Azumaya structure on D-branes and deformations and resolutions of a conifold revisited: Klebanov-Strassler-Witten vs. Polchinski-Grothendieck

Chien-Hao Liu and Shing-Tung Yau

Abstract

In this sequel to [L-Y1], [L-L-S-Y], and [L-Y2] (respectively arXiv:0709.1515 [math.AG], arXiv:0809.2121 [math.AG], and arXiv:0901.0342 [math.AG]), we study a D-brane probe on a conifold from the viewpoint of the Azumaya structure on D-branes and toric geometry. The details of how deformations and resolutions of the standard toric conifold Y can be obtained via morphisms from Azumaya points are given. This should be compared with the quantum-field-theoretic/D-brany picture of deformations and resolutions of a conifold via a D-brane probe sitting at the conifold singularity in the work of Klebanov and Witten [K-W] (arXiv:hep-th/9807080) and Klebanov and Strasser [K-S] (arXiv:hep-th/0007191). A comparison with resolutions via noncommutative desingularizations is given in the end.

Key words: D-brane, Azumaya structure, Polchinski-Grothendieck Ansatz, Azumaya point, conifold.
MSC number 2000: 14E15, 81T30; 14A22, 16G30, 81T75.

[^0]> In memory of a young string theorist Ti-Ming Chiang, whose path I crossed accidentally and so briefly. ${ }^{\dagger}$

${ }^{\dagger}$ From C.-H.L. During the years I was attending Prof. Candelas's group meetings, I learned more about Calabi-Yau manifolds and mirror symmetry and got very fascinated by the works from Brian Greene's group. Because of this, I felt particularly lucky knowing later that I was going to meet one of his students, Ti-Ming, - a young string theorist with a PhD from Cornell at his very early 20's - and perhaps to cooperate with him. Unfortunately that anticipated cooperation never happened. Ti-Ming had become unwell just before I resettled. Except the visits to him at the hospital and some chats when he showed up in the office, I didn't really get the opportunity to interact with him intellectually. Further afterwards I was informed of Ti-Ming's passing away. Like a shooting star he reveals his shining so briefly and then disappears. The current work is the last piece of Part 1 of the D-brane project. It is grouped with the earlier $D(1), D(2), D(3)$ under the hidden collective title: "Azumaya structure on D-branes and its tests". Here we address in particular a conifold from the viewpoint of a D-brane probe with an Azumaya structure. This is a theme Ti-Ming may have felt interested in as well, should he still work on string theory, since conifolds have play a role in understanding the duality web of Calabi-Yau threefolds - a theme Ti-Ming once worked on - and D-brane resolution of singularities is a theme Brian Greene's group once pursued vigorously. We thus dedicate this work to the memory of Ti-Ming.

0 . Introduction and outline.

Conifolds, i.e. Calabi-Yau threefolds with ordinary double-points, have been playing special roles at various stages of string theory 1 In this sequel to [L-Y1], [L-L-S-Y], and [L-Y2], we study a D-brane probe on a conifold from the viewpoint of Azumaya structure on D-branes and toric geometry. This should be compared with the quantum-field-theoretic/D-brany picture of deformations and resolutions of a conifold in the work of Klebanov and Strasser [K-S] and Klebanov and Witten [K-W].

Effective-space-time-filling D3-brane at a conifold singularity.

In [K-W], Klebanov and Witten studied the $d=4, N=1$ superconformal field theory (SCFT) ${ }^{2}$ on the D3-brane world-volume $X\left(\simeq \mathbb{R}^{4}\right.$ topologically) that is embedded in the product spacetime $\mathbb{M}^{3+1} \times Y$ as $\mathbb{M}^{3+1} \times\{\mathbf{0}\}, 3^{3}$ and its supergravity dual - a compactification of $d=10$, typeIIB supergravity theory on $\operatorname{AdS}^{5} \times\left(S^{3} \times S^{2}\right)$ - along the line of the AdS/CFT correspondence of Maldacena [Ma]. Here \mathbb{M}^{3+1} is the $d=3+1$ Minkowski space-time, Y is the conifold $\left\{z_{1} z_{2}-z_{3} z_{4}=0\right\} \subset \mathbb{C}^{4}$ (with coordinates $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$), $\mathbf{0}$ is the conifold singularity on Y, and AdS ${ }^{5}$ is the $d=4+1$ anti-de Sitter space-time.

In the simplest case when there is a single D3-brane sitting at the conifold point of Y, the classical moduli space of the supersymmetric vacua of the associated $U(1)$ super-Yang-Mills theory coupled with matter on the D3-brane world-volume comes from the D-term of the vector multiplet and the coefficient $\zeta \in \mathbb{R}$ of the Fayet-Iliopoulos term in the Lagrangian $\sqrt[4]{ }$ By varying ζ, one realizes the two small resolutions, Y_{+}and Y_{-}, of Y as the classical moduli space Y_{ζ} of the above $d=4 \mathrm{SCFT} 5$ A flop $X_{+}-->Y_{-}$happens when Y_{ζ} crosses over $\zeta=0$.

To describe the physics for N-many parallel D3-branes sitting at the conifold singularity, Klebanov and Witten proposed to enlarge the gauge group for the super-Yang-Mills theory on the common world-volume of the stacked D3-brane to $U(N) \times U(N)$ (rather than the naive $U(N))$ and introduce a superpotential W for the chiral multiplets. The classical moduli space of the theory comes from a system with equations of the type above (i.e. D-term equations) and equations from the superpotential term W (i.e. F-term equations). In particular, the N-fold symmetric product $S_{y m}{ }^{n} Y$ of Y can be realized as the classical moduli space of the $d=4$ SCFT on the D3-brane world-volume with $\zeta=0$.

In [K-S], Klebanov-Strassler studied further $d=4, N=1$ supersymmetric quantum field theory (SQFT) on the D3-brane world-volume that arises from a D3-brane configuration with both N-many above full/free D3-branes and M-many new fractional/trapped D3-branes ${ }^{6}$ sitting

[^1]at the conifold singularity $\mathbf{0}$ of Y. For infrared physics, the theory now has the gauge group $S U(N+M) \times S U(N)$. It follows from the work of Affleck, Dine, and Seiberg [A-D-S] that an additional term to the previous superpotential W is now dynamically generated. This deforms the classical moduli space of SUSY vacua of the $d=4$ SQFT on the D3-brane world-volume. In the simplest case when $N=M=1$, this enforces a deformation of the classical moduli space from a conifold to a deformed conifold $Y^{\prime}\left(\simeq T^{*} S^{3}\right.$ topologically). Cf. Figure 0-1.

Figure 0-1. (Cf. [Stra: Figures 25, 26, 27].) When a fractional/trapped D3-brane sits at the conifold singularity $\mathbf{0} \in Y$, the full/free D3-brane "sees" a smooth deformed conifold $Y^{\prime}\left(\simeq T^{*} S^{3}\right.$ topologically) as its classical vacua manifold. I.e., in very low energy for this situation the free D3-brane "feels" as if it lives on Y^{\prime} instead of Y ! In the figure, a full D3-brane is indicated by \bullet while a fractional D3-brane by o.

While giving only a highlight of key points in $[\mathrm{K}-\mathrm{W}]$ and $[\mathrm{K}-\mathrm{S}]$ that are most relevant to us, we should remark that, in addition to further quantum-field-theoretical issues on the gauge theory side, there is also a gravity side of the story that was studied in $[\mathrm{K}-\mathrm{W}]$ and $[\mathrm{K}-\mathrm{S}] .8$

Azumaya structure on D-branes and its tests.

In $\mathrm{D}(1)$ [L-Y1], $\mathrm{D}(2)$ [L-L-S-Y], $\mathrm{D}(3)$ [L-Y2] and the current work $\mathrm{D}(4)$, we illuminate the Azumaya geometry as a key feature of the geometry on D-brane world-volumes in the algebrogeometric category. These four together center around the very remark of Polchinski:
([Po: vol. 1, Sec. 8.7, p. 272]) "For the collective coordinate X^{μ}, however, the meaning is mysterious: the collective coordinates for the embedding of $n D$-branes in space-time are now enlarged to $n \times n$ matrices. This 'noncommutative geometry' has proven to play a key role in the dynamics of D-branes, and there are conjectures that it is an important hint about the nature of space-time.",

[^2]which was taken as a guiding question as to what a D-brane is in this project, cf. [L-Y1: Sec. 2.2]. $\mathrm{D}(2), \mathrm{D}(3)$, and the current $\mathrm{D}(4)$ are meant to give more explanations of the highlight [L-Y1: Sec. 4.5]. In this consecutive series of four, we learned that:

Lesson 0.1 [Azumaya structure on D-branes]. This "enhancement to $n \times n$ matrices" Polchinski alluded to says even more fundamentally the nature of D-branes themselves, i.e. the Azumaya structure thereupon. This structure gives them the power to detect the nature of space-time. We also learned that Azumaya structures on D-branes and morphisms therefrom can be used to reproduce/explain several stringy/brany phenomena of stringy or quantum-fieldtheoretical origin that are very surprising/mysterious at a first mathematical glance.

This is a basic test to ourselves to believe that Azumaya structures play a special role in understanding/desccribing D-branes in string theory. Having said this, we should however mention that D-brane remains a very complicated object and the Azumaya structure addressed here is only a part of it. Further issues are investigated in separate works.

Convention. Standard notations, terminology, operations, facts in (1) physics aspects of strings and D-branes; (2) algebraic geometry; (3) toric geometry can be found respectively in (1) [Po], [Jo]; (2) [Ha]; (3) [Fu].

- Noncommutative algebraic geometry is a very technical topic. For the current work, [Art] of Artin, [K-R] of Kontsevich and Rosenberg, and [leB1] of Le Bruyn are particularly relevant. See [L-Y1: References] for more references.

Outline.

0 . Introduction.

- Effective-space-time-filling D3-brane at a conifold singularity
- Azumaya structure on D-branes and its tests

1. D-branes in an affine noncommutative space.

- Affine noncommutative spaces and their morphisms
- D-branes in an affine noncommutative space à la Polchinski-Grothendieck Ansatz

2. Deformations of a conifold via an Azumaya probe.

- a toric setup for the standard local conifold
- an Azumaya probe to a noncommutative space and its commutative descent
- deformations of the conifold via an Azumaya probe: descent of noncommutative superficially-infinitesimal deformations.
- deformations of the conifold via an Azumaya probe: details

3. Resolutions of a conifold via an Azumaya probe.

- D-brane probe resolutions of a conifold via the Azumaya structure
- an explicit construction of $\tilde{Y}^{\prime}, Y_{+}^{\prime}$, and Y_{-}^{\prime}
- a comparison with resolutions via noncommutative desingularizations

1 D-branes in an affine noncommutative space.

We recall definitions and notions in [L-Y1] that are needed for the current work. Readers are referred to ibidem for more details and references. See also [L-L-S-Y] and [L-Y2] for further explanations and examples.

Affine noncommutative spaces and their morphisms.

An affine noncommutative space over \mathbb{C} is meant to be a "space" Space R that is associated to an associative unital \mathbb{C}-algebra R. In general, it can be tricky to truly realize Space R as a set of points with a topology in a natural/functorial way. However, "geometric" notions can still be pursued - despite not knowing what Space R really is - via imposing the fundamental geometry/algebra ansatz:

- [geometry $=$ algebra $]$ The correspondence $R \leftrightarrow$ Space R gives a contravariant equivalence between the category $\mathcal{A l} g_{\mathbb{C}}$ of associative unital \mathbb{C}-algebras and the category $\mathcal{A} f f i n e S p a c e e_{\mathbb{C}}$ of "affine noncommutative spaces" over \mathbb{C}.
For example,
Definition 1.1. [smooth affine noncommutative space]. ([C-Q: Sec. 3], [K-R: Sec. 1.1.4].) An affine noncommutative space Space R over \mathbb{C} is said to be smooth if the associative unital \mathbb{C}-algebra R is finitely generated and satisfies the following property:
- (lifting property for nilpotent extensions) for any \mathbb{C}-algebra S, two-sided nilpotent ideal $I \subset R$ (i.e. $I=B I B$ and $I^{n}=0$ for $n \gg 0$), and \mathbb{C}-algebra homomorphism $h: R \rightarrow B / I$, there exists an \mathbb{C}-algebra homomorphism $\widetilde{h}: R \rightarrow S$ such that the diagram

commutes. Here $B \rightarrow B / I$ is the quotient map.
The following two classes of smooth affine noncommutative spaces are used in this work.
Example 1.2. [noncommutative affine space]. ([K-R: Sec. 2: Example (E1)].) The noncommutative affine n-space $N \mathbb{A}^{n}:=\operatorname{Space}\left(\mathbb{C}\left\langle\xi_{1}, \cdots, \xi_{n}\right\rangle\right)$ over \mathbb{C} is smooth. Here $\mathbb{C}\left\langle\xi_{1}, \cdots, \xi_{n}\right\rangle$ is the associative unital \mathbb{C}-algebra freely generated by the elements in the set $\left\{\xi_{1}, \cdots, \xi_{n}\right\}$.

Example 1.3. [Azumaya-type noncommutative space]. ([C-Q: Sec. 5 and Proposition 6.2], [K-R: Sec. 1.2, Examples (E2) and (C4)].) Let $M_{r}(R)$ be the \mathbb{C}-algebra of $r \times r$-matrices with entries in a commutative regular \mathbb{C}-algebra R. Then the Azumaya-type noncommutative space Space $M_{r}(R)$ is smooth (over \mathbb{C}). Furthermore, it is also smooth over Spec R.

As a consequence of the Geometry/Algebra Ansatz, a morphism $\varphi: X=\operatorname{Space} R \rightarrow Y=$ Space S is defined contravariantly to be a \mathbb{C}-algebra homomorphism $\varphi^{\sharp}: S \rightarrow R$. The image, denoted $\operatorname{Im} \varphi$ or $\varphi(X)$, of X under φ is defined to be $\operatorname{Space}\left(S / \operatorname{Ker} \varphi^{\sharp}\right)$. The latter is canonically included in Y via the morphism $\iota: \varphi(X) \hookrightarrow Y$ defined by the \mathbb{C}-algebra quotient-homomorphism $\iota^{\sharp}: S \rightarrow S / \operatorname{Ker}^{\sharp} \varphi^{\sharp}$. This extends what is done in Grothendieck's theory of (commutative) schemes. The benefit of thinking a morphism between affine noncommutative spaces this way is actually two folds:
(1) As a functor of point: The space $X=S p a c e ~ R$ defines a functor

$$
\begin{array}{cccc}
h_{X}: \mathcal{A f f i n e S p a c e}_{\mathbb{C}} & \longrightarrow & \operatorname{Set}^{\circ} \\
Y & \longmapsto & \operatorname{Mor}(Y, X) ;
\end{array}
$$

i.e. a functor

$$
\begin{array}{cccc}
h_{R}: \mathcal{A l g} & \longrightarrow & \operatorname{Set} \\
S & \longmapsto & \operatorname{Hom}(R, S) .
\end{array}
$$

Here Set is the category of sets, $\operatorname{Se} t^{\circ}$ its opposite category, and $\operatorname{Hom}(R, S)$ is the set of \mathbb{C}-algebra-homomorphisms.
(2) As a probe: $X=$ Space R defines another functor

$$
\begin{array}{cccc}
g_{X}: \text { AffineSpace } \mathbb{C}^{l} & \longrightarrow & \text { Set } \\
Y & \longmapsto & \operatorname{Mor}(X, Y) ;
\end{array}
$$

i.e. a functor

$$
\begin{array}{rlcc}
g_{R}: \mathcal{A} l g_{\mathbb{C}} & \longrightarrow & \operatorname{Set}^{\circ} \\
S & \longmapsto & \operatorname{Hom}(S, R) .
\end{array}
$$

Aspect (1) is by now standard in algebraic geometry. It allows one to define the various local geometric properties of a "space" via algebra-homomorphisms; for example, Definition 1.1. It suggests one to think of X as a sheaf over $\mathcal{A f f i n e S p a c e}{ }_{\mathbb{C}}$. Thus, after the notion of coverings and gluings is selected, it allows one to extend the notion of a noncommutative space to that of a "noncommutative stack". Aspect (2) is especially akin to our thought on D-branes. It says, in particular, that the geometry of $X=$ Space R can be revealed through an \mathbb{C}-subalgebra of R.

Example 1.4. [Azumaya point]. Consider the Azumaya point of rank r : Space $M_{r}(\mathbb{C})$. Its only two-sided prime ideal is (0), the zero ideal. Thus, naively, one would expect $\operatorname{Space} M_{r}(\mathbb{C})$ to behave like a point with an Artin \mathbb{C}-algebra as its function ring. However, for example, from the \mathbb{C}-algebra monomorphism $\times{ }^{r} \mathbb{C} \hookrightarrow M_{r}(\mathbb{C})$ with image the diagonal matrices in $M_{r}(\mathbb{C})$, one sees that $\operatorname{Space} M_{r}(\mathbb{C})$ - which is topologically a one-point set if one adopts its interpretation as Spec $M_{r}(\mathbb{C})$ - can dominate $\amalg_{r} S p e c \mathbb{C}$ - which is topologically a disjoint union of r-many points -. Furthermore, consider, for example, the morphism $\varphi:$ Space $M_{r}(\mathbb{C}) \rightarrow \mathbb{A}^{1}=\operatorname{Spec} \mathbb{C}[z]$ defined by $\varphi^{\sharp}: \mathbb{C}[z] \rightarrow M_{r}(\mathbb{C})$ with $\varphi^{\sharp}(z)=m$ that is diagonalizable with r distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{r}$. Then $\operatorname{Im} \varphi$ is a collection of r-many \mathbb{C}-points on \mathbb{A}^{1}, located at $z=\lambda_{1}, \cdots, \lambda_{r}$ respectively. In other words, the Azumaya noncommutativity cloud $M_{r}(\mathbb{C})$ over the seemingly one-point space Space $M_{r}(\mathbb{C})$ can really "split and condense" to a collection of concrete geometric points! Cf. Figure 1-1. See [L-Y1: Sec. 4.1] for more examples. Such phenomenon generalizes to Azumaya schemes; in particular, see [L-L-S-Y] for the case of Azumaya curves.

Definition 1.5. [surrogate associated to morphism]. Given $X=$ Space R, let $R^{\prime} \hookrightarrow R$ be a \mathbb{C}-subalgebra of R. Then, the space $X^{\prime}:=$ Space R^{\prime} is called a surrogate of X. By definition, there is a built-in dominant morphism $X \rightarrow X^{\prime}$, defined by the inclusion $R^{\prime} \hookrightarrow R$. Given a morphism $\varphi:$ Space $R \rightarrow$ Space S defined by $\varphi^{\sharp}: S \rightarrow R$, then Space R_{φ}, where R_{φ} is the image $\varphi^{\sharp}(S)$ of S in R, is called the surrogate of X associated to φ.

As Example 1.4 illustrates, commutative surrogates may be used to manifest/reveal the hidden geometry of a noncommutative space.

Figure 1-1. ([L-L-S-Y: Figure 2-1-1].) Despite that Space $M_{r}(\mathbb{C})$ may look only one-point-like, under morphisms the Azumaya "noncommutative cloud" $M_{r}(\mathbb{C})$ over Space $M_{r}(\mathbb{C})$ can "split and condense" to various schemes with a rich geometry. The latter schemes can even have more than one component. The Higgsing/un-Higgsing behavior of the Chan-Paton module of D0-branes on Y occurs due to the fact that when a morphism $\varphi:$ Space $M_{r}(\mathbb{C}) \rightarrow Y$ deforms, the corresponding push-forward $\varphi_{*} \mathbb{C}^{r}$ of the fundamental module \mathbb{C}^{r} on $\operatorname{Space} M_{r}(\mathbb{C})$ can also change/deform. These features generalize to morphisms from Azumaya schemes to Y. Here, a module over a scheme is indicated by a dotted arrow \qquad

Definition 1.6. [push-forward of module]. Given a morphism $\varphi: X=\operatorname{Space} R \rightarrow Y=$ Space S, defined by $\varphi^{\sharp}: S \rightarrow R$, and a (left) R-module M, the push-forward of M from X to Y under φ, in notation $\varphi_{*} M$ or ${ }_{S} M$ when φ is understood, is defined to be M as a (left) S-module via φ^{\sharp}. Since $\operatorname{Ker} \varphi^{\sharp} \cdot M=0$, we say that the S-module $\varphi_{*} M$ on Y is supported on $\varphi(X) \subset Y$.

In particular, any R-module M on $X=S p a c e ~ R$ has a push-forward on any surrogate of X.

D-branes in an affine noncommutative space à la Polchinski-Grothendieck Ansatz.

A D-brane is geometrically a locus in space-time that serves as the boundary condition for open strings, 9 Through this, open strings dictate also the fields and their dynamics on D-branes. In particular, when a collection of D-branes are stacked together, the fields on the D-brane that govern the deformation of the brane are enhanced to matrix-valued, cf. Polchinski in [Po: vol. I, Sec. 8.7]. This open-string-induced phenomenon on D-branes, when re-read from Grothendieck's contravariant equivalence between the category of geometries and the category of algebras, says that D-brane world-volume carries an Azumaya-type noncommutative structure. I.e.

- Polchinski-Grothendieck Ansatz: D-brane has a geometry that is generically locally associated to algebras of the form $M_{r}\left(R_{0}\right)$, where R_{0} is an \mathbb{R}-algebra.

See [L-Y1: Sec. 2.2] for detailed explanations.
For this work, we will be restricting ourselves to affine situations in noncommutative algebraic geometry with R_{0} a commutative Noetherian \mathbb{C}-algebra. Thus:

Definition 1.7. [affine D-brane in affine target]. A D-brane (or D-brane world-volume) in an affine noncommutative space $Y=$ Space S is a triple that consists of

- a \mathbb{C}-algebra R that is isomorphic to $M_{r}\left(R_{0}\right)$ for an R_{0},
- a (left) generically simple R-module M, which has rank r as an R_{0}-module,
- a morphism $\varphi:$ Space $R \rightarrow Y$, defined by a \mathbb{C}-algebra-homomorphism $\varphi^{\sharp}: S \rightarrow R$.

We will write $\varphi:($ Space $R, M) \rightarrow Y$ for simplicity of notations. $\varphi(X)=\operatorname{Im} \varphi$ is called the image-brane on $Y . M$ is called the fundamental module on Space R and the push-forward $\varphi_{*} M$ is called the Chan-Paton module on the image-brane $\varphi(X)$.

Definition/Example 1.8. [D0-brane as morphism from Azumaya point with fundamental module]. A D0-brane of length r on an affine noncommutative space $Y=$ Space S is given by a morphism $\varphi:(\operatorname{Space} \operatorname{End}(V), V) \rightarrow Y$, where $V \simeq \mathbb{C}^{r}$. In other words, a D0-brane on Y is given by

- a finite-dimensional \mathbb{C}-vector space V and a \mathbb{C}-algebra-homomorphism: $\varphi^{\sharp}: S \rightarrow \operatorname{End}(V)$.

[^3]This is precisely a realization of a finite-dimensional \mathbb{C}-vector space V as an S-module 10 A morphism from $\varphi_{1}:\left(\operatorname{Space} \operatorname{End}\left(V_{1}\right), V_{1}\right) \rightarrow Y$ to $\varphi_{2}:\left(\operatorname{Space} \operatorname{End}\left(V_{2}\right), V_{2}\right) \rightarrow Y$ is a \mathbb{C}-vectorspace isomorphism $h: V_{2} \xrightarrow[\rightarrow]{\sim} V_{1}$ such that the following diagram commutes

Here, the h-induced isomorphism $\operatorname{End}\left(V_{2}\right) \xrightarrow{\sim} \operatorname{End}\left(V_{1}\right)$ is also denoted by h. In other words, a morphism between φ_{1} and φ_{2} is an isomorphism of the corresponding V_{1} and V_{2} as S-modules.

It follows from the above definition/example that the moduli stack $\mathfrak{M}_{r}^{\mathrm{D} 0}(Y)$ of D0-branes of length r on $Y=$ Space S has an atlas given by the representation scheme $\operatorname{Rep}\left(S, M_{r}(\mathbb{C})\right)$ that parameterizes all \mathbb{C}-algebra-homomorphisms $S \rightarrow M_{r}(\mathbb{C})$. The latter commutative scheme serves also as the moduli space of morphisms $\operatorname{Space} M_{r}(\mathbb{C}) \rightarrow Y$ with $M_{r}(\mathbb{C})$ treated as fixed. From $[\mathrm{K}-\mathrm{R}]$ and $[\mathrm{leB} 1]$, one expects that noncommutative geometric structures/properties of $Y=$ Space S are reflected in properties/structures of the discrete family of commutative schemes $\operatorname{Rep}\left(S, M_{r}(\mathbb{C})\right), r \in \mathbb{Z}_{>0}$. This anticipation from noncommutative algebraic geometry rings hand in hand with the stringy philosophy to use D-branes as a probe to the nature of space-time!

2 Deformations of a conifold via an Azumaya probe.

Using a toric setup for a conifold that is meant to match Klebanov-Witten [K-W], we discuss how an Azumaya probe "sees" deformations of the conifold in a way that resembles KlebanovStrassler [K-S].

A toric setup for the standard local conifold.

The standard local conifold $Y=\operatorname{Spec}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right)\right)$ can be given an affine toric variety description as follows. Let $N=\oplus_{i=1}^{4} \mathbb{Z} e_{i}$ be the rank 4 lattice and Δ be the fan in N that consists of the single non-strongly convex polyhedral cone $\sigma=\oplus_{i=1}^{6} \mathbb{R}_{\geq 0} v_{i}$ in $N_{\mathbb{R}}:=N \otimes_{\mathbb{Z}} \mathbb{R}$, where

$$
\begin{array}{ll}
v_{1}=e_{1}, \quad v_{2}=e_{2}, & v_{3}=e_{3}, \quad v_{4}=-e_{1}+e_{2}+e_{3} \\
v_{5}=e_{1}-e_{2}-e_{3}+e_{4}, & v_{6}=-v_{5}=-e_{1}+e_{2}+e_{3}-e_{4}
\end{array}
$$

Let $M=\operatorname{Hom}(N, \mathbb{Z})$ be the dual lattice of N, with the dual basis $\left\{e_{1}^{*}, e_{2}^{*}, e_{3}^{*}, e_{4}^{*}\right\}$. Then, the dual cone σ^{\vee} of σ is given by $\operatorname{Span}_{\mathbb{R}_{\geq 0}}\left\{e_{1}^{*}+e_{2}^{*}, e_{3}^{*}+e_{4}^{*}, e_{1}^{*}+e_{3}^{*}, e_{2}^{*}+e_{4}^{*}\right\} \subset M_{\mathbb{R}}$. This determines a commutative semigroup

$$
S_{\sigma}=\sigma^{\vee} \cap M=\operatorname{Span}_{\mathbb{Z}}{ }_{\geq 0}\left\{e_{1}^{*}+e_{2}^{*}, e_{3}^{*}+e_{4}^{*}, e_{1}^{*}+e_{3}^{*}, e_{2}^{*}+e_{4}^{*}\right\}
$$

[^4]with generators $e_{1}^{*}+e_{2}^{*}, e_{3}^{*}+e_{4}^{*}, e_{1}^{*}+e_{3}^{*}, e_{2}^{*}+e_{4}^{*}$. The corresponding group-algebra
$$
\mathbb{C}\left[S_{\sigma}\right]=\mathbb{C}\left[\xi_{1} \xi_{2}, \xi_{3} \xi_{4}, \xi_{1} \xi_{3}, \xi_{2} \xi_{4}\right] \subset \mathbb{C}\left[\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right]
$$
where $\xi_{i}=\exp \left(e_{i}^{*}\right), i=1,2,3,4$, defines then the conifold
$$
Y=U_{\sigma}=\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)=\operatorname{Spec}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right)\right)
$$
where
$$
z_{1}=\xi_{1} \xi_{2}, \quad z_{2}=\xi_{3} \xi_{4}, \quad z_{3}=\xi_{1} \xi_{3}, \quad z_{4}=\xi_{2} \xi_{4}
$$

Note that built into this construction is the morphism

$$
\mathbb{A}_{\left[\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right]}^{4}:=\operatorname{Spec}\left(\mathbb{C}\left[\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right]\right) \longrightarrow Y \hookrightarrow \mathbb{A}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{4}:=\operatorname{Spec}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right]\right)
$$

where the first morphism is surjective.

An Azumaya probe to a noncommutative space and its commutative descent.

Guided by $[\mathrm{K}-\mathrm{W}]$ and $[\mathrm{K}-\mathrm{S}]$, where ξ_{i} 's here play the role of scalar component of chiral superfields involved in ibidem, consider the noncommutative space

$$
\begin{aligned}
\Xi & :=\operatorname{Space}\left(R_{\Xi}\right) \\
& :=\operatorname{Space}\left(\frac{\mathbb{C}\left\langle\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right\rangle}{\left(\left[\xi_{1} \xi_{3}, \xi_{2} \xi_{4}\right],\left[\xi_{1} \xi_{3}, \xi_{1} \xi_{4}\right],\left[\xi_{1} \xi_{3}, \xi_{2} \xi_{3}\right],\left[\xi_{2} \xi_{4}, \xi_{1} \xi_{4}\right],\left[\xi_{2} \xi_{4}, \xi_{2} \xi_{3}\right],\left[\xi_{1} \xi_{4}, \xi_{2} \xi_{3}\right]\right)}\right)
\end{aligned}
$$

where $\mathbb{C}\left\langle\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right\rangle$ is the associative unital \mathbb{C}-algebra generated by $\left\{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right\},(\cdots)$ in the denominator is the two-sided ideal generated by \cdots, and $\left[\bullet, \bullet^{\prime}\right]$ is the commutator. Here, Space (•) is the would-be space associated to the ring •. We do not need its detail as all we need are morphisms between spaces which can be contravariantly expressed as ring-homomorphisms. By construction, the scheme-morphism $\mathbb{A}_{\left[\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right]}^{4} \rightarrow \mathbb{A}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{4}$, whose image is Y, extends to a morphism

$$
\pi^{\Xi}: \Xi \longrightarrow \mathbb{A}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{4}
$$

whose image is now the whole $\mathbb{A}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{4}$. The underlying ring-homomorphism is given by

$$
\begin{aligned}
\pi^{\Xi, \sharp}: \mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] & \longrightarrow R_{\Xi} \\
z_{1} & \longmapsto \xi_{1} \xi_{3} \\
z_{2} & \longmapsto \xi_{2} \xi_{4} \\
z_{3} & \longmapsto \xi_{1} \xi_{4} \\
z_{4} & \longmapsto \xi_{2} \xi_{3} .
\end{aligned}
$$

Consider a D0-brane moving on the conifold Y via the chiral superfields. In terms of Polchinski-Grothendieck Ansatz, this is realized by the descent of morphisms $\widetilde{\varphi}: \operatorname{Space} M_{1}(\mathbb{C})=$ $\operatorname{Spec} \mathbb{C} \rightarrow \Xi$ to $\varphi: S p a c e ~ M_{1}(\mathbb{C})=\operatorname{Spec} \mathbb{C} \rightarrow Y$ by the specification of ring-homomorphisms

$$
\widetilde{\varphi}^{\sharp}: \xi_{1} \longmapsto a_{1} ; \quad \xi_{2} \longmapsto a_{2} ; \quad \xi_{3} \longmapsto b_{1} ; \quad \xi_{4} \longmapsto b_{2}
$$

The corresponding

$$
\varphi^{\sharp}: z_{1} \longmapsto a_{1} b_{1} ; \quad z_{2} \longmapsto a_{2} b_{2} ; \quad z_{3} \longmapsto a_{1} b_{2} ; \quad z_{4} \longmapsto a_{2} b_{1}
$$

gives a morphism $\varphi: S \operatorname{pec} \mathbb{C} \rightarrow Y$, i.e. a \mathbb{C}-point on the conifold Y.

Deformations of the conifold via an Azumaya probe: descent of noncommutative superficially-infinitesimal deformations.

We now consider what happens if we add a D0-brane to the conifold point of Y. This D0brane together with the D0-brane probe is the image of a morphism from the Azumaya point Space $M_{2}(\mathbb{C})$ to Y. Thus we should consider morphisms $\widetilde{\varphi}:$ Space $M_{2}(\mathbb{C}) \rightarrow \Xi$ of noncommutative spaces and their descent φ on related commutative spaces.

Definition 2.1. [superficially infinitesimal deformation]. Given finitely-presented associative unital rings, $R=\left\langle r_{1}, \ldots, r_{m}\right\rangle / \sim$ and S, and a ring-homomorphism $h: R \rightarrow S$. A superficially infinitesimal deformation of h with respect to the generators $\left\{r_{1}, \ldots, r_{m}\right\}$ of R is a ring-homomorphism $h_{\varepsilon}: R \rightarrow S$ such that $h_{\varepsilon}\left(r_{i}\right)=h\left(r_{i}\right)+\varepsilon_{i}$ with $\varepsilon_{i}^{2}=0$, for $i=1, \ldots, m$.

Remark 2.2. [commutative S]. Note that when S is commutative, a superficially infinitesimal deformation of $h_{\varepsilon}: R \rightarrow S$ is an infinitesimal deformation of h in the sense that $h_{\varepsilon}(r)=h(r)+\varepsilon_{r}$ with $\left(\varepsilon_{r}\right)^{2}=0$, for all $r \in R$. This is no longer true for general noncommutative S.

To begin, consider the diagram of morphisms of spaces

given by ring-homomorphisms

with

$$
A_{1} ; A_{2} ; B_{1} ; B_{2} \longleftarrow \tilde{\varphi}^{\sharp} \longrightarrow \xi_{1} ; \xi_{2} ; \xi_{3} ; \xi_{4}
$$

where

$$
A_{1}=\left[\begin{array}{cc}
a_{1} & 0 \\
0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
a_{2} & 0 \\
0 & 0
\end{array}\right], \quad B_{1}=\left[\begin{array}{cc}
b_{1} & 0 \\
0 & 0
\end{array}\right], \quad B_{2}=\left[\begin{array}{cc}
b_{2} & 0 \\
0 & 0
\end{array}\right] .
$$

The image D-brane $\varphi\left(\operatorname{Space} M_{2}(\mathbb{C})\right)$ is supported on a subscheme Z of Y associated to the ideal

$$
\operatorname{Ker} \varphi=\left\{\begin{aligned}
&\left(\overline{z_{1}}, \overline{z_{2}}, \overline{z_{3}}, \overline{z_{4}}\right) \cap\left(\overline{z_{1}}-a_{1} b_{1}, \overline{z_{2}}-a_{2} b_{2}, \overline{z_{3}}-a_{1} b_{2}, \overline{z_{4}}-a_{2} b_{1}\right) \\
& \text { if the tuple }\left(a_{1} b_{1}, a_{2} b_{2}, a_{1} b_{2}, a_{2} b_{1}\right) \neq(0,0,0,0), \\
&\left(\overline{z_{1}}, \overline{z_{2}}, \overline{z_{3}}, \overline{z_{4}}\right) \quad \text { if the tuple }\left(a_{1} b_{1}, a_{2} b_{2}, a_{1} b_{2}, a_{2} b_{1}\right)=(0,0,0,0) .
\end{aligned}\right.
$$

The former corresponds to two simple non-coincident D0-branes, each with Chan-Paton module \mathbb{C}, on the conifold Y with one of them sitting at the conifold point $\mathbf{0}$ and the other sitting at the \mathbb{C}-point with the coordinate tuple $\left(a_{1} b_{1}, a_{2} b_{2}, a_{1} b_{2}, a_{2} b_{1}\right)$ while the latter corresponds to coincident D0-branes at $\mathbf{0}$ with the Chan-Paton module enhanced to \mathbb{C}^{2} at $\mathbf{0}$. In both situations, the support Z of the D-brane is reduced. This is the transverse-to-the-effective-space-time part of the D3-brane setting in $[\mathrm{K}-\mathrm{W}]$ and $[\mathrm{K}-\mathrm{S}]$.

Consider now a superficially infinitesimal deformation of $\widetilde{\varphi}$ given by:

Space $M_{2}(\mathbb{C})$	$\widetilde{\varphi}_{\left(\delta_{1}, \delta_{2}, \eta_{1}, \eta_{2}\right)}$	$\Xi=$ Space R_{Ξ}
$M_{2}(\mathbb{C})$	$\tilde{\varphi}_{\left(\delta_{1}, \delta_{2}, \eta_{1}, \eta_{2}\right)}^{\sharp}$	R_{Ξ}
$A_{2} ; B_{1} ; B_{2}$		$\xi_{1} ; \xi_{2} ; \xi_{3} ; \xi_{4}$

where

$$
A_{1}=\left[\begin{array}{cc}
a_{1} & \delta_{1} \\
0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
a_{2} & \delta_{2} \\
0 & 0
\end{array}\right], \quad B_{1}=\left[\begin{array}{cc}
b_{1} & 0 \\
\eta_{1} & 0
\end{array}\right], \quad B_{2}=\left[\begin{array}{ll}
b_{2} & 0 \\
\eta_{2} & 0
\end{array}\right]
$$

Should Space $M_{2}(\mathbb{C})$ be a commutative space, this would give only an infinitesimal deformation of φ. However, Space $M_{2}(\mathbb{C})$ is not a commutative space and, hence, the naive anticipation above could fail. Indeed, the descent $\varphi_{\left(\delta_{1}, \delta_{2}, \eta_{1}, \eta_{2}\right)}$ of $\widetilde{\varphi}_{\left(\delta_{1}, \delta_{2}, \eta_{1}, \eta_{2}\right)}$ is given by

$$
\begin{array}{ccc}
\text { Space } M_{2}(\mathbb{C}) & \begin{array}{c}
\varphi_{\left(\delta_{1}, \delta_{2}, \eta_{1}, \eta_{2}\right)}
\end{array} & \mathbb{A}^{4} \\
M_{2}(\mathbb{C}) & \stackrel{\varphi_{\left(\delta_{1}, \delta_{2}, \eta_{1}, \eta_{2}\right)}^{\sharp}}{\longleftrightarrow} & \mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] \\
A_{1} B_{1} ; A_{2} B_{2} ; A_{1} B_{2} ; A_{2} B_{1} & \rightleftarrows & z_{1} ; z_{2} ; z_{3} ; z_{4}
\end{array}
$$

i.e.

$$
\left[\begin{array}{cc}
a_{1} b_{1}+\delta_{1} \eta_{1} & 0 \\
0 & 0
\end{array}\right] ;\left[\begin{array}{cc}
a_{2} b_{2}+\delta_{2} \eta_{2} & 0 \\
0 & 0
\end{array}\right] ;\left[\begin{array}{cc}
a_{1} b_{2}+\delta_{1} \eta_{2} & 0 \\
0 & 0
\end{array}\right] ;\left[\begin{array}{cc}
a_{2} b_{1}+\delta_{2} \eta_{1} & 0 \\
0 & 0
\end{array}\right] .
$$

The image $Z:=\varphi_{\left(\delta_{1}, \delta_{2}, \eta_{1}, \eta_{2}\right)}\left(\right.$ Space $\left.M_{2}(\mathbb{C})\right)$ of the Azumaya point Space $M_{2}(\mathbb{C})$ under $\varphi_{\left(\delta_{1}, \delta_{2}, \eta_{1}, \eta_{2}\right)}$ remains a 0 -dimensional reduced scheme, consisting of either two \mathbb{C}-points - with one of them at $\mathbf{0}$ - or $\mathbf{0}$ alone. However,

$$
z_{1} z_{2}-z_{3} z_{4}=\left|\begin{array}{cc}
z_{1} & z_{3} \\
z_{4} & z_{2}
\end{array}\right|=\left|\begin{array}{cc}
a_{1} & \delta_{1} \\
a_{2} & \delta_{2}
\end{array}\right| \cdot\left|\begin{array}{cc}
b_{1} & b_{2} \\
\eta_{1} & \eta_{2}
\end{array}\right|
$$

vanishes if and only if either $\left|\begin{array}{ll}a_{1} & \delta_{1} \\ a_{2} & \delta_{2}\end{array}\right|$ or $\left|\begin{array}{ll}b_{1} & b_{2} \\ \eta_{1} & \eta_{2}\end{array}\right|$ is 0 . In other words, while the image $\varphi_{\left(\delta_{1}, \delta_{2}, \eta_{1}, \eta_{2}\right)}\left(S p a c e M_{2}(\mathbb{C})\right)$ still contains the conifold-point $\mathbf{0}$ in Y, as a whole it may longer lie completely even in any infinitesimal neighborhood of the conifold Y in \mathbb{A}^{4}. I.e.:

Lemma 2.3. [deformation from descent of superficially infinitesimal deformation]. The descent $\varphi_{\left(\delta_{1}, \delta_{2}, \eta_{1}, \eta_{2}\right)}$ of a superficially infinitesimal deformation of $\widetilde{\varphi}$ can truly deform φ. Thus, an appropriate choice of a subspace of the space of morphisms $\widetilde{\varphi}_{(\bullet)}: \operatorname{Space} M_{2}(\mathbb{C}) \rightarrow \Xi$ can descend to give a space of morphisms $\varphi_{(\bullet)}: \operatorname{Space} M_{2}(\mathbb{C}) \rightarrow \mathbb{A}^{4}$ that is parameterized by a deformed conifold Y^{\prime}.

This realizes a deformed conifold as a moduli space of morphisms from an Azumaya point and is the reason why the Azumaya probe can see a deformation of the conifold Y from the viewpoint of Polchinski-Grothendieck Ansatz. Figure 2-1.

Figure 2-1. A generic superficially infinitesimal deformation $\widetilde{\varphi}_{\left(\delta_{1}, \delta_{2}, \eta_{1}, \eta_{2}\right)}$ of $\widetilde{\varphi}$ has a noncommutative image $\simeq \operatorname{Space} M_{2}(\mathbb{C})$. It then descends to $\mathbb{A}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{4}$ and becomes a pair of \mathbb{C}-points on $\mathbb{A}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{4}$. One of the points is the conifold singularity $\mathbf{0}=V\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in Y$ and the other is the point $p^{\prime}=V\left(z_{1}-a_{1} b_{1}-\delta_{1} \eta_{1}, z_{2}-\right.$ $\left.a_{2} b_{2}-\delta_{2} \eta_{2}, z_{3}-a_{1} b_{2}-\delta_{1} \eta_{2}, z_{4}-a_{2} b_{1}-\delta_{2} \eta_{1}\right)$ off Y (generically). Through such deformations, any \mathbb{C}-point on $\mathbb{A}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{4}$ can be reached. Thus, one can realizes a deformation Y^{\prime} of Y in $\mathbb{A}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{4}$ by a subvariety in $\operatorname{Rep}\left(R_{\Xi}, M_{2}(\mathbb{C})\right)$. This is the Azumaya-geometry origin of the phenomenon in Klebanov-Strassler [K-S] that a trapped D-brane sitting on the conifold singularity may give rise to a deformation of the moduli space of SQFT on the D3-brane probe, turning a conifold to a deformed conifold. Our D0-brane here corresponds to the internal part of the effective-space-time-filling D3-brane world-volume of [K-S].

Remark 2.4. [generalization]. This phenomenon can be generalized beyond a conifold. In particular, recall that an A_{n}-singularity on a complex surface is also a toric singularity. Similar mechanism/discussion can be applied to deform a transverse A_{n}-singularity via morphisms from an Azumaya probe.

Deformations of the conifold via an Azumaya probe: details.

We now give an explicit construction that realizes Lemma 2.3. For convenienc ${ }^{11}$, we will take Space $M_{2}(\mathbb{C})$ as fixed, and is equipped with the defining fundamental (left) $M_{2}(\mathbb{C})$-module \mathbb{C}^{2}. Then, the space $\operatorname{Mor}^{a}\left(\operatorname{Space} M_{2}(\mathbb{C}), \Xi\right)$ of admissible morphisms of the form $\widetilde{\varphi}(\bullet)$ in the previous theme is naturally realized as a subscheme $\operatorname{Rep}^{a}\left(R_{\Xi}, M_{2}(\mathbb{C})\right)$ of the representation scheme $\operatorname{Rep}\left(R_{\Xi}, M_{2}(\mathbb{C})\right)$ that parameterizes elements in $\operatorname{Mor}_{\mathbb{C}-A l g}\left(R_{\Xi}, M_{2}(\mathbb{C})\right)$. From the previous discussion,

$$
\begin{aligned}
& \operatorname{Rep}^{a}\left(R_{\Xi}, M_{2}(\mathbb{C})\right)=\operatorname{Spec} \mathbb{C}\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}, b_{1}, b_{2}, \eta_{1}, \eta_{2}\right] \\
& \quad=: \mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}, b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{8}=\mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}\right]}^{4} \times \mathbb{C} \mathbb{A}_{\left[b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{4} .
\end{aligned}
$$

Consider also the space $\operatorname{Mor}^{a}\left(\operatorname{Space} M_{2}(\mathbb{C}), \mathbb{A}^{4}\right)$ of morphisms from Azumaya point to $\mathbb{A}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{4}$ with the associated \mathbb{C}-algebra-homomorphism of the form

$$
z_{1} \longmapsto\left[\begin{array}{cc}
c_{1} & 0 \\
0 & 0
\end{array}\right], z_{2} \longmapsto\left[\begin{array}{cc}
c_{2} & 0 \\
0 & 0
\end{array}\right], z_{3} \longmapsto\left[\begin{array}{cc}
c_{3} & 0 \\
0 & 0
\end{array}\right], z_{4} \longmapsto\left[\begin{array}{cc}
c_{4} & 0 \\
0 & 0
\end{array}\right] .
$$

Denote the associated representation scheme by

$$
\operatorname{Rep}^{a}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right], M_{2}(\mathbb{C})\right), \quad \text { which is } \quad \operatorname{Spec} \mathbb{C}\left[c_{1}, c_{2}, c_{3}, c_{4}\right]=: \mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4} .
$$

The \mathbb{C}-algebra homomorphism $\pi^{\Xi, \sharp}: \mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] \rightarrow R_{\Xi}$ induces a morphism of representation schemes

$$
\pi_{R e p}: \mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}, b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{8} \longrightarrow \mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4}
$$

with $\pi_{\text {Rep }}^{\sharp}$ given in a matrix form by

$$
\pi_{R e p}^{\sharp}:\left[\begin{array}{ll}
c_{1} & c_{3} \\
c_{4} & c_{2}
\end{array}\right] \longmapsto\left[\begin{array}{ll}
a_{1} & \delta_{1} \\
a_{2} & \delta_{2}
\end{array}\right] \cdot\left[\begin{array}{ll}
b_{1} & b_{2} \\
\eta_{1} & \eta_{2}
\end{array}\right] .
$$

Lemma 2.5. [enough superficially infinitesimally deformed morphisms].

$$
\pi_{R e p}: \mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}, b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{8} \longrightarrow \mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4}
$$

is surjective.
There are three homeomorphism classes of fibers of $\pi_{\text {Rep }}$ over a closed point of $\mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4}$, depending on the rank of $\left[\begin{array}{ll}c_{1} & c_{3} \\ c_{4} & c_{2}\end{array}\right]$.

Lemma 2.6. [topological type of fibers of $\left.\pi_{R e p}\right]$. Let $C_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{3}$ be the subvariety of $\mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4}$ associated to the ideal $\left(c_{1} c_{2}-c_{3} c_{4}\right)$. Similarly, for $C_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}\right]}^{3}$ and $C_{\left[b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{3}$. Then:
(0) Over $\mathbf{0}$, the fiber is given by $\mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}\right]}^{4} \cup \mathbb{A}_{\left[b_{1}, b_{1}, \eta_{1}, \eta_{2}\right]}^{4} \cup \Pi^{5}$, where Π^{5} is a 5-dimensional irreducible affine scheme meeting $\mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}\right]}^{4} \cup \mathbb{A}_{\left[b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{4}$ along $C_{\left[a_{1}, a_{2} \delta_{1}, \delta_{2}\right]}^{3} \cup C_{\left[b_{1}, b_{2} \eta_{1}, \eta_{2}\right]}^{3}$.

[^5](1) Over a closed point of $C_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{3}-\{\mathbf{0}\}$, the fiber is the union $\Pi_{1}^{4} \cup \Pi_{2}^{4}$ of two irreducible 4 -dimensional affine scheme meeting at a deformed conifold.
(2) Over a closed point of $\mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4}-C_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{3}$, the fiber is isomorphic to $\mathbb{A}_{\left[a_{1}, a_{2} \delta_{1}, \delta_{2}\right]}^{4}$ $C_{\left[a_{1}, a_{2} \delta_{1}, \delta_{2}\right]}^{3} \simeq \mathbb{A}_{\left[b_{1}, b_{2} \eta_{1}, \eta_{2}\right]}^{4}-C_{\left[b_{1}, b_{2} \eta_{1}, \eta_{2}\right]}^{3}$.

The lemma follows from a straightforward computation 12 Note that the fundamental group as an analytic space is given by

$$
\begin{aligned}
\pi_{1}\left(\mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4}-C_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{3}\right) & \simeq \pi_{1}\left(\mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}\right]}^{4}-C_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}\right]}^{3}\right) \\
& \simeq \pi_{1}\left(\mathbb{A}_{\left[b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{4}-C_{\left[b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{3}\right) \simeq \mathbb{Z}
\end{aligned}
$$

and that the smooth bundle-morphism

$$
\pi_{R e p}: \mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}, b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{8}-\pi_{R e p}^{-1}\left(C_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{3}\right) \longrightarrow \mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4}-C_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{3}
$$

exhibits a monodromy behavior which resembles that of a Dehn twist.
The map $\pi_{R e p}: \mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}, b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{8} \rightarrow \mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4}$ admits sections, i.e. morphism $s:$ $\mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4} \rightarrow \mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}, b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{8}$ such that $\pi_{\text {Rep }} \circ s=$ the identity map on $\mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4}$.

Example 2.7. [section of $\pi_{\text {Rep }}$]. Let $t \in G L_{2}(\mathbb{C})$, then a simple family of sections of $\pi_{\text {Rep }}$

$$
s_{t}: \mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4} \longrightarrow \mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}, b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{8}
$$

is given compactly in a matrix expression by (with t also in its defining 2×2-matrix form)

$$
s_{t}^{\sharp}:\left(\left[\begin{array}{ll}
a_{1} & \delta_{1} \\
a_{2} & \delta_{2}
\end{array}\right],\left[\begin{array}{ll}
b_{1} & b_{2} \\
\eta_{1} & \eta_{2}
\end{array}\right]\right) \longmapsto\left(\left[\begin{array}{ll}
c_{1} & c_{3} \\
c_{4} & c_{2}
\end{array}\right] \cdot t^{-1}, t\right) .
$$

Through any section $s: \mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4} \rightarrow \mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}, b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{8}$, one can realize $Y^{\prime} \amalg\{\mathbf{0}\}$, where Y^{\prime} is a deformation of the conifold Y in $\mathbb{A}^{4}=\mathbb{A}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{4}$ and $\mathbf{0}$ is the singular point on Y, as the descent of a family of superficially infinitesimal deformations of morphisms from Azumaya point to the noncommutative space Ξ. In string theory words,

- deformations of a conifold via a D-brane probe are realized by turning on D-branes at the singularity appropriately; the conifold is deformed and becomes smooth while leaving the trapped D-branes at the singularity behind.

Cf. Figure 2-1.

[^6]
3 Resolutions of a conifold via an Azumaya probe.

In this section, we consider resolutions of the conifold $Y=\operatorname{Spec}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right)\right)$ from the viewpoint of an Azumaya probe. Recall the following diagram of resolutions of Y from blow-ups of Y :

where

$$
\begin{aligned}
& \cdot \pi: \widetilde{Y}=B l_{V(I)} Y=\operatorname{Proj}\left(\oplus_{i=0}^{\infty} I^{i}\right) \rightarrow Y \text { with } I=\left(z_{1}, z_{2}, z_{3}, z_{4}\right), \\
& \cdot \pi_{+}: Y_{+}=B l_{V\left(I_{+}\right)} Y=\operatorname{Proj}\left(\oplus_{i=0}^{\infty} I_{+}^{i}\right) \rightarrow Y \text { with } I_{+}=\left(z_{1}, z_{3}\right), \text { and } \\
& \cdot \pi_{-}: Y_{-}=B l_{V\left(I_{-}\right)} Y=\operatorname{Proj}\left(\oplus_{i=0}^{\infty} I_{-}^{i}\right) \rightarrow Y \text { with } I_{-}=\left(z_{1}, z_{4}\right)
\end{aligned}
$$

are blow-ups of Y along the specified subschemes $V(\bullet)$ associated respectively to the ideals I, I_{+}, and I_{-}of $\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right)$ as given. Here, we set $I_{(\pm)}^{0}=\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right)$. Let $\mathbf{0}=V\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ be the singular point of Y. Then the exceptional locus in each case is given respectively by $\pi^{-1}(\mathbf{0}) \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}, \pi_{+}^{-1}(\mathbf{0}) \simeq \mathbb{P}^{1}$, and $\pi_{-}^{-1}(\mathbf{0}) \simeq \mathbb{P}^{1} ; Y_{+}$and Y_{-}as schemes $/ Y$ are related by a flop; and the restriction of birational morphisms $f_{ \pm}: \tilde{Y} \rightarrow Y_{ \pm}$to $\pi^{-1}(\mathbf{0})$ corresponds to the projections of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ to each of its two factors.

D-brane probe resolutions of a conifold via the Azumaya structure.

An atlas for the stack of morphisms from Space $M_{2}(\mathbb{C})$ to Y is given by the representation scheme $\operatorname{Rep}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right), M_{2}(\mathbb{C})\right)$ with the $P G L_{2}(\mathbb{C})$-action induced from the $G L_{2}(\mathbb{C})$ action on the fundamental module \mathbb{C}^{2}. For convenience, we will also call this a $G L_{2}(\mathbb{C})$-action on $\operatorname{Rep}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right), M_{2}(\mathbb{C})\right)$. Let

$$
W=\text { Rep }{ }^{\text {singleton }}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right), M_{2}(\mathbb{C})\right)
$$

be the subscheme of $\operatorname{Rep}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right), M_{2}(\mathbb{C})\right)$ that parameterizes D0-branes $\varphi:\left(\operatorname{Spec} \mathbb{C}, M_{2}(\mathbb{C}), \mathbb{C}^{2}\right) \rightarrow Y$ with $(\operatorname{Im} \varphi)_{\text {red }}$ a single \mathbb{C}-point on Y. Explicitly, W is the image scheme of

$$
G L_{2}(\mathbb{C}) \times W_{u t} \longrightarrow \operatorname{Rep}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right), M_{2}(\mathbb{C})\right)
$$

where

$$
\begin{aligned}
W_{u t} & =\left\{\rho: \mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right) \rightarrow M_{2}(\mathbb{C}) \mid \rho\left(z_{i}\right) \text { is of the form }\left[\begin{array}{cc}
a_{i} & \varepsilon_{i} \\
0 & a_{i}
\end{array}\right]\right\} \\
& \subset \operatorname{Rep}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right), M_{2}(\mathbb{C})\right)
\end{aligned}
$$

and the morphism \longrightarrow is from the restriction of the $G L_{2}(\mathbb{C})$-group on $\operatorname{Rep}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-\right.\right.$ $\left.\left.z_{3} z_{4}\right), M_{2}(\mathbb{C})\right)$. Using this notation, as a scheme,

$$
\begin{aligned}
W_{u t} & =\operatorname{Spec}\left(\mathbb{C}\left[a_{1}, a_{2}, a_{3}, a_{4}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right] /\left(a_{1} a_{2}-a_{3} a_{4}, a_{2} \varepsilon_{1}+a_{1} \varepsilon_{2}-a_{4} \varepsilon_{3}-a_{3} \varepsilon_{4}\right)\right) \\
& \subset \operatorname{Spec}\left(\mathbb{C}\left[a_{1}, a_{2}, a_{3}, a_{4}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right]\right)=: \quad \mathbb{A}_{\left[a_{1}, a_{2}, a_{3}, a_{4}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right]}^{8}
\end{aligned}
$$

Imposing the trivial $G L_{2}(\mathbb{C})$-action on Y, then by construction, there is a natural $G L_{2}(\mathbb{C})$ equivariant morphism

$$
\pi^{W}: W \longrightarrow Y
$$

defined by $\pi^{W, \sharp}\left(z_{i}\right)=\frac{1}{2} \operatorname{Tr} \rho\left(z_{i}\right)=a_{i}$ in the above notation. This is the morphism that sends a $\varphi:\left(\operatorname{Spec} \mathbb{C}, M_{2}(\mathbb{C}), \mathbb{C}^{2}\right) \rightarrow Y$ under study to $(\operatorname{Im} \varphi)_{\text {red }} \in Y$.

Lemma 3.1. [Azumaya probe to conifold singularity]. There exists $G L_{2}(\mathbb{C})$-invariant subschemes $\tilde{Y}^{\prime}, Y_{+}^{\prime}$, and Y_{-}^{\prime} of W such that their geometric quotient $\widetilde{Y}^{\prime} / G L_{2}(\mathbb{C}), Y_{+}^{\prime} / G L_{2}(\mathbb{C})$, $Y_{-}^{\prime} / G L_{2}(\mathbb{C})$ under the $G L_{2}(\mathbb{C})$-action exist and are isomorphic to \tilde{Y}, Y_{+}, and Y_{-}respectively. Furthermore, under these isomorphisms, the restriction of $\pi^{W}: W \rightarrow Y$ to $\widetilde{Y}^{\prime}, Y_{+}^{\prime}$, and Y_{-}^{\prime} descends to morphisms from the quotient spaces $\widetilde{Y}^{\prime} / G L_{2}(\mathbb{C}), Y_{+}^{\prime} / G L_{2}(\mathbb{C}), Y_{-}^{\prime} / G L_{2}(\mathbb{C})$ to Y that realize the resolution diagram

of Y at the beginning of this section.

It is in the sense of the above lemma we say that

- an Azumaya point of rank ≥ 2 and hence a D-brane probe of multiplicity ≥ 2 can "see" all the three different resolutions of the conifold singularity.

It should also be noted that Lemma 3.1 is a special case of a more general statement that reflects the fact that the stack of morphisms from Azumaya points to a (general, possibly singular, Noetherian) scheme Y is a generalization of the notion of jet-schemes of Y. Cf. [L-Y2: Figure 01, caption].

An explicit construction of $\tilde{Y}^{\prime}, Y_{+}^{\prime}$, and Y_{-}^{\prime}.

An explicit construction of $\widetilde{Y}^{\prime}, Y_{+}^{\prime}$, and Y_{-}^{\prime}, and hence the proof of Lemma 3.1, follows from a lifting-to- W of an affine atlas of $\operatorname{Proj}\left(\oplus_{i=0}^{\infty} I_{(\pm)}^{i}\right)$.

To construct \widetilde{Y}^{\prime}, recall that $I=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$. An affine atlas of \widetilde{Y} is given by the collection $U^{\left(z_{i}\right)}=\operatorname{Spec}\left(\left(\oplus_{j=0}^{\infty} I^{j}\right)\left[z_{i}^{-1}\right]_{0}\right) \simeq \begin{cases}\operatorname{Spec}\left(\mathbb{C}\left[z_{1}, u_{2}, u_{3}, u_{4}\right] /\left(u_{2}-u_{3} u_{4}\right)\right) \simeq \mathbb{A}_{\left[z_{1}, u_{3}, u_{4}\right]}^{3} & \text { for } i=1 ; \\ \operatorname{Spec}\left(\mathbb{C}\left[u_{1}, z_{2}, u_{3}, u_{4}\right] /\left(u_{1}-u_{3} u_{4}\right)\right) \simeq \mathbb{A}_{\left[z_{2}, u_{3}, u_{4}\right]}^{3} & \text { for } i=2 ; \\ \operatorname{Spec}\left(\mathbb{C}\left[u_{1}, u_{2}, z_{3}, u_{4}\right] /\left(u_{1} u_{2}-u_{4}\right)\right) \simeq \mathbb{A}_{\left[u_{1}, u_{2}, z_{3}\right]}^{3} & \text { for } i=3 ; \\ \operatorname{Spec}\left(\mathbb{C}\left[u_{1}, u_{2}, u_{3}, z_{4}\right] /\left(u_{1} u_{2}-u_{3}\right)\right) \simeq \mathbb{A}_{\left[u_{1}, u_{2}, z_{4}\right]}^{3} & \text { for } i=4 .\end{cases}$

Here, $z_{i} \in I$ has grade 1 and $\left(\oplus_{j=0}^{\infty} I^{j}\right)\left[z_{i}^{-1}\right]_{0}$ is the grade- 0 component of the graded algebra $\left(\oplus_{j=0}^{\infty} I^{j}\right)\left[z_{i}^{-1}\right]$. Each $U^{\left(z_{i}\right)}$ is equipped with a built-in morphism $\pi^{(i)}: U^{\left(z_{i}\right)} \rightarrow Y$ in such a way that, when all four are put together, they glue to give the resolution $\pi: \widetilde{Y} \rightarrow Y$.

Consider the lifting $\left\{\pi^{(i) \prime}: U^{\left(z_{i}\right)} \rightarrow W \mid i=1,2,3,4\right\}$ of the atlas $\left\{\pi^{(i)}: U^{\left(z_{i}\right)} \rightarrow Y \mid i=\right.$ $1,2,3,4\}$ of \widetilde{Y} that is given by the lifting $\left\{\pi^{(i) \prime}: U^{\left(z_{i}\right)} \rightarrow W_{u t} \subset W \mid i=1,2,3,4\right\}$ defined by

$$
\begin{array}{rllll}
\pi^{(1) \prime, \sharp} & : & a_{1}, a_{2}, a_{3}, a_{4}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4} & \longmapsto & z_{1}, z_{1} u_{2}, z_{1} u_{3}, z_{1} u_{4}, 1, u_{2}, u_{3}, u_{4} \\
\pi^{(2) \prime, \sharp} & : & a_{1}, a_{2}, a_{3}, a_{4}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4} & \longmapsto & z_{2} u_{1}, z_{2}, z_{2} u_{3}, z_{2} u_{4}, u_{1}, 1, u_{3}, u_{4} \\
\pi^{(3) \prime, \sharp} & : & a_{1}, a_{2}, a_{3}, a_{4}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4} & \longmapsto & z_{3} u_{1}, z_{3} u_{2}, z_{3}, z_{3} u_{4}, u_{1}, u_{2}, 1, u_{4} \\
\pi^{(4) \prime, \sharp} & : & a_{1}, a_{2}, a_{3}, a_{4}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4} & \longmapsto & z_{4} u_{1}, z_{4} u_{2}, z_{4} u_{3}, z_{4}, u_{1}, u_{2}, u_{3}, 1 \\
\text { respectively }
\end{array}
$$

$\pi^{(i) \prime}, i=1,2,3,4$, are now embeddings into W with the property that for any geometric point $p \in U^{\left(z_{i}\right)} \times_{\widetilde{Y}} U^{\left(z_{j}\right)}, \pi^{(i) \prime}(p)$ and $\pi^{(j)^{\prime}}(p)$ lies in the same $G L_{2}(\mathbb{C})$-orbit in W. In other words, up to the pointwise $G L_{2}(\mathbb{C})$-action, they are gluable. Let \widetilde{Y}^{\prime} be the image scheme of the morphism

$$
G L_{2}(\mathbb{C}) \times\left(U^{\left(z_{1}\right)} \amalg U^{\left(z_{2}\right)} \amalg U^{\left(z_{3}\right)} \amalg U^{\left(z_{4}\right)}\right) \longrightarrow W
$$

via $\pi^{(1) \prime} \amalg \pi^{(2) \prime} \amalg \pi^{(3) \prime} \amalg \pi^{(4) \prime}$ and the $G L_{2}(\mathbb{C})$-action on W. Then it follows that the geometric quotient $\widetilde{Y}^{\prime} / G L_{2}(\mathbb{C})$ exists and is equipped with a built-in isomorphism $\widetilde{Y}^{\prime} / G L_{2}(\mathbb{C}) \xrightarrow{\sim} \widetilde{Y}$, as schemes over Y, through the defining embeddings $U^{\left(z_{i}\right)} \hookrightarrow \widetilde{Y}, i=1,2,3,4$.

For Y_{+}^{\prime}, recall that $I_{+}=\left(z_{1}, z_{3}\right)$. An affine atlas of Y_{+}is given by the collection

$$
U_{+}^{\left(z_{i}\right)}=\operatorname{Spec}\left(\left(\oplus_{j=0}^{\infty} I^{j}\right)\left[z_{i}^{-1}\right]_{0}\right) \simeq \begin{cases}\operatorname{Spec}\left(\mathbb{C}\left[z_{1}, z_{2}, u_{3}, z_{4}\right] /\left(z_{2}-z_{4} u_{3}\right)\right) \simeq \mathbb{A}_{\left[z_{1}, u_{3}, z_{4}\right]}^{3} & \text { for } i=1 ; \\ \operatorname{Spec}\left(\mathbb{C}\left[u_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{2} u_{1}-z_{4}\right)\right) \simeq \mathbb{A}_{\left[u_{1}, z_{2}, z_{3}\right]}^{3} & \text { for } i=3 .\end{cases}
$$

Each $U_{+}^{\left(z_{i}\right)}$ is equipped with a built-in morphism $\pi_{+}^{(i)}: U_{+}^{\left(z_{i}\right)} \rightarrow Y$ in such a way that, when both are put together, they glue to give the resolution $\pi_{+}: Y_{+} \rightarrow Y$.

Consider the lifting $\left\{\pi_{+}^{(i) \prime}: U_{+}^{\left(z_{i}\right)} \rightarrow W \mid i=1,3\right\}$ of the atlas $\left\{\pi_{+}^{(i)}: U_{+}^{\left(z_{i}\right)} \rightarrow Y \mid i=1,3\right\}$ of Y_{+}that is given by the lifting $\left\{\pi_{+}^{(i) \prime}: U_{+}^{\left(z_{i}\right)} \rightarrow W_{u t} \subset W \mid i=1,3\right\}$ defined by

$$
\begin{aligned}
& \pi_{+}^{(1) \text {, } \sharp}: a_{1}, a_{2}, a_{3}, a_{4}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4} \longmapsto z_{1}, z_{4} u_{3}, z_{1} u_{3}, z_{4}, 1,0, u_{3}, 0 \text { respectively, } \\
& \pi_{+}^{(3), \not, \sharp}: a_{1}, a_{2}, a_{3}, a_{4}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4} \longmapsto z_{3} u_{1}, z_{2}, z_{3}, z_{2} u_{1}, u_{1}, 0,1,0 \text { respectively. }
\end{aligned}
$$

The pair, $\pi_{+}^{(1) \prime}$ and $\pi_{+}^{(3) \prime}$, are now embeddings into W that, as in the case of \widetilde{Y}, are gluable up to the pointwise $G L_{2}(\mathbb{C})$-action. Same construction as in the case of \widetilde{Y} gives then a $G L_{2}(\mathbb{C})$ invariant subscheme Y_{+}^{\prime} of W whose geometric quotient $Y_{+}^{\prime} / G L_{2}(\mathbb{C})$ exists and is equipped with a built-in isomorphism $Y_{+}^{\prime} / G L_{2}(\mathbb{C}) \xrightarrow{\sim} Y_{+}$as schemes over Y.

For Y_{-}^{\prime}, recall that $I_{-}=\left(z_{1}, z_{4}\right)$. The construction is identical to that in the case of Y_{+}after relabelling. An affine atlas of Y_{-}is given by the collection

$$
U_{-}^{\left(z_{i}\right)}=\operatorname{Spec}\left(\left(\oplus_{j=0}^{\infty} I^{j}\right)\left[z_{i}^{-1}\right]_{0}\right) \simeq \begin{cases}\operatorname{Spec}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, u_{4}\right] /\left(z_{2}-z_{3} u_{4}\right)\right) \simeq \mathbb{A}_{\left[z_{1}, z_{3}, u_{4}\right]}^{3} & \text { for } i=1 ; \\ \operatorname{Spec}\left(\mathbb{C}\left[u_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{2} u_{1}-z_{3}\right)\right) \simeq \mathbb{A}_{\left[u_{1}, z_{2}, z_{4}\right]}^{3} & \text { for } i=4 .\end{cases}
$$

Each $U_{-}^{\left(z_{i}\right)}$ is equipped with a built-in morphism $\pi_{-}^{(i)}: U_{-}^{\left(z_{i}\right)} \rightarrow Y$ in such a way that, when both are put together, they glue to give the resolution $\pi_{-}: Y_{-} \rightarrow Y$.

Consider the lifting $\left\{\pi_{-}^{(i) \prime}: U_{-}^{\left(z_{i}\right)} \rightarrow W \mid i=1,4\right\}$ of the atlas $\left\{\pi_{-}^{(i)}: U_{-}^{\left(z_{i}\right)} \rightarrow Y \mid i=1,4\right\}$ of Y_{-}that is given by the lifting $\left\{\pi_{-}^{(i) \prime}: U_{-}^{\left(z_{i}\right)} \rightarrow W_{u t} \subset W \mid i=1,4\right\}$ defined by

$$
\begin{array}{lllll}
\pi_{-}^{(1) \prime, \sharp} & : & a_{1}, a_{2}, a_{3}, a_{4}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4} & \longmapsto & z_{1}, z_{3} u_{4}, z_{3}, z_{1} u_{4}, 1,0,0, u_{4} \quad \text { respectively } \\
\pi_{-}^{(4) \prime, \sharp} & : & a_{1}, a_{2}, a_{3}, a_{4}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4} & \longmapsto & z_{4} u_{1}, z_{2}, z_{2} u_{1}, z_{4}, u_{1}, 0,0,1
\end{array} \text { respectively. }
$$

The pair, $\pi_{-}^{(1) \prime}$ and $\pi_{-}^{(4) \prime}$, are now embeddings into W that are gluable up to the pointwise $G L_{2}(\mathbb{C})$-action. Same construction as in the case of \tilde{Y} gives then a $G L_{2}(\mathbb{C})$-invariant subscheme Y_{-}^{\prime} of W whose geometric quotient $Y_{-}^{\prime} / G L_{2}(\mathbb{C})$ exists and is equipped with a built-in isomorphism $Y_{-}^{\prime} / G L_{2}(\mathbb{C}) \stackrel{\sim}{\rightarrow} Y_{-}$as schemes over Y.

This concludes the explicit construction.

Remark 3.2. [lifting to jet-scheme]. Note that there is a one-to-one correspondence between $G L_{2}(\mathbb{C})$-orbits in W and isomorphism classes of 0 -dimensional torsion sheaves of length 2 on the conifold Y (i.e. the push-forward Chan-Paton sheaves on Y under associated morphisms from the Azumaya point $S p a c e ~ M_{2}(\mathbb{C})$ with the fundamental module $\left.\mathbb{C}^{2}\right)$ with connected support. Under this correspondence, the various special liftings-to- W in the construction above:

$$
\left(\pi^{(1) \prime}, \pi^{(2) \prime}, \pi^{(3) \prime}, \pi^{(4) \prime}\right), \quad\left(\pi_{+}^{(1) \prime}, \pi_{+}^{(3) \prime}\right), \quad\left(\pi_{-}^{(1) \prime}, \pi_{-}^{(4) \prime}\right)
$$

and the gluing property, up to the pointwise $G L_{2}(\mathbb{C})$-action, in each tuple follow from the underlying lifting property to the related jet-schemes, which is the total space of the tangent sheaf \mathcal{T}_{Y} of Y in our case.

A comparison with resolutions via noncommutative desingularizations.

Consider the conifold algebra defined by 13

$$
\Lambda_{c}:=\frac{\mathbb{C}\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle}{\left(\xi_{1}^{2} \xi_{2}-\xi_{2} \xi_{1}^{2}, \xi_{1} \xi_{2}^{2}-\xi_{2}^{2} \xi_{1}, \xi_{1} \xi_{3}+\xi_{3} \xi_{1}, \xi_{2} \xi_{3}+\xi_{3} \xi_{2}, \xi_{3}^{2}-1\right)}
$$

where the numerator is the associative unital \mathbb{C}-algebra generated by $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ and the denominator is the two-sided ideal generated by the elements of $\mathbb{C}\left\langle\xi_{1} \xi_{2}, \xi_{3}\right\rangle$ as indicated.

Lemma 3.3. [center of $\left.\Lambda_{c}\right]$. ([leB-S: Lemma 5.4].) The \mathbb{C}-algebra monomorphism

$$
\begin{array}{rlr}
\tau^{\sharp}: \mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right) & \longrightarrow & \Lambda_{c} \\
z_{1} & \longmapsto & \xi_{1}^{2} \\
z_{2} & \longmapsto & \xi_{2}^{2} \\
z_{3} & \longmapsto \frac{1}{2}\left(\xi_{1} \xi_{2}+\xi_{2} \xi_{1}\right)+\frac{1}{2}\left(\xi_{1} \xi_{2}-\xi_{2} \xi_{1}\right) \xi_{3} \\
z_{4} & \longmapsto \frac{1}{2}\left(\xi_{1} \xi_{2}+\xi_{2} \xi_{1}\right)-\frac{1}{2}\left(\xi_{1} \xi_{2}-\xi_{2} \xi_{1}\right) \xi_{3}
\end{array}
$$

realizes $\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right)$ as the center of Λ_{c}.

Proposition 3.4. [representation variety of $\left.\Lambda_{c}\right]$. ([leB-S: Proposition 5.7].) The representation variety $\operatorname{Rep}\left(\Lambda_{c}, M_{2}(\mathbb{C})\right)$ is a smooth affine variety with three disjoint irreducible components. Two of these components are a point. The third $\operatorname{Rep}^{0}\left(\Lambda_{c}, M_{2}(\mathbb{C})\right)$ has dimension 6.

[^7]This implies $\sqrt{14}$ that Λ_{c} is a smooth order over $\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right)$ and, if one defines Spec Λ_{c} to be the set of two-sided prime ideals of Λ_{c} with the Zariski topology, then the natural morphism

$$
\operatorname{Spec} \Lambda_{c} \longrightarrow \operatorname{Spec}\left(\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right)\right)
$$

by intersecting a two-sided prime ideal of Λ_{c} with the center of Λ_{c} gives a smooth noncommutative desingularization of Y. ([leB-S: Proposition 5.7].)

Up to the conjugation by an element in $G L_{2}(\mathbb{C})$, a \mathbb{C}-algebra homomorphism $\rho: \Lambda_{c} \rightarrow M_{2}(\mathbb{C})$ can be put into one the following three forms: (In (1) and (2) below, 0 and $I d$ are respectively the zero matrix and the identity matrix in $M_{2}(\mathbb{C})$.)
(1) $\rho\left(\xi_{1}\right)=0, \rho\left(\xi_{2}\right)=0, \rho\left(\xi_{3}\right)=I d$;
(2) $\rho\left(\xi_{1}\right)=0, \rho\left(\xi_{2}\right)=0, \rho\left(\xi_{3}\right)=-I d$;

$$
\rho\left(\xi_{1}\right)=\left[\begin{array}{cc}
0 & a_{1} \tag{3}\\
b_{1} & 0
\end{array}\right], \quad \rho\left(\xi_{2}\right)=\left[\begin{array}{cc}
0 & a_{2} \\
b_{2} & 0
\end{array}\right], \quad \rho\left(\xi_{3}\right)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

Form (1) and Form (2) correspond to the two point-components in Rep $\left(\Lambda_{c}, M_{2}(\mathbb{C})\right.$) and Form (3) corresponds to elements in $\operatorname{Rep}^{0}\left(\Lambda_{c}, M_{2}(\mathbb{C})\right)$. On the subvariety $\mathbb{A}_{\left[a_{1}, b_{1}, a_{2}, b_{2}\right]}^{4}$ of $\operatorname{Rep}^{0}\left(\Lambda_{c}, M_{2}(\mathbb{C})\right)$ that parameterizes ρ of the form (3), the $G L_{2}(\mathbb{C})$-action on $\operatorname{Rep}^{0}\left(\Lambda_{c}, M_{2}(\mathbb{C})\right)$ reduces to the $\mathbb{C}^{*} \times \mathbb{C}^{*}$-action

$$
\left(a_{1}, b_{1}, a_{2}, b_{2}\right) \xrightarrow{\left(t_{1}, t_{2}\right)}\left(t_{1} t_{2}^{-1} a_{1}, t_{1}^{-1} t_{2} b_{1}, t_{1} t_{2}^{-1} a_{2}, t_{1}^{-1} t_{2} b_{2}\right),
$$

where $\left(t_{1}, t_{2}\right) \in \mathbb{C}^{*} \times \mathbb{C}^{*}$. The pair $\left(\rho\left(\xi_{1}\right), \rho\left(\xi_{2}\right)\right)$ in Form (3) realizes this $\mathbb{A}_{\left[a_{1}, b_{1}, a_{2}, b_{2}\right]}^{4}$ as the representation variety of the quiver

Impose the trivial $G L_{2}(\mathbb{C})$-action on Y, then note that there is a natural $G L_{2}(\mathbb{C})$-equivariant morphism from $\operatorname{Rep}\left(\Lambda_{c}, M_{2}(\mathbb{C})\right)$ to Y, as the composition

$$
\mathbb{C}\left[z_{1}, z_{2}, z_{3}, z_{4}\right] /\left(z_{1} z_{2}-z_{3} z_{4}\right) \xrightarrow{\tau^{\sharp}} \Lambda_{c} \xrightarrow{\rho} M_{2}(\mathbb{C})
$$

has the form

$$
z_{i} \longmapsto 0, \quad i=1,2,3,4,
$$

for ρ conjugate to Form (1) or Form (2);

$$
z_{1} \longmapsto a_{1} b_{1} I d, \quad z_{2} \longmapsto a_{2} b_{2} I d, \quad z_{3} \longmapsto a_{1} b_{2} I d, \quad z_{4} \longmapsto a_{2} b_{1} I d
$$

for ρ conjugate to Form (3) ${ }^{15}$ One can now follow the setting of [Ki] to define the stable structures for the $G L_{2}(\mathbb{C})$-action on $\operatorname{Rep}^{0}\left(\Lambda_{c}, M_{2}(\mathbb{C})\right)$. There are two different choices, θ_{+}and

[^8]θ_{-}, of such structures in the current case. The corresponding stable locus on the quiver variety $\mathbb{A}_{\left[a_{1}, b_{1}, a_{2}, b_{2}\right]}^{4}$ is given respectively by
$$
\mathbb{A}_{\left[a_{1}, b_{1}, a_{2}, b_{2}\right]}^{4}=\mathbb{A}_{\left[a_{1}, b_{1}, a_{2}, b_{2}\right]}^{4}-V\left(b_{1}, b_{2}\right) \quad \text { and } \quad \mathbb{A}_{\left[a_{1}, b_{1}, a_{2}, b_{2}\right]}^{\left.4, \theta_{-}\right]}=\mathbb{A}_{\left[a_{1}, b_{1}, a_{2}, b_{2}\right]}^{4}-V\left(a_{1}, a_{2}\right),
$$
where $V\left(a_{1}, a_{2}\right)\left(\right.$ resp. $\left.V\left(b_{1}, b_{2}\right)\right)$ is the subvariety of $\mathbb{A}_{\left[a_{1}, b_{1}, a_{2}, b_{2}\right]}^{4}$ associated to the ideal $\left(a_{1}, a_{2}\right)$ (resp. $\left(b_{1}, b_{2}\right)$). The corresponding GIT quotients

recover

at the beginning of the section. See $[\mathrm{leB}-\mathrm{S}],[\mathrm{leB} 2]$ for the mathematical detail and $[\mathrm{Be}],[\mathrm{B}-\mathrm{L}]$, [K-W] for the SQFT/stringy origin.

From the viewpoint of the Polchinski-Grothendieck Ansatz, both the Azumaya-type noncommutative structure on D-branes and a noncommutative structure over Y described by Space Λ_{c} come into play in the above setting. As indicated by the explicit expression for $\rho \circ \tau^{\sharp}$ above, any morphism $\tilde{\varphi}:$ Space $M_{2}(\mathbb{C}) \rightarrow$ Space Λ_{c} has the property:

- The composition

$$
\text { Space } M_{2}(\mathbb{C}) \xrightarrow{\tilde{\varphi}} \text { Space } \Lambda_{c} \xrightarrow{\tau} Y
$$

is a morphism $\varphi:=\tilde{\varphi} \circ \tau$ from the Azumaya point $p t^{A z}=\operatorname{Space} M_{2}(\mathbb{C})$ to Y with the associated surrogate $p t_{\varphi} \simeq \operatorname{Spec} \mathbb{C}$.

Thus, the new ingredient of target-space noncommutativity comes into play as another key role toward resolutions of Y in the above setting while the generalized-jet-resolution-of-singularity picture in our earlier discussion disappears.

Remark 3.5. [world-volume noncommutativity vs. target-space(-time) noncommutativity]. Such a "trading" between a noncommutativity target and morphisms from Azumaya schemes to a commutative target suggests a partial duality between D-brane world-volume noncommutativity and target space(-time) noncommutativity.

Figure 3-1.

Figure 3-1. Trading of morphisms from $\operatorname{Space} M_{2}(\mathbb{C})$ directly to the conifold Y with those to the noncommutative space $S p a c e \Lambda_{c}$ over Y. Note that for generic $\rho \in \operatorname{Rep}\left(\Lambda_{c}, M_{2}(\mathbb{C})\right)$ such that $\rho \circ \tau^{\sharp}=0, \rho\left(\Lambda_{c}\right)$ is similar to the \mathbb{C}-subalgebra U of upper triangular matrices in $M_{2}(\mathbb{C})$. The noncommutative point $S p a c e U$ is also smooth, with S pec U consisting of two \mathbb{C}-points connected by a directed nilpotent bond. It is thus represented by a quiver $\bullet \longrightarrow \bullet$ in the figure. Furthermore, let $\widetilde{\varphi}: \operatorname{Space} M_{2}(\mathbb{C}) \rightarrow$ Space Λ_{c} be the corresponding morphism. Then $\widetilde{\varphi}$ determines also a flag in the Chan-Paton module $\widetilde{\varphi}_{*} \mathbb{C}^{2}$ on the image D 0 -brane $\operatorname{Im} \widetilde{\varphi}$. On the other hand, over a generic $p \neq \mathbf{0}$ on Y, the generic image of a $\widetilde{\varphi}^{\prime}$ that maps to p after the composition with τ will be simply $\operatorname{Space} M_{2}(\mathbb{C})$.

References

[Arg] P. Argyres, Introduction to supersymmetry, notes of Physics 661, Cornel University, fall 2000.
[Art] M. Artin, On Azumaya algebras and finite dimensional representations of rings, J. Alg. 11 (1969), pp. 532-563.
[A-D-S] I. Affleck, M. Dine, and N. Seiberg, Dynamical supersymmetry breaking in supersymmetric QCD, Nucl. Phys. B241 (1984), pp. 493-534.
[A-G-M-O-O] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, Large N field theories, string theory and gravity, Phys. Reports 323 (2000), pp. 183-386. (arXiv:hep-th/9905111)
[A-N-T] E. Artin, C.J. Nesbitt, and R.M. Thrall, Rings with minimal condition, University of Michigan, 1944.
[Be] D. Berenstein, On the universality class of the conifold, J. High Energy Phys. (2001) 060, 28 pp. (arXiv:hep-th/0110184)
[B-L] D. Berenstein and R.G. Leigh, Resolution of stringy singularities by non-commutative algebras, J. High Energy Phys. (2001) 030, 37 pp. (arXiv:hep-th/0105229)
[C-dlO] P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B342 (1990), pp. 246-268.
[C-F-I-K-V] F. Cachazo, B. Fiol, K. Intriligator, S. Katz, and C. Vafa, A geometric unification of duality, Nucl. Phys. B628 (2002), pp. 3-78. (arXiv:hep-th/0110028)
[C-G-G-K] T.-M. Chiang, B.R. Greene, M. Gross, and Y. Kanter, Black hole condensation and the web of CalabiYau manifolds, Nucl. Phys. Proc. Suppl. 46 (1996), pp. 82-95. (arXiv:hep-th/9511204)
[C-Q] J. Cuntz and D. Quillen, Algebra extensions and nonsingularity, J. Amer. Math. Soc. 8 (1995), pp. 251 289.
[D-K-S] A. Dymarsky, I.R. Klebanov, and N. Seiberg, On the moduli space of the cascading $\operatorname{SU}(M+p) \times \operatorname{SU}(p)$ gauge theory, J. High Energy Phys. (2006), 155, 46 pp. (arXiv:hep-th/0511254)
[D-M] M.R. Douglas and G.W. Moore, D-branes, quivers, and ALE instantons, arXiv:hep-th/9603167
[Fu] W. Fulton, Introduction to toric varieties, Ann. Math. Study 131, Princeton Univ. Press, 1993.
[G-K] S.S. Gubser and I.R. Klebanov, Baryons and domain walls in an $N=1$ superconformal gauge theory, Phys. Rev. D58 (1998), pp. 125025-125031. (arXiv:hep-th/9808075)
[G-M-S] B.R. Greene, D. Morrison, and A. Strominger, Black hole condensation and the unification of string vacua, Nucl. Phys. B451 (1995), pp. 109-120. (arXiv:hep-th/9504145)
[G-V] R. Gopakumar and C. Vafa, On gauge theory/geometry correspondnece, Adv. Theor. Math. Phys. 3 (1999), pp. 1415-1443. (arXiv:hep-th/9811131)
[Ha] R. Hartshorne, Algebraic geometry, GTM 52, Springer, 1977.
[Jo] C.V. Johnson, D-branes, Cambridge Univ. Press, 2003.
[Ki] A.D. King, Moduli of representations of finite dimensional algebras, Quarterly J. Math. 45 (1994), pp. 515-530.
[K-M] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracks Math. 134, Cambridge Univ. Press, 1998.
[K-N] I.R. Klebanov and N.A. Nekrasov, Gravity duals of fractional branes and logarithmic RG flows, Nucl. Phys. B574 (2000), pp. 263-274. (arXiv:hep-th/9911096)
[K-R] M. Kontsevich and A. Rosenberg, Noncommutative smooth spaces, in The Glefand MAthematical Seminars, 1996-1999, pp. 85-108, Birkhäuser, 2000. (arXiv:math.AG/9812158)
[K-S] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascade and χ SBresolution of naked singularities, J. High Energy Phys. (2000) 052, 35 pp. (arXiv:hep-th/0007191)
[K-W] I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B536 (1999), pp. 199-218. (arXiv:hep-th/9807080)
[leB1] L. le Bruyn, Three talks on noncommutative geometry@n, arXiv:math.RA/0312221.
[leB2] - Noncommutative geometry@n, preprint, 2004.
[Liu] C.-H. Liu, D-brane probes and birational geometry, long lecture given at Yau's group meeting, Harvard University, February, 2009.
[leB-S] L. le Bruyn and S. Symens, Partial desingularizations arising from non-commutative algebras, arXiv:math.RA/0507497.
[L-L-S-Y] S. Li, C.-H. Liu, R. Song, S.-T. Yau, Morphisms from Azumaya prestable curves with a fundamental module to a projective variety: Topological D-strings as a master object for curves, arXiv:0809.2121 [math.AG].
[L-Y1] C.-H. Liu and S.-T. Yau, Azumaya-type noncommutative spaces and morphism therefrom: Polchinski's D-branes in string theory from Grothendieck's viewpoint, arXiv:0709.1515 [math.AG].
[L-Y2] ——, Azumaya structure on D-branes and resolution of ADE orbifold singularities revisited: DouglasMoore vs. Polchinski-Grothendieck, arXiv:0901.0342 [math.AG].
[L-Y3] \quad, manuscript in preparation.
[Ma] J. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998), pp. 231 - 252. (arXiv:hep-th/9711200)
[Mi] S. Minwalla, Quantum field theory III, course Physics 253c given at Harvard University, spring 2004.
[Po] J. Polchinski, String theory, vol. I: An introduction to the bosonic string; vol. II : Superstring theory and beyond, Cambridge Univ. Press, 1998.
[Pr] C. Procesi, Rings with polynomial identities, Pure and Appl. Math. 17, 7Marcel Dekker, 1973.
[Stra] M. Strassler, The duality cascade, TASI 2003 lectures. (arXiv:hep-th/0505153)
[Stro] A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B451 (1995), pp. 96 108. (arXiv:hep-th/9504090)
[Te] J. Terning, Modern supersymmetry - dynamics and duality, Oxford Univ. Press, 2006.
[Wi] E. Witten, Phases of $N=2$ theories in two dimensions, Nucl. Phys. B403 (1993), pp. 159-222. (arXiv:hep-th/9301042)
[W-B] J. Wess and J. Bagger, Supersymmetry and supergravity, 2nd. ed., Princeton Univ. Press, 1992.

[^0]: Acknowledgements. We thank Kwokwai Chan, Miranda Chih-Ning Cheng, Peng Zhang for discussions in the mirror symmetry seminar. C.-H.L. thanks in addition Cumrun Vafa for numerous illuminations on branes and answer-to-questions throughout his topic course in spring 2009; Alessandro Tomasiello for two long discussions after his substitute lectures for C.V.; Clay Cordova for the string discussion session; participants of the string reading seminar on AdS/CFT, organized by Chi-Ming Chang; Clark Barwick, Yum-Tong Siu for other topic courses; and Ling-Miao Chou for moral support. The project is supported by NSF grants DMS-9803347 and DMS-0074329.

[^1]: ${ }^{1}$ Readers are referred to, for example, [C-dlO] (1989); [Stro], [G-M-S], [C-G-G-K] (1995); [G-V] (1998); [Be], [C-F-I-K-V] (2001) and references therein to get a glimpse of conifolds in string theory around the decade 1990s.
 ${ }^{2}$ There will be a few standard physicists' conventional notations in this highlight of the relevant part of [K$\mathrm{W}]$ and $[\mathrm{K}-\mathrm{S}]: N$ that counts the number of supersymmetries (susy) via the multiple number of minimal susy numbers in each space-time dimension vs. N that appears in the gauge group $U(N)$ or $S U(N)$ vs. N that counts the multiplicity of stacked D-branes.
 ${ }^{3}$ In string-theorist's terminology, the D3-brane is "sitting at the conifold singularity". We will also adopt this phrasing for convenience. Note that in such a setting, the internal part is a D0-brane on the conifold Y. The latter is what we will study in this work.
 ${ }^{4} \zeta$ is part of the parameters to give local coordinates of the Wilson's theory-space in the problem; cf. [L-Y2: Introduction] for brief words. See also [W-B] for the standard SUSY jargon.
 ${ }^{5}$ See also [Wi] and [D-M] for details of such a construction.
 ${ }^{6}$ See $[\mathrm{G}-\mathrm{K}]$ and references therein for the detail of such fractional D-branes.

[^2]: ${ }^{7}$ See also [Arg: Chapter 3] and [Te: Chapter 9].
 ${ }^{8}$ See [A-G-M-O-O] and [Stra] for a review with more emphasis on respectively the gravity and the gauge theory side in the correspondence; e.g. [G-K], $[\mathrm{K}-\mathrm{N}]$ for developments between $[\mathrm{K}-\mathrm{W}]$ and $[\mathrm{K}-\mathrm{S}]$; and e.g. [D-K-S] for a more recent study.

[^3]: ${ }^{9}$ This is how one would think of a D-brane to begin with. Later development of string theory enlarges this picture considerably. See [L-Y1: References] to get a glimpse.

[^4]: ${ }^{10}$ Thus, a D0-brane on $S p a c e S$ is precisely an S-module that is of finite dimension as a \mathbb{C}-vector space. Such a direct realization of a D-brane as a module on a target-space is a special feature for D0-branes. For high dimensional D-branes, such modules on the target-space give only a subclass of D-branes that describe solitonic branes in space-time.

[^5]: ${ }^{11}$ If Space $M_{2}(\mathbb{C})$ is not fixed, then one studies Artin stacks that parameterizes morphisms in question from Space $M_{2}(\mathbb{C})$ to Space R_{Ξ}, the conifold Y, and $\mathbb{A}_{\left[z_{1}, z_{2}, z_{3}, z_{4}\right]}^{4}$ respectively. The discussion given here is then on an atlas of the stack in question.

[^6]: ${ }^{12}$ It is very instructive to think of the fibration $\pi_{R e p}: \mathbb{A}_{\left[a_{1}, a_{2}, \delta_{1}, \delta_{2}, b_{1}, b_{2}, \eta_{1}, \eta_{2}\right]}^{8} \rightarrow \mathbb{A}_{\left[c_{1}, c_{2}, c_{3}, c_{4}\right]}^{4}$ as defining a one-matrix-parameter family of "matrix nodal curves" in the sense of noncommutative geometry.

[^7]: ${ }^{13}$ The highlight here follows [leB-S] with some change of notations for consistency and mild rephrasings to link ibidem directly with us.

[^8]: ${ }^{14}$ Readers are referred to [leB1] for a general study of the several notions involved in this paragraph. We do not need their details here.
 ${ }^{15}$ Note that when restricted to $\mathbb{A}_{\left[a_{1}, b_{1}, a_{2}, b_{2}\right]}^{4} \subset \operatorname{Rep}^{0}\left(\Lambda_{c}, M_{2}(\mathbb{C})\right)$, this is the morphism $\mathbb{A}_{\left[\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right]}^{4} \rightarrow Y$ in Sec. 2 after the substitution: a_{1} (here) $\rightarrow \xi_{1}$ (there), $a_{2} \rightarrow \xi_{2}, b_{1} \rightarrow \xi_{3}, b_{2} \rightarrow \xi_{4}$.

