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Li-Yau inequality for unbounded Laplacian on graphs

Chao Gong, Yong Lin, Shuang Liu, Shing-Tung Yau

Abstract

In this paper, we derive Li-Yau inequality for unbounded Laplacian on complete weighted
graphs with the assumption of the curvature-dimension inequality CDE ′(n,K), which can
be regarded as a notion of curvature on graphs. Furthermore, we obtain some applications of
Li-Yau inequality, including Harnack inequality, heat kernel bounds and Cheng’s eigenvalue
estimate. These are first kind of results on this direction for unbounded Laplacian on graphs.

1 Introduction

Li-Yau inequality is a powerful tool for studying positive solutions to the heat equation on
manifolds. The simplest version of Li-Yau inequality states

|∇u|2
u2

− ∂tu

u
≤ n

2t
, t > 0 (1.1)

where u is a positive solution of the heat equation (∆− ∂t)u = 0 on an n-dimensional com-
pact Riemannian manifold with non-negative Ricci curvature, see [20]. After Li and Yau’s
breakthrough in 1986, great efforts were made to establish an analogue result on different
settings. In 2006, Bakry and Ledoux generalized Li-Yau inequality to measure spaces for dif-
fusion Laplace operator that satisfy chain rule by using the curvature-dimension inequality
(CD condition). It is obvious that chain rule for Laplace operator fails on graphs.

However, on graphs, in 2015, Bauer et.al. proved a discrete vision of Li-Yau inequality
which is very similar to the original one (1.1), as follows: let u be a positive solution to the
heat equation on the graph G, then

Γ(
√
u)

u
− ∂t

√
u√
u

≤ n

2t
, t > 0. (1.2)

This version of gradient estimate is sharp on graph setting(see [4]).
In order to bypass the chain rule, the authors modified the curvature-dimension condi-

tion, which is called exponential curvature-dimension inequality (CDE ′(n, 0) condition), see
[4]. After that, using the heat semigroup technique, Horn et.al. proved the same Li-Yau
inequality as (1.2) of bounded and positive solution of heat equation on graphs, see [13].
Li-Yau inequality and its applications on graphs has been studied by many authors, we refer
to [5, 22, 16, 27]. All these results are established for bounded Laplacian. However, we
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know that the classic results of Li-Yau on Riemannian manifolds were for the unbounded
Laplace-Beltrami operator.

Studies on unbounded Laplacian seem much more difficult on graphs and the proofs are
usually different with the bounded cases. There are some results involving the curvature-
dimension inequality for unbounded Laplacian. In [12], the authors derived stochastic com-
pleteness of complete graphs by proving an equivalent property of CD(∞, 0) condition,
named gradient estimate. In [19], the authors obtained diameter bound by utilizing gradient
estimate on non-negative curved graphs. Other equivalent properties of CD(n,K), such as
Poincaré inequality and reverse Poincaré inequality condition, were proved in [10]. After
that, in [11], the author derived the Liouville theorem for bounded Harmonic functions on
non-negative curved graphs using reverse Poincaré inequality. However, there is no result
about Li-Yau inequality for unbounded Laplacian.

In this paper, we study unbounded Laplacian, and prove Li-Yau inequality for unbounded
Laplacian on infinite graphs under the exponential curvature-dimension condition. Moreover
we obtain some applications, including Harnack inequality, heat kernel upper bounds and
Cheng’s eigenvalue estimate.

Let us introduce the setting and then state our main results.

1.1 Setting

Let G = (V,E) be an infinite graph with the set of vertices V and the set of edges E, a
symmetric subsets of V ×V . Two vertices are called neighbours if they are connected by an
edge {x, y} ∈ E, which is denoted by x ∼ y. At a vertex x, if {x, x} ∈ E, we say there is a
loop at x. In this paper, we do allow loops for graphs. We say the graph is connected if for
any distinct x, y ∈ V there is a finite path such that x = x0 ∼ x1 ∼ · · · ∼ xn = y. In this
paper, we just consider connected graphs.

On (V,E), we assign a measure on vertices by a function m : V → R
+, and give a weight

on edges by a function ω : E → R
+, the edge {x, y} ∈ E has weight ωxy > 0, and the weight

function is symmetric, i.e. ωxy = ωyx. We call the quadruple G = (V,E,m, ω) a weighted
graph. In this paper, we restrict our interest to the locally finite graph, that is

deg(x) :=
∑

y∼x

ωxy < ∞, ∀x ∈ V.

We denote by V R the set of real-value functions on V , and by C0(V ) the set of finitely
supported functions on V . we denote by ℓpm, p ∈ [1,∞] the ℓpm spaces of functions on V with
respect to the measure m, and by ‖ · ‖ℓpm the p-norm of a function. For any f, g ∈ ℓ2m, we let
〈f, g〉 =

∑
x∈V f(x)g(x)m(x) denote the standard inner product. This makes ℓ2m a Hilbert

space.
To a weighted graph G, it associates with a Dirichlet form w.r.t ℓ2m,

Q : D(Q)×D(Q) → R

f 7→ Q(f) :=
1

2

∑

x,y∈V

ωxy(f(y)− f(x))(g(y)− g(x)),
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where D(Q) is defined as the completion of C0(V ) under the Q-norm ‖ · ‖Q given by

‖f‖Q =

√
‖f‖2ℓ2m +

1

2

∑

x,y∈V

ωxy(f(y)− f(x))2.

we refer from [25]. For locally finite graphs, the associated generator ∆, called Laplacian
defined by

∆f(x) =
1

m(x)

∑

y∼x

ωxy(f(y)− f(x)), f ∈ D(∆),

where D(∆) = {f ∈ D(Q)|∆f ∈ ℓ2m}. In this paper, we restrict all functions on

F := {f ∈ V R :
∑

y∼x

ωxy|f(y)| < ∞ for all x ∈ V }.

The Laplacian ∆ generates a semigroup Ptf = et∆f acting on ℓpm for p ∈ [1,∞]. Obviously,
the measure m plays an important role in the definition of Laplacian. Given the weight ω

on E, there are two typical choices of Laplacian as follows:

• m(x) = deg(x) for all x ∈ V , which is called the normalized graph Laplacian;

• m(x) ≡ 1 for all x ∈ V , which is the combinatorial graph Laplacian.

Note that normalized Laplacian is bounded. Actually the fact that the Laplacian ∆ is
bounded on ℓpm is equivalent to the following condition:

sup
x∈V

deg(x)

m(x)
< ∞, (1.3)

see [25]. As we mentioned before, Li-Yau inequality and its applications were well studied
for bounded Laplacian. Thus, in this paper, we are interested in combinatorial graph and
more general unbounded Laplacians.

In this paper, we further assume the measure m on V is non-degenerate, i.e.

inf
x∈V

m(x) = δ > 0. (1.4)

This assumption yields a very useful fact for ℓpm spaces, see [12].

Lemma 1.1. Let m be a non-degenerate measure on V as (1.4). Then for any 1 ≤ p < q ≤
∞, ℓpm →֒ ℓqm.

Now we introduce the gradient forms associated to the Laplacian and curvature dimension
conditions on graphs following [21, 4].

Definition 1.1. The gradient forms Γ and the iterated gradient form Γ2 are defined by

2Γ(f, g)(x) = (∆(fg)− f∆(g)− g∆(f))(x)

=
1

m(x)

∑

y∼x

ωxy(f(y)− f(x))(g(y)− g(x)),

2Γ2(f, g)(x) = (∆Γ(f, g)− Γ(f,∆(g))− Γ(g,∆(f)))(x).

We write Γ(f) = Γ(f, f),Γ2(f) = Γ2(f, f) for simplification.
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Definition 1.2. The graph G satisfies the CD inequality CD(n,K) if, for any function
f ∈ V R and at every vertex x ∈ V

Γ2(f) ≥
1

n
(∆f)2 +KΓ(f).

On graphs, the CD condition implies a weak Harnack-type inequality (see [4]), but it
seems insufficient to prove the Li-Yau inequality. However, in [4, 13], the authors proved
a discrete analogue of Li-Yau inequality by modifying the curvature notion, which is called
CDE ′ condition. In the following, we recall their definition.

Definition 1.3. We say that a graph G satisfies the CDE ′(x, n,K), if for any positive
function f ∈ V R, we have

Γ̃2(f)(x) ≥
1

n
f(x)2 (∆ log f) (x)2 +KΓ(f)(x). (1.5)

We say that CDE ′(n,K) is satisfied if CDE ′(x, n,K) is satisfied for all x ∈ V .

We introduce a relation between the CD conditon and the CDE ′ condition.

Remark 1. CDE ′(n,K) implies CD(n,K) on graphs but visa versa is not true(see [23]).
For diffusion Laplace operator, for example the Laplace-Beltrami operator on Riemannian
manifolds, the CDE ′(n,K) is equivalent to CD(n,K)(see [4]).

Next, we introduce a condition for the completeness of infinite weighted graphs: The
graph G is called complete, that is, there exists a non-decreasing sequence {ηk}∞k=0 ∈ C0(V )
such that

lim
k→∞

ηk = 1, and Γ(ηk) ≤
1

k
, (1.6)

where 1 is the constant function on V , and its limit is pointwise. This condition was defined
for Markov diffusion semigroups in [3] and adopted to graphs in [12, 10, 9]. It is been proved
that a large class of graphs under the assumptions possessing appropriate intrinsic metrics
have been shown to be complete, see [12]. In particular, graphs with bounded Laplacians
are always complete. This lemma shows that C0(V ) is a dense subset of D(Q)(see [12]).

Lemma 1.2. Let G = (V,E,m, ω) be a complete graph. for any f ∈ D(Q), we have

‖fηk − f‖Q → 0, k → ∞

1.2 Main results

The first main result is the following Li-Yau inequality.

Theorem 1.1. Let G = (V,E,m, ω) be a complete graph and m be a non-degenerate measure.

If G satisfies CDE ′(n,K), then for any 0 ≤ f ∈ ℓpm with p ∈ [1,∞], we have

Γ(
√
Ptf)

Ptf
≤ 1

2

(
1− 2Kt

2b+ 1

)
∆Ptf

Ptf
+

n

2

(
b2

(2b− 1)t
+

K2t

2b+ 1
−K

)
. (1.7)
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Remark 2. When K = 0 and b = 1, let 0 ≤ f ∈ ℓ∞m , then u = et∆f solves the heat equation,
i.e. ∆u = ∂tu with 0 < u ∈ ℓ∞m , this family of Li-Yau inequality (1.7) reduced to the familiar
Li-Yau inequality

Γ(
√
u)

u
− ∂t

√
u√
u

≤ n

2t
, t > 0. (1.8)

The first application of Li-Yau inequality is Harnack inequality. We find boundedness
of Laplacian is not required in the proof of Harnack inequality from Li-Yau inequality in
[4]. Integrating the Li-Yau inequality of the positive solution of the heat equation (1.2) over
t, we have the following corollary under the assumption of CDE ′(n, 0). In the context of
deriving Harnack inequality and heat kernel upper bounds, two additional assumptions are
needed as follow:

ωmin := inf
x,y∈V,x∼y

ωxy > 0,

and
mmax := sup

x∈V
m(x) < ∞,

Corollary 1.2. Suppose G = (V,E,m, ω) be a complete graph and m be a non-degenerate
measure. If G satisfies CDE ′(n, 0), then for all x, z ∈ V and any t < s, and any 0 ≤ f ∈ ℓpm
with p ∈ [1,∞], one has

Ptf(x) ≤ Psf(z)
(s
t

)n
exp

(
4mmaxd(x, z)

2

ωmin(s− t)

)
, (1.9)

where d(x, z) is the graph distance, that is, the number of edge of the shortest path from x

to z.

As one of the most important applications of Li-Yau inequality, Harnack inequality can
be derived to the following heat kernel upper bounds in these assumptions. We can define

p(t, x, y) = Pt

(
δy

m(y)

)
(x) as the heat kernel (the fundamental solution of the heat equation)

on weighted graph G, where δy(x) equals to 1 when x = y, otherwise equals to 0. We denote
by B(x, r) = {y ∈ V : d(x, y) ≤ r} the ball centered in x with radius r , and denote by
V (A) :=

∑
x∈Am(x) the volume of a subset A of V , we will write V (x, r) for V (B(x, r)).

Theorem 1.3. Suppose G = (V,E,m, ω) be a complete graph and m be a non-degenerate

measure. If G satisfies CDE ′(n, 0), then there exist constant C > 0 depending on n so that,

for any x, y ∈ V and for all t > 0,

p(t, x, y) ≤ C

V (x,
√
t)
.

We say that a weighted graph G satisfies the assumption (A) if one of the following holds:
(A1) The Laplacian ∆ is bounded on ℓ2m, i.e. (1.3) holds.
(A2) G is complete, that is (1.6) holds, and m is non-degenerate, see (1.4).

As a further application of the Li-Yau inequality, we obtain an estimate for the greatest
lower bound of the ℓ2-spectrum known as Cheng’s eigenvalue estimate.
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Theorem 1.4. Let G be a finite or locally finite graph satisfying (A) and the CDE ′(n,−K)
condition with some K > 0, and let λ∗ be the greatest lower bound for the ℓ2-spectrum of the

graph Laplacian ∆. Then we have

λ∗ ≤ Kn

2
.

Remark 3. The upper bounds of eigenvalues presented here are stronger than the ones with
the slight weak curvature condition of Bauer et.al in [4].

The paper is organized as follows. In next section, we introduce some useful propositions
of heat semigroup. We prove some uniform estimations based on a discrete Caccioppoli
inequality for Poisson’s equations. In section 3, we prove our main results: the family
of Li-Yau inequality for unbounded Laplacian with the assumption of CDE ′(n,K), and its
applications, including Harnack inequality, heat kernel upper bounds and Cheng’s eigenvalue
estimate on graphs.

2 Preliminaries

The following integration by parts formula is useful later, see [24].

Lemma 2.1 (Green’s formula). For any f ∈ D(Q) and g ∈ D(∆) we have

∑

x∈V

f(x)∆g(x)m(x) = −
∑

x∈V

Γ(f, g)(x)m(x).

The next proposition is a consequence of standard Dirichlet form theory, see [8] and [25].

Proposition 2.1. For any f ∈ ℓpm, p ∈ [1,∞], we have Ptf ∈ ℓpm and

‖Ptf‖ℓpm ≤ ‖f‖ℓpm, ∀t ≥ 0.

Moreover, Ptf ∈ D(∆) for any f ∈ ℓ2m.

Now, we introduce some useful properties of heat semigroup Pt on graphs.

Proposition 2.2. For any t, s > 0, we have

1. Pt and ∆ are communicative, i.e. for any f ∈ D(∆),

∆Ptf = Pt∆f.

2. Pt satisfies the semigroup property. That is, for any f ∈ ℓpm,

Pt ◦ Psf = Pt+sf.

3. Pt is self-adjoint. That is, for any f, g ∈ ℓ2m,

〈Ptf, g〉 = 〈Ptg, f〉.

6



We introduce the Caccioppoli inequality for subsolutions to Poissons equations on graphs,
see [12]. By proving the Caccioppoli inequality for subsolutions to Poissons equations, the
authors can derive a uniform upper bound about Ptf , see ([12], Lemma 3.6).

Lemma 2.2. Let g, h ∈ V R, if the graph G satisfies

∆g ≥ h

Then for any η ∈ C0(V ), we have

∥∥Γ(g)η2
∥∥
l1m

≤ C
(∥∥Γ(η)g2

∥∥
l1m

+
∥∥ghη2

∥∥
l1m

)
.

Lemma 2.3. Let G = (V,E,m, ω) be a complete graph, and m be a non-degenerate measure.

For any f ∈ C0(V ) and T > 0, we have max
[0,T ]

Γ(Ptf) ∈ ℓ1m, moreover there exists C1(T, f) > 0

such that ∥∥∥∥max
[0,T ]

Γ(Ptf)

∥∥∥∥
ℓ1m

≤ C1(T, f). (2.1)

In addition, we have max[0,T ] |Γ(Ptf,∆Ptf)| ∈ ℓ1m, moreover there exists C2(T, f) > 0 such

that ∥∥∥∥max
[0,T ]

|Γ(Ptf,∆Ptf)|
∥∥∥∥
ℓ1m

≤ C2(T, f). (2.2)

Lemma 2.4. For any functions f, g ∈ V R, if |f | ≤ B1, |g| ≥ B2 > 0, then there exist

positive constants C1(B1), C2(B1, B2) > 0 such that

∣∣∣∣Γ(
f

g
)

∣∣∣∣ ≤ C1(B1) |Γ(f)|+ C2(B1, B2) |Γ(g)| .

Proof. ∣∣∣∣Γ(
f

g
)

∣∣∣∣ =
1

2

∑

y∼x

ωxy(
f(y)

g(y)
− f(x)

g(x)
)2

=
1

2

∑

y∼x

ωxy[
1

g(y)
(f(y)− f(x)) + f(x)(

1

g(y)
− 1

g(x)
)]2

≤ 2
1

2

∑

y∼x

ωxy
1

g2(y)
(f(y)− f(x))2

+ 2
1

2

∑

y∼x

ωxy
f 2(x)

g2(x)g2(y)
(g(y)− g(x))2

≤ 2

B2
1

|Γ(f)|+ 2B2
2

B4
1

|Γ(g)|

= C1(B1) |Γ(f)|+ C2(B1, B2) |Γ(g)|

7



From the above two Lemmas, the authors in [9] have proved the following result, the key
is to plus a positive constant ǫ on Ptf , which is still a solution of the heat equation, and
makes it has a lower bound. We copy the proof here for sake of completeness.

From now, we let u(t, x) = Ptf(x) + ǫ, where ǫ > 0 is a constant.

Lemma 2.5. Let G = (V,E,m, ω) be a complete graph, and m be a non-degenerate measure.

For any 0 ≤ f ∈ C0(V ) and T > 0, then there exists a positive constant C1(ǫ, T, f) > 0 such

that ∥∥∥∥max
t∈[0,T ]

Γ(
√
u)

∥∥∥∥
l1m

≤ C1(ǫ, T, f). (2.3)

Moreover, there exists a positive constant C2(ǫ, T, f) > 0 such that

∥∥∥∥max
t∈[0,T ]

Γ

(√
u,

∆u

2
√
u

)∥∥∥∥
l1m

≤ C2(ǫ, T, f). (2.4)

Proof. For any 0 ≤ f ∈ C0(V ), we have ǫ ≤ Ptf + ǫ ≤ ‖f‖∞ + ǫ, by (2.1) in Lemma 2.3,

∥∥∥∥max
[0,T ]

Γ(
√
Ptf + ǫ)

∥∥∥∥
l1m

=
1

2

∑

x∈V

max
[0,T ]

∑

y∼x

ωxy(
√

Ptf + ǫ(y)−
√

Ptf + ǫ(x))2

=
1

2

∑

x∈V

max
[0,T ]

∑

y∼x

ωxy(
Ptf(y)− Ptf(x)√

Ptf + ǫ(y) +
√
Ptf + ǫ(x)

)2

≤ 1

4ǫ

(
1

2

∑

x∈V

max
[0,T ]

∑

y∼x

ωxy((Ptf)(y)− (Ptf)(x))
2

)

≤ 1

4ǫ

∥∥∥∥max
[0,T ]

Γ(Ptf)

∥∥∥∥
l1m

≤ 1

4ǫ
C1(T, f) =: C1(ǫ, T, f).

Due to ∆f ∈ C0(V ), and from Lemma 2.3, we have

|Γ(∆(Ptf + ǫ))| (x) = |Γ(∆Ptf)| (x) = |Γ(Pt∆f)| (x) ≤ max
t∈[0,T ]

|Γ(Pt∆f)| (x) ∈ ℓ1m,

moreover there exists a constant C1(T,∆f) such that

‖Γ(∆u)‖l1m ≤ C1(T,∆f).

By Cauchy-Schwartz inequality, we have

Γ(f, g) ≤
√
Γ(f)Γ(g) ≤ 1

2
(Γ(f) + Γ(g)).

8



Combining with Lemma 2.4, we obtain
∥∥∥∥Γ
(√

u,
∆u

2
√
u

)∥∥∥∥
l1m

≤ 1

2

∥∥Γ(
√
u)
∥∥
l1m

+
1

8

∥∥∥∥Γ
(
∆u√
u

)∥∥∥∥
l1m

≤
(
1

2
+ C1(ǫ, f)

)∥∥Γ(
√
u)
∥∥
l1m

+
1

8
C2(ǫ, f) ‖Γ(∆u)‖l1m

≤
(
1

2
+ C1(ǫ, f)

)
C1(ǫ, T, f) +

1

8
C2(ǫ, f)C1(T,∆f) =: C2(ǫ, T, f).

That finishes the proof.

We will also need to prove the following two technique Lemmas.

Lemma 2.6. Let G = (V,E,m, ω) be a complete graph and m be a non-degenerate measure.

For any 0 ≤ f ∈ C0(V ) and t ∈ [0, T ], let ǫ > 0, then we have (∆ log u)2 ∈ ℓ1m. Moreover,

there exists a positive constant C3(T, f, ǫ) > 0 such that

∥∥∥∥max
[0,T ]

(∆ log u)2
∥∥∥∥
ℓ1m

≤ C3(T, f, ǫ).

Proof. Since log z ≤ z − 1 for any z ≥ 0, then for any x ∈ V , we have

∆ log u(x) =
1

m(x)

∑

y∼x

ωxy log
u(y)

u(x)
≤ ∆u(x)

u(x)
,

For any x ∈ V such that ∆ log u(x) ≥ 0 , it is true that

(∆ log u(x))2 ≤ 1

ǫ2
(∆u)2(x) ≤ 2

ǫ2
(∆u)2(x). (2.5)

On the other hand, we have

∆ log u(x) = − 1

m(x)

∑

y∼x

ωxy log
u(x)

u(y)

≥ 1

m(x)

∑

y∼x

ωxy
u(y)− u(x)

u(y)

= − 1

m(x)

∑

y∼x

ωxy
(u(y)− u(x))2

u(x)u(y)
+

∆u(x)

u(x)

≥ − 1

ǫ2
Γ(u)(x) +

∆u(x)

u(x)

then for any x ∈ V such that ∆ log u(x) < 0, we have

(∆ log u(x))2 ≤ 2

ǫ4
(Γ(u)(x))2 +

2

ǫ2
(∆u(x))2. (2.6)

9



Then from (2.5) and (2.6), we obtain

∑

x∈V

(∆ log u)2(x)m(x) ≤ 2

ǫ2

∑

x∈V

(∆u(x))2m(x) +
2

ǫ4

∑

x∈V,∆log u(x)<0

(Γ(u)(x))2m(x).

From Proposition 2.1, we know that Ptf ∈ D(∆) with f ∈ C0(V ) ⊂ ℓ2m. Moreover, due
to ∆Ptf = Pt∆f and ∆f ∈ C0(V ) when f ∈ C0(V ), we have ∆Ptf ∈ D(Q) by (2.1) in
Lemma 2.3. Therefore, from Green formula, we have

2

ǫ2

∑

x∈V

m(x)(∆u)2(x) =
2

ǫ2

∑

x∈V

m(x)(∆Ptf)
2(x) = − 2

ǫ2

∑

x∈V

m(x)Γ(Ptf,∆Ptf)(x).

Since the measure is non-degenerate, i.e. infx∈V m(x) = δ > 0, then we have

∑

x∈V,∆log u(x)<0

(Γ(u)(x))2m(x) ≤
∑

x∈V

(Γ(u)(x))2m(x) ≤ 1

δ

(
∑

x∈V

Γ(u)(x)m(x)

)2

.

According to Lemma 2.3, we can conclude what we desire.

Since

∆
√
u =

∆u

2
√
u
− Γ(

√
u)√
u

. (2.7)

Then CDE ′(n,K) condition for
√
u can be rewritten into

1

2
∆Γ(

√
u)− Γ(

√
u,

∆u

2
√
u
) ≥ 1

n
u(∆ log

√
u)2 +KΓ(

√
u). (2.8)

Then we have the following Lemma.

Lemma 2.7. Let G = (V,E,m, ω) be a complete graph and the measure m is non-degenerate.

If G satisfies CDE ′(n,K) with K ∈ R, then for any 0 ≤ f ∈ C0(V ) and t ≥ 0, let ǫ > 0, we
have

Γ(
√
u) ∈ D(Q).

Proof. We know Γ(
√
u) ∈ ℓ1m, then by Lemma 1.1, we have Γ(

√
u) ∈ ℓ2m, ℓ

∞
m . From Theorem

6 in [25], we know that Γ(
√
u) can be approximated in Q-norm by functions with finite

support. Then we just need to show that

Q(Γ(
√
u)) < ∞.

Coming back to the Caccioppoli inequality, we let g = Γ(
√
u), h = 2Γ(

√
u, ∆u

2
√
u
) +

2
n
u(∆ log

√
u)2 + 2KΓ(

√
u), from CDE ′(n,K), we know that

∆g ≥ h.

10



Let {ηk}∞0 be a non-decreasing sequence, then from the Caccioppoli inequality, we have

∥∥Γ(g)η2k
∥∥
l1m

≤ C
(∥∥Γ(ηk)g2

∥∥
l1m

+
∥∥ghη2k

∥∥
l1m

)

≤ C

(
1

k
‖g‖2l2m + ‖g‖l∞m

∥∥∥∥Γ
(√

u,
∆u

2
√
u

)∥∥∥∥
l1m

+ ‖g‖l∞m ‖u‖ℓ∞m
∥∥(∆ log u)2

∥∥
l1m

+ |2K| ‖g‖2l2m

)
.

From Lemma 2.5 and Lemma 2.6, and notice that g ∈ l2(V,m) and g ∈ l∞(V,m), we have

∥∥Γ(g)η2k
∥∥
l1m

≤ C.

According to Fatou lemma,

∥∥∥Γ
(
Γ(
√
Ptf + ǫ)

)∥∥∥
l1m

≤ lim
k→∞

inf
∥∥∥Γ
(
Γ(
√
Ptf + ǫ)

)
η2k

∥∥∥
l1m

≤ C.

This proves the lemma.

3 Li-Yau inequality

For any f, ξ ∈ C0(V ), let

Φ(s) :=
∑

x∈V

Γ
(√

Pt−sf + ǫ
)
Psξ(x)m(x), ǫ > 0.

Proposition 3.1. Φ(s) is differentiable in s ∈ (0, t), and

Φ′(s) = −2
∑

x∈V

Γ

(
√

Pt−sf + ǫ,
∆(Pt−sf + ǫ)

2
√

Pt−sf + ǫ

)
(x)Psξ(x)m(x)

+
∑

x∈V

Γ(
√
Pt−sf + ǫ)(x)∆Psξ(x)m(x)

(3.1)

Proof. Without loss of generality, we assume that s ∈ (τ, t− τ) for some τ > 0. Taking the
formal derivative of Φ(s) in s, we obtain

−2
∑

x∈V

Γ

(
√
Pt−sf + ǫ,

∆(Pt−sf + ǫ)

2
√

Pt−sf + ǫ

)
(x)Psξ(x)m(x)+

∑

x∈V

Γ(
√
Pt−sf + ǫ)(x)∆Psξ(x)m(x).

If one can show that the absolute values of summands are uniformly (in s) controlled by
summable functions, then this formal derivative is the the derivative of Φ(s). Note that

‖Psξ‖ℓ∞ ≤ ‖ξ‖ℓ∞ < ∞.

11



Combining with the inequality (2.4) in Lemma 2.5, we have

2

∣∣∣∣∣Γ
(
√
Pt−sf + ǫ,

∆(Pt−sf + ǫ)

2
√

Pt−sf + ǫ

)
(x)

∣∣∣∣∣Psξ(x)

≤ sup
s∈(τ,t−τ)

2

∣∣∣∣∣Γ
(
√
Pt−sf + ǫ,

∆(Pt−sf + ǫ)

2
√

Pt−sf + ǫ

)
(x)

∣∣∣∣∣Psξ(x)

≤ 2‖ξ‖ℓ∞ sup
s∈(τ,t−τ)

∣∣∣∣∣Γ
(
√
Pt−sf + ǫ,

∆(Pt−sf + ǫ)

2
√

Pt−sf + ǫ

)
(x)

∣∣∣∣∣ =: g(x) ∈ ℓ1m.

In addition, due to the non-degenerate measure m, every finitely supported function ξ

lies in the domain of Laplacain, and thus ∆ξ ∈ ℓ2m ⊂ ℓ∞m . Then we have

|∆Psξ| = |Ps∆ξ| ≤ ‖Ps∆ξ‖l∞m ≤ ‖∆ξ‖l∞m < ∞,

therefore, the inequality (2.3) in Lemma 2.5 yields that

Γ(
√
Pt−sf + ǫ)(x) |∆Psξ(x)| ≤ sup

s∈(τ,t−τ)

Γ(
√

Pt−sf + ǫ)(x) |∆Psξ(x)|

≤ ‖∆f‖l∞m sup
s∈(τ,t−τ)

Γ(
√
Pt−sf + ǫ)(x) =: h(x) ∈ ℓ1m.

Since Psξ ∈ D(∆),Γ(
√
Pt−sf + ǫ) ∈ D(Q), by Green formula (see Lemma 2.1), we have

Φ′(s) = −2
∑

x∈V

Γ

(
√

Pt−sf + ǫ,
∆(Pt−sf + ǫ)

2
√

Pt−sf + ǫ

)
(x)Psξ(x)m(x)

−
∑

x∈V

Γ
(
Γ(
√
Ptf + ǫ), Psξ

)
(x)m(x)

(3.2)

Claim 1. Assume the complete graph G = (V,E,m, ω) satisfying CDE ′(n,K), then for any
0 ≤ h ∈ D(Q), we have

− 2
∑

x∈V

Γ(
√

Pt−sf + ǫ,
∆(Pt−sf + ǫ)

2
√

Pt−sf + ǫ
)(x)h(x)m(x)

−
∑

x∈V

Γ(Γ(
√
Ptf + ǫ), h(x))m(x)

≥ 2

n

∑

x∈V

(Pt−sf + ǫ)(∆ log
√

Pt−sf + ǫ)2h(x)m(x) + 2K
∑

x∈V

Γ(
√

Pt−sf + ǫ)h(x)m(x)

(3.3)

12



Proof. In order to prove the above claim, first we consider 0 ≤ h ∈ C0(V ). By Green’s
formula and the definition of CDE ′(n,K),

− 2
∑

x∈V

Γ(
√

Pt−sf + ǫ,
∆(Pt−sf + ǫ)√

Pt−sf + ǫ
)(x)h(x)m(x)

−
∑

x∈V

Γ(Γ(
√

Ptf + ǫ), h(x))m(x)

= −2
∑

x∈V

Γ(
√
Pt−sf + ǫ,

∆(Pt−sf + ǫ)√
Pt−sf + ǫ

)(x)h(x)m(x)

+
∑

x∈V

∆Γ(
√

Pt−sf + ǫ)h(x)m(x)

≥ 2

n

∑

x∈V

(Pt−sf + ǫ)(∆ log
√

Pt−sf + ǫ)2h(x)m(x) + 2K
∑

x∈V

Γ(
√
Pt−sf + ǫ)h(x)m(x)

By definition of completeness, there exists a non-decreasing sequence {ηk}∞k=0 defined as (1.6)
onG. Then for any 0 ≤ h ∈ D(Q), we have hηk ∈ C0(V ) and when k → ∞, we have hηk → h.

Replace h by hηk ∈ C0(V ) into above equality. Since Γ(
√

Pt−sf + ǫ,
∆(Pt−sf+ǫ)√

Pt−sf+ǫ
) ∈ l1(V,m),

Γ(
√

Pt−sf + ǫ) ∈ l1(V,m), (Pt−sf + ǫ)(∆ log
√

Pt−sf + ǫ)2 ∈ l1(V,m) and Γ(
√

Pt−sf + ǫ) ∈
D(Q), it is obvious that when k → ∞, we have

− 2
∑

x∈V

Γ(
√
Pt−sf + ǫ,

∆(Pt−sf + ǫ)√
Pt−sf + ǫ

)(x)hηk(x)m(x)

→ −2
∑

x∈V

Γ(
√

Pt−sf + ǫ,
∆(Pt−sf + ǫ)√

Pt−sf + ǫ
)(x)h(x)m(x),

and
2K
∑

x∈V

Γ(
√
Pt−sf + ǫ)hηk(x)m(x)

→ 2K
∑

x∈V

Γ(
√
Pt−sf + ǫ)h(x)m(x),

and ∑

x∈V

(Pt−sf + ǫ)(∆ log
√

Pt−sf + ǫ)2hηk(x)m(x)

→
∑

x∈V

(Pt−sf + ǫ)(∆ log
√
Pt−sf + ǫ)2h(x)m(x).

13



Moreover, we have
∣∣∣∣∣
∑

x∈V

Γ(Γ(
√

Ptf + ǫ), hηk)(x)m(x)−
∑

x∈V

Γ(Γ(
√

Ptf + ǫ), h)(x)m(x)

∣∣∣∣∣

=

∣∣∣∣∣
∑

x∈V

Γ(Γ(
√

Ptf + ǫ), hηk − h)(x)m(x)

∣∣∣∣∣

≤
∑

x∈V

√
Γ(Γ(

√
Ptf + ǫ)(x)

√
Γ(h(ηk − 1))(x)m(x)

≤
(
∑

x∈V

Γ(Γ(
√
Ptf + ǫ)(x)m(x)

)1/2(∑

x∈V

Γ(h(ηk − 1))(x)m(x)

)1/2

→ 0.

We use Lemma 1.2 in the last step. Then we finally conclude that for any 0 ≤ h ∈ D(Q)
the claim holds.

Since Ps is self-adjoint operator on ℓ2m, and by choosing the delta function, such as
ξ = δy(x)(y ∈ V ), then

Φ(s, x)

m(x)
= Ps

(
Γ(
√

Pt−sf + ǫ)
)
(x) := φ(s, x),

Theorem 3.2. Let G = (V,E,m, ω) be a complete graph and m be a non-degenerate measure.

If G satisfies CDE ′(n,K), then for any smooth positive function α : [0, t] → R>0, and non-

positive γ : [0, t] → R≤0, for any function 0 ≤ f ∈ C0(V ), we have

(αφ)′ ≥
(
α′ + 2αK − 4αγ

n

)
φ+

2αγ

n
∆Ptf − 2αγ2

n
(Ptf + ε) (3.4)

Proof. Since Psξ ∈ D(Q), combining the equation (3.2) with Claim 1, we then conclude that

Φ′(s) ≥ 2

n

∑

x∈V

(Pt−sf+ǫ)(∆ log
√

Pt−sf + ǫ)2(Psξ)(x)m(x)+2K
∑

x∈V

Γ(
√

Pt−sf + ǫ)(Psξ)(x)m(x).

For any x ∈ V , we have

(αΦ)′(s) = α′Φ(s) + αΦ′(s)

≥ (α′ + 2αK)Φ(s) +
2α

n

∑

x∈V

(Pt−sf + ǫ)(∆ log
√

Pt−sf + ǫ)2(Psξ)(x)m(x)

Firstly, we separate the second item into two parts. Since for any x ∈ V , and any 0 < g ∈ V R,

we have the following simple estimate g(x)∆ log g(x) ≤ ∆g(x). Then if ∆g(x) < 0, we have

g2(x)(∆ log g)2(x) ≥ (∆g)2(x).
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Therefore,

∑

x∈V

(Pt−sf + ǫ)(∆ log
√

Pt−sf + ǫ)2(Psξ)(x)m(x)

≥
∑

x∈V,∆
√

Pt−sf+ǫ(x)<0

(∆
√

Pt−sf + ǫ)2(Psξ)(x)m(x)

+
∑

x∈V,∆
√

Pt−sf+ǫ(x)≥0

(Pt−sf + ǫ)(∆ log
√

Pt−sf + ǫ)2(Psξ)(x)m(x).

Moreover, for any function γ, one has

(∆
√

Pt−sf + ǫ)2 ≥ 2γ
√

Pt−sf + ǫ∆
√

Pt−sf + ǫ− γ2(Pt−sf + ǫ),

since γ is non-positive, if ∆
√

Pt−sf + ǫ(x) ≥ 0, it is also true that

(Pt−sf + ǫ)(∆ log
√

Pt−sf + ǫ)2 ≥ 2γ
√

Pt−sf + ǫ∆
√

Pt−sf + ǫ− γ2(Pt−sf + ǫ),

as the right hand side of this inequality is clearly non-positive. Furthermore, by (2.7), one
can conclude that

∑

x∈V

(Pt−sf + ǫ)(∆ log
√

Pt−sf + ǫ)2(Psξ)(x)m(x)

≥
∑

x∈V

[
γ∆(Pt−sf + ǫ)− 2γΓ(

√
Pt−sf + ǫ)− γ2(Pt−sf + ǫ)

]
(Psξ)(x)m(x).

Therefore, we have

(αΦ)′(s) ≥
(
α′ + 2αK − 4αγ

n

)
Φ(s) +

2αγ

n

∑

x∈V

∆(Pt−sf + ǫ)(Psξ)(x)m(x)

− 2αγ2

n

∑

x∈V

(Pt−sf + ǫ)(Psξ)(x)m(x).

(3.5)

Let ξ(x) = δy(x) in the above inequality, by the self-adjoint property of Pt, we obtain

d

ds
(αφ)(s, y) ≥

(
α′ + 2αK − 4αγ

n

)
φ(s, y) +

2αγ

n
Ps∆(Pt−sf + ǫ)(y)

− 2αγ2

n
Ps(Pt−sf + ǫ)(y).

(3.6)

According to the semigroup property of heat semigroup, i.e. PtPsf = Pt+sf , as well as the
commutative property of ∆ and Pt, that is, ∆Ptf = Pt∆f , and the stochastic completeness
for graphs in these assumption, i.e. Pt1 = 1. From (3.6), we can complete the proof.
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If α is chosen appropriately to make γ non-positive, and satisfying

α′ + 2αK − 4αγ

n
= 0,

then we may integrate the inequality (3.4) in Theorem 3.2, if we denote W (s) =
√
α(s), then

we obtain the following estimate.

Theorem 3.3. Let G = (V,E,m, ω) be a complete graph and m be a non-degenerate measure.

If G satisfies CDE ′(n,K), and W : [0, t] → R>0 be a smooth and positive function such that

W (0) = 1,W (t) = 0,

and for s ∈ [0, t],
W ′(s) ≤ −KW (s).

Then for any 0 ≤ f ∈ ℓpm with p ∈ [1,∞], we have

Γ(
√
Ptf)

Ptf
≤ 1

2

(
1− 2K

∫ t

0

W (s)2ds

)
∆Ptf

Ptf

+
n

2

(∫ t

0

W ′(s)2ds+K2

∫ t

0

W (s)2ds−K

)
.

(3.7)

Proof. By integrating the inequality (3.4) in Theorem 3.2, we obtain for any 0 ≤ f ∈ C0(V ),

Γ(
√
Ptf + ǫ) ≤ 1

2

(
1− 2K

∫ t

0

W (s)2ds

)
∆Ptf

+
n

2

(∫ t

0

W ′(s)2ds+K2

∫ t

0

W (s)2ds−K

)
(Ptf + ǫ).

Notice that G is locally finite, then

lim
ǫ→0

Γ(
√
Ptf + ǫ) = Γ(

√
Ptf)

That means for any 0 ≤ f ∈ C0(V ), we have

Γ(
√
Ptf) ≤

1

2

(
1− 2K

∫ t

0

W (s)2ds

)
∆Ptf

+
n

2

(∫ t

0

W ′(s)2ds+K2

∫ t

0

W (s)2ds−K

)
(Ptf).

(3.8)

For any 0 ≤ f ∈ ℓpm with p ∈ [1,∞], consider the sequence {fηk}∞k=0 while {ηk}∞k=0 is
the monotonically non-decreasing sequence about k defined as (1.6). It is obvious that
0 ≤ ηk ∈ C0(V ). Moreover, 0 ≤ fηk ∈ C0(V ), and fηk → f pointwise when k → ∞ .
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Applying (3.8) to fηk, we have

Γ
(√

Pt(fηk)
)
≤ 1

2

(
1− 2K

∫ t

0

W (s)2ds

)
∆Pt(fηk)

+
n

2

(∫ t

0

W ′(s)2ds+K2

∫ t

0

W (s)2ds−K

)
Pt(fηk).

(3.9)

By monotone convergence theorem, Pt(fηk) → Ptf pointwise when k → ∞. Noting that G
is locally finite, we have

lim
k→∞

Γ
(√

Pt(fηk)
)
= Γ

(
lim
k→∞

√
Pt(fηk)

)
= Γ(

√
Ptf),

and
lim
k→∞

∆(Pt(fηk)) = ∆
(
lim
k→∞

Pt(fηk)
)
= ∆(Ptf),

Therefore, let k → ∞ in the both side of the inequality (3.9), we obtain what we desire.

Proof of Theorem 1.1. As observed in [2], we choose that

W (s) =
(
1− s

t

)b
,

for any b > 1
2
is quite interesting in the regime where − b

t
< K. For this family

∫ t

0

W (s)2ds =
t

2b+ 1
,

and ∫ t

0

W ′(s)2ds =
b2

(2b− 1)t
.

Thus, for such a choice of W , the estimate (3.7) yields the family of Li-Yau inequalities (1.7).
That finishes our proof.

Next, we prove applications from Li-Yau inequality as we mentioned before.

Proof of Theorem 1.3. For any y ∈ V , we let f = δy in (1.9). For any t > 0, choosing s = 2t
and let z ∈ B(x,

√
t), we have

p(t, x, y) ≤ p(2t, z, y)2n exp

(
4mmax

ωmin

)
.

Integrating the above inequality over B(x,
√
t) with respect to z, gives

p(t, x, y) ≤ C

V (x,
√
t)

∑

z∈B(x,
√
t)

m(z)p(2t, z, y)

≤ C

V (x,
√
t)
.

Where C = 2n exp
(

4mmax

ωmin

)
, and we also use the fact that Pt1 = 1.
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Proof of Theorem 1.4. By a result of S. Haeseler and M. Keller ([9], Theorem 3.1), if λ ≤
λ∗, then there would be a positive solution u to ∆u = −λu. Moreover, for positive time-
independent solutions to the equation ∆f0 = −λf0 with f0 ∈ ℓ2m ⊂ ℓ∞m , then we have
∆Ptf0 = Pt∆f0 = −λPtf0, and the Li-Yau inequality (1.7) reduces to

Γ(
√
Ptf0)

Ptf0
+

1

2

(
1 +

2Kt

2b+ 1

)
λPtf0

Ptf0
≤ n

2

(
b2

(2b− 1)t
+

K2t

2b+ 1
+K

)
.

Noting that Γ(
√
Ptf0)

Ptf0
≥ 0, dividing t on the both sides and taking the limit t → ∞, we

conclude that

λ ≤ Kn

2
.

Since λ is arbitrary, we can finish the proof.
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