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MIRROR SYMMETRY OF FOURIER-MUKAI
TRANSFORMATION FOR ELLIPTIC CALABI–YAU

MANIFOLDS

Naichung Conan Leung and Shing-Tung Yau

15.1 Introduction

Mirror symmetry conjecture says that for any Calabi–Yau (CY) manifold M
near the large complex/symplectic structure limit, there is another CY manifold
X, called the mirror manifold, such that the B-model superstring theory on
M is equivalent to the A-model superstring theory on X, and vice versa.
Mathematically speaking, it roughly says that the complex geometry of M is
equivalent to the symplectic geometry of X, and vice versa. It is conjectured
(Strominger et al. 1996) that this duality can be realized as a Fourier-type
transformation along fibers of special Lagrangian fibrations on M and X, called
the SYZ mirror transformation FSY Z .

Suppose M has an elliptic fibration structure,

p : M → S,

then there is another manifold W with a dual elliptic fibration over S. Since
any elliptic curve is isomorphic to its dual, we have actually M ∼= W provided
that p has irreducible fibers. There is also a Fourier-Mukai transformation (FM
transform) FFM

cx between the complex geometries of M and W . On the level of
derived category of coherent sheaves, FFM

cx is an equivalence of categories. On
the level of cycles, this can be described as a spectral cover construction and it
is a very powerful tool in the studies of holomorphic vector bundles over M .

In this chapter we address the following two questions: (i) What is the SYZ
transform of the elliptic fibration structure on M? (ii) What is the SYZ transform
of the FM transform FFM

cx ?
The answer to the first question is a twin Lagrangian fibration structure on

the mirror manifold X, coupled with a superpotential. To simplify the matter, we
will ignore the superpotential in our present discussions. Similarly there is a twin
Lagrangian fibration structure on the mirror manifold Y to W . We will explain
several important properties of twin Lagrangian fibrations. In particular, we show
that the twin Lagrangian fibration on Y is dual to the twin Lagrangian fibration
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on X. There is also an identification between X and Y , which is analogous to
the identification between total spaces of dual elliptic fibrations M and W .

For the second question, the SYZ transform of FFM
cx should be a symplectic

FM transform FFM
sym from X to Y . We will argue that this is actually the identity

transformation! A naive explanation of this is because FFM
sym = FSY Z ◦ FFM

cx ◦
FSY Z and each of the two FSY Z transforms undo half of the complex FM
transform.

The plan of the chapter is as follow: In Section 15.2 we review the SYZ mirror
transformation and show that the mirror manifold to an elliptically fibered CY
manifold has a twin Lagrangian fibration structure. In Section 15.3 we review
the FM transform in complex geometry in general and also for elliptic manifolds.
In Section 15.4 we first define the symplectic FM transform between Lagrangian
cycles on X and Y . Then we define twin Lagrangian fibrations, give several
examples of them, and study their basic properties. In Section 15.5 we show
that the SYZ transformation of the complex FM transform between M and W
is the symplectic FM transform between X and Y , which is actually the identity
transformation.

15.2 Mirror symmetry and SYZ transformation

15.2.1 Geometry of Calabi–Yau manifolds

A real 2n-dimensional Riemannian manifold M is a CY manifold if the holonomy
group of its Levi-Civita connection is a subgroup of SU (n). Equivalently, a
CY manifold is a Kähler manifold with a parallel holomorphic volume form. A
theorem (Yau 1978) of the second author says that any compact Kähler manifold
with trivial canonical line bundle admits such a structure.

The complex geometry of M includes the study of (i) the moduli space of
complex structures on M , (ii) complex submanifolds, holomorphic vector bun-
dles, and Hermitian Yang–Mills metrics, and (iii) the derived category Db (M) of
coherent sheaves on M . The symplectic geometry of M includes the study of (i)
the moduli space of (complexified) symplectic structures on M , (ii) Lagrangian
submanifolds and their intersection theory, and (iii) the Fukaya–Floer category
Fuk (M) of Lagrangian submanifolds in M . The complex geometry is more
non-linear in nature, whereas the symplectic geometry requires the inclusion
of quantum corrections, in which contributions from holomorphic curves in M
needed to be included.

15.2.2 Mirror symmetry conjectures

Roughly speaking, the mirror symmetry conjecture says that for mirror CY
manifolds M and X, the complex geometry of M is equivalent to the symplectic
geometry of X and vice versa:

Complex geometry (M) Mirror symmetry←−−−−−−−−−−−−→ Symplectic geometry (X) .
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This conjecture has far-reaching consequences in many different parts of math-
ematics and physics. For instance, (i) Candelas et al. (1991) studied the iden-
tification between the moduli of complex structures on M with the moduli of
complexified symplectic structures on X and derived an amazing formula which
enumerative the number of rational curves of each degree in the quintic CY
threefold. This mirror formula has been proved mathematically by Liu, Lian,
and the second author (1997) and Givental (1996) independently. (ii) A theorem
of Donaldson (1985) and Uhlenbeck and the second author (1986) related the
existence of Hermitian Yang–Mills metrics to the stability of holomorphic vector
bundles. Thomas and the second author (2002) conjectured a mirror phenomenon
to this for special Lagrangian submanifolds. (iii) Kontsevich’s homological mirror
conjecture (1995) identifies Db (M) with Fuk (X).

In this chapter, we use the SYZ transform to study the mirror of an elliptic
fibration structure on M and the FM transform associated to it.

15.2.3 SYZ transform

In order to explain the origin of this duality, Strominger, Yau, and Zaslow
(1996) used physical reasonings to argue that (i) both M and X admit spe-
cial Lagrangian tori fibrations with sections, which are fiberwise dual to each
other. These are called SYZ fibrations. (ii) The equivalence between these two
types of geometries is given by a geometric version of the Fourier-Mukai type
transformation between M and X. We call this the SYZ transformation (see e.g.
Leung 1998, 2000, 2005).

To see this, note that the manifold M itself is the moduli space of certain
complex cycles in M , namely, points in M . Therefore M should also be the
moduli space of certain special Lagrangian submanifolds with flat U(1) bundles
in X. These special Lagrangian submanifolds form a Lagrangian (tori) fibration
on X since points form a fibration on M in a trivial way. By considering all those
points in M which correspond to the same special Lagrangian torus in X but
with different flat U(1) connections, we know that M also admit a tori fibration
which is naturally dual to the one on X. This is because the moduli space of flat
U(1) connections on a torus is naturally its dual torus.

T T ∗

↓ ↓
M X
↓ ↓
B B

Dual Lagrangian fibrations on mirror manifolds

Similarly the mirror of the complex cycle M itself is a special Lagrangian section
for X → B. This heuristic reasoning is only expected to hold true asymptotically
near the large complex structure limit (LCSL) (Strominger et al. 1996). We can
apply this SYZ transform to other coherent sheaves on M . For example, suppose
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L is a holomorphic line bundle on M , which restricts to a flat bundle on each fiber
Tb ⊂ M of the special Lagrangian fibration. Such a flat connection determines
a point in the dual torus T ∗

b ⊂ X. By varying b ∈ B, we obtain a Lagrangian
section to X → B, which is the mirror to L. This fiberwise Fourier transform
forms the backbone of the SYZ mirror transform.

15.2.4 Mirror of elliptic fibrations

In this section we continue our reasonings to explain why the mirror manifold
X to a CY manifold M with an elliptic fibration p : M → S admits another
special Lagrangian fibration which is compatible with the original SYZ fibration
on X. If the elliptic fibration on M has a section, then the corresponding special
Lagrangian fibration on X also admits an appropriate section. Recall that the
way we obtain the SYZ fibration π : X → B on X is by viewing the identity map
M → M as a fibration on M by complex cycles and with a holomorphic section,
both in trivial manners.

We consider the moduli space of coherent sheaves on M whose generic member
has the same Hilbert polynomial as ι∗OF where F is an elliptic fiber of M →
S and ι : F → M is the inclusion morphism. Geometrically speaking, this is a
moduli space of elliptic curves in M together with holomorphic line bundles over
them which are trivial topologically. This moduli space is nothing but the total
space of the dual elliptic fibration p′ : W → S.

By the principle of mirror symmetry, we should view W also as the moduli
space of certain Lagrangian cycles in the mirror manifold X. As dimC W = n
and W consists of geometric cycles which foliate M , we can argue as before that
X should have another Lagrangian fibration p : X → C such that W is also the
moduli space of its Lagrangian fibers together with flat U(1) connections over
them. Similarly the section σ of the elliptic fibration p : M → S determines a
Lagrangian section of p : X → C:

X
p→ C

π ↓
B

Given any elliptic fiber F in M , there is an one complex parameter family
of points in M which intersect F , namely, those points in F . Homologically
speaking, suppose S is any coherent sheaf on M of the form S = ι∗L with ι :
F → M the natural inclusion and L ∈ Pic0(F ) 	 F ∗, the dual elliptic curve,
then Ext∗OM

(S, Om) 
= 0 exactly when m ∈ F . Translating this to the mirror
side, given any Lagrangian fiber π−1(b), it should intersect an one real parameter
family of p−1(c)’s where c ∈ C.

On the other hand, given any point m ∈ M , there is a unique elliptic curve
F that passes through m. But the coherent sheaves S = ι∗L with L ∈ F ∗ also
intersect m homologically and parametrized by an one complex parameter family,
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namely, by F ∗. On the mirror side, it says that given any Lagrangian fiber p−1(c)
to p : X → C, it should intersect an one real parameter family of π−1(b)’s where
b ∈ B.

Furthermore if m ∈ M and S1, S2 ∈ W satisfying Ext∗OM
(S1, Om) 
= 0 
=

Ext∗OM
(S2, Om), then m ∈ F1 = F2 with Fi = SuppSi. On the mirror side, this

means that if π−1(b) ∩ p−1(ci) 
= 0 for i = 1, 2 then π(p−1(c1)) = π(p−1(c2)).
Similarly if π−1(bi) ∩ p−1(c) 
= 0 for i = 1, 2 then p(π−1(b1)) = p(π−1(b2)).
Namely, π(p−1(c))’s in B form a fibration over some space D, which is also
the base space of a fibration on C given by p(π−1(b))’s. That is,

X → C
↓ ↓
B → D

We might also expect that these fibrations on B and C over D are both affine
fibrations. Such a structure on X will be called a twin Lagrangian fibration on
X. On the first sight, it seems that these two Lagrangian fibrations on X are
on equal footing. But these arguments are only valid outside singular fibers
of M → S. Recall that these two Lagrangian fibrations on X are mirror to
holomorphic fibrations id : M → M and p : M → S. The two base manifolds are
quite different in nature: M is CY but S is not.

The Lagrangian fibers to X → C are mirror to the smooth elliptic curve fibers
of M → S. The situation near a singular elliptic curve fiber could be quite
different. Their locus in S, called the discriminant locus D, causes S fails to be
CY because of the formula K−1

S = 1
12D. In particular K−1

S is an effective divisor
on S, which is indeed ample in many cases, namely S, is a Fano manifold.

There is a version of the mirror symmetry conjecture for Fano manifolds, and
their mirror involve Lagrangian fibrations together with a holomorphic function,
called the superpotential. It is reasonable to expect that the Lagrangian fibration
X → C should also interact with this superpotential corresponding to S. We
hope to come back to further discuss this issue in the future.

15.2.4.1 Large complex structure limits
Mirror symmetry for M is expected to work well near the LCSL. In terms of
Hodge theory, it means that M is a member of an one-parameter family of CY
n-folds Mt with 0 < |t| < 1 such that the monodromy operator T : Hn(M) →
Hn(M) is of maximally unipotent, that is, N = log(I − T ) satisfies Nn 
= 0
but Nn+1 = 0. On the mirror side (Deligne 1997), this corresponds to the hard
Lefschetz action L = ∧ωX : ⊕Hp,p(X) → ⊕Hp,p(X) which satisfies Ln 
= 0 but
Ln+1 = 0.

We now assume that M has an elliptic fibration structure. In our above
discussions, we need to require each member Mt in the family also have an
elliptic fibration. When n ≥ 3 the existence of an elliptic fibration is invariant
under deformations of complex structures. In Wilson (1997) he showed that if M
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is a CY threefold then the existence of an elliptic fibration structure on M can
be determined by cohomological conditions. When n = 2 existence of an elliptic
fibration is not a deformation invariant property because of H2,0(M) 
= 0. The
existence of an elliptic fibration on a K3 surface M is equivalent to finding
f ∈ H2(M, Z) ∩ H1,1(M) satisfying f2 = 0. On the mirror side, this corresponds
to the fact that the ωX -Lagrangian fibration X → C on X is indeed Lagrangian
with respect to tωX for every t > 0.

15.2.4.2 Calabi–Yau fibrations
Some of the discussions in this section work for the mirror X of a CY n-fold M
with a fibration by q-dimensional complex subvarieties. Every smooth fiber of
such a fibration on M is automatically CY. In this case there will again be two
Lagrangian fibrations on X with the property that each nonempty intersection
of fibers of X → B and X → C should have codimension q in one of the fiber,
and hence both.

We can also consider a CY manifold M with more than one fibration struc-
tures. For example, when M is a CY threefold with an elliptic fibration M → S
over a Hirzebruch surface S. Then the P

1-bundle structure on S gives a K3
fibration M → P

1 on M . In this circumstance, the mirror manifold X should
admit three Lagrangian fibrations which are compatible to each other in certain
large structure limit.

15.3 Fourier-Mukai transform and elliptic CY manifolds

15.3.1 General Fourier-Mukai transform

Suppose M and W are smooth projective varieties. Given any coherent sheaf
P on M × W we can define a FM transform F between derived categories of
coherent sheaves on M and W as follow (Orlov 1996):

FFM
cx : Db (M) → Db (W )

FFM
cx (−) = R•p′∗ (P ⊗ p∗ (−)) ,

where p : M × W → M and p′ : M × W → W are projection maps. It was orig-
inally introduced by Mukai in the situation when M and W are dual Abelian
varieties and P is the Poincaré bundle. In this case FFM

cx is an equivalence of
derived categories. We will need to use FFM

cx for families of Abelian varieties
situations. In general the FM transform is a useful tool to verify equivalences
of derived categories, for example, under flops or the McKay correspondence.
On the other hand, a theorem of Orlov (1996) says that any triangle-preserving
equivalence Φ : Db (M) → Db (W ) is given by a FM transform.

15.3.2 Elliptic fibrations and their duals

In this subsection we recall basic facts about elliptic fibrations (see Donagi 1997,
1998 and Friedman et al. 1997 for details). Suppose M is a CY manifold with
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an elliptic fibration p : M → S with section σM and with connected fibers. We
denote its dual elliptic fibration as p′ : W → S, which is again an elliptic CY with
a section σW . For example, a CY hypersurface in a Fano toric variety which is a
P

2-bundle always admits an elliptic fibration structure.
Recall that the Weierstrass model (e.g. Andreas et al. 2001) of a (reduced

irreducible) elliptic curve Tτ in P
2 is of the form y2z = 4x3 − g2xz2 − g3z

3 with
g2, g3 constants. The point [0, 1, 0] ∈ P

2 is the origin of the elliptic curve Tτ . It is
smooth if and only if g3

2 − 27g2
3 is nonzero. In our situation, we have a family of

elliptic curves p : M → S. We assume that if all fibers are isomorphic to reduced
irreducible cubic plane curves and S is smooth, then we can express M in a
similar fashion with g2 and g3 varying over S. To describe it, we let L = R1p∗OM

be a line bundle over S, which can also be identified as OM (−σ) |σ where
σ = σM (S) is the given section. Then g2 ∈ H0

(
S,L⊗4

)
and g3 ∈ H0

(
S,L⊗6

)
,

and the Weierstrass model defines M ⊂ P
(
OS ⊕ L⊗2 ⊕ L⊗3

)
. Furthermore the

discriminant locus in S is the zero locus of the section g3
2 − 27g2

3 of the bundle
L⊗12.

The dual elliptic fibration W is the compactified relative Jacobian of M ,
namely, W parametrizes rank 1 torsion-free sheaves of degree zero on fibers
of p : M → S. There is a natural identification between M and W because every
elliptic curve Tτ is canonically isomorphic to its Jacobian Jac (Tτ ) given by
Tτ → Jac (Tτ ), p �−→ O (p − p0) where p0 is the origin of Tτ .

15.3.3 FM transform and spectral cover construction

Given any elliptic curve Tτ , or more generally a principally polarized Abelian
variety, the dual elliptic curve T ∗

τ is its Jacobian, which parametrizes topologi-
cally trivial holomorphic line bundles on Tτ . Mukai (1987) used an analog of the
Fourier transformation to define an equivalence of derived categories of coherent
sheaves on Tτ and T ∗

τ , FFM
cx : Db (Tτ ) → Db (T ∗

τ ), called the FM transform. This
can be generalized to the family version as follow: Consider the relative Poincaré
line bundle, or more precisely a divisorial sheaf, P on M ×S W which is given
by

P = O (Δ − σM × W − M × σW ),

where Δ is the relative diagonal in M ×S W and σM (respectively, σW ) is the
section of p : M → S (respectively, p′ : W → S). We define the following Fourier-
Mukai functor FFM

cx : Db (M) → Db (W ) as FFM
cx (−) = R•p′∗ (P ⊗ p∗ (−)),

where the one in Section 15.3.1 is a generalization of this. Then this can be
proven to give an equivalence of derived categories (Bridgeland and Maciocia
2002; Hu et al. 2002; Donagi and Pantev). Indeed

FFM
cx,P∗⊗KS

(
FFM

cx,P (S)
)

= S [−1]

FFM
cx,P

(
FFM

cx,P∗⊗KS
(S)

)
= S [−1] .
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Besides working on the level of derived categories, we can also study the FM
transform of a stable bundle, the so-called spectral cover construction (Donagi
1997, 1998; Friedman et al. 1997, 1999). The basic idea is any stable bundle over
an elliptic curve is essentially a direct sum of line bundles. In the family situation,
a stable bundle on M gives a multi-section for p′ : W → S, together with a line
bundle over it. Such construction is important in describing the moduli space of
stable bundles and it can also be generalized to construct principal G-bundles
on M , which play an important role in the duality between F-theory and String
theory (Friedman et al. 1997).

15.4 Symplectic FM transform and twin Lagrangian fibrations

15.4.1 Symplectic Fourier-Mukai transform

Definition 15.1 A Lagrangian cycle in a symplectic manifold (X,ωX) is
a pair (L,L) with L a Lagrangian submanifold in X and L a unitary flat line
bundle over L. We denote C (X) the collection of Lagrangian cycles in X.

Lagrangian cycles are the objects that form the sophisticated Fukaya–Floer
category Fuk (X), where morphisms are Floer homology groups which counts
holomorphic disks bounding cycles of Lagrangian submanifolds. We could also
generalize the notion of Lagrangian cycles to allow L to be a stratified Lagrangian
submanifold and to allow L to be a higher rank flat bundle.

Suppose (X,ωX) and (Y, ωY ) are symplectic manifolds of dimensions 2m and
2n, respectively. Then (X × Y, ωX − ωY ) is again a symplectic manifold. Given
any Lagrangian cycle (P,P) ∈ C (X × Y ) we can construct a Fourier-Mukai type
transformation, or simply symplectic FM transform, defined as follow (Weinstein
1979):

FFM
sym : C (X) → C (Y )

FFM
sym (L,L) =

(
L̂, L̂

)
.

Claim 15.1 Suppose that L × Y intersects P transversely. Then the projection
of (L × Y ) ∩ P ⊂ X × Y to Y is a Lagrangian (immersed) submanifold in Y ,
which we denote it as L̂.

Remark 15.1 If L × Y and P do not intersect transversely, then the image
might have bigger dimension. But the vanishing of ω should still imply that it is
a Lagrangian subspace, possibly singular.

Since L × Y intersects P transversely, for any point in L, by Darboux theorem,
there exists a local coordinate

{
xi, yi

}m

i=1
centered at the point such that ωX =∑m

i=1dxi ∧ dyi and L is given by yi = 0 for all i. Suppose this point is also the
X component of a transversal intersection point of L × Y and P . If we use an
appropriate Darboux coordinates

{
uk, vk

}n

k=1
with ωY =

∑n
k=1duk ∧ dvk and
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P is locally determined by

P : xi = xi (u, y) and vk = vk (u, y) for all i, k.

Then (L × Y ) ∩ P ⊂ X × Y is locally given by

(L × Y ) ∩ P :

⎧
⎪⎪⎨

⎪⎪⎩

xi = xi (u, 0) , yi = 0,

uk = uk, vk = vk (u, 0) .
(i.e. no restriction)

Therefore its projection to Y becomes

L̂ : uj = uj vk = vk (u, 0) .

The Lagrangian condition for P ⊂ X × Y is

∂xi

∂yj
+

∂xj

∂yi
= 0 and

∂vk

∂ul
+

∂vl

∂uk
= 0,

for any (u, y) and for all i, j = 1, ...,m and k, l = 1, ..., n. By setting y = 0 for the
second equation, this implies that L̂ is a Lagrangian submanifold in Y .

To obtain the flat bundle L̂ over L̂, in the generic case, we can identify L̂ ⊂ Y
with (L × Y ) ∩ P ⊂ X × Y . The flat bundle L on L induced one on L̂ by pullback
to L × Y and then restrict to L̂. By restriction, P also determine a flat connection
on L̂. The tensor product of these two flat bundles is defined as L̂ over L̂. More
work will be needed to handle the pushforward in the non-generic case though.

Examples of Lagrangian cycles in products of symplectic manifolds include
(i) the graph of any symplectic map f : X → Y , that is, f∗ωy = ωX ; (ii) if M
(respectively N) is a Lagrangian submanifold in X (respectively Y ), then P =
M × N is obviously a Lagrangian submanifold in X × Y ; and (iii) let C be any
coisotropic submanifold in (X,ωX). It induces a canonical isotropic foliation on
C and such that its leaf space C/∼ has a natural symplectic structure, provided
that it is smooth and Hausdorff. This is called the symplectic reduction. Then the
natural inclusion C ⊂ X × (C/∼) is a Lagrangian submanifold in the product
symplectic manifold. Thus we can use this to obtain a symplectic FM transform
FFM

sym : C (X) → C (C/ ∼).

15.4.2 Twin Lagrangian fibrations

15.4.2.1 Review of Lagrangian fibrations
Suppose (X,ω) is a symplectic manifold with a Lagrangian fibration

π : X → B

and with a Lagrangian section. Away from the singularities of π, we have an
short exact sequence

0 → TvertX → TX → π∗TB → 0,
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where TvertX is the vertical tangent bundle. Using this and the Lagrangian
condition, we have a canonical identification between TvertX and the pullback
cotangent bundle:

TvertX ∼= π∗T ∗B.

Therefore every cotangent vector at b ∈ B determines a vector field on the fiber
Xb = π−1 (b). By integrating these constant vector fields on Xb, we obtain a
natural affine structure on Xb. This implies that Xb must be an affine torus,
that is, Xb = TpXb/Λb

∼= T b for some lattice Λb in TpXb = T ∗
b B, provided that

π is proper. This lattice structure on T ∗B in turn defines an affine structure on
the base manifold B. Of course, this affine structure on B is only defined outside
the discriminant locus, that is, those b ∈ B with Xb singular.

Before we discuss twin Lagrangian fibrations in details, let us first explain the
linear aspects of them.

15.4.2.2 Linear algebra for twin Lagrangian fibrations
Suppose

(
V 	 R

2n, ω
)

is a symplectic vector space and Tb and Tc are two
Lagrangian subspaces in V . They give two Lagrangian fibrations V → B and
V → C with B = V/Tb and C = V/Tc. If B and C intersect transversely, then
there is a natural isomorphism

C ∼= B∗

given by the following composition

C ↪→ V
ω→ V ∗ � B∗.

Suppose Tbc := Tb ∩ Tc has dimension n − q and we write D = V/ (Tb + Tc)
then we have the following diagram of affine morphisms

V → C
↓ ↓
B → D

The fibers of the columns (respectively, rows) are Tb and Tb/Tbc (respectively,
Tc and Tc/Tbc). The Lagrangian conditions implies the existence of a natural
isomorphism Tc/Tbc

∼= (Tb/Tbc)
∗, namely, the two affine bundles B → D and

C → D are fiberwise dual to each other.
The usual SYZ transform which switches the fibers of a Lagrangian fibration

V → B to their duals will interchange complex geometry and symplectic geome-
try. In order to stay within the symplectic geometry, we should take the fiberwise
dual to both Lagrangian fibrations V → B and V → C.

Taking dual to both Tb and Tc has the same effect as taking dual
to (Tb + Tc) /Tbc while keeping Tbc fixed. This gives us the following new
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commutative diagram:

U → C ′

↓ ↓
B′ → D

Here B′ (respectively C ′) is the total space of taking fiberwise dual to the
fibration B → D (respectively C → D). The fiber T ′

b of U → B′ is obtained by
taking dual along the base of the fibration Tb → Tb/Tbc. This is the same as
taking fiberwise dual, up to conjugation with the duality of total spaces. The
fiber of B′ → D is (Tc/Tbc)

∗ and likewise for C ′ → D.
A more intrinsic way to describe this double dual process is as follow: The

fiber of V → D is a coisotropic subspace in V , say Vd. The symplectic reduction
Vd/∼ (see e.g. Weinstein 1979) is another symplectic vector space. Then U is
obtained by replacing Vd/ ∼ by its dual symplectic space from V .

In terms of an explicit coordinate system on V given by
{
xi, xα, yi, yα

}
with

1 ≤ i ≤ n − q and n − q + 1 ≤ α ≤ n, then we have

V → C
↓ ↓
B → D

with coordinates

yi, yα

xα, xi → yα

xi

↓ ↓
xα, xi → xi

and

U → C ′

↓ ↓
B′ → D

with coordinates

yi, y
∗
α

xα∗, xi → y∗
α

xi

↓ ↓
xα∗, xi → xi

The Lagrangian conditions actually imply that B′ ∼= C, C ′ ∼= B, and U ∼= V .
We now return back to the general symplectic manifolds situation.

15.4.2.3 Twin Lagrangian fibrations
First we recall that every fiber of a Lagrangian fibration, say π : X → B, has a
natural affine structure.

Definition 15.2 Let (X,ω) be a symplectic manifold of dimension 2n and
π : X → B and p : X → C are two Lagrangian fibrations on X with Lagrangian
sections. We call this a twin Lagrangian fibration of index q if for general b ∈ B
and c ∈ C with p−1(c) ∩ π−1(b) nonempty, then it is an affine subspace of π−1(b)
of codimension q. We denote such a structure as B

π← X
p→ C.

Since π−1(b) is the union of affine subspaces p−1(c) ∩ π−1(b), they form an
affine foliation of π−1(b) of codimension q. In the above definition we assume that
when p−1(c) ∩ π−1(b) is nonempty, then it is a codimension q affine submanifold
of π−1(b). We did not assume that this affine structure is compatible with the
one on p−1(c) which comes from the other Lagrangian fibration p. Nevertheless,
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under suitable assumptions, we will show that this is indeed the case and the
above definition is symmetric with respect to B and C. Furthermore we have a
commutative diagram of affine morphisms:

X → C
↓ ↓
B → D

.

Claim 15.2 Suppose that B
π← X

p→ C is a twin Lagrangian fibration. Then
B admits a natural (singular) foliation whose leaves are q-dimensional subspaces
π(p−1(c))’s with c ∈ C.

Proof. Since p−1(c) ∩ π−1(b) is always of codimension k in p−1(c) if nonempty,
π(p−1(c)) is a q dimensional subspace in B. Suppose b is a smooth point in
π(p−1(c)), we claim that its tangent space Tb(π(p−1(c))) ⊂ TbB is independent of
the choice of c. Assuming this, we obtain a q-dimensional (singular) distribution
on B. Furthermore π(p−1(c))’s with c ∈ C are leaves of this distribution, thus
we have the required foliation on B.

To prove the claim, we recall that π−1(b) has a natural affine structure and
π−1(b) admits an affine foliation whose leaves are p−1(c) ∩ π−1(b) with c ∈ C, by
the assumption of a twin Lagrangian fibration. The key observation is these imply
that for any x ∈ p−1(c) ∩ π−1(b), under the natural identification T ∗

x (π−1(b)) 	
TbB, the conormal bundle of p−1(c) ∩ π−1(b) in π−1(b) at x is the same linear
subspace in TbB of dimension q. Furthermore this coincides with π(Tx(p−1(c))).
Hence the result. �

We will assume that this foliation on B is indeed a fibration which we denote
as

p : B → D.

As a corollary of the above claim, we have the following immediate result:

Corollary 15.1 Suppose that B
π← X

p→ C is a Lagrangian twin fibration.
Then we have a commutative diagram

X → C
↓ ↓
B → D

where p : B → D is the above fibration fibered by π
(
p−1(c)

)
’s on B.

Claim 15.3 Suppose that B
π← X

p→ C is a twin Lagrangian fibration with
sections and π is a proper map. Then D has a natural affine structure and
p : B → D is an affine morphism.

Proof. Since π : X → B is a Lagrangian fibration, its general fiber π−1(b) has
a natural affine structure, thus as an affine manifold π−1(b) 	 R

n/Λ for some
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lattice Λ 	 Z
r in T ∗

b B. We have r = n because π is proper, that is, π−1(b) is
compact. This full rank lattice Λ ⊂ T ∗

b B determines an integral affine structure
on B, away from the locus of singular fibers. Thus the proposition is equivalent
to the fibration of π(p−1(c))’s being an affine fibration on B.

From the proof of the previous proposition, we know that p−1(c) ∩ π−1(b)
is an affine subtorus of π−1(b) 	 Tn. This implies that Tb(p−1(c)) ⊂ TbB is
an integral affine subspace. Because of the integral structure, these subspaces
Tb(p−1(c))’s are affinely equivalently to each other locally. Hence the foliation
they determine is an affine foliation in B. In particular the leave space D
inherits an affine structure such that p : B → D is an affine morphism. Hence the
result. �

This implies that, outside the singular locus of p : B → D, there exists a rank q
vector bundle R

q → E
ε→ D with affine gluing functions, together with a multi-

section EZ such that p is affine isomorphic to the projection E/EZ → D. In
particular B = E/EZ.

Given a general x ∈ X with b = π (x), c = p (x), and d = p (b) = π (b), we write
Xd = p−1 (c) ∩ π−1 (b). From π and p both being Lagrangian fibrations on X,
we have

0 → N∗
Xd/π−1(b),x → TbB → T ∗

x Xd → 0

and

0 → N∗
Xd/p−1(c),x → TcC → T ∗

x Xd → 0.

As we have shown earlier NXd/p−1(c),x can be identified with the fiber of E →
D over d ∈ D, denoted as Ed. Moreover the exact sequence 0 → N∗

Xd/π−1(b),x →
TbB → T ∗

x Xd → 0 is equivalent to 0 → ε∗E → TE → ε∗TD → 0 for the vector
bundle ε : E → D. This implies that TcC is naturally isomorphic to the tangent
space of E∗ at d.

Notice that the affine structure of the fibers of the Lagrangian fibration p :
X → C is given by T

(
p−1 (c)

)
	 p∗ (T ∗

c C). When p is proper, these data also
determine an affine structure on C. Thus having such a natural identification
between TcC and Td (E∗), all the affine structures involved are compatible with
each other. Such a claim can be checked by a direct diagram chasing method.
Thus we have obtained the following result:

Claim 15.4 Suppose B
π← X

p→ C is a twin Lagrangian fibration with π and
p proper. Then C

p← X
π→ B is also a twin Lagrangian fibration and

X → C
↓ ↓
B → D

is a commutative diagram of affine morphisms.
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Similar to B = E/EZ for a vector bundle E → D, we have C = F/FZ for
another vector bundle F → D of rank q and multi-section FZ of it. Furthermore
the two bundles E and F over D are fiberwise dual to each other.

Similar discussions can be applied to Lagrangian sections to π : X → B and
p : X → C and we can obtain affine sections to affine fibrations B → D and C →
D and we can also prove that the following diagram of sections is commutative:

X ← C
↑ ↑
B ← D

Remark 15.2 The composition map X → D is a coisotropic fibration with
fiber dimension equals n + q. If we apply the symplectic reduction on each
coisotropic fiber, then we obtain a symplectic fibration over D which can be
naturally identified with B ×D C = (E ⊕ F ) / (EZ ⊕ FZ).

Conversely, suppose that we have two proper Lagrangian fibrations π : X → B
and p : X → C and a commutative diagram of maps

X → C
↓ ↓
B → D0

for some space D0 satisfying for any b ∈ B and c ∈ C with the same image
d ∈ D0, then the preimage of d in X for the composition map is equal to π−1(b) ∩
p−1(c). We leave it as an exercise for readers to show that this gives a twin
Lagrangian fibration structure on X.

15.4.3 Dual twin Lagrangian fibrations and its FM transform

Suppose (X,ω) is a symplectic manifold with a twin Lagrangian fibration with
sections.

X → C
↓ ↓
B → D

The dual of such a structure is obtained by taking the fiberwise dual to both
fibrations X → B and X → C and we obtain the following commutative diagram:

Y → C ′

↓ ↓
B′ → D

Recall that a general fiber of X → D is a coisotropic submanifold in X which
is a torus of dimension n + q, denoted Td. Its symplectic reduction (Td/∼) is
a symplectic torus of dimension 2q. We can view Y as being obtained from
X by replacing those directions along the symplectic torus (Td/∼) by the dual
symplectic torus (Td/∼)∗. It is an important problem to describe Y near singular
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fibers. Such a Y is called the dual twin Lagrangian fibration to X. It is clear that
the dual twin Lagrangian fibration to Y is X again.

As we have explained in the linear situation, the fibration B′ → D (respectively
C ′ → D) is the dual fibration to B → D (respectively C → D). Furthermore the
Lagrangian conditions imply that there are natural identifications B′ ∼= C and
C ′ ∼= B and also

X ∼= Y.

It is interesting to know whether this identification will continue to hold true if
superpotentials are also included in our discussions.

Since X ∼= Y, we choose the Lagrangian cycle
(
PFM

sym ,PFM
sym

)
on X × Y given

by the diagonal Lagrangian submanifold together with the trivial flat bundle
over it. We call this the Lagrangian Poincaré cycle on X × Y . The symplectic
FM transform FFM

sym for the twin Lagrangian fibration on X and its dual twin
Lagrangian fibration on Y is defined using this Lagrangian cycle:

FFM
sym : C (X) → C (Y )

FFM
sym (L,L) =

(
L̂, L̂

)
.

Notice that this is actually an identity transformation.

15.4.4 Examples of twin Lagrangian fibrations

We are going to describe some examples of symplectic manifolds X with twin
Lagrangian fibrations. First we notice that this property is stable under taking
the product with another symplectic manifold with a Lagrangian fibration.

The trivial example is the product of a flat torus with its dual, T × T ∗. The
complex projective space CP

n also has a twin Lagrangian fibration: its toric
fibration

μ : CP
n → R

n

μ [z0, ..., zn] =

(
|z1|2

∑n
j=0 |zj |2

,
|z2|2

∑n
j=0 |zj |2

, ...,
|zn|2

∑n
j=0 |zj |2

)

is a Lagrangian fibration. If we consider an automorphism of CP
n defined by

f ([z0, ..., zn]) = [z0 + z1, z0 − z1, z2, ..., zn], then

μ ◦ f : CP
n → R

n

gives another Lagrangian fibration on CP
n. It is easy to check that the non-trivial

intersection of any two generic fibers of μ and μ ◦ f is an (n − 1)-dimensional
torus Tn−1. This example can be generalized to the Gelfand–Zeltin system on
Grassmannians and partial flag varieties.

Taub-NUT example: Besides trivial examples of products of Lagrangian fibra-
tions, we can write down explicit twin Lagrangian fibrations on four-dimensional
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hyperkähler manifolds X with S1-symmetry. These spaces are classified by an
positive integer n, denoted An, with explicit Taub-NUT metrics. Topologically
An is the canonical resolution of C

2/Zn+1 for a finite subgroup Zn+1 ⊂ SU(2).
The hyperkähler moment map

μ = (μ1, μ2, μ3) : X → Im H = R
3

is a singular S1-fibration on X. For any unit vector t ∈ S2 ⊂ R
3, it determines a

complex structure Jt on X. Furthermore the composition of μ with the projection
to the orthogonal plane to t gives a ΩJt

-complex Lagrangian fibration on X.
Corresponding to i, j, k ∈ Im H we have complex structures I, J,K on X. Thus

(μ2, μ3) : X → R
2 = C is a ΩI -complex Lagrangian fibration with coordinate

(y, z) ∈ C. Similarly (μ1, μ3) : X → R
2 = B is a ΩJ -complex Lagrangian fibra-

tion with coordinate (x, z) ∈ B. Then we have a ωK twin Lagrangian fibration
structure on X with D being the z-axis.

This construction can be easily generalized to any 4n-dimensional hyperkähler
manifold X with a tri-Hamiltonian Tn action with a hyperkähler moment map

μ : X → R
n ⊗ R

3.

In the above example, the generic fiber of X → B, or X → C, is topologically
a cylinder, thus noncompact. Therefore the base of the Lagrangian fibration
only has a partial affine structure. For Lagrangian fibrations with compact
fibers, there are usually singularities for the affine structures for the base spaces
corresponding to singular fibers. When dimB = 2, the affine structure near a
generic singularity has been studied in Gross and Siebert (2003) and Kontsevich
and Soibelman (2006). The monodromy across the “slit,” namely, the positive x-
axis, is given by (x, y) → (x, x + y). Near the singular point 0 ∈ B = R

2, the only
affine fibration is given by horizontal lines. Other attempts to obtain fibrations
on B will get overlapping fibers.

K3 surface with an elliptic fibration M → P
1 can be constructed as an anti-

canonical divisor of a Fano toric threefold PΔ which admits a toric P
2-bundle

structure, P
2 → PΔ → P

1. The mirror to M is another K3 surface X inside a
Fano toric threefold P∇ associated to a polytope which is a two-sided cone over
a triangle.

Generically X = {f = 0} admits a Lagrangian fibration over B = ∂∇, homeo-
morphic to the two-sphere S2, with 24 singular fibers. B admits a natural affine
structure with singularity along the base points of these singular fibers (see Gross
and Siebert 2003 for its construction), which all lie on the edges of ∇, and their
“slits” are also along these edges. We consider the restriction of the projection
of R

3 to the x-axis to B = ∂∇, the image is the interval D in R corresponding
to the polytope of the base P

1:

p : B → D.
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Since the slits for all the singular points in the middle triangle in ∂∇ are
vertical with respect to p, we obtain an affine fibration around there. But p will
cease to be an affine fibration around other singular points of B. However if
we choose the defining function f for M appropriately, then we can arrange all
other singular points to be far away from this middle triangle. Thus we obtain an
affine fibration on a large portion of B. As a matter of fact, if we allow M to be
singular, then we can make p to be an affine fibration on the whole B\Sing (B).
This picture can be generalized to certain higher dimensional manifolds, for
instance CY hypersurfaces in toric varieties.

15.5 SYZ transformation of FM transform

Given an elliptically fibered CY manifold M, we argued in Section 15.2.4 that its
mirror manifold X should admit a twin Lagrangian fibration (with superpotential
which we neglect in our present discussions). In this section, we first argue that
the mirror manifold to the dual elliptic fibration W to M is the dual twin
Lagrangian fibration Y to X. Second, we will explain the mirror to the universal
Poincaré sheaf that defines the FM transform between complex geometries of M
and W is the universal Lagrangian Poincaré cycle that defines the FM transform
between symplectic geometries of X and Y . Third, we show that these FM
transforms commute with the SYZ transforms. Namely, the SYZ transform of
the complex FM transform is the symplectic FM transform, which is actually an
identity transformation.

15.5.1 SYZ transform of dual elliptic fibrations

As we mentioned above, we are going to argue that the following diagram
commutes:

M Mirror manifolds←−−−−−−−−−−−−→ X

Dual elliptic
fibrations

�
�

�
� Dual twin Lagrangian

fibrations

W Mirror manifolds←−−−−−−−−−−−−→ Y

Indeed our arguments only work in the large structure limit but we expect that
a modified version of such will work in more general situations. To be precise,
we are only dealing with the flat situation: We assume that M is CY n-fold
with a q-dimensional Abelian varieties fibration p : M → S which is compatible
with a Lagrangian fibration π : M → B in the sense that the restriction of π to
any smooth Abelian variety fiber of p determines a Lagrangian fibration on the
Abelian variety. We are going to impose a very restrictive assumption, which we
expect to be the first-order approximation of what happens at the large structure
limit. Namely, M is the product of an Abelian variety with S.
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Let z1, ..., zn be a local complex coordinate system on M such that z =
x +

√
−1y with y1, ..., yn (respectively x1, ..., xn) be an affine coordinate system

on fibers (respectively base) of the special Lagrangian fibration on M → B.
According to the SYZ proposal, the mirror manifold X to M is the total space
of the dual Lagrangian torus fibration. For the affine coordinate system y1, ..., yn

on the torus fiber, we denote the dual coordinate system on its dual torus as
y1, ..., yn. Thus X has a Darboux coordinate system given by y1, ..., yn, x1, ..., xn.

We assume the q-dimensional Abelian variety fibration M → S is compatible
with the Lagrangian fibration structure in the sense that zn−q+1, ..., zn gives
a complex affine coordinate system on fibers to M → S. In particular, the
dual coordinate system on the dual Abelian variety is given by zn−q+1, ..., zn.
Therefore such a coordinate system on M induces a similar coordinate system on
the dual Abelian variety fibration W → S, labeled (z1, ..., zn−q, zn−q+1, ..., zn).

Note that on a fiber of the Abelian variety fibration M → S, yn−q+1, ..., yn

(respectively, xn−q+1, ..., xn) are those coordinates belonging to Lagrangian
fibers (respectively, base) for the special Lagrangian fibration on M . Since fibers
are much smaller in scale when comparing to the base near the LCSL (Strominger
et al. 1996), when we take the dual Abelian variety, yn−q+1, ..., yn will become
much larger in scale when comparing to xn−q+1, ..., xn. As a consequences,
the special Lagrangian fiber (respectively, base) coordinates for the CY man-
ifold Y are y1, ..., yn−q,xn−q+1, ..., xn (respectively, x1, ..., xn−q, yn−q+1, ..., yn).
Therefore the special Lagrangian fibration on the mirror manifold Y to W has
fiber (respectively, base) coordinates as y1, ..., yn−q, x

n−q+1, ..., xn (respectively,
x1, ..., xn−q, yn−q+1, ..., yn).

Next we need to check that Y is indeed the total space of the dual twin
Lagrangian fibration to X. For the Abelian variety fiber in M , with coordi-
nates xn−q+1, ...xn, yn−q+1, ...yn, its mirror Lagrangian cycle in X has coor-
dinates xn−q+1, ...xn, y1, ...yn−q and it is the fiber of the other Lagrangian
fibration on X. Similarly, for the Abelian variety fibers in W , with coordinates
xn−q+1, ...xn, yn−q+1, ...yn, its mirror Lagrangian cycle in Y has coordinates
y1, ...yn−q, yn−q+1, ...yn and it is the fiber of the other Lagrangian fibration on
Y . It is now clear that X and Y are dual twin Lagrangian fibrations. All these
fiber/base coordinates systems are summarized in the following diagram:

M :
yi yα

xi xα ←→ X :
yα yi

xi xα

� �

W :
yi xα

xi yα
←→ Y :

xα yi

xi yα

Our conventions are i = 1, ..., n − q and α = n − q + 1, ..., n. For each space in the
above diagram, the coordinates in the top (respectively, bottom) row are for the
SYZ special Lagrangian fibers (respectively, base). Also the coordinates in the left
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(respectively, right) column are for the fibers (respectively, base) of the Abelian
variety fibrations for M or W and the other Lagrangian fibrations for X or Y .

15.5.2 SYZ transform of the universal Poincaré sheaf

Recall that the FM transform on derived categories of manifolds with elliptic
fibrations is given by

FM : Db (M) → Db (W )

FM (−) = R•p′∗ (Pcx ⊗ p∗ (−)) ,

where Pcx is a coherent sheaf on M × W with support

Supp (Pcx) = M ×S W ⊂ M × W,

and

Pcx = O (Δ − σM × W − M × σW ) ,

with Δ the relative diagonal in M ×S W .
We note that M × W is again a CY manifold with its mirror manifold being

X × Y . We are going to describe the SYZ transform of Pcx from Db (M × W )
to Fuk (X × Y ). We will apply the transformation on the level of object, as
proposed in (Strominger et al. 1996).

Claim 15.5 Corresponding to the mirror symmetry between CY (2n)-folds
M × W and X × Y

Complex
geometry (M × W ) SYZ transform←−−−−−−−−−→

Symplectic
geometry (X × Y )

the mirror of the coherent sheaf Pcx on M × W is the diagonal Lagrangian cycle
(Psym,Psym) ∈ C (X × Y ) as described in Section 15.4.3.

Proof. We will continue to use the same coordinate systems as before. The
Poincaré sheaf Pcx for the dual Abelian variety fibrations M → S and W → S
has support M ×S W ⊂ M × W which has coordinates

{
xi, yi, xα, yα, xα, yα

}
i,α

(where xi and yi are diagonal coordinates in the product space). Over M ×S

W , Pcx is a complex line bundle, indeed only a divisorial sheaf, with an U(1)
connection:

DFM
cx = d +

√
−1

∑
α (xαdxα + xαdxα − yαdyα − yαdyα) .

The reason that the signs for terms involving x and y are different is the following:
For Abelian varieties, the dual complex coordinates are zα and zα, which induces
the dual coordinates for xα, yα as xα,−yα because Re (zαzα) = xαxα − yαyα.

To apply the SYZ mirror transform to Pcx from the special Lagrangian fibra-
tion M × W → B × B∗ to the one X × Y → B × B∗, we first need to describe
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the Poincaré bundle PSY Z over

(M × W ) ×
B×B∗

(X × Y ) ⊂ (M × W ) × (X × Y ) .

To describe the coordinates on this space, we need to rename the (x, y) coordi-
nates on W and Y to (u, v) coordinates. That is,

W Y
vi uα

ui vα
SYZ mirror←−−−−−−→

uα vi

ui vα

Now the universal U(1) connection on the line bundle

C →PSY Z → (M × W ) ×
B×B∗

(X × Y )

is given by

DSY Z = d +
√
−1

∑(
yidyi + yidyi + yαdyα + yαdyα

)

−
√
−1

∑(
vidvi + vidvi + uαduα + uαduα

)
.

Note that we have used different signs for the SYZ transform between M and X
and SYZ transform between W and Y .

In this newly named coordinates on W , the universal connection on the
Poincaré bundle

C → PFM
cx → M ×S W

is given by

DFM
cx = d −

√
−1

∑
α (uαdxα + xαduα − vαdyα − yαdvα) .

To apply the SYZ transform, we need to first pullback the bundle PFM
cx (with

its connection DFM
cx ) from M ×S W ⊂ M × W to (M × W ) ×B×B∗ (X × Y ) ⊂

(M × W ) × (X × Y ) and tensors it with PSY Z (with its connection DSY Z).
Then we pushforward along the projective map (M × W ) ×B×B∗ (X × Y ) →
X × Y .

We can separate our discussions into two parts: (i) perform the SYZ transform
along those directions with indexes i = 1, ..., n − q and (ii) perform the SYZ
transform along those directions with indexes α = n − q + 1, ..., n.

Part (i) with i = 1, ..., n − q: This part is easy because the Poincaré bundle for
the FM transform does not involve here. In fact it is the trivial line bundle over{
ui = xi

}
∩

{
vi = yi

}
⊆ M × W . In these coordinates, the SYZ Poincaré bundle

PSY Z has support (M × W ) ×B×B∗ (X × Y ) ⊂ (M × W ) × (X × Y ), which in
our coordinate systems means the xi’s coordinates for M and X are the same
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and similarly the ui’s coordinates for W and Y are the same:

DSY Z = d +
√
−1

∑
iy

idyi + yidyi − vidvi − vidvi

= d +
√
−1

∑
iy

i (dyi − dvi) + (yi − vi) dyi.

To pushforward to X × Y , we integrate along yi’s directions. Along these direc-
tions, the restriction of the above connection is d +

√
−1

∑
i (yi − vi) dyi, which

has a (unique up to scaling) flat section precisely when yi − vi = 0 for all i.
When this happens, we also have yi (dyi − dvi) = 0. Hence the SYZ transform of
PFM

cx is given by the trivial bundle over
{
ui = xi and yi = vi for all i

}
⊂ X × Y .

It is a Lagrangian submanifold in X × Y with the symplectic form ωX×Y =
Σdxi ∧ dyi + Σdui ∧ dvi.

Part (ii) with α = n − q + 1, ..., n: In these coordinates, the support for the SYZ
Poincaré bundle PSY Z imposes a constraint which says that the xα’s coordinates
for M and X are the same and the vα’s coordinates for W and Y are the same.
Now we need to integrate the directions yα’s and uα’s. First we rearrange the
terms

DFM
cx ⊗DSY Z = d −

√
−1

∑
α (uαdxα + xαduα − vαdyα − yαdvα)

+
√
−1

∑
α (yαdyα + yαdyα − uαduα − uαduα)

= d +
√
−1

∑
α ((−vα + yα) dyα + (xα − uα) duα)

+
√
−1

∑
α (uαdxα − yαdvα + yαdyα − uαduα) .

When we integrate along the yα’s and uα’s directions, the terms uαdxα, yαdvα,
yαdyα, and uαduα has non-trivial Fourier modes in these variables and therefore
they contribute zero to Psym, the mirror cycle of Pcx.

When we pushforward along yα’s direction, the restriction of the above con-
nection becomes d +

√
−1

∑
α (−vα + yα) dyα along any fiber and it admits a

(unique up to scaling) parallel section precisely when yα = vα for all α. Similarly
we obtain uα = xα for all α when we pushforward along uα’s directions. Namely,
the support of the mirror object to PFM

cx is given by

{yα = vα and xα = uα for all α} = Psym ⊂ X × Y.

Namely, this is precisely given by the diagonal Lagrangian submanifold as in the
example in Section 15.4.3.

There is no remaining component of DFM
cx ⊗DSY Z and therefore the unitary

flat connection on Psym is trivial.
By putting parts (i) and (ii) together, we have shown that the mirror transfor-

mation of the complex Poincaré cycle
(
PFM

cx = M ×S W,PFM
cx

)
∈ C (M × W ) is

the Lagrangian Poincaré cycle
(
PFM

sym ,PFM
sym

)
∈ C (X × Y ) in the flat limit. Hence

the claim. �
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15.5.3 SYZ transforms commute with FM transforms

Recall from the last section that when PFM
cx is the Poincaré sheaf for the FM

transform between the elliptic CY manifold M and its dual elliptic CY manifold
W , then its mirror PFM

sym is the diagonal Lagrangian submanifold in X × Y .
Thus it defines a symplectic FM transform FFM

sym from X to Y . We claim that
the complex/symplectic FM transforms commute with the SYZ transforms:

FFM
sym ◦ FSY Z = FSY Z ◦ FFM

cx

as depicted in the following diagram:

Complex
geometry (M) FSY Z

←−−−→
Symplectic
geometry (X)

FFM
cx

�
⏐
⏐
�

�
⏐
⏐
�FFM

sym

Complex
geometry (W ) FSY Z

←−−−→
Symplectic
geometry (Y )

Since FFM
sym is essentially an identity transformation, we can regard the FM

transform for elliptic CY as a square of the SYZ transforms! Note that even
though one can identify M with W and X with Y , nevertheless, FSY Z

(M,X) and
FSY Z

(W,Y ) do not correspond to each other under these identifications of spaces. For
instances, the whole manifold M (respectively, W ) transforms to the zero section
of the SYZ fibration on X (respectively, Y ). However, they are sections of two
different fibrations on X 	 Y as it admits a twin Lagrangian fibration structure.

In fact our claim follows from a more general statement: If M and W are two
CY manifolds, possibly of different dimensions and X and Y are their mirror
manifolds, respectively. Let Pcx be any complex cycle in M × W and Psym be its
mirror Lagrangian cycle in X × Y . They define general complex/symplectic FM
transforms FFM

cx and FFM
sym , respectively. Then these FM transforms commute

with the SYZ transforms.
The key point is the SYZ transform is an involution, that is, FSY Z ◦ FSY Z =

id. Suppose S is a complex cycle in M , we want to show that

FFM
sym

(
FSY Z

(M,X) (S)
)

= FSY Z
(W,X)

(
FFM

cx (S)
)
.

Equivalently,

(πX)∗ (πM )∗ SM ⊗ PSY Z
(M,X) ⊗ PFM

sym = (πW )∗ (πM )∗ SM ⊗ PFM
cx ⊗ PSY Z

(W,Y ).

Therefore, it suffices to prove that

(πX)∗ PSY Z
(M,X) ⊗ PFM

sym = (πW )∗ PFM
cx ⊗ PSY Z

(W,Y ),
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over M × Y . However,

PFM
sym = (πM )∗ (πW )∗ PFM

cx ⊗ PSY Z
(M×W,X×Y )

= (πM )∗ (πW )∗ PFM
cx ⊗ PSY Z

(M,X) ⊗ PSY Z
(W,Y ).

Hence

(πX)∗ PSY Z
(M,X) ⊗ PFM

sym

= (πX)∗ PSY Z
(M,X) ⊗

[
(πM )∗ (πW )∗ PFM

cx ⊗ PSY Z
(M,X) ⊗ PSY Z

(W,Y )

]

= (πW )∗ PFM
cx ⊗ PSY Z

(W,Y ) ⊗
[
(πM )∗ (πX)∗ PSY Z

(M,X) ⊗ PSY Z
(M,X)

]

= (πW )∗ PFM
cx ⊗ PSY Z

(W,Y ).

The last equality holds because SYZ transforms are involutive. Hence the
result.

15.6 Conclusions and discussions

In this chapter we have introduced the notion of a twin Lagrangian fibration
and explained several of its properties. We argued via the SYZ proposal that
the mirror manifold of an elliptic CY manifold should admit such a structure,
possibly coupled with a non-trivial superpotential which we have not fully
understood yet.

An important tool in the study of the complex geometry of elliptic manifolds is
the FM transform. We argued that under the SYZ transform, this FM transform
will become the identity transformation for the symplectic geometry between
dual twin Lagrangian fibrations. Even though we are mostly interested in the
elliptic fibration situation, these arguments can be applied to Abelian varieties
fibrations, and possibly to general CY fibrations with suitable adjustments.

We could also study mirror of the symplectic geometry of the elliptic CY
manifolds. For example, let ωM (respectively, ωS) be any Kähler form on M
(respectively, S). The pullback of ωS under the elliptic fibration M → S, denoted
as ωS again, is only nef but not ample. Obviously it satisfies ωn−1

S 
= 0 and
ωn

S = 0. For any t > 0, ωM,t = tωM + (1 − t) ωS is always a Kähler form on M .
In particular it satisfies ωn

M,t 
= 0 and ωn+1
M,t = 0.

On the mirror side, these correspond to a two-parameter family of complex
structures on X where (i) the generic monodromy is of maximally unipotent
and the corresponding vanishing cycles are the Lagrangian fibers of X → B;
and (ii) a special monodromy T0 for this family has the property Nn−1

0 
= 0 but
Nn

0 = 0 where N0 = log (I − T0) and the corresponding vanishing cycles are the
(n + 1)-dimensional coisotropic fibers of the composition map X → B → D.
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