].8

Azumaya structure on D-branes and its tests.

In D(1) [L-Y1], D(2) [L-L-S-Y], D(3) [L-Y2] and the current work D(4), we illuminate the

Azumaya geometry as a key feature of the geometry on D-brane world-volumes in the algebro-

geometric category. These four together center around the very remark of Polchinski:

([Po: vol. 1, Sec. 8.7, p. 272]) “For the collective coordinate Xµ, however, the

meaning is mysterious: the collective coordinates for the embedding of n D-branes in

space-time are now enlarged to n×n matrices. This ‘noncommutative geometry’ has

proven to play a key role in the dynamics of D-branes, and there are conjectures that

it is an important hint about the nature of space-time.”,

7See also [Arg: Chapter 3] and [Te: Chapter 9].
8See [A-G-M-O-O] and [Stra] for a review with more emphasis on respectively the gravity and the gauge theory

side in the correspondence; e.g. [G-K], [K-N] for developments between [K-W] and [K-S]; and e.g. [D-K-S] for a
more recent study.
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which was taken as a guiding question as to what a D-brane is in this project, cf. [L-Y1: Sec. 2.2].

D(2), D(3), and the current D(4) are meant to give more explanations of the highlight [L-Y1:

Sec. 4.5]. In this consecutive series of four, we learned that :

Lesson 0.1 [Azumaya structure on D-branes]. This “enhancement to n × n matrices”

Polchinski alluded to says even more fundamentally the nature of D-branes themselves, i.e.

the Azumaya structure thereupon. This structure gives them the power to detect the nature of

space-time. We also learned that Azumaya structures on D-branes and morphisms therefrom

can be used to reproduce/explain several stringy/brany phenomena of stringy or quantum-field-

theoretical origin that are very surprising/mysterious at a first mathematical glance.

This is a basic test to ourselves to believe that Azumaya structures play a special role in under-

standing/desccribing D-branes in string theory. Having said this, we should however mention

that D-brane remains a very complicated object and the Azumaya structure addressed here is

only a part of it. Further issues are investigated in separate works.

Convention. Standard notations, terminology, operations, facts in (1) physics aspects of strings

and D-branes; (2) algebraic geometry; (3) toric geometry can be found respectively in (1) [Po],

[Jo]; (2) [Ha]; (3) [Fu].

· Noncommutative algebraic geometry is a very technical topic. For the current work, [Art]

of Artin, [K-R] of Kontsevich and Rosenberg, and [leB1] of Le Bruyn are particularly

relevant. See [L-Y1: References] for more references.

Outline.

0. Introduction.

· Effective-space-time-filling D3-brane at a conifold singularity

· Azumaya structure on D-branes and its tests

1. D-branes in an affine noncommutative space.

· Affine noncommutative spaces and their morphisms

· D-branes in an affine noncommutative space à la Polchinski-Grothendieck Ansatz

2. Deformations of a conifold via an Azumaya probe.

· a toric setup for the standard local conifold

· an Azumaya probe to a noncommutative space and its commutative descent

· deformations of the conifold via an Azumaya probe:
descent of noncommutative superficially-infinitesimal deformations.

· deformations of the conifold via an Azumaya probe: details

3. Resolutions of a conifold via an Azumaya probe.

· D-brane probe resolutions of a conifold via the Azumaya structure

· an explicit construction of Ỹ ′, Y ′

+, and Y ′

−

· a comparison with resolutions via noncommutative desingularizations
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1 D-branes in an affine noncommutative space.

We recall definitions and notions in [L-Y1] that are needed for the current work. Readers are

referred to ibidem for more details and references. See also [L-L-S-Y] and [L-Y2] for further

explanations and examples.

Affine noncommutative spaces and their morphisms.

An affine noncommutative space over C is meant to be a “space” SpaceR that is associated

to an associative unital C-algebra R. In general, it can be tricky to truly realize SpaceR as

a set of points with a topology in a natural/functorial way. However,“geometric” notions can

still be pursued - despite not knowing what SpaceR really is - via imposing the fundamental

geometry/algebra ansatz:

· [ geometry= algebra ] The correspondence R ↔ SpaceR gives a contravariant equivalence

between the category AlgC of associative unital C-algebras and the category AffineSpace C

of “affine noncommutative spaces” over C.

For example,

Definition 1.1. [smooth affine noncommutative space]. ([C-Q: Sec. 3], [K-R: Sec. 1.1.4].)

An affine noncommutative space SpaceR over C is said to be smooth if the associative unital

C-algebra R is finitely generated and satisfies the following property:

· (lifting property for nilpotent extensions) for any C-algebra S, two-sided nilpotent ideal

I ⊂ R (i.e. I = BIB and In = 0 for n >> 0), and C-algebra homomorphism h : R → B/I,

there exists an C-algebra homomorphism h̃ : R → S such that the diagram

B

��
R

h
//

eh

77pppppppppppppp
B/I

commutes. Here B → B/I is the quotient map.

The following two classes of smooth affine noncommutative spaces are used in this work.

Example 1.2. [noncommutative affine space]. ([K-R: Sec. 2: Example (E1)].) The noncom-

mutative affine n-space NAn := Space (C〈 ξ1 , · · · , ξn 〉) over C is smooth. Here C〈 ξ1 , · · · , ξn 〉

is the associative unital C-algebra freely generated by the elements in the set { ξ1 , · · · , ξn }.

Example 1.3. [Azumaya-type noncommutative space]. ([C-Q: Sec. 5 and Proposition 6.2],

[K-R: Sec. 1.2, Examples (E2) and (C4)].) Let Mr(R) be the C-algebra of r × r-matrices with

entries in a commutative regular C-algebra R. Then the Azumaya-type noncommutative space

SpaceMr(R) is smooth (over C). Furthermore, it is also smooth over SpecR.

As a consequence of the Geometry/Algebra Ansatz, a morphism ϕ : X = SpaceR → Y =

SpaceS is defined contravariantly to be a C-algebra homomorphism ϕ♯ : S → R. The image,

denoted Imϕ or ϕ(X), of X under ϕ is defined to be Space (S/Kerϕ♯). The latter is canonically

included in Y via the morphism ι : ϕ(X) →֒ Y defined by the C-algebra quotient-homomorphism

ι♯ : S → S/Kerϕ♯ . This extends what is done in Grothendieck’s theory of (commutative)

schemes. The benefit of thinking a morphism between affine noncommutative spaces this way

is actually two folds:

4



(1) As a functor of point : The space X = SpaceR defines a functor

hX : AffineSpace C −→ Set ◦

Y 7−→ Mor (Y,X) ;

i.e. a functor
hR : Alg C −→ Set

S 7−→ Hom (R,S) .

Here Set is the category of sets, Set ◦ its opposite category, and Hom (R,S) is the set of

C-algebra-homomorphisms.

(2) As a probe : X = SpaceR defines another functor

gX : AffineSpace C −→ Set

Y 7−→ Mor (X,Y ) ;

i.e. a functor
gR : Alg C −→ Set ◦

S 7−→ Hom (S,R) .

Aspect (1) is by now standard in algebraic geometry. It allows one to define the various local

geometric properties of a “space” via algebra-homomorphisms; for example, Definition 1.1. It

suggests one to think of X as a sheaf over AffineSpace C. Thus, after the notion of coverings

and gluings is selected, it allows one to extend the notion of a noncommutative space to that of

a “noncommutative stack”. Aspect (2) is especially akin to our thought on D-branes. It says, in

particular, that the geometry of X = SpaceR can be revealed through an C-subalgebra of R.

Example 1.4. [Azumaya point ]. Consider the Azumaya point of rank r : SpaceMr(C). Its

only two-sided prime ideal is (0), the zero ideal. Thus, naively, one would expect SpaceMr(C)

to behave like a point with an Artin C-algebra as its function ring. However, for example, from

the C-algebra monomorphism ×r
C →֒ Mr(C) with image the diagonal matrices in Mr(C), one

sees that SpaceMr(C) - which is topologically a one-point set if one adopts its interpretation

as SpecMr(C) - can dominate ∐rSpecC - which is topologically a disjoint union of r-many

points -. Furthermore, consider, for example, the morphism ϕ : SpaceMr(C) → A
1 = SpecC[z]

defined by ϕ♯ : C[z] → Mr(C) with ϕ♯(z) = m that is diagonalizable with r distinct eigenvalues

λ1, · · · , λr. Then Imϕ is a collection of r-many C-points on A
1, located at z = λ1, · · · , λr

respectively. In other words, the Azumaya noncommutativity cloud Mr(C) over the seemingly

one-point space SpaceMr(C) can really “split and condense” to a collection of concrete geometric

points! Cf. Figure 1-1. See [L-Y1: Sec. 4.1] for more examples. Such phenomenon generalizes

to Azumaya schemes; in particular, see [L-L-S-Y] for the case of Azumaya curves.

Definition 1.5. [surrogate associated to morphism]. Given X = SpaceR, let R′ →֒ R be

a C-subalgebra of R. Then, the space X ′ := SpaceR′ is called a surrogate of X. By definition,

there is a built-in dominant morphism X → X ′, defined by the inclusion R′ →֒ R. Given a

morphism ϕ : SpaceR → Space S defined by ϕ♯ : S → R, then SpaceRϕ, where Rϕ is the image

ϕ♯(S) of S in R, is called the surrogate of X associated to ϕ.

As Example 1.4 illustrates, commutative surrogates may be used to manifest/reveal the

hidden geometry of a noncommutative space.
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open-string  target-space(-time)  Y

Spec

D0-brane  of  rank  r

M  (   )  NC  cloudr

r

ϕ 1

ϕ 2
ϕ 3

ϕ 2

un-Higgsing

Higgsing

Figure 1-1. ([L-L-S-Y: Figure 2-1-1].) Despite that SpaceMr(C) may look only
one-point-like, under morphisms the Azumaya “noncommutative cloud” Mr(C) over
SpaceMr(C) can “split and condense” to various schemes with a rich geometry. The
latter schemes can even have more than one component. The Higgsing/un-Higgsing
behavior of the Chan-Paton module of D0-branes on Y occurs due to the fact that
when a morphism ϕ : SpaceMr(C) → Y deforms, the corresponding push-forward
ϕ∗C

r of the fundamental module Cr on SpaceMr(C) can also change/deform. These
features generalize to morphisms from Azumaya schemes to Y . Here, a module over
a scheme is indicated by a dotted arrow // .
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Definition 1.6. [push-forward of module]. Given a morphism ϕ : X = SpaceR → Y =

SpaceS, defined by ϕ♯ : S → R, and a (left) R-module M , the push-forward of M from X to Y

under ϕ, in notation ϕ∗M or SM when ϕ is understood, is defined to be M as a (left) S-module

via ϕ♯. Since Kerϕ♯ ·M = 0, we say that the S-module ϕ∗M on Y is supported on ϕ(X) ⊂ Y .

In particular, any R-module M on X = SpaceR has a push-forward on any surrogate of X.

D-branes in an affine noncommutative space à la Polchinski-Grothendieck Ansatz.

A D-brane is geometrically a locus in space-time that serves as the boundary condition for open

strings.9 Through this, open strings dictate also the fields and their dynamics on D-branes. In

particular, when a collection of D-branes are stacked together, the fields on the D-brane that

govern the deformation of the brane are enhanced to matrix-valued, cf. Polchinski in [Po: vol. I,

Sec. 8.7]. This open-string-induced phenomenon on D-branes, when re-read from Grothendieck’s

contravariant equivalence between the category of geometries and the category of algebras, says

that D-brane world-volume carries an Azumaya-type noncommutative structure. I.e.

· Polchinski-Grothendieck Ansatz : D-brane has a geometry that is generically locally

associated to algebras of the form Mr(R0), where R0 is an R-algebra.

See [L-Y1: Sec. 2.2] for detailed explanations.

For this work, we will be restricting ourselves to affine situations in noncommutative algebraic

geometry with R0 a commutative Noetherian C-algebra. Thus:

Definition 1.7. [affine D-brane in affine target]. A D-brane (or D-brane world-volume) in

an affine noncommutative space Y = Space S is a triple that consists of

· a C-algebra R that is isomorphic to Mr(R0) for an R0,

· a (left) generically simple R-module M , which has rank r as an R0-module,

· a morphism ϕ : SpaceR → Y , defined by a C-algebra-homomorphism ϕ♯ : S → R.

We will write ϕ : (SpaceR,M) → Y for simplicity of notations. ϕ(X) = Imϕ is called the

image-brane on Y . M is called the fundamental module on SpaceR and the push-forward ϕ∗M

is called the Chan-Paton module on the image-brane ϕ(X).

Definition/Example 1.8. [D0-brane as morphism from Azumaya point with funda-

mental module]. A D0-brane of length r on an affine noncommutative space Y = SpaceS is

given by a morphism ϕ : (Space End (V ), V ) → Y , where V ≃ C
r. In other words, a D0-brane

on Y is given by

· a finite-dimensional C-vector space V and a C-algebra-homomorphism: ϕ♯ : S → End (V ).

9This is how one would think of a D-brane to begin with. Later development of string theory enlarges this
picture considerably. See [L-Y1: References] to get a glimpse.

7



This is precisely a realization of a finite-dimensional C-vector space V as an S-module.10 A

morphism from ϕ1 : (Space End (V1), V1) → Y to ϕ2 : (Space End (V2), V2) → Y is a C-vector-

space isomorphism h : V2
∼
→ V1 such that the following diagram commutes

End (V1) S
ϕ
♯
1oo

ϕ
♯
2wwoooooooooooooo

End (V2)

h

OO

.

Here, the h-induced isomorphism End (V2)
∼
→ End (V1) is also denoted by h. In other words, a

morphism between ϕ1 and ϕ2 is an isomorphism of the corresponding V1 and V2 as S-modules.

It follows from the above definition/example that the moduli stack M
D0
r (Y ) of D0-branes

of length r on Y = Space S has an atlas given by the representation scheme Rep (S,Mr(C))

that parameterizes all C-algebra-homomorphisms S → Mr(C). The latter commutative scheme

serves also as the moduli space of morphisms SpaceMr(C) → Y with Mr(C) treated as fixed.

From [K-R] and [leB1], one expects that noncommutative geometric structures/properties of

Y = Space S are reflected in properties/structures of the discrete family of commutative schemes

Rep (S,Mr(C)) , r ∈ Z>0. This anticipation from noncommutative algebraic geometry rings hand

in hand with the stringy philosophy to use D-branes as a probe to the nature of space-time!

2 Deformations of a conifold via an Azumaya probe.

Using a toric setup for a conifold that is meant to match Klebanov-Witten [K-W], we discuss

how an Azumaya probe “sees” deformations of the conifold in a way that resembles Klebanov-

Strassler [K-S].

A toric setup for the standard local conifold.

The standard local conifold Y = Spec (C[z1, z2, z3, z4]/(z1z2− z3z4)) can be given an affine toric

variety description as follows. Let N = ⊕4
i=1 Zei be the rank 4 lattice and ∆ be the fan in N

that consists of the single non-strongly convex polyhedral cone σ = ⊕6
i=1R≥0vi in NR := N⊗ZR,

where
v1 = e1 , v2 = e2 , v3 = e3 , v4 = −e1 + e2 + e3 ,

v5 = e1 − e2 − e3 + e4 , v6 = −v5 = −e1 + e2 + e3 − e4 .

Let M = Hom (N,Z) be the dual lattice of N , with the dual basis {e∗1 , e
∗
2 , e

∗
3 , e

∗
4}. Then, the

dual cone σ∨ of σ is given by Span R≥0
{ e∗1+e∗2 , e

∗
3+e∗4 , e

∗
1+e∗3 , e

∗
2+e∗4 } ⊂ MR. This determines

a commutative semigroup

Sσ = σ∨ ∩M = Span Z≥0
{ e∗1 + e∗2 , e

∗
3 + e∗4 , e

∗
1 + e∗3 , e

∗
2 + e∗4 }

10Thus, a D0-brane on SpaceS is precisely an S-module that is of finite dimension as a C-vector space. Such
a direct realization of a D-brane as a module on a target-space is a special feature for D0-branes. For high
dimensional D-branes, such modules on the target-space give only a subclass of D-branes that describe solitonic
branes in space-time.
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with generators e∗1 + e∗2 , e
∗
3 + e∗4 , e

∗
1 + e∗3 , e

∗
2 + e∗4 . The corresponding group-algebra

C[Sσ] = C[ ξ1ξ2 , ξ3ξ4 , ξ1ξ3 , ξ2ξ4 ] ⊂ C[ξ1, ξ2, ξ3, ξ4] ,

where ξi = exp(e∗i ), i = 1, 2, 3, 4 , defines then the conifold

Y = Uσ = Spec (C[Sσ]) = Spec (C[z1, z2, z3, z4]/(z1z2 − z3z4)) ,

where

z1 = ξ1ξ2 , z2 = ξ3ξ4 , z3 = ξ1ξ3 , z4 = ξ2ξ4 .

Note that built into this construction is the morphism

A
4
[ξ1,ξ2,ξ3,ξ4]

:= Spec (C[ξ1, ξ2, ξ3, ξ4]) −→ Y →֒ A
4
[z1,z2,z3,z4]

:= Spec (C[z1, z2, z3, z4]) ,

where the first morphism is surjective.

An Azumaya probe to a noncommutative space and its commutative descent.

Guided by [K-W] and [K-S], where ξi’s here play the role of scalar component of chiral superfields

involved in ibidem, consider the noncommutative space

Ξ := Space (RΞ)

:= Space

(
C〈 ξ1, ξ2, ξ3, ξ4 〉

([ξ1ξ3, ξ2ξ4] , [ξ1ξ3, ξ1ξ4] , [ξ1ξ3, ξ2ξ3] , [ξ2ξ4, ξ1ξ4] , [ξ2ξ4, ξ2ξ3] , [ξ1ξ4, ξ2ξ3])

)
,

where C〈ξ1, ξ2, ξ3, ξ4〉 is the associative unital C-algebra generated by {ξ1, ξ2, ξ3, ξ4}, ( · · · ) in

the denominator is the two-sided ideal generated by · · · , and [ • , •′ ] is the commutator. Here,

Space ( • ) is the would-be space associated to the ring • . We do not need its detail as all we need

are morphisms between spaces which can be contravariantly expressed as ring-homomorphisms.

By construction, the scheme-morphism A
4
[ξ1,ξ2,ξ3,ξ4]

→ A
4
[z1,z2,z3,z4]

, whose image is Y , extends to

a morphism

πΞ : Ξ −→ A
4
[z1,z2,z3,z4]

,

whose image is now the whole A
4
[z1,z2,z3,z4]

. The underlying ring-homomorphism is given by

πΞ,♯ : C[z1, z2, z3, z4] −→ RΞ

z1 7−→ ξ1ξ3
z2 7−→ ξ2ξ4
z3 7−→ ξ1ξ4
z4 7−→ ξ2ξ3 .

Consider a D0-brane moving on the conifold Y via the chiral superfields. In terms of

Polchinski-Grothendieck Ansatz, this is realized by the descent of morphisms ϕ̃ : SpaceM1(C) =

SpecC → Ξ to ϕ : SpaceM1(C) = SpecC → Y by the specification of ring-homomorphisms

ϕ̃♯ : ξ1 7−→ a1 ; ξ2 7−→ a2 ; ξ3 7−→ b1 ; ξ4 7−→ b2 .

The corresponding

ϕ♯ : z1 7−→ a1b1 ; z2 7−→ a2b2 ; z3 7−→ a1b2 ; z4 7−→ a2b1

gives a morphism ϕ : SpecC → Y , i.e. a C-point on the conifold Y .
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Deformations of the conifold via an Azumaya probe: descent of noncommutative

superficially-infinitesimal deformations.

We now consider what happens if we add a D0-brane to the conifold point of Y . This D0-

brane together with the D0-brane probe is the image of a morphism from the Azumaya point

SpaceM2(C) to Y . Thus we should consider morphisms ϕ̃ : SpaceM2(C) → Ξ of noncommutative

spaces and their descent ϕ on related commutative spaces.

Definition 2.1. [superficially infinitesimal deformation]. Given finitely-presented asso-

ciative unital rings, R = 〈 r1, . . . , rm 〉/∼ and S, and a ring-homomorphism h : R → S. A

superficially infinitesimal deformation of h with respect to the generators {r1, . . . , rm} of R is a

ring-homomorphism hε : R → S such that hε(ri) = h(ri) + εi with ε2i = 0, for i = 1, . . . ,m.

Remark 2.2. [ commutative S ]. Note that when S is commutative, a superficially infinitesimal

deformation of hε : R → S is an infinitesimal deformation of h in the sense that hε(r) = h(r)+εr
with (εr)

2 = 0, for all r ∈ R. This is no longer true for general noncommutative S.

To begin, consider the diagram of morphisms of spaces

SpaceM2(C)
eϕ // Ξ = SpaceRΞ

πΞ

��
SpaceM2(C)

ϕ // Y
�

� //
A
4

given by ring-homomorphisms

M2(C) RΞ
eϕ♯

oo

M2(C) C[z1, z2, z3, z4]/(z1z2 − z3z4)
ϕ♯

oo C[z1, z2, z3, z4]oooo

πΞ,♯

OO

with

A1 ; A2 ; B1 ; B2 ξ1 ; ξ2 ; ξ3 ; ξ4
�eϕ♯

oo

ξ1ξ3 ; ξ2ξ4 ; ξ1ξ4 ; ξ2ξ3

A1B1 ; A2B2 ; A1B2 ; A2B1 z1 ; z2 ; z3 ; z4
�ϕ♯

oo z1 ; z2 ; z3 ; z4�oo
_

πΞ,♯

OO

where

A1 =

[
a1 0
0 0

]
, A2 =

[
a2 0
0 0

]
, B1 =

[
b1 0
0 0

]
, B2 =

[
b2 0
0 0

]
.

The image D-brane ϕ(SpaceM2(C)) is supported on a subscheme Z of Y associated to the ideal

Kerϕ =





(z1, z2, z3, z4) ∩ (z1 − a1b1, z2 − a2b2, z3 − a1b2, z4 − a2b1)

if the tuple (a1b1, a2b2, a1b2, a2b1) 6= (0, 0, 0, 0) ,

(z1, z2, z3, z4) if the tuple (a1b1, a2b2, a1b2, a2b1) = (0, 0, 0, 0) .
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The former corresponds to two simple non-coincident D0-branes, each with Chan-Paton module

C, on the conifold Y with one of them sitting at the conifold point 0 and the other sitting

at the C-point with the coordinate tuple (a1b1, a2b2, a1b2, a2b1) while the latter corresponds to

coincident D0-branes at 0 with the Chan-Paton module enhanced to C
2 at 0. In both situations,

the support Z of the D-brane is reduced. This is the transverse-to-the-effective-space-time part

of the D3-brane setting in [K-W] and [K-S].

Consider now a superficially infinitesimal deformation of ϕ̃ given by:

SpaceM2(C)
eϕ(δ1,δ2,η1,η2) // Ξ = SpaceRΞ

M2(C) RΞ

eϕ
♯

(δ1,δ2,η1,η2)oo

A1 ; A2 ; B1 ; B2 ξ1 ; ξ2 ; ξ3 ; ξ4
�oo

where

A1 =

[
a1 δ1
0 0

]
, A2 =

[
a2 δ2
0 0

]
, B1 =

[
b1 0
η1 0

]
, B2 =

[
b2 0
η2 0

]
.

Should SpaceM2(C) be a commutative space, this would give only an infinitesimal deformation

of ϕ. However, SpaceM2(C) is not a commutative space and, hence, the naive anticipation above

could fail. Indeed, the descent ϕ(δ1,δ2,η1,η2) of ϕ̃(δ1,δ2,η1,η2) is given by

SpaceM2(C)
ϕ(δ1,δ2,η1,η2) //

A
4

M2(C) C[z1, z2, z3, z4]
ϕ
♯

(δ1,δ2,η1,η2)oo

A1B1 ; A2B2 ; A1B2 ; A2B1 z1 ; z2 ; z3 ; z4 ,
�oo

i.e.
[

a1b1 + δ1η1 0
0 0

]
;

[
a2b2 + δ2η2 0

0 0

]
;

[
a1b2 + δ1η2 0

0 0

]
;

[
a2b1 + δ2η1 0

0 0

]

z1 ; z2 ; z3 ; z4 .�oo

The image Z := ϕ(δ1,δ2,η1,η2) (SpaceM2(C)) of the Azumaya point SpaceM2(C) under ϕ(δ1,δ2,η1,η2)

remains a 0-dimensional reduced scheme, consisting of either two C-points - with one of them

at 0 - or 0 alone. However,

z1z2 − z3z4 =

∣∣∣∣
z1 z3
z4 z2

∣∣∣∣ =

∣∣∣∣
a1 δ1
a2 δ2

∣∣∣∣ ·
∣∣∣∣
b1 b2
η1 η2

∣∣∣∣

vanishes if and only if either
˛

˛

˛

˛

a1 δ1
a2 δ2

˛

˛

˛

˛

or
˛

˛

˛

˛

b1 b2
η1 η2

˛

˛

˛

˛

is 0. In other words, while the image

ϕ(δ1,δ2,η1,η2) (SpaceM2(C)) still contains the conifold-point 0 in Y , as a whole it may longer lie

completely even in any infinitesimal neighborhood of the conifold Y in A
4. I.e.:

Lemma 2.3. [deformation from descent of superficially infinitesimal deformation].

The descent ϕ(δ1,δ2,η1,η2) of a superficially infinitesimal deformation of ϕ̃ can truly deform ϕ.

Thus, an appropriate choice of a subspace of the space of morphisms ϕ̃( • ) : SpaceM2(C) → Ξ

can descend to give a space of morphisms ϕ( • ) : SpaceM2(C) → A
4 that is parameterized by a

deformed conifold Y ′.

11



This realizes a deformed conifold as a moduli space of morphisms from an Azumaya point and is

the reason why the Azumaya probe can see a deformation of the conifold Y from the viewpoint

of Polchinski-Grothendieck Ansatz. Figure 2-1.

Spec

D0-brane  of  rank  2

M  (   )  NC  cloud2

2

RΞSpace

4
z1 z2 z3 z4[      ,      ,      ,      ]

π Ξ

Y Y

4
ξ1 ξ ξ ξ2 3 4[      ,      ,      ,      ] M  (   )2Space

p0 p

ϕ

~ϕ
~ϕ δ2 η1 (      ,      ,      ,      )δ1 η2

ϕ δ2 η1 (      ,      ,      ,      )δ1 η2

Figure 2-1. A generic superficially infinitesimal deformation ϕ̃(δ1,δ2,η1,η2) of ϕ̃ has
a noncommutative image ≃ SpaceM2(C). It then descends to A4

[z1,z2,z3,z4]
and be-

comes a pair of C-points on A4
[z1,z2,z3,z4]

. One of the points is the conifold singularity

0 = V (z1, z2, z3, z4) ∈ Y and the other is the point p′ = V ( z1 − a1b1 − δ1η1 , z2 −
a2b2 − δ2η2 , z3 − a1b2 − δ1η2 , z4 − a2b1 − δ2η1 ) off Y (generically). Through such
deformations, any C-point on A4

[z1,z2,z3,z4]
can be reached. Thus, one can realizes

a deformation Y ′ of Y in A4
[z1,z2,z3,z4]

by a subvariety in Rep (RΞ,M2(C)). This is

the Azumaya-geometry origin of the phenomenon in Klebanov-Strassler [K-S] that a
trapped D-brane sitting on the conifold singularity may give rise to a deformation of
the moduli space of SQFT on the D3-brane probe, turning a conifold to a deformed
conifold. Our D0-brane here corresponds to the internal part of the effective-space-
time-filling D3-brane world-volume of [K-S].

Remark 2.4. [ generalization ]. This phenomenon can be generalized beyond a conifold. In

particular, recall that an An-singularity on a complex surface is also a toric singularity. Similar

mechanism/discussion can be applied to deform a transverse An-singularity via morphisms from

an Azumaya probe.
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Deformations of the conifold via an Azumaya probe: details.

We now give an explicit construction that realizes Lemma 2.3. For convenience11, we will take

SpaceM2(C) as fixed, and is equipped with the defining fundamental (left) M2(C)-module C
2.

Then, the space Mor a(SpaceM2(C),Ξ) of admissible morphisms of the form ϕ̃( • ) in the previ-

ous theme is naturally realized as a subscheme Rep a(RΞ,M2(C)) of the representation scheme

Rep (RΞ,M2(C)) that parameterizes elements in Mor C-Alg (RΞ,M2(C)). From the previous dis-

cussion,

Rep a(RΞ,M2(C)) = SpecC[a1, a2, δ1, δ2, b1, b2, η1, η2]

=: A
8
[a1,a2,δ1,δ2,b1,b2,η1,η2]

= A
4
[a1,a2,δ1,δ2]

×C A
4
[b1,b2,η1,η2]

.

Consider also the spaceMor a(SpaceM2(C),A
4) of morphisms from Azumaya point to A4

[z1,z2,z3,z4]

with the associated C-algebra-homomorphism of the form

z1 7−→

[
c1 0
0 0

]
, z2 7−→

[
c2 0
0 0

]
, z3 7−→

[
c3 0
0 0

]
, z4 7−→

[
c4 0
0 0

]
.

Denote the associated representation scheme by

Rep a(C[z1, z2, z3, z4],M2(C)) , which is SpecC[c1, c2, c3, c4] =: A
4
[c1,c2,c3,c4]

.

The C-algebra homomorphism πΞ,♯ : C[z1, z2, z3, z4] → RΞ induces a morphism of represen-

tation schemes

πRep : A
8
[a1,a2,δ1,δ2,b1,b2,η1,η2]

−→ A
4
[c1,c2,c3,c4]

with π♯
Rep given in a matrix form by

π♯
Rep :

[
c1 c3
c4 c2

]
7−→

[
a1 δ1
a2 δ2

]
·

[
b1 b2
η1 η2

]
.

Lemma 2.5. [enough superficially infinitesimally deformed morphisms].

πRep : A
8
[a1,a2,δ1,δ2,b1,b2,η1,η2]

−→ A
4
[c1,c2,c3,c4]

is surjective.

There are three homeomorphism classes of fibers of πRep over a closed point of A4
[c1,c2,c3,c4]

,

depending on the rank of
»

c1 c3
c4 c2

–

.

Lemma 2.6. [topological type of fibers of πRep ]. Let C3
[c1,c2,c3,c4]

be the subvariety of

A
4
[c1,c2,c3,c4]

associated to the ideal (c1c2 − c3c4). Similarly, for C3
[a1,a2,δ1,δ2]

and C3
[b1,b2,η1,η2]

.

Then:

(0) Over 0, the fiber is given by A
4
[a1,a2,δ1,δ2]

∪ A
4
[b1,b1,η1,η2]

∪ Π5, where Π5 is a 5-dimensional

irreducible affine scheme meeting A
4
[a1,a2,δ1,δ2]

∪A
4
[b1,b2,η1,η2]

along C3
[a1,a2 δ1,δ2]

∪C3
[b1,b2 η1,η2]

.

11If SpaceM2(C) is not fixed, then one studies Artin stacks that parameterizes morphisms in question from
SpaceM2(C) to SpaceRΞ, the conifold Y , and A

4
[z1,z2,z3,z4]

respectively. The discussion given here is then on an
atlas of the stack in question.
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(1) Over a closed point of C3
[c1,c2,c3,c4]

− {0}, the fiber is the union Π4
1 ∪ Π4

2 of two irreducible

4-dimensional affine scheme meeting at a deformed conifold.

(2) Over a closed point of A4
[c1,c2,c3,c4]

− C3
[c1,c2,c3,c4]

, the fiber is isomorphic to A
4
[a1,a2 δ1,δ2]

−

C3
[a1,a2 δ1,δ2]

≃ A
4
[b1,b2 η1,η2]

− C3
[b1,b2 η1,η2]

.

The lemma follows from a straightforward computation.12 Note that the fundamental group as

an analytic space is given by

π1(A
4
[c1,c2,c3,c4]

− C3
[c1,c2,c3,c4]

) ≃ π1(A
4
[a1,a2,δ1,δ2]

−C3
[a1,a2,δ1,δ2]

)

≃ π1(A
4
[b1,b2,η1,η2]

−C3
[b1,b2,η1,η2]

) ≃ Z

and that the smooth bundle-morphism

πRep : A
8
[a1,a2,δ1,δ2,b1,b2,η1,η2]

− π−1
Rep (C

3
[c1,c2,c3,c4]

) −→ A
4
[c1,c2,c3,c4]

− C3
[c1,c2,c3,c4]

exhibits a monodromy behavior which resembles that of a Dehn twist.

The map πRep : A
8
[a1,a2,δ1,δ2,b1,b2,η1,η2]

→ A
4
[c1,c2,c3,c4]

admits sections, i.e. morphism s :

A
4
[c1,c2,c3,c4]

→ A
8
[a1,a2,δ1,δ2,b1,b2,η1,η2]

such that πRep ◦ s = the identity map on A
4
[c1,c2,c3,c4]

.

Example 2.7. [section of πRep ]. Let t ∈ GL2(C), then a simple family of sections of πRep

st : A
4
[c1,c2,c3,c4]

−→ A
8
[a1,a2,δ1,δ2,b1,b2,η1,η2]

is given compactly in a matrix expression by (with t also in its defining 2× 2-matrix form)

s♯t :

([
a1 δ1
a2 δ2

]
,

[
b1 b2
η1 η2

])
7−→

([
c1 c3
c4 c2

]
· t−1 , t

)
.

Through any section s : A4
[c1,c2,c3,c4]

→ A
8
[a1,a2,δ1,δ2,b1,b2,η1,η2]

, one can realize Y ′ ∐ {0}, where Y ′

is a deformation of the conifold Y in A
4 = A

4
[z1,z2,z3,z4]

and 0 is the singular point on Y , as the

descent of a family of superficially infinitesimal deformations of morphisms from Azumaya point

to the noncommutative space Ξ. In string theory words,

· deformations of a conifold via a D-brane probe are realized by turning on D-branes at the

singularity appropriately; the conifold is deformed and becomes smooth while leaving the

trapped D-branes at the singularity behind.

Cf. Figure 2-1.

12It is very instructive to think of the fibration πRep : A
8
[a1,a2,δ1,δ2,b1,b2,η1,η2]

→ A
4
[c1,c2,c3,c4]

as defining a
one-matrix-parameter family of “matrix nodal curves” in the sense of noncommutative geometry.
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3 Resolutions of a conifold via an Azumaya probe.

In this section, we consider resolutions of the conifold Y = Spec (C[z1, z2, z3, z4]/(z1z2 − z3z4))

from the viewpoint of an Azumaya probe. Recall the following diagram of resolutions of Y from

blow-ups of Y :

Ỹ
f+

��~~
~~

~~
~~

π

��

f−

��@
@@

@@
@@

@

Y+

π+   A
AA

AA
AA

Y−

π−~~}}
}}

}}
}

Y ,

where

· π : Ỹ = Bl V (I)Y = Proj (⊕∞
i=0 I

i) → Y with I = (z1, z2, z3, z4),

· π+ : Y+ = Bl V (I+)Y = Proj (⊕∞
i=0 I

i
+) → Y with I+ = (z1, z3), and

· π− : Y− = Bl V (I−)Y = Proj (⊕∞
i=0 I

i
−) → Y with I− = (z1, z4)

are blow-ups of Y along the specified subschemes V ( • ) associated respectively to the ideals I, I+,

and I− of C[z1, z2, z3, z4]/(z1z2−z3z4) as given. Here, we set I
0
(±) = C[z1, z2, z3, z4]/(z1z2−z3z4).

Let 0 = V (z1, z2, z3, z4) be the singular point of Y . Then the exceptional locus in each case

is given respectively by π−1(0) ≃ P1 × P1, π−1
+ (0) ≃ P1, and π−1

− (0) ≃ P1; Y+ and Y− as

schemes/Y are related by a flop; and the restriction of birational morphisms f± : Ỹ → Y± to

π−1(0) corresponds to the projections of P1 × P
1 to each of its two factors.

D-brane probe resolutions of a conifold via the Azumaya structure.

An atlas for the stack of morphisms from SpaceM2(C) to Y is given by the representation scheme

Rep (C[z1, z2, z3, z4]/(z1z2 − z3z4),M2(C)) with the PGL 2(C)-action induced from the GL2(C)-

action on the fundamental module C
2. For convenience, we will also call this a GL2(C)-action

on Rep (C[z1, z2, z3, z4]/(z1z2 − z3z4),M2(C)). Let

W = Rep singleton (C[z1, z2, z3, z4]/(z1z2 − z3z4),M2(C))

be the subscheme of Rep (C[z1, z2, z3, z4]/(z1z2 − z3z4),M2(C)) that parameterizes D0-branes

ϕ : (SpecC,M2(C),C
2) → Y with (Imϕ)red a single C-point on Y . Explicitly, W is the image

scheme of

GL2(C)×Wut −→ Rep (C[z1, z2, z3, z4]/(z1z2 − z3z4),M2(C))

where

Wut =

{
ρ : C[z1, z2, z3, z4]/(z1z2 − z3z4) → M2(C)

∣∣∣∣ ρ(zi) is of the form

[
ai εi
0 ai

]}

⊂ Rep (C[z1, z2, z3, z4]/(z1z2 − z3z4),M2(C))

and the morphism−→ is from the restriction of the GL2(C)-group on Rep (C[z1, z2, z3, z4]/(z1z2−

z3z4),M2(C)). Using this notation, as a scheme,

Wut = Spec (C[a1, a2, a3, a4, ε1, ε2, ε3, ε4]/( a1a2 − a3a4 , a2ε1 + a1ε2 − a4ε3 − a3ε4 ))

⊂ Spec (C[a1, a2, a3, a4, ε1, ε2, ε3, ε4]) =: A
8
[a1,a2,a3,a4,ε1,ε2,ε3,ε4]

.
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Imposing the trivial GL2(C)-action on Y , then by construction, there is a natural GL2(C)-

equivariant morphism

πW : W −→ Y

defined by πW,♯(zi) =
1
2Tr ρ(zi) = ai in the above notation. This is the morphism that sends a

ϕ : (SpecC,M2(C),C
2) → Y under study to (Imϕ)red ∈ Y .

Lemma 3.1. [Azumaya probe to conifold singularity]. There exists GL2(C)-invariant

subschemes Ỹ ′, Y ′
+, and Y ′

− of W such that their geometric quotient Ỹ ′/GL2(C), Y
′
+/GL2(C),

Y ′
−/GL2(C) under the GL2(C)-action exist and are isomorphic to Ỹ , Y+, and Y− respectively.

Furthermore, under these isomorphisms, the restriction of πW : W → Y to Ỹ ′, Y ′
+, and Y ′

−

descends to morphisms from the quotient spaces Ỹ ′/GL2(C), Y
′
+/GL2(C), Y

′
−/GL2(C) to Y that

realize the resolution diagram

Ỹ
f+

��~~
~~

~~
~~

π

��

f−

��@
@@

@@
@@

@

Y+

π+   A
AA

AA
AA

Y−

π−~~}}
}}

}}
}

Y

of Y at the beginning of this section.

It is in the sense of the above lemma we say that

· an Azumaya point of rank ≥ 2 and hence a D-brane probe of multiplicity ≥ 2 can “see”

all the three different resolutions of the conifold singularity.

It should also be noted that Lemma 3.1 is a special case of a more general statement that reflects

the fact that the stack of morphisms from Azumaya points to a (general, possibly singular,

Noetherian) scheme Y is a generalization of the notion of jet-schemes of Y . Cf. [L-Y2: Figure 0-

1, caption].

An explicit construction of Ỹ ′, Y ′
+, and Y ′

−.

An explicit construction of Ỹ ′, Y ′
+, and Y ′

−, and hence the proof of Lemma 3.1, follows from a

lifting-to-W of an affine atlas of Proj (⊕∞
i=0 I

i
(±)).

To construct Ỹ ′, recall that I = (z1, z2, z3, z4). An affine atlas of Ỹ is given by the collection

U (zi) = Spec ((⊕∞
j=0 I

j)[z−1
i ]0) ≃





Spec (C[z1, u2, u3, u4]/(u2 − u3u4)) ≃ A
3
[z1,u3,u4]

for i = 1 ;

Spec (C[u1, z2, u3, u4]/(u1 − u3u4)) ≃ A
3
[z2,u3,u4]

for i = 2 ;

Spec (C[u1, u2, z3, u4]/(u1u2 − u4)) ≃ A
3
[u1,u2,z3]

for i = 3 ;

Spec (C[u1, u2, u3, z4]/(u1u2 − u3)) ≃ A
3
[u1,u2,z4]

for i = 4 .

Here, zi ∈ I has grade 1 and (⊕∞
j=0 I

j)[z−1
i ]0 is the grade-0 component of the graded algebra

(⊕∞
j=0 I

j)[z−1
i ]. Each U (zi) is equipped with a built-in morphism π(i) : U (zi) → Y in such a way

that, when all four are put together, they glue to give the resolution π : Ỹ → Y .
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Consider the lifting {π(i) ′ : U (zi) → W | i = 1 , 2 , 3 , 4 } of the atlas {π(i) : U (zi) → Y | i =

1 , 2 , 3 , 4 } of Ỹ that is given by the lifting {π(i) ′ : U (zi) → Wut ⊂ W | i = 1 , 2 , 3 , 4 } defined by

π(1) ′,♯ : a1 , a2 , a3 , a4 , ε1 , ε2 , ε3 , ε4 7−→ z1 , z1u2 , z1u3 , z1u4 , 1 , u2 , u3 , u4 respectively ,

π(2) ′,♯ : a1 , a2 , a3 , a4 , ε1 , ε2 , ε3 , ε4 7−→ z2u1 , z2 , z2u3 , z2u4 , u1 , 1 , u3 , u4 respectively ,

π(3) ′,♯ : a1 , a2 , a3 , a4 , ε1 , ε2 , ε3 , ε4 7−→ z3u1 , z3u2 , z3 , z3u4 , u1 , u2 , 1 , u4 respectively ,

π(4) ′,♯ : a1 , a2 , a3 , a4 , ε1 , ε2 , ε3 , ε4 7−→ z4u1 , z4u2 , z4u3 , z4 , u1 , u2 , u3 , 1 respectively .

π(i) ′, i = 1, 2, 3, 4, are now embeddings into W with the property that for any geometric point

p ∈ U (zi) ×eY
U (zj), π(i) ′(p) and π(j) ′(p) lies in the same GL2(C)-orbit in W . In other words, up

to the pointwise GL2(C)-action, they are gluable. Let Ỹ ′ be the image scheme of the morphism

GL2(C)× (U (z1) ∐ U (z2) ∐ U (z3) ∐ U (z4)) −→ W

via π(1) ′ ∐ π(2) ′ ∐ π(3) ′ ∐ π(4) ′ and the GL2(C)-action on W . Then it follows that the geometric

quotient Ỹ ′/GL2(C) exists and is equipped with a built-in isomorphism Ỹ ′/GL2(C)
∼
→ Ỹ , as

schemes over Y , through the defining embeddings U (zi) →֒ Ỹ , i = 1, 2, 3, 4 .

For Y ′
+, recall that I+ = (z1, z3). An affine atlas of Y+ is given by the collection

U
(zi)
+ = Spec ((⊕∞

j=0 I
j)[z−1

i ]0) ≃

{
Spec (C[z1, z2, u3, z4]/(z2 − z4u3)) ≃ A

3
[z1,u3,z4]

for i = 1 ;

Spec (C[u1, z2, z3, z4]/(z2u1 − z4)) ≃ A
3
[u1,z2,z3]

for i = 3 .

Each U
(zi)
+ is equipped with a built-in morphism π

(i)
+ : U

(zi)
+ → Y in such a way that, when both

are put together, they glue to give the resolution π+ : Y+ → Y .

Consider the lifting {π
(i) ′
+ : U

(zi)
+ → W | i = 1 , 3 } of the atlas {π

(i)
+ : U

(zi)
+ → Y | i = 1 , 3 }

of Y+ that is given by the lifting {π
(i) ′
+ : U

(zi)
+ → Wut ⊂ W | i = 1 , 3 } defined by

π
(1) ′,♯
+ : a1 , a2 , a3 , a4 , ε1 , ε2 , ε3 , ε4 7−→ z1 , z4u3 , z1u3 , z4 , 1 , 0 , u3 , 0 respectively ,

π
(3) ′,♯
+ : a1 , a2 , a3 , a4 , ε1 , ε2 , ε3 , ε4 7−→ z3u1 , z2 , z3 , z2u1 , u1 , 0 , 1 , 0 respectively .

The pair, π
(1) ′
+ and π

(3) ′
+ , are now embeddings into W that, as in the case of Ỹ , are gluable up

to the pointwise GL2(C)-action. Same construction as in the case of Ỹ gives then a GL2(C)-

invariant subscheme Y ′
+ of W whose geometric quotient Y ′

+/GL2(C) exists and is equipped with

a built-in isomorphism Y ′
+/GL2(C)

∼
→ Y+ as schemes over Y .

For Y ′
−, recall that I− = (z1, z4). The construction is identical to that in the case of Y+ after

relabelling. An affine atlas of Y− is given by the collection

U
(zi)
− = Spec ((⊕∞

j=0 I
j)[z−1

i ]0) ≃

{
Spec (C[z1, z2, z3, u4]/(z2 − z3u4)) ≃ A

3
[z1,z3,u4]

for i = 1 ;

Spec (C[u1, z2, z3, z4]/(z2u1 − z3)) ≃ A
3
[u1,z2,z4]

for i = 4 .

Each U
(zi)
− is equipped with a built-in morphism π

(i)
− : U

(zi)
− → Y in such a way that, when both

are put together, they glue to give the resolution π− : Y− → Y .

Consider the lifting {π
(i) ′
− : U

(zi)
− → W | i = 1 , 4 } of the atlas {π

(i)
− : U

(zi)
− → Y | i = 1 , 4 }

of Y− that is given by the lifting {π
(i) ′
− : U

(zi)
− → Wut ⊂ W | i = 1 , 4 } defined by
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π
(1) ′,♯
−

: a1 , a2 , a3 , a4 , ε1 , ε2 , ε3 , ε4 7−→ z1 , z3u4 , z3 , z1u4 , 1 , 0 , 0 , u4 respectively ,

π
(4) ′,♯
−

: a1 , a2 , a3 , a4 , ε1 , ε2 , ε3 , ε4 7−→ z4u1 , z2 , z2u1 , z4 , u1 , 0 , 0 , 1 respectively .

The pair, π
(1) ′
− and π

(4) ′
− , are now embeddings into W that are gluable up to the pointwise

GL2(C)-action. Same construction as in the case of Ỹ gives then a GL2(C)-invariant subscheme

Y ′
− of W whose geometric quotient Y ′

−/GL2(C) exists and is equipped with a built-in isomor-

phism Y ′
−/GL2(C)

∼
→ Y− as schemes over Y .

This concludes the explicit construction.

Remark 3.2. [ lifting to jet-scheme ]. Note that there is a one-to-one correspondence between

GL2(C)-orbits in W and isomorphism classes of 0-dimensional torsion sheaves of length 2 on the

conifold Y (i.e. the push-forward Chan-Paton sheaves on Y under associated morphisms from

the Azumaya point SpaceM2(C) with the fundamental module C
2) with connected support.

Under this correspondence, the various special liftings-to-W in the construction above:

(π(1) ′ , π(2) ′ , π(3) ′ , π(4) ′) , (π
(1) ′
+ , π

(3) ′
+ ) , (π

(1) ′
− , π

(4) ′
− ) ,

and the gluing property, up to the pointwise GL2(C)-action, in each tuple follow from the

underlying lifting property to the related jet-schemes, which is the total space of the tangent

sheaf TY of Y in our case.

A comparison with resolutions via noncommutative desingularizations.

Consider the conifold algebra defined by13

Λc :=
C〈 ξ1 , ξ2 , ξ3 〉

( ξ21ξ2 − ξ2ξ21 , ξ1ξ
2
2 − ξ22ξ1 , ξ1ξ3 + ξ3ξ1 , ξ2ξ3 + ξ3ξ2 , ξ23 − 1 )

,

where the numerator is the associative unital C-algebra generated by {ξ1, ξ2, ξ3} and the de-

nominator is the two-sided ideal generated by the elements of C〈ξ1 ξ2, ξ3〉 as indicated.

Lemma 3.3. [center of Λc]. ([leB-S: Lemma 5.4].) The C-algebra monomorphism

τ ♯ : C[z1, z2, z3, z4]/(z1z2 − z3z4) −→ Λc

z1 7−→ ξ21
z2 7−→ ξ22
z3 7−→ 1

2 (ξ1ξ2 + ξ2ξ1) + 1
2(ξ1ξ2 − ξ2ξ1)ξ3

z4 7−→ 1
2 (ξ1ξ2 + ξ2ξ1) − 1

2(ξ1ξ2 − ξ2ξ1)ξ3

realizes C[z1, z2, z3, z4]/(z1z2 − z3z4) as the center of Λc.

Proposition 3.4. [representation variety of Λc]. ([leB-S: Proposition 5.7].) The representa-

tion variety Rep (Λc,M2(C)) is a smooth affine variety with three disjoint irreducible components.

Two of these components are a point. The third Rep 0(Λc,M2(C)) has dimension 6.

13The highlight here follows [leB-S] with some change of notations for consistency and mild rephrasings to link
ibidem directly with us.
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This implies14 that Λc is a smooth order over C[z1, z2, z3, z4]/(z1z2− z3z4) and, if one defines

SpecΛc to be the set of two-sided prime ideals of Λc with the Zariski topology, then the natural

morphism

SpecΛc −→ Spec (C[z1, z2, z3, z4]/(z1z2 − z3z4))

by intersecting a two-sided prime ideal of Λc with the center of Λc gives a smooth noncommutative

desingularization of Y . ([leB-S: Proposition 5.7].)

Up to the conjugation by an element in GL2(C), a C-algebra homomorphism ρ : Λc → M2(C)

can be put into one the following three forms: (In (1) and (2) below, 0 and Id are respectively

the zero matrix and the identity matrix in M2(C).)

(1) ρ(ξ1) = 0 , ρ(ξ2) = 0 , ρ(ξ3) = Id ;

(2) ρ(ξ1) = 0 , ρ(ξ2) = 0 , ρ(ξ3) = −Id ;

(3)

ρ(ξ1) =

[
0 a1
b1 0

]
, ρ(ξ2) =

[
0 a2
b2 0

]
, ρ(ξ3) =

[
1 0
0 −1

]
.

Form (1) and Form (2) correspond to the two point-components in Rep (Λc,M2(C)) and Form (3)

corresponds to elements in Rep 0(Λc,M2(C)). On the subvariety A
4
[a1,b1,a2,b2]

of Rep 0(Λc,M2(C))

that parameterizes ρ of the form (3), the GL2(C)-action on Rep 0(Λc,M2(C)) reduces to the

C
∗ × C

∗-action

(a1, b1, a2, b2)
(t1,t2) // ( t1t

−1
2 a1 , t

−1
1 t2b1 , t1t

−1
2 a2 , t

−1
1 t2b2 ) ,

where (t1, t2) ∈ C
∗ × C

∗. The pair (ρ(ξ1), ρ(ξ2)) in Form (3) realizes this A
4
[a1,b1,a2,b2]

as the

representation variety of the quiver

•
b1

22

b2

99 • .

a1
zz a2ss

Impose the trivial GL2(C)-action on Y , then note that there is a natural GL2(C)-equivariant

morphism from Rep (Λc,M2(C)) to Y , as the composition

C[z1, z2, z3, z4]/(z1z2 − z3z4)
τ ♯
−→ Λc

ρ
−→ M2(C)

has the form

zi 7−→ 0 , i = 1 , 2 , 3 , 4 ,

for ρ conjugate to Form (1) or Form (2);

z1 7−→ a1b1 Id , z2 7−→ a2b2 Id , z3 7−→ a1b2 Id , z4 7−→ a2b1 Id

for ρ conjugate to Form (3).15 One can now follow the setting of [Ki] to define the stable

structures for the GL2(C)-action on Rep 0(Λc,M2(C)). There are two different choices, θ+ and

14Readers are referred to [leB1] for a general study of the several notions involved in this paragraph. We do
not need their details here.

15Note that when restricted to A
4
[a1,b1,a2,b2]

⊂Rep 0(Λc,M2(C)), this is the morphism A
4
[ξ1,ξ2,ξ3,ξ4]

→ Y in Sec. 2
after the substitution: a1 (here) → ξ1 (there), a2 → ξ2, b1 → ξ3, b2 → ξ4.
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θ−, of such structures in the current case. The corresponding stable locus on the quiver variety

A
4
[a1,b1,a2,b2]

is given respectively by

A
4 , θ+
[a1,b1,a2,b2]

= A
4
[a1,b1,a2,b2]

− V (b1, b2) and A
4 , θ−
[a1,b1,a2,b2]

= A
4
[a1,b1,a2,b2]

− V (a1, a2) ,

where V (a1, a2) (resp. V (b1, b2)) is the subvariety of A4
[a1,b1,a2,b2]

associated to the ideal (a1, a2)

(resp. (b1, b2)). The corresponding GIT quotients

Rep 0(Λc,M2(C))//
θ+GL2(C)

πθ+

))SSSSSSSSSSSSSSSS
Rep 0(Λc,M2(C))//

θ−GL2(C)

πθ−

uukkkkkkkkkkkkkkkk

Y

recover

Y+

π+   A
AA

AA
AA

Y−

π−~~}}
}}

}}
}

Y

at the beginning of the section. See [leB-S], [leB2] for the mathematical detail and [Be], [B-L],

[K-W] for the SQFT/stringy origin.

From the viewpoint of the Polchinski-Grothendieck Ansatz, both the Azumaya-type noncom-

mutative structure on D-branes and a noncommutative structure over Y described by SpaceΛc

come into play in the above setting. As indicated by the explicit expression for ρ◦ τ ♯ above, any

morphism ϕ̃ : SpaceM2(C) → SpaceΛc has the property:

· The composition

SpaceM2(C)
ϕ̃

−→ SpaceΛc
τ

−→ Y

is a morphism ϕ := ϕ̃ ◦ τ from the Azumaya point ptAz = SpaceM2(C) to Y with the

associated surrogate ptϕ ≃ SpecC.

Thus, the new ingredient of target-space noncommutativity comes into play as another key role

toward resolutions of Y in the above setting while the generalized-jet-resolution-of-singularity

picture in our earlier discussion disappears.

Remark 3.5. [world-volume noncommutativity vs. target-space(-time) noncommutativity ]. Such

a “trading” between a noncommutativity target and morphisms from Azumaya schemes to a

commutative target suggests a partial duality between D-brane world-volume noncommutativity

and target space(-time) noncommutativity.

Figure 3-1.
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0

Spec

D0-brane  of  rank  2

M  (   )  NC  cloud2

2

U  Space

Y

0

ΛcSpace

τ

~ϕ

Figure 3-1. Trading of morphisms from SpaceM2(C) directly to the conifold Y
with those to the noncommutative space SpaceΛc over Y . Note that for generic
ρ ∈ Rep (Λc,M2(C)) such that ρ ◦ τ ♯ = 0, ρ(Λc) is similar to the C-subalgebra U
of upper triangular matrices in M2(C). The noncommutative point SpaceU is also
smooth, with SpecU consisting of two C-points connected by a directed nilpotent
bond. It is thus represented by a quiver • // • in the figure. Furthermore, let
ϕ̃ : SpaceM2(C) → SpaceΛc be the corresponding morphism. Then ϕ̃ determines also
a flag in the Chan-Paton module ϕ̃∗C

2 on the image D0-brane Im ϕ̃ . On the other
hand, over a generic p 6= 0 on Y , the generic image of a ϕ̃′ that maps to p after the
composition with τ will be simply SpaceM2(C) .
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