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Abstract: We study various geometrical quantities for Calabi–Yau varieties realized as
cones over Gorenstein Fano varieties, obtained as toric varieties from reflexive polytopes
in various dimensions. Focus is made on reflexive polytopes up to dimension 4 and the
minimized volumes of the Sasaki–Einstein base of the corresponding Calabi–Yau cone
are calculated. By doing so, we conjecture new bounds for the Sasaki–Einstein volume
with respect to various topological quantities of the corresponding toric varieties. We
give interpretations about these volume bounds in the context of associated field theories
via the AdS/CFT correspondence.
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1. Introduction

Whereas there has been a multitude of constructions for Calabi–Yau varieties over the
years, both compact and non-compact, by far the largest number have been realized
with toric geometry as the point d’appui. The combinatorial nature of toric varieties,
in translating the relevant geometric quantities to manipulations on lattice polytopes,
renders them particularly useful in systematically constructing and studying Calabi–
Yau varieties and related phenomena in string theory and mathematics.

Compact smooth Calabi–Yau (n − 1)-folds have been constructed [1–12] as hyper-
surfaces corresponding to the anti-canonical divisor within a n-dimensional toric variety
coming from a reflexive polytope. The result was an impressive list of at least half a bil-
lion smooth, compact Calabi–Yau 3-folds. These, when plotted in terms of their Hodge
numbers h1,1 − h2,1 against h1,1 + h2,1, gave rise to the famous funnel shape with
left-right symmetry signifying mirror symmetry [7,13].

Parallel to constructions of compact smooth Calabi–Yau (n−1)-folds, toric varieties
also played a significant role in the construction of non-compact Calabi–Yau varieties.
A non-compact Calabi–Yau n-fold X of complex dimension n can be realized as an
affine cone over a complex base X , of complex dimension n− 1. By far the largest class
of these affine Calabi–Yau n-folds is when the base is a toric variety X (�), from an
(n − 1)-dimension polytope �. A key fact is that X itself is a real cone over a compact
Sasaki–Einstein manifold Y of real dimension 2n − 1.

In string theory, the discovery of the AdS/CFT correspondence on AdS5 × S5 [14],
later generalized to AdS5×Y [15,16], has led to considerable interest in Sasaki–Einstein
5-manifoldsY and the non-compactCalabi–Yau 3-fold cone overY . The dual field theory
is a 4d N = 1 superconformal field theory on the worldvolume of a stack of D3-branes
probing the Calabi–Yau singularity [14,17,18]. A large class of examples was obtained
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by identifying the 4d N = 1 worldvolume theories corresponding to the probed Calabi–
Yau 3-folds, which were initially constructed from known toric varieties such as T 1,1

and the del Pezzos cones. Infinite families of theories corresponding to Sasaki–Einstein
manifolds such as the class of Yp,q [19,20], L p,q,r [21,22] and X p,q [23] manifolds
followed giving a comprehensive picture over the correspondence between 4d N = 1
supersymmetric theories and toric non-compact Calabi–Yau 3-folds.

This development culminated in a Type IIB brane configuration of D5-branes sus-
pended between a NS5-brane wrapping a holomorphic surface �, which realizes the
4d N = 1 supersymmetric theories and encodes its vacuum moduli space given by the
probed toric Calabi–Yau 3-fold. These brane configurations, T-dual to the D3-branes
probing the toric Calabi–Yau 3-fold, can be represented by a bipartite periodic graph
on a 2-torus and are known as brane tilings [24,25]. Brane tilings describe for every
toric Calabi–Yau 3-fold the corresponding 4d N = 1 theory, including theories that are
related by Seiberg duality.

A parallel story was with regards to the volume of the Sasaki–Einstein 5-manifold
Y , which is related to the central charge a-function of the 4d N = 1 theory via the
AdS/CFT correspondence [26,27]. In [28], it was shown that minimizing the volume
of the Sasaki–Einstein manifold determines its Reeb vector, which in turn showed that
volumeminimization is the geometric dual of a-maximization [29]. Following this work,
[30] found a general formula for the volume function using an equivariant index on the
Calabi–Yau cone over Y , which counts holomorphic functions. This index is the Hilbert
series of the Calabi–Yau and has been used in different contexts to count gauge invariant
operators of supersymmetric gauge theories [31,32]. In [30], the Hilbert series and
consequently the volume function was obtained using a localization formula relying on
the toric data coming from the cone over the Sasaki–Einstein 5-manifold. This volume
formula, which essentially depends only on the topological fixed point data encoded in
the toric geometry of the Calabi–Yau cone, showed that the minimized volume of the
Sasaki–Einstein 5-manifold is always an algebraic number representing the geometric
counterpart of the maximized a-function.

Thus inspired, it is natural to ask how the minimum volume for toric non-compact
Calabi–Yaumanifolds behaves in dimension other than 3. In particular, we focus on toric
Calabi–Yau n-folds whose toric diagram is a (n − 1)-dimensional reflexive polytope in
Z
n−1. Such polytopes have been fully classified up to dimension 4 by [1,3–5,7,8],

providing a finite set of toric Calabi–Yau n-folds for which we can calculate the volume
of the corresponding Sasaki–Einstein base. By computing the volume minima for such
a large set of Sasaki–Einstein manifolds as bases of the toric Calabi–Yau n-folds, we
gain a compendious understanding of its distribution. When compared to topological
quantities of the corresponding toric variety, such as the Chern numbers and the Euler
number, we remarkably observe that the distribution of the volume minima is not at all
random.

We identify bounds of the volumeminima determined by topological quantities of the
toric variety, which in turn shed light on the properties of the corresponding supersym-
metric gauge theories living on the probe branes at the associatedCalabi–Yau singularity.
This not only provides new insights into the properties of the 4d N = 1 worldvolume
theories on probe D3-branes at Calabi–Yau 3-folds singularities and their corresponding
brane tiling constructions, but also sheds light on more recent developments regarding
3d N = 2 worldvolume theories on probe M2-branes [33–36] and 2d (0, 2) world-
volume theories on probe D1-branes [37–41] at toric Calabi–Yau 4-folds as well as 0d
supersymmetric matrix models living on Euclidean D(-1)-branes at toric Calabi–Yau
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5-folds [42]. In the case of 4d N = 1 theories related to toric Calabi–Yau 3-folds,
we re-interpret the volume bounds as bounds on the central charge a in the 4d theory
[29,43,44]. We make a similar connection to the free energy F for 3d N = 2 theories
living on M2-branes probing toric Calabi–Yau 4-folds [45,46].

The paper is organized as follows. Section 2 overviews the construction of both
compact and non-compact Calabi–Yau manifolds with a review on reflexive polytopes
and toric varieties. The section also summarizes how non-compact toric Calabi–Yaus
are related to supersymmetric gauge theories in different dimensions. In Sect. 3, we
give a summary of topological quantities related to toric varieties such as the Euler
and Chern numbers. By doing so, we present combinatorial formulae that simplify the
computation of these topological quantities from the toric variety. Section 4 gives the
construction of non-compact toric Calabi–Yau cones over Sasaki–Einstein manifolds
and the computation of Hilbert series of the cone, adhering to the notation of [30]
which related an equivariant index on the Calabi–Yau cone with the volume function
of the Sasaki–Einstein base manifold. At the end of the section, we explain volume
minimization and how it relates to a-maximization for 4d N = 1 supersymmetric
gauge theories. The method of computing this volume from the Hilbert series and Reeb
vector, which in turn is exacted from the polytope data, is described in an algorithmic
fashion.

Finally, Sect. 5 summarizes our results for volume minima for Sasaki–Einstein man-
ifolds related to toric Calabi–Yau 3, 4 and 5-folds with reflexive toric diagrams. We plot
the volume minima against topological quantities of the corresponding toric varieties
and arrive at lower and upper bounds for the volume minima. These, in the context of
toric Calabi–Yau 3-folds and 4-folds with reflexive polygons as toric diagrams, can be
re-interpreted as bounds on the central charge a-function and the Free energy F of the
corresponding 4d N = 1 and 3d N = 2 theories, respectively. The appendices summa-
rize the implementations used to efficiently compute the minimum volumes, including
tables with explicit values for volume minima for the reflexive toric Calabi–Yau cases
considered.

Nomenclature.

� (reflexive) convex lattice polytope;
subscript emphasizes dimension: �n−1 ⊂ Z

n−1

we distinguish between vertices: the extremal lattice points &
perimeter points: lattice points (including vertices) lying on edges

X (�n−1) toric variety corresponding to �n−1;
dimC X (�n−1) = n − 1

FRS Fine Stellar Regular triangulation of polytope
˜X (�n−1) smooth toric variety (if it exists) obtained from FRS of �

�(�) (Inner) normal fan associated with �

X = CC(X (�n)) affine Calabi–Yau (complex) cone over X (�n−1);
dimC X = n

Y = BR(X ) Sasaki–Einstein manifold, base of X which is real one over Y ;
dimR Y = dimR B(C(X (�n−1))) = 2n − 1

bi components of the Reeb vector, i = 1, . . . , n for X ;
set the last component bn = n

V (bi ; Y ) volume function for Y , also denoted V (bi ;X )
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b∗
i the value of the Reeb vector with bn = n whichminimizes V (bi ; Y )

g(ti ;X ) multi-graded (i = 1, . . . , n) Hilbert series for X

2. Preliminaries

We begin with some preliminaries in both the mathematics and the physics, expanding
on the nomenclature summarized above. First, we introduce the concept of reflexive
polytopes and explain why they have become so central in the construction of Calabi–
Yau varieties. Next, we focus on the affine Calabi–Yau varieties constructed therefrom
and summarize their connection to quiver gauge theories.

Reflexive polygons and more generally reflexive polytopes have appeared both in the
context of compact and non-compact Calabi–Yaumanifolds. Batyrev–Borisov [1,2] first
studied reflexive polyhedra �n in n dimensions in order to construct families of smooth
Calabi–Yau hypersurfaces that are compactification in projective toric varieties given by
�. This allowed for the construction of dual families of compact (n − 1)-dimensional
Calabi–Yau varieties as hypersurfaces. This duality is none other than mirror symmetry
[3–5,7].

Furthermore, as we will illustrate in Sect. 2.5, non-compact toric Calabi–Yau n-folds
have been studied more recently in the context of supersymmetric quiver gauge theories
in various dimensions as worldvolume theories of probe D(9− 2n)-branes. These non-
compact Calabi–Yau n-folds can be thought of as rational polyhedral cones generated
by the vertices of a convex polytope �n−1 in n − 1 dimensions. A finite class of such
non-compact Calabi–Yau n-folds can be generated in every dimension when the convex
polytope is taken to be reflexive. For example, in 2 dimensions, there are exactly 16
reflexive polygons as shown in Fig. 1 which give rise to 16 non-compact toric Calabi–
Yau 3-folds. For these, the full list of corresponding 4d N = 1 supersymmetric quiver
gauge theories and of the corresponding brane tilings was classified in [47].

From the work on mirror symmetry for compact Calabi–Yau manifolds [1–5,7] and
the work on brane tilings for non-compact Calabi–Yau varieties [24,25,48], we see that
reflexive polytopes are at the crux of studying Calabi–Yau geometry, offering a plenitude
of new insights. In this paper, we will focus exclusively on non-compact Calabi–Yau
cones and the reader is referred to a careful exposition of the geometry and combinatorics
of lattice polytopes in this context in [49] as well as an excellent rudimentary treatment
in [50,51].

2.1. The reflexive polytope �. Let � be a convex lattice polytope in Z
n , which we can

think of either as

1. a collection of vertices (dimension 0), each of which is a n-vector with integer
entries, each pair of neighboring vertices defines an edge (dimension 1), each triple,
a face (dimension 2), etc., and each n − 1-tuple, a facet (dimension n − 1 or
codimension 1); or as

2. a list of linear inequalities with integer coefficients, each of which slices a facet
defined by the hyperplane.

We will only consider those polytopes containing the origin (0, . . . , 0) as their unique
interior point and define the dual polytope�◦ (sometimes also called the polar polytope)
to � as all vectors in Z

n whose inner product with all interior points of � is greater than
or equal to −1:

Dual polytope: �◦ = {v ∈ Z
n | m · v ≥ −1 ∀m ∈ �}. (2.1)
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Fig. 1. The 16 inequivalent reflexive polytopes �2 in dimension 2. We see that, in particular, this includes
the toric del Pezzo surfaces, numbers 1, 4, 3, 6, 10, which are the 5 smooth ones. For the naming of these
polytopes we refer to the Calabi–Yau cone X = C(X (�)). The middle 4 are self-dual while the other 6 polar
dual pairs are drawn mirror-symmetrically about this middle line

The −1 is a vestige of definition (2) of �, since any hyperplane not passing the
origin can be brought to the form

∑

i ci xi = −1. In general, while the polar dual
of a lattice polytope may have vertices with rational entries, the case where they
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are all integer vectors is certainly special and interesting. Consequently, we have
that

Definition 2.1. A convex lattice polytope � is reflexive if its dual polytope �◦ is also
a lattice polytope.

Indeed, the symmetry of this definition means that the dual polytope�◦ is also reflexive.
In particular, the origin is always a point in both and is, in fact, the the unique interior
point. Furthermore, we refer to any � = �◦ as self-dual or self-reflexive.

2.2. The toric variety X (�). Given a lattice polytope �n , it is standard to construct a
compact toric variety X (�n) of complex dimension n (cf. [52] and an excellent recent
textbook [53]). Briefly, one constructs the (inner) normal fan �(�) consisting of cones
whose apex is an interior point—which can be chosen to be the origin—with rays
extending to the vertices of each face. That is, �(�) is constructed from � as the
positive hull of the n-cone over the faces F of � as follows

� = {pos(F) : F ∈ Faces(�)}, (2.2)

where

pos(F) =
{

∑

i

λivi : vi ∈ F, λi ≥ 0

}

. (2.3)

We can think of �n as the fan of n-cones subtended from the apex at the origin to the
proper faces of �, where the origin is always a point in our reflexive �.

From the fan �, the construction of the compact toric variety X (�) follows the
standard treatment of [52], with each cone giving an affine patch. The resulting variety
X (�) is not guaranteed to be smooth. In order to ensure smoothness, we need a notion
of regularity.

Definition 2.2. The polytope �n and the fan �(�n) are called regular if every cone in
the fan has generators that form part of a Z-basis.

One way to check this is to ensure that the determinant of all n-tuples of generators of
each cone is ±1. Note that each generator/ray of the cone is an integer n-vector but the
number of such generators will always be ≥ n. We need to choose all possible n-tuples
and compute the determinant. The key result we will need is that (cf. [53]):

Theorem 2.3. The toric variety X (�n) is smooth iff �n is regular.

The above discussions hold for any convex lattice polytope. Henceforth, we will
concentrate only on reflexive polytopes � with a single internal lattice point, viz., the
origin. According to [49], we have:

Theorem 2.4. Any reflexive polytope � corresponds to a Gorenstein toric Fano variety
X (�).

Note that X (�) is in general singular and as we will see the smooth ones are very rare
and we will need to perform desingularization. Indeed, when �n is regular, X (�n) is
a smooth toric Fano n-fold and it is a manifold of positive curvature [1,8,54,55]. In
the general case, by Gorenstein Fano [49] we mean that X (�) is a normal toric variety
whose anticanonical divisor is ample and Cartier.
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2.3. Classification of �n. Clearly, two polytopes are equivalent if there is a GL(n; Z)

matrix relating the vertices of one to the other. The classification of GL(2; Z)-
inequivalent reflexive polytopes is a non-trivial story. In dimension 2, there are only
16 such objects and are known classically (cf. [50]). We illustrate these in Fig. 1, where
the polygons have been organized judiciously: the area increases as one goes up and the
number of extremal vertices increases as one goes right. Themiddle 4 are self-dual while
the other dual pairs are drawn mirror-symmetrically about this middle line. Moreover,
the 16 include the 5 toric diagrams for the smooth toric Fano 2-folds, viz., the toric del
Pezzo surfaces: P

2, F0 = P
1 × P

1, as well as P
2 blown up at up to 3 generic points,

which are shown, respectively, as numbers 1, 4, 3, 6, 10 in the figure. The remaining 11
are singular but Gorenstein and include orbifolds which can be resolved. The naming
of these polytopes refers to the Calabi–Yau cone X = C(X (�)); for example, number
16 is the Z3 × Z3 orbifold of C

3. There is a slight abuse of notation, which context will
make clear, that dPn refers both to the n-th del Pezzo surface and the affine Calabi–Yau
cone over it.

In dimension 3, there is already a multitude of reflexive polyhedra. The classification
of these was undertaken in [4] and 4319 were found of which only 18 are smooth,
corresponding to the 18 smooth Fano toric threefolds [1]. Of course, it is impossible to
draw all 4319 polyhedra here. For reference, we draw the 18 smooth cases in Fig. 2.
Moreover, there are 79 which are self-dual. In the figure and hence forth, the blue
labels and identification numbers of the reflexive polyhedra follow the labeling order1

of the Sage [56] database, 1, . . . , 4319. We refer the reader to Appendix A for further
discussions on SAGE implementations.

In dimension 4, the number of reflexive �4 increases dramatically to 473, 800, 776,
the fruit of a tour-de-force computer search by [3,5]; of these, 124 give smooth Fano
toric 4-folds (and have been explored in the context of heterotic string theory in [57]). In
general, it is known that the number of inequivalent reflexive polytopes up to GL(2; Z)

in each dimension is finite but above n = 4, the number is not known. We summarize
the remarkable sequence in Table 1 (cf. [58]).

2.4. Calabi–Yau constructions. Stemming from a reflexive polytope are two Calabi–
Yau constructions:

1. The theorem of Batyrev–Borisov [1,2] and the consequent constructions of
Kreuzer–Skarke [3–6] is the fact that to a reflexive �n , one can associate a smooth
Calabi–Yau (n − 1)-fold Xn−1 given by the vanishing set of the polynomial2

0 =
∑

m∈�

Cm

k
∏

ρ=1

x
(m·vρ)+1
ρ , (2.4)

1 Beware that in SAGE, the index of lists begin with 0, thus to access the SAGE data, one actually uses
index 0, . . . , 4318.

2 The famous quintic in P
4, for instance, is thus realized in the toric variety P

4 as follows. We have
x1,...,5 as the (homogeneous) coordinates of P

4 and can think of the reflexive polytope � as having vertices
m1 = (−1,−1,−1, −1), m2 = ( 4,−1, −1,−1), m3 = (−1, 4,−1,−1), m4 = (−1,−1, 4,−1), and
m5 = (−1, −1,−1, 4) as well as all the points interior to these extremal points, including, for example,
(0, 0, 0, 0). The dual polytope �◦ is easily checked to have vertices v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0),
v3 = (0, 0, 1, 0), v4 = (0, 0, 0, 1), and v5 = (−1,−1, −1,−1). Thus each lattice point m ∈ � contributes
a quintic monomial in the coordinates x1,...,5 to the defining polynomial.
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Fig. 2. The 18 reflexive polytopes in dimension 3 corresponding to smooth Fano varieties. All of these have a
single interior point (0, 0, 0)which is shown in red. The notation dPn refers to the del Pezzo surface of degree
9 − n, i.e., formed by P

2 blown up at n generic points

Table 1. The number of inequivalent reflexive polytopes in different dimensions. The reflexive polytopes all
give toric Gorenstein Fano varieties and the regular ones, smooth toric Fano n-folds

Dimension 1 2 3 4 …
# Reflexive Polytopes 1 16 4319 473,800,776 …
# Regular 1 5 18 124 …
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Fig. 3. Two different constructions of Calabi–Yau varieties from a reflexive polytope �n . In this work, we
will concentrate on non-compact Calabi–Yau cones over X (�)

where Cm ∈ C are numerical coefficients parametrizing the complex structure
of Xn−1, the dot being the usual vector dot-product, xρ=1,...,k are the projective
coordinates of X (�) and vρ=1,...,k are the vertices of �◦ (k being the number of
vertices of �◦, or equivalently, the number of facets in the original polytope �).

2. Alternatively, we can think of the vertices of � as generating a rational polyhedral
cone σ with the apex at the origin as discussed in (2.3). That is, while our reflexive
polytope lives in Z

n , we shall take a point (0, 0, . . . , 0) ∈ Z
n+1 =: N and consider

the cone generated by the vectors ui from this apex to the vertices of �:

σ =
{

∑

ui

λi ui |λui ≥ 0

}

⊂ NR := N ⊗Z R. (2.5)

The dual cone then lives in MR := M ⊗Z R with M := hom(N , Z), as

σ∨ = {m ∈ MR|m · u ≥ 0 ∀u ∈ σ
}

. (2.6)

Subsequently, we can define an affine algebraic variety Xn+1 associated to this data
by taking the maximal spectrum of the group algebra generated by the lattice points
which the dual cone covers in M :

Xn+1 
 SpecMax
(

C[σ∨ ∩ M]) . (2.7)

The fact that in N the end-points of the vector generators of the cone are co-
hyperplanar ensures that Xn+1 is a Gorenstein singularity. For n ≤ 2, this admits a
resolution to a smooth Calabi–Yau manifold as we will further explore in Sect. 3.1
and in theorem 3.1.

We summarize the above two constructions in Fig. 3. While there has been a host
of activity following Batyrev–Borisov and Kreuzer–Skarke in studying the distribution
of the topological quantities of compact Calabi–Yau hypersurfaces [6,9–12,59–64], in
this paper we will be exclusively concerned with the arrow to the right in the figure and
study the affine Calabi–Yau (n +1)-fold X , as a complex cone over the Gorenstein Fano
variety X (�n) where �n is reflexive. For convenience, we will use �n−1 so that X is of
complex dimension n. A key fact is that X is itself a real cone over a Sasaki–Einstein
manifold Y of (real) dimension 2n−1 [65]. We will study in detail the volumes of these
manifolds in relation to the various topological quantities of X (�) and find surprising
patterns.

2.5. Connection to quiver gauge theories. For the last two decades, remarkable progress
both in string theory and mathematics has been achieved in connection to the AdS/CFT
correspondence [14]. Maldacena’s discovery that 4d N = 4 supersymmetric Yang-
Mills theory relates to string theory on AdS5× S5 led to numerous discoveries related to



Calabi–Yau Volumes and Reflexive Polytopes 165

Table 2. The various brane configurations for brane tilings and how, under T-duality, they map to D-branes
probing affine Calabi–Yau cones in various dimensions. (a) Brane tilings where D5-branes are suspended
between a NS5-brane that wraps a holomorphic surface �. The D5 and NS5-branes meet in a T 2 inside
�. Under thrice T-duality, the D5-branes are mapped to D3-branes probing CY3; (b) Brane brick models
where D4-branes are suspended between a NS5-brane that wraps a holomorphic 3-cycle �. The D4 and
NS5-branes meet in a T 3 inside �. Under T-duality, the D4-branes are mapped to D1-branes probing CY4;
(c) Brane hyper-brick models where Euclidean D3-branes are suspended between a NS5-brane that wraps a
holomorphic 4-cycle �. The D3 and NS5-branes meet in a T 4 inside �. Under T-duality, the D3-branes are
mapped to D(-1)-branes probing CY5

Brane configuration T-duality D-brane probe
0 1 2 3 4 5 6 7 8 9

(a) D5 × × × × · × · × · · 2 times←→ D3 ⊥ CY3
NS5 × × × × � · ·

0 1 2 3 4 5 6 7 8 9

(b) D4 × × · × · × · × · · 3 times←→ D1 ⊥ CY4
NS5 × × � · ·

0 1 2 3 4 5 6 7 8 9

(c) D3 · × · × · × · × · · 4 times←→ D(-1) ⊥ CY5
NS5 � · ·

conformal field theories and the associated geometries. Soon after the discovery, it was
realized [15,16] that the correspondence extends to theories with less supersymmetry.
When one replaces the S5 sphere with a Sasaki–Einstein 5-manifold Y , the supersym-
metry is broken down to N = 1. A large class of examples was born: 4d N = 1
superconformal field theories corresponding to IIB string theory in an AdS5 × Y back-
ground. Classes of Sasaki–Einstein 5-manifolds such as Y p,q and L p,q,r provide a rich
set of theories to study the correspondence.

These 4d N = 1 theories can be thought of as worldvolume theories living on D3-
branes that probe a Calabi–Yau 3-fold singularity. If the Calabi–Yau 3-fold is toric, the
4d N = 1 theories can be described in terms of a bipartite periodic graph on a 2-torus
known as dimers [66,67] and brane tilings [24,25,48]. These bipartite graphs represent
a type IIB brane configuration of D5-branes suspended between a NS5-brane that wraps
a holomorphic surface � originating from the toric geometry. The Newton polynomial
P(x, y) of the toric diagram coming from the probed toric Calabi–Yau 3-fold defines
the holomorphic surface � : P(x, y) = 0. This IIB brane configuration is T-dual to the
probe D3-branes at the Calabi–Yau singularity. Table 2, part (a) summarizes the type IIB
brane configuration. Brane tilings provide a natural geometric interpretation of gauge
theory phenomena such as Seiberg duality in 4d [25,68,69].

Non-compact toricCalabi–Yau4-folds attractedmuch interest in relation toM-theory.
When M2-branes probe a toric Calabi–Yau 4-fold, the worldvolume theory of the M2-
branes is described by a3dN = 2Chern–Simons theory [33,70,71]. The probedCalabi–
Yau 4-folds have a base which is a Sasaki–Einstein 7-manifold [72]. A generalized brane
tiling that encodes the levels of the 3d N = 2 Chern–Simons theories was proposed in
[35,36].

More recently, toric Calabi–Yau 4-folds appeared in the context of brane brickmodels
and 2d (0, 2) quiver gauge theories [37–39]. When D1-branes probe a toric Calabi–Yau
4-fold singularity, the worldvolume theory on the D1-branes is a 2d (0, 2) theory. Brane
brick models are brane configurations consisting of D4-branes suspended between a
NS5-brane that wraps a holomorphic 3-cycle �. This holomorphic 3-cycle derives from
the zero locus of the Newton polynomial of the toric diagram characterizing the toric
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Calabi–Yau 4-fold. The brane configuration is summarized in Table 2, part (b). In [73],
brane brick models were used to provide a brane realization of the recently discovered
correspondence between 2d (0, 2) theories known asGadde–Gukov–Putrov triality [74].

In [42], it was argued from the perspective of the Hori–Vafa mirror of a Calabi–Yau
n-fold [75], that there exists a natural generalization of Seiberg duality in 4d and Gadde–
Gukov–Putrov triality in 2d for theories in 0d. A new correspondence, called quadrality,
relates different 0d N = 1 gauged matrix models that arise as worldvolume theories
of D(-1)-branes probing non-compact toric Calabi–Yau 5-folds. The brane realization is
known as brane hyper-brick models [42]; cf. Table 2, part (c).

In summary, toric Calabi–Yau n-folds have appeared in connection to quiver gauge
theories in various dimensions. From this panorama of correspondences, it is tempt-
ing to ask whether there are any further geometrical features of Calabi–Yau n-folds
that can teach us more about quiver gauge theories in various dimensions. In order
to search for these properties, we restrict ourselves to toric Calabi–Yau n-folds that
exist in every dimension n ≥ 1, namely the ones which arise from reflexive polytopes:
Xn = C(X (�n−1)). This class of toric Calabi–Yau n-folds is by far the largest family
studied in the literature and is a suitable sample set for our analysis in this paper.

Our strategy is to study the connection between the topology and metric geometry
of the Calabi–Yau variety X . The toric geometry of the base X (�)—the compact toric
Gorenstein Fano (n − 1)-fold—will furnish us with the convenience of extracting the
topological data while the Sasaki–Einstein geometry of the base Y will give us the
relevant metrical information.

3. Topological Quantities of X(�)

We begin by concentrating on the compact toric variety X (�). These, as discussed in
Sects. 2.2 and 2.4, can be constructed from a reflexive lattice polytope �. The following
section describes topological quantities that can be computed from � such as the Euler

number and Chern classes3 of the complete resolution X̃ (�).

3.1. Triangulations and the Euler number. For the case when the toric variety X (�)

is smooth, it is straightforward to compute its Betti numbers from standard formulae
[52]. Unfortunately, as mentioned in Sect. 2.2, when � is reflexive, the corresponding
toric varieties X (�) are not guaranteed to be smooth. In fact, only a tiny fraction of
the reflexive polytopes actually give directly smooth X (�) corresponding to the regular
polytopes, as we saw in Table 1.

We are therefore compelled to consider resolutions under triangulations of �. We
concentrate on triangulations of � which guarantee that each cone in � is regular.
For reflexive polytopes � , we consider a special type of triangulation known as FRS
triangulations [11]. FRS stands for the following:

• Fine: all lattice points of � are involved in the triangulation;
• Regular: as discussed in Theorem 2.3, ensures that� is regular and X (�) is smooth;
• Star: the origin, which is taken to be the interior lattice point of the polytope �, is
the apex of all the triangulated cones.

3 Note that we are not studying the orbifold or stringy topological quantities associated to the singular
variety as has been done in [76–78].
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We point out that our requirement of regular is actually stronger than was used in [11]
and leave a detailed discussion of this aswell as algorithmic implementation toAppendix
A. Note that for regularity to hold, the generators of the simplicial cones should give
determinants ±1.

Under FRS triangulation of �, we achieve a complete resolution X̃ (�) whose n-

cones are all regular. Note that all cones in X̃ (�) under the FRS triangulation of a
reflexive polytope � are not only regular but also simplicial. The FRS triangulation of a
reflexive polytope can be obtained using a simple but efficient trick from [10,11,79]. One
first ignores the single interior point that forms the origin of all the simplicial cones and
applies a triangulation of the boundary points of the polytope. When one then adds lines
from the boundary triangles to the origin at the interior point, one obtains the simplicial
cones that form the FRS triangulation of �.

Now, it is an important result [1,49] that

Theorem 3.1. For n ≤ 3, any n-dimensional Gorenstein toric Fano variety admits a
coherent crepant resolution.

What this means is that our 16 polygons and 4319 polyhedra all have FRS triangulations
that completely resolve the singularity, aswe can explicitly see case by case.However, for

higher dimensions, we are no longer guaranteed that a smooth ˜X (�n≥4) actually exists.
Henceforth, for n = 4, we will restrict to cases where a complete desingularization is
possible.

Under regularity and smoothness, the Betti numbers bi and the Euler number χ can
be readily obtained combinatorially [52,53]:

Theorem 3.2. After performing FRS triangulation ˜�n on the reflexive polytope �n, the

smooth, compact toric Fano n-fold X̃ (�n) has Betti numbers

b2k−1 = 0, b2k =
n
∑

i=k

(−1)i−k
(

i
k

)

dni , (3.1)

where k = 0, 1, . . . , n and d j is the number of j-dimensional cones in ˜�. In particular,
the Euler number is

χ(X̃ (�)) = dn . (3.2)

The above formula in fact even further simplifies for reflexive polytopes in dimensions

n = 2, 3. For n = 2, the number of facets in X̃ (�) is simply given by the number of
perimeter lattice points, p. Note that we distinguish between vertices and perimeter
lattice points. Take the example of reflexive polygon number 16 in Fig. 1, which has 3
vertices and 9 perimeter lattice points. Hence, we have that

Corollary 3.3. For all 16 reflexive polygons � in dimension 2, the smooth toric variety

X̃ (�) corresponding to the complete desingularization by FRS triangulation, has Euler
number equal to the number of perimeter lattice points, which is in turn the total number
of lattice points of � minus 1 (for the unique interior lattice point):

χ(X̃ (�2)) = p = (�2 ∩ Z
2) − 1.
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Remark. One can equally arrive at this by Pick’s formula, that for convex polygons �2,
the area A is given by

A(�2) = i +
p

2
− 1, (3.3)

where i is the number of interior lattice points, and p, that of perimeter (or boundary)
lattice points. Here i = 1, corresponding to the origin and an FRS triangulation means
each of the triangles formed by neighboring points on the perimeter is of area 1/2, hence
the number of faces is just p.

It is of course helpful to have the topological quantities as simply as the n = 2 case
for higher dimensions. However, generalizing Pick’s formula for higher dimensions is
not so straightforward. The standard method is via Ehrhart polynomials [53,80].

Theorem 3.4 (Ehrhart). The generating function in t ∈ Z for an n-dimensional polytope
� is defined as

L(�; t) := number of lattice points of {t�} ∩ Z
n

where t� is simply � dilated by a factor of t . Then for t ∈ N, L(�; t) is a polynomial
in t known as the Ehrhart polynomial with expansion

L(�; t) = Vol(�)tn + · · · + χ�.

Thus L(�; t) has its leading term capturing the volume of the polytope and its constant,
the combinatorial Euler number χ�. Note that χ� has nothing to do with the algebro-

geometric Euler number χ(X̃ (�)). For n = 2, the above reduces to Pick’s formula. For
n = 3, because in a FRS triangulation each tetrahedron is of volume 1

3! , the number
of tetrahedra is simply Vol(�3)/(1/3!) = 6Vol(�3). As a result, we find that the Euler
number is linear in the number of total integer points in �3 and that in particular, it is
twice the latter subtracted by 6:

Corollary 3.5. For all the 4319 reflexive polyhedra in dimension n = 3, the Euler

number of the complete resolution X̃ (�3) is

χ(X̃ (�3)) = #(tetrahedra in any FRS triangulation) = 6Vol(�3)

= 2#(�3 ∩ Z
3) − 6 = 2p − 4,

where Vol(�3) is the leading term in the Ehrhart polynomial, giving the volume of the
polytope and #(�3 ∩ Z

3) is the number of lattice points in the polytope.

In the last step, analogous to the dimension 2 case, we define p as the number of
“perimeter” points which includes the vertices as well as any lattice points living on any
edge or any face of �3, since there is only a single interior point.

Wewill make use of these topological results for toric 2, 3 and 4-folds in the following
sections.

3.2. Chern numbers. Having studied the Euler characteristic, we now turn to the Chern
classes.
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3.2.1. Dimension 2: reflexive polygons. In dimension 2, there are two numbers, custom-
arily called the Chern numbers, which can be obtained naturally by integration over
the toric 2-fold. Again, to ensure smoothness and compactness so that the Chern classes

are well-defined, we work over the complete resolution M2 := X̃ (�2):

M2 := X̃ (�2); C(M2) =
∫

M2

c1(M2)
2, χ(M2) =

∫

M2

c2(M2). (3.4)

The integral over the surface of the top Chern class is, of course, none other than the
Euler characteristic. By direct computation, we readily find that C is simply the number
of perimeter lattice points of the polar dual of �. This can be thought of as a version of
Batyrev’s mirror symmetry for Fano 2-folds:

Proposition 3.6. For the 16 reflexive polygons in dimension 2, the two independent

Chern numbers of the complete resolution M2 := X̃ (�2) are
(

C(M2), χ(M2)
)

= (p◦, p)

where p and p◦ are the number of lattice points on the perimeter of respectively � and
the polar dual �◦.

3.2.2. Dimension 3: reflexive polyhedra. In this subsection, we move onto the reflexive

polyhedra in dimension 3. We have the smooth Fano variety M3 := X̃ (�3) from the
FRS triangulation of�3.We can now form three natural integrals from the Chern classes
ci (M3) ∈ H2i (M3; Z), viz.,

∫

M3
c1(M3)

3,
∫

M3
c1(M3)c2(M3) and

∫

M3
c3(M3) ∈ Z. We

can easily see that these are independent and are the only three non-trivially-vanishing
classes which can be integrated over the Fano threefold to produce an integer. Again the
third integral is the Euler characteristic, as discussed in Corollary 3.5 and it remains to
study the first two integrals.

We can quite efficiently compute these quantities. First off, the second integral is
equal to 24 for all 4319 reflexive polytopes in n = 3, by direct computation [56].
The remaining two Chern numbers C := ∫

M3
c1(M3)

3 and χ , on the other hand, are
intricately related and we show the plot between them in Fig. 4. We see many bands of

(a) (b)

Fig. 4. a The plot of the two non-trivial Chern numbers C = ∫

M3
c1(M3)

3 versus the Euler number χ =
∫

M3
c3(M3) of the complete desingularization of the toric variety M3 = X̃ (�3) for the 4319 reflexive

polyhedra �3. The red points correspond to �3 which are dual polytopes of the ones in yellow. Self-dual �3
are in blue. b For reference, we include the plot also for the reciprocal of C against χ (color figure online)
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vertical lines and to ensure these are not due to any round-off errors, we also plot against
the reciprocal of the Euler characteristic. Inspired by Proposition 3.6, we compute this
pair of Chern numbers for the dual pairs of reflexive polytopes explicitly and find that
they are indeed reversed under “mirror symmetry”. Recalling further that the top (3rd)
Todd class Td3(M3) = 1

24c1(M3)c2(M3), we summarize these results in

Proposition 3.7. Defining the 3 independent Chern numbers

C :=
∫

M3

c1(M3)
3, T =

∫

M3

Td3(M3) = 1

24
c1(M3)c2(M3), χ =

∫

M3

c3(M3)

for the complete resolution M3 := X̃ (�3) for the reflexive polyhedron �3 in dimension
3, we have that

• T = 1 for all 4319 cases;

• (C, χ) =
(

2#(�◦
3 ∩ Z

3) − 6, 2#(�3 ∩ Z
3) − 6

)

= (2p◦ − 4, 2p − 4)

where �◦ is the polar dual polyhedron, and p and p◦ are the number of perimeters
lattice points of �3 and �◦

3 respectively.

As before, the perimeter points include the vertices as well as any lattice points
living on any edge or any face of �3. Therefore, we see that once again, while the
middle Chern number remains fixed here at 1, the bottom and top Chern numbers are
reversed for polar dual pairs. Now, from Corollary 3.5 we have an explanation of why
χ = 2p−4. WhyC = 2p◦ −4 is less straight-forward. The middle term T = 1 follows
from the index theorem,4 which states that for a bundle V on a complex smooth variety
X ,
∫

X Ch(V )Td(X) = ∑n
i=1 dimHi (X, V ), the alternating sum in sheaf-cohomology.

Take V to be the trivial sheafOX on X , then the Chern character Ch(V ) = 1 so that the
LHS becomes our requisite integral of the Todd class. On the RHS, because X is Fano,
then by Kodaira vanishing theorem Hi>0(X,OX ) are all equal to 0 while the first term
has dimension 1.

4. Hilbert Series and Volume Functions

One of the most important quantities which characterize an algebraic variety X is the
Hilbert series.5 It has been used in numerous ways to enumerate operators in a chiral ring
and to study the geometric structure they form. As part of the plethystic program [31,32],
Hilbert series has been used extensively to address the problem of counting gauge invari-
ant operators and of characterizing moduli spaces of various different supersymmetric
gauge theories.

We will be concentrating on a specific application [28,30,81] of the Hilbert series
in relation to the volume of the Sasaki–Einstein base Y of the toric Calabi–Yau cone
X = C(X (�)). Let us first refresh our memory on the Hilbert series and thence explore
the connection between Hilbert series and the volume function of a Sasaki–Einstein
manifold.

4 We thank Inaki Garcia Etxebarria for pointing this out to us.
5 Note, however, that the Hilbert series is not a topological invariant and does depend on embedding and

choice of grading for the coordinate ring for X .
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4.1. Hilbert series. For a projective variety X over which X is a cone, realized as an
affine variety in C

k , the Hilbert series is the generating function for the dimension of
the graded pieces of the coordinate ring C[x1, . . . , xk]/ 〈 fi 〉 where fi are the defining
polynomials of X :

g(t;X ) =
∞
∑

i=0

dimC(Xi ) t
i , (4.1)

which is always a rational function. Here, the i-th graded piece Xi can be thought of as
the number of algebraically independent degree i polynomials on the variety X . t keeps
track of the degree i . For multi-graded rings with pieces X�i and grading �i = (i1, . . . , ik),

the Hilbert series takes the form g(t1, . . . , tk;X ) =∑∞
�i=0

dimC(X�i )t
i1
1 . . . t ikk . Note that

the Hilbert series can appear in two kinds, with as many t variables as the ambient space
as given above, or being fewer, as the dimension of X ; we will use the latter below.

If the variety X corresponds to the chiral ring of a supersymmetric gauge theory, the
Hilbert series can be thought of as the generating function of gauge invariant operators
on the chiral ring. The grading can be chosen as such that fugacities t i11 , . . . , t ikk count
charges of the operators under the full global symmetry of the supersymmetric gauge
theory. Finally, if the variety X is toric, the Hilbert series can be conveniently obtained
from the toric diagram itself as explained in the ensuing subsection.

4.1.1. Hilbert series from toric geometry. When the affine variety is toric, the corre-
sponding Hilbert series can be computed directly from the toric diagram [28,31]. As
discussed in Sect. 2.4, the affine toric Calabi–Yau n-foldX can be defined as a cone over
a compact Sasaki–Einstein manifold of real dimension 2n−1. The toric diagram ofX is
a convex reflexive lattice polytope of (real) dimension n−1, being effectively dimension
one less because of the Calabi–Yau condition which ensures that the endpoints of the
generators of the cone are co-hyperplanar.

For n = 3, 4, our toric diagrams �2,3 admit at least one FRS triangulation in terms
of (n − 1)-simplices and for n = 5, we will only consider those which do have such
a triangulation. From an FRS triangulation, one can construct a graph-dual, which for
Calabi–Yau 3-folds is known as a (p, q)-web diagram. Figure 5 illustrates dual web-
diagrams with the corresponding toric diagrams for C

3/Z3.
In general, we have that [28,30].

Theorem 4.1. The Hilbert series of the toric Calabi–Yau n-fold cone X (and that of a

toric variety ˜X (�n−1)) is succinctly obtained from the triangulation of �n−1 as follows

g(t1, . . . , tn;X ) =
r
∑

i=1

n
∏

j=1
(1 − �t �ui, j )−1 . (4.2)

Here, the index i = 1, . . . , r runs over the n − 1-dimensional simplices in the FRS
triangulation and j = 1, . . . , n runs over the faces of each such simplex. Each �ui, j is
an integer n-vector, being the outer normal to the j-th face of the fan associated to i-th

simplex. �t �ui, j :=∏n
a=1 t

ui, j (a)
a multiplied over the a-th component of �u.

Note that we introduced an n-dimensional origin (0, 0, . . . , 0), which is distance 1 away
from the hyperplane of the (n−1)-dimensional toric diagram. The grading of the Hilbert
series in terms of �t is such that each fugacity ta corresponds to the a-th coordinate of
the �ui, j . We emphasize the fact that all subsequent discussions on volume functions are
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(a) (b)

Fig. 5. a Toric diagram and b dual (p, q)-web diagram for C
3/Z3. The vectors u1,2,3 are the outer normals

to the fan and furnish the (p, q)-charges

independent of (1) the GL(n; Z) equivalence in the definition of the toric diagram and
(2) the different FRS triangulations.

4.1.2. Hilbert series for C
n/Zn. Let us consider a few examples of Hilbert series

obtained from toric diagrams of toric Calabi–Yau n-folds. We consider here Abelian
orbifolds of the form C

n/Zn with orbifold action (1, . . . , 1) for n = 3, 4, 5. The coor-
dinates for vertices in the toric diagram are

C
3/Z3 :

⎧

⎨

⎩

(1, 0, 1),
(0, 1, 1),

(−1, −1, 1),
(0, 0, 1)

C
4/Z4 :

⎧

⎪

⎨

⎪

⎩

(1, 0, 0, 1),
(0, 1, 0, 1),
(0, 0, 1, 1),

(−1, −1,−1, 1),
(0, 0, 0, 1)

C
5/Z5 :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1, 0, 0, 0, 1),
(0, 1, 0, 0, 1),
(0, 0, 1, 0, 1),
(0, 0, 0, 1, 1),

(−1, −1,−1,−1, 1),
(0, 0, 0, 0, 1)

(4.3)

Above, the coordinates of the vertices include the n-th coordinate, which will become
important in the discussion that follows. We label the points in the toric diagrams from
1, . . . , n in the order they are listed in (4.3). Following this labelling, the unique triangu-
lations of these diagrams can be summarized in terms of the points in the toric diagram
as follows (called incidence data):

C
3/Z3 : {{1, 2, 4}, {1, 3, 4} {2, 3, 4}}

C
4/Z4 : {{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}}

C
5/Z5 : {{1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}}

(4.4)
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Following (4.2), we find the Hilbert series for C
3/Z3, C

4/Z4 and C
5/Z5,

g(ti ; C
3/Z3) = 1

(1 − t2)(1 − t−1
1 t2)(1 − t1t

−2
2 t−1

3 )
+

1

(1 − t1)(1 − t1t
−1
2 )(1 − t−2

1 t2t3)

+
1

(1 − t−1
1 )(1 − t−1

2 )(1 − t1t2t
−1
3 )

g(ti ; C
4/Z4) = 1

(1 − t1)(1 − t2)(1 − t3)(1 − t−1
1 t−1

2 t−1
3 t4)

+
1

(1 − t−1
1 )(1 − t−1

1 t2)(1 − t−1
1 t3)(1 − t31 t

−1
2 t−1

3 t4)

+
1

(1 − t−1
2 )(1 − t1t

−1
2 )(1 − t−1

2 t3)(1 − t−1
1 t32 t

−1
3 t4)

+
1

(1 − t−1
3 )(1 − t1t

−1
3 )(1 − t2t

−1
3 )(1 − t−1

1 t−1
2 t33 t4)

g(ti ; C
5/Z5) = 1

(1 − t4)(1 − t−1
1 t4)(1 − t−1

2 t4)(1 − t−1
3 t4)(1 − t1t2t3t

−4
4 t−1

5 )

+
1

(1 − t3)(1 − t−1
1 t3)(1 − t−1

2 t3)(1 − t3t
−1
4 )(1 − t1t2t

−4
3 t4t

−1
5 )

+
1

(1 − t2)(1 − t−1
1 t2)(1 − t2t

−1
3 )(1 − t2t

−1
4 )(1 − t1t

−4
2 t3t4t

−1
5 )

+
1

(1 − t1)(1 − t1t
−1
2 )(1 − t1t

−1
3 )(1 − t1t

−1
4 )(1 − t−4

1 t2t3t4t
−1
5 )

+
1

(1 − t−1
1 )(1 − t−1

2 )(1 − t−1
3 )(1 − t−1

4 )(1 − t1t2t3t4t
−1
5 )

. (4.5)

By setting t1, . . . , td−1 = 1 and td = t , the above Hilbert series can be unrefined to give

g(t; C
3/Z3) = 1 + 7t + t2

(1 − t)3
,

g(t; C
4/Z4) = 1 + 31t + 31t2 + t3

(1 − t)4
,

g(t; C
5/Z5) = 1 + 121t + 381t2 + 121t3 + t4

(1 − t)5
. (4.6)

Notice that the numerators of the rational functions in (4.6) are all palindromic. Accord-
ing to Stanley [82], this indicates that the corresponding variety of the Hilbert series is
Calabi–Yau (Gorenstein).

4.2. The Calabi–Yau cone X and Sasaki–Einstein base Y . The Hilbert series as com-
puted above, exploiting the relation between the affine variety X and the compact real
manifold Y , has an extraordinary manifestation as a normalized volume. In this section,
we briefly summarize this property following the exposition and notation of [28,30].
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Consider a Kähler cone X which has complex dimension n with Kähler form ω. The
metric on the cone takes the form

ds2(X ) = dr2 + r2ds2(Y ), (4.7)

where Y = X |r=1 is the Sasakian base manifold over whichX is a real cone. The Kähler
form ω can be written, for η a global one-form on Y , as

ω = −1

2
d(r2η) = 1

2
i∂∂r2. (4.8)

Now, Y has a Killing vector field K called the Reeb vector, defined, for the complex
structure I on X , as

K := I
(

r
∂

∂r

)

. (4.9)

As discussed in Sect. 2.4, we require the Calabi–Yau coneX to be toric, meaning that
we have a torus action T

n that leaves the Kähler form ω invariant. We take ∂/∂φi to be
the generators of the torus action and φ to be the angular coordinates of the action with
φ ∼ φ + 2π . The torus action is integrable and allows for the introduction of symplectic
coordinates yi defined as

yi := −1

2

〈

r2η,
∂

∂φi

〉

, (4.10)

with 〈, 〉 the usual bilinear pairing between forms and vector fields. Using these sym-
plectic coordinates, the Kähler cone can be expressed as a torus fibration over a convex
rational polyhedral cone of the form

σ = {y ∈ R
n | la(y) := (y, va) ≤ 0, a = 1, . . . , d}, (4.11)

where the linear function la(y) is defined in terms of the inner product (, ) between y
and va which are the inward pointing normal vectors to the d facets of the polyhedral
cone. This cone σ is precisely the rational polyhedral cone discussed in (2.5).

In terms of the symplectic and angular coordinates, the Kähler form on X is

ω = dyi ∧ dφi , (4.12)

and the Kähler metric on X becomes

ds2 = Gi jdyidy j + Gi jdφidφ j , (4.13)

whereGi j is the inverse ofGi j := ∂i∂ j G for some symplectic potentialG. This potential
G not only determines the metric but also relates to the complex structure on X as

I =
[

0 −Gi j

Gi j 0

]

. Combining the expression of the complex structure and the original

expression of the Killing vector field in (4.9), we can write

K = bi
∂

∂φi
, (4.14)
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where b ∈ R
n and bi are the components of theReeb vector. They relate to the symplectic

potential as follows

bi = 2Gi j y j , (4.15)

and under the canonical form of the metric can be directly related to the vectors va as
bcan =∑a va .

The Reeb vector has the following norm

1 = bib jG
i j = 2biG jk ykG

i j = 2 〈b, y〉 , (4.16)

which can be used to show that the base of the cone X at r = 1 defines a hyperplane

{

y ∈ R
n | 〈b, y〉 = 1

2

}

. (4.17)

This hyperplane intersects σ in (4.11) to form a polytope �, which is precisely what
we called the toric diagram. Note that the Reeb vector is always in the interior of the
polytope� and is chosen such that along the hyperplane in (4.17), one of its components
is set to

bn = n . (4.18)

So far, everything described applies to general Kähler cones in the case of X being
Calabi–Yau, i.e. a toric Gorenstein singularity. Because of this, the normal vectors va
after some GL(n, Z) transformation can be taken to be

va = (wa, 1), (4.19)

where wa ∈ Z
n−1. These are precisely the normal vectors that are used in the compu-

tation of the Hilbert series in (4.2), when each simplex in the triangulation of the toric
diagram is taken to be a polyhedral cone on its own right. Note also that the vectors
wa ∈ Z

n−1 are precisely pointing to the vertices of the toric diagram of the Calabi–
Yau n-fold.6 As discussed in Sect. 2.4, we will study Calabi–Yau n-folds whose toric
diagrams are in addition reflexive.

6 We can also construct X symplectically in terms of a GLSM quotient of C
d . The quotient is taken in

terms of integer-valued charges Qi
a , where here i = 1, . . . , d − n and a = 1, . . . , d, as

X =
{

(Z1, . . . , Zd ) ∈ C
d |
∑

a
Qa
i |Za |2 = 0

}

, (4.20)

with Za=1,...,d the coordinates of C
d . Note that the integer-valued charges Qa

i of the quotient form a map

Qa
i : Z

d → Z
d−n . The normal vectors form the defining kernel of the map with

∑

a Qa
i va = 0. Given that

X is Gorenstein and the normal vectors va = (wa , 1), the charge vectors satisfy
∑

a Qa
i = 0, which is the

Calabi–Yau condition of the quotient. Note that sinceX is an affine algebraic variety, the space of holomorphic
functions onX are elements of a coordinate ring. These elements are counted by a generating function which
we have studied in Sect. 4.1 as the Hilbert series of X .
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4.3. The volume function. The volume of the Sasaki–Einstein base Y is a strictly convex
function that arises from the Einstein–Hilbert action on Y [28,30]. For a Sasakian metric
on Y , the volume takes the general form

vol[Y ] =
∫

Y
dμ = 2n

∫

r≤1

ωn

n! , (4.21)

where dμ is the Riemannian measure on the cone X . It has been shown in [30] that the
volume of the base Y is a function of Reeb vector components bi and in relation to the
volume of S2n−1,

vol[S2n−1] = 2π

(n − 1)! , (4.22)

the ratio

V (b; Y ) := vol[Y ]
vol[S2n−1] , (4.23)

is what we define as the volume function. At the critical points of the Reeb vector, this
is an algebraic number [28,30]. We remark that sometimes we will also denote this by
V (b;X )without ambiguity, though the volume is, of course, always that of the compact
base Y .

The volume function can be derived directly from the Hilbert series of the coordinate
ring of X that was discussed in Sect. 4.1,

V (bi ; Y ) = lim
μ→0

μng(ti = exp[−μbi ];X ) . (4.24)

The above limit picks the leading order in μ in the expansion of the Hilbert series
g(ti = exp[−μbi ];X ), which was shown to be related to volume of the Sasaki–Einstein
base Y in [28,30,83].

4.3.1. Volume functions forC
n/Zn. Let us take our running example of theHilbert series

that were computed in (4.5) for C
n/Zn with n = 3, 4, 5 and calculate the corresponding

volume functions. Under the limit in (4.24), the volume function are

V (bi ; C
3/Z3) = −9

(b1 − 2b2 − 3)(−2b1 + b2 − 3)(b1 + b2 − 3)
,

V (bi ; C
4/Z4) = 64

(b1 + b2 − 3b3 − 4)(b1 − 3b2 + b3 − 4)(−3b1 + b2 + b3 − 4)

× 1

(b1 + b2 + b3 − 4)
,

V (bi ; C
5/Z5) = −625

(b1 + b2 + b3 − 4b4 − 5)(b1 + b2 − 4b3 + b4 − 5)(b1 − 4b2 + b3 + b4 − 5)

× 1

(−4b1 + b2 + b3 + b4 − 5)(b1 + b2 + b3 + b4 − 5)
. (4.25)

As discussed in (4.18), we take bn = n. Figure 6 shows a bi -plot of the volume function
for C

3/Z3. Here, dimC X = 3 so there are three components of the Reeb vector. We set
b3 = 3, and plot V (b1, b2).
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Fig. 6. Volume function plot for C
3/Z3. We set b3 = 3 and V is plotted against the components b2,3 of the

Reeb vector

4.4. Volume minimization. The volume function plays an important role in physics. In
this subsection, we briefly review the story of how the AdS/CFT correspondence gives
the remarkable statement thatminimizing the volume function is the same asmaximizing
the central charge in the dual conformal field theory for Calabi–Yau 3-folds.

4.4.1. AdS/CFT and a-maximization. As discussed in Sect. 2.5, D3-branes probing
Calabi–Yau cones X of dimension 3 give rise to 4d N = 1 supersymmetric gauge
theories. It is expected that theories of this class flow at low energies to a superconfor-
mal fixed point. The Reeb vector discussed in Sect. 4.2 generates theU (1) R-symmetry
of the theory and the global R-symmetry is part of the superconformal algebra.

The superconformal R-charges of the theory are determined by a procedure known
as a-maximization [29,43,44]. It determines the superconformal R-charges uniquely
by maximizing the combination of ’t Hooft anomalies which completely determine the
central charge of the superconformal field theory in 4 dimensions,

a(R) = 1

32
(9TrR3 − 3TrR), (4.26)

where for anomaly free theories TrR = 0. The idea is to write a trial function atrial(Rt )

in terms of trial R-charges,

Rt = R0 +
∑

i

ci Fi , (4.27)

where Fi can be thought as charges coming from the global symmetries which are not
the R-symmetry in the theory. When the trial function atrial(Rt ) is maximized, only the
superconformal R-charges R0 contribute as shown in [29].

When the probed Calabi–Yau 3-fold singularity X is toric, it was shown in [43,44]
that the trial a-function takes the form of a cubic function

a(R) = 9

32

⎛

⎝2A +
∑

(i, j)∈C
| [ui , u j

] |(Ri+1 + Ri+2 + · · · + R j − 1)3

⎞

⎠ , (4.28)
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Fig. 7. A brane tiling under isoradial embedding links to distinct brane tilings related by Seiberg duality. This
figure shows the two brane tilings corresponding to the Hirzebruch zero surface F0. The blue triangle indicates
the angle θi corresponding to the R-charge Ri

where Ri are trial R-charges with
∑

i Ri = 0 and
[

ui , u j
] := det(ui , u j ). Note that here

ui are the vectors associated to the (p, q)-web diagram corresponding to the Calabi–Yau
3-fold toric diagram as illustrated in part (b) of Fig. 5. Moreover, A is the area of the toric
diagram scaled so that the unit triangle has area 1 and C is the set of all the unordered
pairs of vectors in the (p, q)-web (including non-adjacent ones).

In the context of brane tilings, a-maximization was shown to relate to isoradial
embeddings of the bipartite periodic graph on the 2-torus [84]. R-charges of bifunda-
mental chiral matter multiplets Ri were associated to angles in the bipartite graph,

θi = πRi (4.29)

as illustrated in Fig. 7. The isoradial embedding of the graph determines the correct
angles θi which in turn relate to the superconformal R-charges Ri .

4.4.2. Volume minimization is a-maximization. The AdS/CFT correspondence relates
the central charge a-function with the volume of the Sasaki–Einstein 5-manifold base
Y for 4d N = 1 superconformal field theories as follows [26,27],

a(R; Y ) = π3N 2

4V (R; Y )
. (4.30)

Whence we can define the normalized a-function

A(R; Y ) ≡ a(R; Y )

a(R; S5) = vol[S5]
vol[Y ] = 1

V (b; Y )
. (4.31)

This reciprocal relationship implies that when the a-function is maximized along the
RG-flow, the corresponding value of the volume function is minimized. This is in line
with the fact that the Reeb vector generates the U (1)R symmetry and that the volume
function V (bi ; Y ) is dependent only on its components bi .

Following our review on volume functions in Sect. 4.3, one can write a trial volume
function V (bi ; Y ) dependent on trial Reeb vector components bi such that the Reeb
vector b is always in the interior of the cone. As shown in [30], the minimized volume
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V (b∗
i ; Y ) identifies the critical Reeb vector b∗, which under the volume function in (4.23)

results in the volume of the Sasaki–Einstein manifold Y . The process of identifying the
critical Reeb vector is also known as Z -minimization [43,85].

4.4.3. Towards a classificationofCalabi–Yauvolumes. Wehavediscusseda-maximization
and volume minimization in the context of type IIB string theory on AdS5 × Y corre-
sponding to 4d N = 1 superconformal field theories. As discussed in Sect. 2.5, toric
Calabi–Yau 4-folds with Sasaki–Einstein 7-manifolds as bases were studied in the con-
text of worldvolume theories of M2-branes probing the Calabi–Yau 4-fold singularity.
These were some of the first examples where the AdS4 /CFT3 correspondence was stud-
ied systematically. Here, the worldvolume theory on the M2-branes is a 3d N = 2
superconformal Chern–Simons theory. For these theories, the role of the a-function is
played by the supersymmetric free energy on the 3-sphere [86,87]

F = − log |ZS3 |. (4.32)

The free energywhen extremizedwas shown to determine the superconformal R-charges
of the theory in [88].Moreover, it was shown in [45,46] that the free energy can be related
in the large N limit to the volume of the Sasaki–Einstein 7-manifold Y as follows

F = N 3/2

√

2π6

27vol[Y ] . (4.33)

However, there are several obstacles that do not allowus tomake the same conclusions
as in the AdS5/CFT4 case. First of all, it is not known what the 3d N = 2 theory is for
instance for a general toric Calabi–Yau 4-fold. Brane tilings provide a unified description
of 4d N = 1 theories and the corresponding toric Calabi–Yau 3-folds [24,25]. Such a
bridge, following many proposals [35,89], does not exist for worldvolume theories of
M2-branes and arbitrary toric Calabi–Yau 4-folds. For some toric Calabi–Yau 4-folds,
the corresponding 3d N = 2 theory are not known. This is a major obstacle in verify-
ing that the minimum of the volume of the Sasaki–Einstein 7-manifold systematically
corresponds to the free energy F .

Moreover, the free energy F does not necessarily take a simple polynomial form
as it is the case for the a-function as discussed in Sect. 4.4.1. In (4.28), we referred
to the result in [43,44] that the a-function for 4d N = 1 theories corresponding to
toric Calabi–Yau 3-folds is a cubic function in terms of trial R-charges. Naively, one
would hope that the free energy F for 3d N = 2 theories is a quartic function of trial
charges. This is not generally the case and several works [90,91] attempted to correct
the conjectured quartic function so as to match its extremal value to the volume of a
certain class of Sasaki–Einstein 7-manifolds.

As reviewed in Sect. 2.5, toric Calabi–Yau 4-folds also appeared in the context of
worldvolume theories living on probe D1-branes. These theories are 2d (0, 2) quiver
gauge theories realized in terms of a type IIA brane configuration known as brane brick
models [37–39]. More recently, toric Calabi–Yau 5-folds were studied in the context of
probe Euclidean D(-1)-branes [42]. The worldvolume theory of the probe D(-1)-branes
is a 0d N = 1 supersymmetric matrix model. Both probed toric Calabi–Yau 4-folds and
5-folds have base manifolds whose volumes can be computed via volume minimization.
It is an interesting question to ask what role the volume minimum plays in the context
of the corresponding 2d and 0d theories.
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Computing the volume minima for large sets of toric Calabi–Yau n-folds may shed
some light on these questions. In the following section, we will precisely do this for toric
Calabi–Yau n-folds whose toric diagrams are reflexive. Plotting these volume minima
against topological quantities of the underlying toric varieties allows us to derive general
statements about the overall behavior of volume functions for Calabi–Yaus in various
dimensions.

5. Minimum Volumes for CYn

We can now combine the theoretical results obtained thus far for the topological quanti-
ties, Hilbert series and volume functions of the reflexive polytopes in various dimensions,
in conjunction with the data we have collected. In this section, we will study the con-
nections between these quantities, derive some bounds and raise intriguing conjectures.

5.1. Volume minimum versus topological invariants. In the previous sections, we have
discussed various characteristic quantities that can be derived from the compact toric
variety X (�) corresponding to a reflexive polytope � and the non-compact Calabi–Yau
cone X over X (�) and its Sasaki–Einstein base manifold Y . Throughout this section,
dimC X = n, dimC X (�n−1) = n − 1, and dimR Y = 2n − 1.

The first characteristic that can be computed is the Euler number for X̃ (�), which
is simply the number of n-cones of the fan �(�n−1) by Theorem 3.2. On the other
hand, as was discussed in Sect. 4.4, the volume of the Sasaki–Einstein base Y is another
important quantity for X . The volume function V (bi ; Y ) is expressed as a function of
Reeb vector components bi and can be obtained directly from the Hilbert series of the
coordinate ring forX . The Hilbert series in turn is easily obtained from the polytope data
by (4.2). For threefolds, from the point of view of the dual gauge theory, following a-
maximization and the reciprocal relationship to the volume function V (bi ; Y ) discussed
in Sect. 4.4.1, the volume of Y minimizes to a critical value when the theory flows to
a IR fixed point. As such, the minimized volume matched for theories that flow to the
same fixed point—theories that are Seiberg dual in 4 dimensions.

In order to better understand the role played by the minimum volume for Calabi–Yau
varieties in higher dimensions, we propose to first study the relationship between

V (b∗
i ; Y ) := min

bi |bn=n
V (bi ; Y ) ←→ χ( ˜X (�n−1)) . (5.1)

The Euler number χ(X̃ (�)) is the number of top-dimensional cones as stated in (3.2).
Because the numbers of reflexive polytopes is finite in each dimension, we have:

Lemma 5.1. For all non-compact toric Calabi–Yau n-foldsX with Sasaki–Einstein base
Y , originating from toric varieties X (�n−1) and reflexive polytopes �n−1, there is a
finite number thereof where

1/V (b∗
i ; Y ) = χ( ˜X (�n−1)). (5.2)

What we will attempt to do now is to see whether any reflexive polytopes � satisfies
this relation, isolate them and test if the equality furnishes some bound.
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(a)

(b)

Fig. 8. a The Euler number of the 16 reflexive toric Calabi–Yau 3-folds X against the minimum volume
V (b∗

i ; Y ), and b the Euler number against the inverse of the minimum volume. Note that the orange points

correspond to the 5 Calabi–Yau 3-folds which are Abelian orbifolds of C
3 with 1/V (b∗

i ; Y ) = χ(X̃ (�2))
(color figure online)

5.1.1. Calabi–Yau 3-fold cones. We begin with the 16 reflexive polygons �2; for these
X = CC(X (�2)) are Calabi–Yau 3-folds. The plot of the volume minimum of Y against
the Euler number is shown in Fig. 8a. We can clearly see from the plot that for some
toric Calabi–Yau 3-folds, the minimum volume is inversely related to the corresponding

Euler number of X̃ (�2). To illustrate this, in Fig. 8b, we plot the inverse of the minimum
volume 1/V (b∗

i ; Y ) against the Euler number. By doing so, we note that for 5 toric
Calabi–Yau 3-folds, the inverse of the minimum volume is exactly the corresponding
Euler number.

A closer look reveals that these 5 toric Calabi–Yau 3-folds are all Abelian orbifolds
of C

3. The corresponding toric diagrams are lattice triangles and are shown in Fig. 9.
We note, from Fig. 1, that the number of (extremal) vertices of the 16 reflexives range
from 3 to 6 and the ones with 3 vertices all correspond to X being Abelian orbifolds
of C

3. For reference, we include the 16 volume functions as well as their critical points
and values in Appendix B, Table 3.

Indeed, this is true in general.
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Fig. 9. The 5 toric Calabi–Yau 3-folds whose inverse minimum volume 1/V (b∗
i ; Y ) is the same as the Euler

number χ(X̃ (�)) of the complete resolution of X (�). They are all lattice triangles. We retain the numbering
from Fig. 1

Theorem 5.2. ForX being an Abelian orbifold of Cn whose toric diagram is a reflexive
polytope, the minimum volume and the Euler number are related by

1/V (b∗
i ; Y ) = χ( ˜X (�n−1)).

Proof. We recall from (4.22) that the volume of the sphere S2n−1 is vol[S2n−1] =
2π

(n−1)! and that the minimal volume of the Sasaki–Einstein base Y of X is defined as

V (b∗
i ;X ) ≡ vol[Y ]

vol[S2n−1] , normalized by vol[S2n+1]. In particular, if Y is the sphere S2n−1

itself, the normalized volume

V (b∗
i ; C

n) = V (b∗
i ; S2n−1) = 1, (5.3)

since C
n is the real cone over S2n−1 (recall that in our convention, we write V (b;X )

and V (b; Y ) inter-changeably).
Moreover, when one takes an Abelian orbifold of the form C

n/�, where the order is
|�|, the volume for S2n−1/� becomes, by construction,

vol[S2n−1]
vol[S2n−1/�] = ������ 1

V (b∗
i ; C

n)

V (b∗
i ; Cn/�)

= |�|, (5.4)

where in the last step, we have used (5.3).
Now, under orbifolding, while the volume of the sphere decreases by a factor of

|�| as above, it is a standard fact of toric geometry [52] that the n-dimensional volume
of the convex lattice polytope �n that represent the toric diagram of X increases by a
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(a)

(b)

Fig. 10. a The Euler number of the 4319 reflexive toric Calabi–Yau 4-folds X against the minimum volume
V (b∗

i ; Y ), and b the Euler number against the inverse of the minimum volume. Note that the orange points

correspond to the 48 Calabi–Yau 4-folds which are Abelian orbifolds of C
4 with 1/V (b∗

i ; Y ) = χ(X̃ (�3))

factor of |�|. One can see this, for example, from the toric diagram of C
3 versus that

of C
3/Z3. On the other hand, because our FRS triangulation ensures each simplex to

be unit volume for the sake of smoothness, the scaling factor � of the toric diagram is
precisely the number dn−1 of top-dimensional cones, which we recall from (3.2), is the
Euler number:

dn−1 = |�| = χ( ˜X (�n−1)) (5.5)

Combing (5.4) and (5.5) thus gives 1/V (b∗
i ; C

n/�) = χ( ˜X (�n−1)), as required. ��
5.1.2. Calabi–Yau 4-fold cones. The observations made for reflexive toric Calabi–Yau
3-folds canbe extended for toricCalabi–Yau4-foldsX whose toric diagrams are reflexive
polyhedra. As stated in Table 1, there are 4319 reflexive polytopes �3, with number of
vertices in the range of 4 to 14. We computed all minimized volumes and topological
quantities for these Calabi–Yau 4-folds. The volume minima plotted against the Euler
number of the corresponding toric varieties is shown in Fig. 10a. In comparison, Fig. 10b
shows the inverse volume against the Euler number. We can clearly see that for a subset
of reflexive toric Calabi–Yau 4-folds, the reciprocal minimum volume is exactly the
corresponding integer Euler number.
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Fig. 11. A selection of the 48 toric Calabi–Yau 4-folds which are Abelian orbifolds of C
4. Their inverse

minimum volume 1/V (b∗
i ; Y ) is the same as the Euler number χ(X̃ (�). Their toric diagrams are all lattice

tetrahedra and the numbering is in the order of SAGE’s database

As discussed in Theorem 5.2, Abelian orbifolds of C
4, of which there are 48 out

of the 4319, have toric diagrams which are lattice tetrahedra with 4 external vertices.
For these, the reciprocal of the minimum volume of the Sasaki–Einstein 7-manifold is
exactly the same as the corresponding integer Euler number of the toric variety. For
reference, we include the 48 volume functions as well as their critical points and values
in Appendix C, Tables 4 and 5. Figure 11 shows a selection of 9 of the 48 toric diagrams
of these toric Calabi–Yau 4-folds.

5.1.3. Calabi–Yau 5-fold cones and a general bound. A similar conclusion can be given
for toric Calabi–Yau 5-folds. As outlined in Sect. 2.2, there are 473,800,776 reflexive
polytopes �4 each corresponding to a toric Calabi–Yau 5-fold. It is clearly impossible
to compute the minimum volume of each of them at this stage, but, led by the results
for toric Calabi–Yau 3-fold and 4-folds, we were able to make selective computations.
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(a)

(b)

Fig. 12. a The Euler number for a selection of reflexive toric Calabi–Yau 5-folds X against the minimum
volume V (b∗

i ; Y ), and b the Euler number against the inverse of the minimum volume. Note that for Abelian

orbifolds of C
5 which are reflexive toric Calabi–Yau 5-folds, 1/V (b∗

i ; Y ) = χ(X̃ (�4))

From the enormous list we take a sample of about 1000 reflexive �4, making sure that
we cover examples for all cases of the number of vertices, which range from 5 to 33, to
avoid statistical bias.

For example, a selection (there is a total of 1561 which have 5 vertices, correspond-
ing to our orbifolds) of Abelian orbifolds of C

5 indeed confirms that the relationship

1/V (b∗
i ; Y ) = χ(X̃ (�)) holds for reflexive Abelian orbifolds. Furthermore, for a selec-

tion of reflexive toric Calabi–Yau 5-folds that are not Abelian orbifolds of C
5, it was

shown that 1/V (b∗
i ; Y ) �= χ(X̃ (�)). The data is shown in Fig. 12.

5.2. Bounds on minimum volume. As observed in the previous section, the minimum
volumeof theSasaki–Einstein baseof reflexive toricCalabi–Yau3, 4 and5-folds seems to
form a boundwhen the Calabi–Yau is anAbelian orbifold ofC

n .We therefore conjecture
that,

Conjecture 5.3. For toric Calabi–Yau n-folds X with a toric diagram �n−1, the mini-
mum volume V (b∗

i ; Y ) of the Sasaki–Einstein base Y has a lower bound:
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V (b∗
i ; Y ) ≥ 1

χ( ˜X (�n−1))
, (5.6)

where χ( ˜X (�n−1)) is the Euler number of the completely resolved toric variety
˜X (�n−1). The bound is saturated when X is an Abelian orbifold of C

n.

We remark that this conjecture is expected to hold for any toric Calabi–Yau n-fold, not
just for the ones which have a reflexive polytope as their toric diagram. Indeed, it is
known that for Sasaki–Einstein manifolds, Bishop’s Theorem [92] states that its volume
is bounded above by that of the round sphere using the standard metric. In our notation,
this means that the normalized volume V (b; Y ) ≤ 1. Theorem 5.2 showed that the
volume at the critical value of the Reeb vector for orbifolds is simply the reciprocal
of the Euler characteristic of the smoothing of the Fano base and conjecture 5.3 would
mean that the critical volume is furthermore bounded below by this reciprocal.

5.2.1. Identifying the maximum. The question arises whether there are any further
bounds that can be identified for the minimum volume V (b∗

i ; Y ), especially for the
class of toric Calabi–Yau n-folds whose toric diagram is a reflexive polytope. We draw

V (b∗
i ; Y )χ(X̃ (�)) versus χ(X̃ (�)) in parts (a) and (b) in Fig. 13 for all our reflexive

toric Calabi–Yau 3-folds and 4-folds, respectively.

These plots respectively show V (b∗
i ; Y ) and 1/V (b∗

i ; Y ) against V (b∗
i ; Y )χ(X̃ (�)).

An interesting observation from these plots is that specific values of the product

V (b∗
i ; Y )χ(X̃ (�)) reach a maximum value.

For reflexive toric Calabi–Yau 3-folds, the maximum for V (b∗
i ; X)χ(X̃ (�)) is

uniquely attained, as can be seen from part (a) of Fig. 13. The minimum horizontal
straight-line at the bottom of the plot corresponds to the 5 Abelian orbifolds of C

3

with reflexive toric diagrams. We have been able to identify the unique maximum for

V (b∗
i ; X)χ(X̃ (�)) and the associatedX corresponds to the cone over dP3, the del Pezzo

surface of degree 6 which is P
2 blown up at 3 generic points. The corresponding toric

diagram is shown in Fig. 14 and the minimum volume and Euler number are

V (b∗
i ; dP3) = 2

9
, χ(dP3) = 6, (5.7)

giving us

max
�2

V (b∗
i ; Y )χ(X̃ (�2))) = 4

3
. (5.8)

For reflexive toric Calabi–Yau 4-folds, the maximum value for V (b∗
i ; Y )χ(X̃ (�3))

is not unique. There are two out of the 4319 reflexive toric Calabi–Yau 4-folds, which

we will call X1530 and X2356,7 that have the largest value for V (b∗
i ; X)χ(X̃ (�)). We

show the corresponding toric diagrams in Fig. 15.
The minimum volumes and Euler numbers are

V (b∗
i ; Y1530) = 3

32 , χ( ˜X1530(�)) = 20

V (b∗
i ; Y2356) = 5

64 , χ( ˜X2356(�)) = 24 , (5.9)

7 As always, the subscripts inX1530 andX2356 refer to the ordering in the SAGE [56] database for reflexive
toric Calabi–Yau 4-folds.
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(a)

(b)

Fig. 13. The Euler number χ(X̃ (�n)) against χ(X̃ (�n))V (b∗
i ; Y ) for a reflexive toric Calabi–Yau 3-folds

and b 4-folds. Note that for reflexive toric Calabi–Yau, there is a unique maximum for χ(X̃ (�2))V (b∗
i ; Y )

at χ(X̃ (�2)) = 6 for the cone over dP3, whereas for reflexive toric Calabi–Yau 4-folds the maximum for

χ(X̃ (�3))V (b∗
i ; Y ) occurs at X1530 and X2356 at χ(X̃ (�3)) = 20 and χ(X̃ (�3)) = 24, respectively

Fig. 14. The toric diagram for the cone over dP3

both giving us that

max
�3

V (b∗
i ; Y )χ(X̃ (�3)) = 15

8
= 1.875. (5.10)
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Fig. 15. Toric diagrams for reflexive toric Calabi–Yau 4-folds X1530 and X2356. The value for

V (b∗
i ; Y )χ(X̃ (�)) for these is the largest amongst all 4319 reflexive toric Calabi–Yau 4-folds

We currently do not have the computational power to address the maximal sit-
uation for �4, but at least we see that the toric diagrams for C(dP3), X1530 and
X2356, which are shown in Figs. 14 and 15, have hexagons in all their hyperplanes
slices. This signifies that they are dP3 fibrations. Moreover, the maximum value for

V (b∗
i ; Y )χ(X̃ (�)) seems to increase in dimension. We speculate that while the min-

imum value of V (b∗
i ; Y )χ(X̃ (�n)) is 1 and is attained by Abelian orbifolds of C

n+1,

Conjecture 5.4. The maximum value for V (b∗
i ; Y )χ( ˜X (�n−1)) for reflexive toric

Calabi–Yau n-folds is attained by various (not necessarily uniquely) dP3 fibrations.

Themaximumvalue V (b∗
i ; Y )χ( ˜X (�n−1)) is characteristic to the set of toric Calabi–

Yau n-foldswith reflexive polytopes as toric diagrams. Its existence for this set ofCalabi–
Yau n-folds is an incentive for us to identify the profile of the envelope in Fig. 13 as well
as in plots of the Euler number against the inverse minimum volume in Figs. 8, 10 and
12. We leave this to Appendix D.1.

In the hope to identify other bounds of the minimum volume, we move on to the
next section where we identify the relationship between the minimum volume and other
topological quantities of the toric variety—the Chern Numbers.

5.2.2. Minimum volume and Chern numbers. Let us continue our study to see how
V (b∗

i ; Y ) behaves relative to the other topological quantities. For n = 3, we recall from

Proposition 3.6 that in addition to χ , there is the Chern number C = ∫ c1(X̃ (�2))
2. We

plot C against both V (b∗
i ; Y ) and its reciprocal in parts (a) and (b) of Fig. 16. Again, the

5 orange points in Fig. 16 are the 5 Abelian orbifolds of C
3. However, there appears to

be a straight-line upper bound for the value of V (b∗
i ; Y ), which we numerically identify

to be

V (b∗
i ; Y ) ∼ 3−3

∫

c1(X̃ (�2))
2. (5.11)

To gain more confidence in this observation, we move on to the 3-dimensional reflex-
ive polytopes and the corresponding toric Calabi–Yau 4-folds. Here, as discussed in

Proposition 3.7, there is the non-trivial topological invariant C = ∫

c1(X̃ (�2))
3. We
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(a)

(b)

Fig. 16. a The Chern number C = ∫

c21(X̃ (�2)) of the 16 reflexive toric Calabi–Yau 3-folds X against
the minimum volume V (b∗

i ; Y ), and b C against the reciprocal of V (b∗
i ; Y ). Note that the orange points

correspond to the 5 Calabi–Yau 3-folds which are Abelian orbifolds of C
3. We numerically find that V (b∗

i ; Y )

is bounded above by the line V (b∗
i ; Y ) = 0.037C 
 3−3C

plot C against both V (b∗
i ; Y ) and its reciprocal in parts (a) and (b) of Fig. 17. Again,

the 48 orange points in Fig. 17 are the Abelian orbifolds of C
4, which are sprinkled

throughout the plot. However, there again appears to be a straight-line upper bound on
the value of V (b∗

i ; Y ), which we numerically find to be

V (b∗
i ;X ) ∼ 4−4

∫

c1(X̃ (�3))
3. (5.12)

We summarize the linear fits of the upper bound for V (b∗
i ; Y ) in Appendix D.2.

These curious observations, fortified by the abundance of our data, leads us to speculate
that indeed while χ determines a lower bound to V (b∗

i ; Y ), the Chern number
∫

cn1
determines an upper bound to V (b∗

i ; Y ). We note that this observed upper bound of
V (b∗

i ; Y ) is specific to the class of reflexive toric Calabi–Yau n-folds, which we are
studying in this paper. As a result, we conjecture

Conjecture 5.5. For toric Calabi–Yau n-foldsX with the toric diagram being a reflexive
polytope�n−1, theminimumvolume V (b∗

i ; Y )of the Sasaki–Einstein baseY lies between
the following two bounds,
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(a)

(b)

Fig. 17. a The Chern number C = ∫

c31(X̃ (�3)) of the 4319 reflexive toric Calabi–Yau 4-folds X against
the minimum volume V (b∗

i ;X ), and b C against the reciprocal of V (b∗
i ;X ). Note that the orange points

correspond to the 48Calabi–Yau 4-foldswhich areAbelian orbifolds ofC4.We numerically find that V (b∗
i ;X )

is bounded above by the line V (b∗
i ;X ) = 0.0039C 
 4−4C

1

χ( ˜X (�n−1))
≤ V (b∗

i ; Y ) ≤ mn

∫

c1( ˜X (�n−1))
n−1, (5.13)

where m3 ∼ 3−3 and m4 ∼ 4−4 (in particular mn > mn+1). We note that the lower
bound is universal for all toric varieties whereas the upper bound with gradient mn ∈ R

is a feature of toric varieties originating from reflexive polytopes.

We emphasize that the lower bound on the minimum volume V (b∗
i ; Y ) is conjectured

to be universal for any reflexive toric Calabi–Yau n-fold. The lower bound is saturated
when the toric Calabi–Yau n-fold is an Abelian orbifold of C

n as discussed in Sect. 5.2.
Now, the term n−n

∫

X cn−1
1 , especially the pre-factor of n−n , is highly suggestive. For X

a toric orbifold and c1 the orbifold first Chern class, this is the volume of the Sasakian
metric with canonical choice of Reeb vector (i.e., where the complexified Reeb action
is precisely the C

∗-action on the canonical complex cone). The critical Sasaki–Einstein
volume is thus necessarily bounded above by this number, since the volume isminimized
over all Reeb vectors.8 It is interesting that the same expression appears in the RHS of

8 We would like to thank the referee for pointing this out to us.
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(5.13), but with the first Chern class of the resolved Fano base, and for more than just
orbifolds.

Following Sect. 4.4.2, for 4d N = 1 worldvolume theories of probe D3-branes at
Calabi–Yau3-folds singularities, via theAdS/CFTcorrespondence theminimumvolume
of the base Sasaki–Einstein manifold Y is inversely proportional to the maximum of the
central charge a-function of the theory. Using (4.31), we can therefore rewrite the bound
on the normalized minimum volume V (b∗

i ; Y ) in (5.13) as a bound on the normalized
a-function A(R; Y ),

m3

∫

c1(X̃ (�2))
2 ≤ A(R∗

i ; Y ) ≤ 1

χ(X̃ (�2))
, (5.14)

where m3 ∼ 3−3. The upper bound on A(R∗
i ; Y ) is universal for all 4d N = 1 theories

that are worldvolume theories of D3-branes probing toric Calabi–Yau 3-folds, whereas
the lower bound is specific to toric Calabi–Yau 3-folds whose toric diagram is a reflexive
polygon.9

The volume bound for Sasaki–Einstein 7-manifolds can be interpreted as a bound on
the free energy F of 3d N = 2 superconformal Chern–Simons matter theories living
on the worldvolume of a stack of N M2-branes at Calabi–Yau 4-fold singularities. As
reviewed in Sect. 4.4.3, the free energy of the 3d theory is related in the large N limit
to the volume of the Sasaki–Einstein 7-base of the toric Calabi–Yau 4-fold. We rewrite
(4.8) to define a normalized free energy

F(Y )2 ≡ F(Y )2

F(S7)2
= vol[S7]

vol[Y ] = 1

V (b∗
i ; Y )

. (5.15)

Then the volume bounds in (5.13) can be written as

m4

∫

c1(X̃ (�3))
3 ≤ F(Y )2 ≤ 1

χ(X̃ (�3))
, (5.16)

where m4 ∼ 4−4.

6. Discussions

Ourwork establishes the first comprehensive study of volumeminima for large classes of
toric Calabi–Yau cones and their Sasaki–Einstein bases in different dimensions.We have
computed the volume minima corresponding to the 16 toric Calabi–Yau 3-folds, 4319
toric Calabi–Yau 4-folds and a subset of the 473,800,776 toric Calabi–Yau 5-foldswhose
toric diagrams are given by reflexive lattice polytopes�n . The volumeminimawere then

plotted against topological quantities such as the Chern number
∫

c1(X̃ (�n))
n−1 and

Euler numberχ( ˜X (�n−1)) of the corresponding toric variety ˜X (�n−1). By doing so, we
have been able to identify bounds on the minimum volume in terms of these topological
quantities. In particular, we have shown that the lower bound of the volume is set by the

Euler number χ( ˜X (�n−1)) and the upper bound is determined by the Chern number
∫

c1(X̃ (�n))
n−1 of the associated toric Calabi–Yau n-fold. We have noted that the

9 We note that a similar bound on a was introduced in [93] which agrees with our bounds in (5.14).
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upper bound on the volume is valid for toric varieties coming from reflexive polytopes
in dimensions up to n = 4 and expect it to continue to hold for higher dimensions.

Both volume bounds are expected to hold for toric Calabi–Yau n-folds derived from
reflexive polytopes in n−1 dimensions. Via the AdS/CFT correspondence, these volume
bounds can be interpreted as bounds on the central charge a of 4dN = 1 superconformal
gauge theories on D3-branes probing a toric Calabi–Yau 3-fold. Similarly, we believe
that the volume bound in n = 3 can be interpreted as a bound on the free energy F
of a 3d N = 2 superconformal Chern–Simons matter theory on M2-branes probing a
toric Calabi–Yau 4-fold. We also expect that these volume bounds in n = 3 and n = 4
will give future insights into 2d (0, 2) theories on D1-branes probing toric Calabi–Yau
4-folds and 0d N = 1 supersymmetric matrix models on D(−1)-branes probing toric
Calabi–Yau 5-folds.

Although not all volume minima for the 473,800,776 toric Calabi–Yau 5-folds were
found for this paper, our results represent the largest collection of volumeminima for toric
Calabi–Yau n-folds to date. We plan to extend this collection of volume minima to all
473,800,776 toric Calabi–Yau 5-folds and to higher dimensional Calabi–Yau manifolds.
Furthermore, in future work, we hope to extend our analysis to non-reflexive (i.e., having
more than 1 single internal point) and even non-toric Calabi–Yau cones and to compute
the volume minima for the corresponding base manifolds.

With this paper we intend to initiate a new program on studying volume minima for
Calabi–Yau manifolds in different dimensions with the hope to reveal new insights on
the dynamics of supersymmetric gauge theories as well as the topology and geometry
of Calabi–Yau and Sasaki–Einstein manifolds.
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A. Algorithmic Implementations

In this appendix, let us briefly discuss the actualities of the requisite computations. For-
tunately, reflexive polytopes in dimensions 2 and 3 are built into SAGE [56] (dimension
4 ismuchmore extensive and is still an on-going project [11,12]). There are twomethods
in SAGE in constructing toric varieties from reflexive polytopes: (1)CPRFanoToricVa-
riety() and (2) ToricVariety(). The first is tailored for crepant partial resolutions of Fano
toric varieties, which precisely correspond to our reflexive polytopes [49]. In particular,
the module performs simplicial resolution of the polytope (with theCPRFanoToricVa-
riety(Delta_polar = �, make_simplicial = True) option) rather efficiently. This, as we
learnt from Theorem 2.3, suffices to resolve the singularities of our Fano toric variety
X (�) up to orbifold singularities and subsequently we can compute the orbifold Euler
number in Q.

On the other hand, method (2) deals with the more general situation, but requires,
when a complete smoothing is needed, an FRS triangulation [11] of �, which is imple-

http://creativecommons.org/licenses/by/4.0/
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mented in SAGE (using its ‘topcom’ package) by

PointConfiguration(�).restrict_to_fine_triangulations(). restrict_to_regular_trian
gulations().
restrict_to_star_triangulations(origin).triangulate().

The result is a complex n-fold, endowed with all the advantages of being compact and
smooth. The downside, as imaginable, is that this FRS triangulation is very expensive
algorithmically.

To circumvent this problem, we use the trick used by [10,79] which takes advantage
of the fact that a reflexive polytope has only a single interior lattice point. Thus, one
removes this point, which is the origin by convention, and performs FRS triangulation
to the boundary lattice points (essentially a problem of one dimension less). Then one
manually adds lines from the various boundaries triangles to the origin, forming the
necessary face cones. This algorithm usually is many orders of magnitude faster than a
naive FRS triangulation.

Finally, as discussed in the text, our concept of regularity is more stringent than the
one in [11] and in the SAGE implementation. This is because what is needed in the
latter is to ensure the smoothness of the Calabi–Yau hypersurface in X (�) in a so-called
MPCP (maximal projective crepant partial) resolution. In addition, we consider only
triangulations with simplices of unit volume (determinant = ±1).

B. Minimum Volumes for Reflexive CY3

In this section, we give the volume functions of all 16 Calabi–Yau 3-folds corresponding
to the reflexive polygons. Numbers 1,2,7,13,16 are the 5 Abelian orbifolds of C

3, while
numbers 1,3,4,6,10 correspond to the 5 smooth bases, viz., the del Pezzo surfaces. In
the case of number 5, b∗

1 and b∗
2 are the roots of

48 + 59b1 − 5b21 − 7b31 + b41 = 0, 18 − 79b2 + 55b22 − 13b32 + b42 = 0, (B.17)

and the final minimized volume V (b∗
i ; Y ) is the unique positive root of

−1 − 235x − 1740x2 + 7200x3 + 23328x4 = 0. (B.18)

In the case of number 11, b∗
1 and b∗

2 are the roots of

18 + 15b1 − 9b21 − 3b31 + b
4
1 = 0, −48− 26b22 + 42b22

2 − 12b22
3 + b42 = 0, (B.19)

and V (b∗
i ; Y ) is the unique positive root of

−1 − 105x − 84x2 + 3808x3 + 7776x4 = 0. (B.20)

In the case of number 12, b∗
1 = b∗

2 are roots of

18 + 39b1 − 22b21 + b31 = 0, (B.21)

and V (b∗
i ; Y ) is the unique positive root of

−1 − 66545x + 210924x2 + 944784x3 = 0. (B.22)
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Table 3. Volume functions V (bi ; Y ) with their minima for all 16 reflexive toric Calabi–Yau 3-folds, in the
order as indicated in Fig. 1. As throughout the paper, b3 is set to 3. Some values are given numerically because
of their length, the exact algebraic expressions are given in the text

# V (bi ;X ) b∗
1 b∗

2 V (b∗
i ; Y )

1 9
(b1−2b2−3)(2b1−b2+3)(b1+b2−3) 0 0 1

3

2 8
(b1−3b2−3)(b1−b2+3)(b1+b2−3) −1 0 1

4

3 − 2(2b1+b2−12)
(b1−3)(b1−b2+3)(b1+b2−3)(b1+2b2+3)

4 − √
13 0 1

324

(

46 + 13
√
13
)

4 24
(−b1−b2+3)(b1−b2+3)(−b1+b2+3)(b1+b2+3)

0 0 8
27

5 b1+4b2−21
(b1+3)(b1−2b2−3)(b2−3)(b1+b2−3) −0.831239 0.278298 0.225143

6 − b21−2b2b1+6b1+b22+6b2−63
(b1−3)(3−b2)(b1−b2−3)(b1−b2+3)(b1+b2+3)

1
16

(

57 − 9
√
33
)

1
16

(

57 − 9
√
33
)

1
486

(

59 + 11
√
33
)

7 6
(b1−2b2−3)(b1−b2+3)(b1+b2−3) −2 −1 1

6

8 2(b1+b2−9)
(b1−b2−3)(b2−3)(b1+b2−3)(b1+b2+3)

− 3
2

(

−1 +
√
3
)

1
2

(

3 − √
3
)

1
3
√
3

9
2
(

b22+3b1−27
)

(b1+3)(b1−b2−3)(b2−3)(b2+3)(b1+b2−3) 6 − 3
√
5 0 1

108

(

11 + 5
√
5
)

10 − 6
(

b21+b2b1+b
2
2−27

)

(b1−3)(b1+3)(3−b2)(b2+3)(b1+b2−3)(b1+b2+3)
0 0 2

9

11 b1+3b2−15
(b1+3)(b1−b2−3)(b2−3)(b1+b2−3) −0.902531 −0.745444 0.157348

12 − −b2b1+9b1+9b2−45
(b1−3)(b1+3)(3−b2)(b2+3)(b1+b2−3) −0.379079 −0.379079 0.176299

13 4
(b1−3)(b1−2b2−3)(b1−b2+3)

−1 0 1
8

14 2(b1+b2−6)
(b1−3)(b2−3)(b1+b2−3)(b1+b2+3)

1 −
√
7
2 1 −

√
7
2

4
243

(

−10 + 7
√
7
)

15 12
(b1−3)(b1+3)(b1−b2−3)(b1−b2+3)

0 0 4
27

16 3
(b1−3)(b1−b2−3)(2b1−b2+3)

0 0 1
9

Quadratic Irrationals andQuasi-Regulars. TheminimumvolumesV (b∗
i ; Y ) of Sasaki–

Einstein manifolds Y are known to be algebraic. When in particular, they are quadratic
irrationals (i.e., of the form a + b

√
c with a, b ∈ Q and c ∈ N) [19], we call the

Sasaki–Einstein manifolds quasi-regular and when further V (b∗
i ; Y ) ∈ Q, Y is called

regular.
In the case of Sasaki–Einstein 5-manifolds related to reflexive toric Calabi–Yau 3-

folds, we can compute the volumes exactly as summarized above. Therefore, we can
identify precisely which cases refer to quasi-regular Sasaki–Einstein manifolds as high-
lighted in Fig. 18.
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Fig. 18. The Euler number of the 16 reflexive toric Calabi–Yau 3-foldsX against the inverseminimum volume
1/V (b∗

i ; Y ). All quasi-regular cases with rational V (b∗
i ; Y ) are highlighted in red (color figure online)

C. Minimum Volumes for Abelian Orbifolds of C
4

In this section, we list the minimum for all the volume functions for the 48 Abelian
orbifolds of C

4 corresponding to reflexive polyhedra �3. The Reeb vector is here
(b1, b2, b3, b4) with b4 set to 4.

Table 4. Volume functions V (bi ; Y )with their minima for reflexive toric Calabi–Yau 4-folds that are Abelian
orbifolds of C

4. (Part 1/2)

# V (bi ;X ) b∗
1 b∗

2 b∗
3 V (b∗

i ; Y )

1 − 64
(b1+b2−3b3−b4)(b1−3b2+b3−b4)(b1+b2+b3−b4)(3b1−b2−b3+b4)

0 0 0 1/4

2 − 54
(b1+b2−5b3−b4)(b1−2b2+b3−b4)(b1+b2+b3−b4)(2b1−b2−b3+b4)

−1 −1 0 1/6

3 − 72
(b1+b2−5b3−b4)(b1−5b2+b3−b4)(b1+b2+b3−b4)(b1−b2−b3+b4)

−2 0 0 1/6

9 − 32
(b1+b2−b4)(3b1−b2+b4)(b1+b2−2b3−b4)(b1−3b2+2b3−b4)

0 0 0 1/8

10 − 64
(b1+b2−7b3−b4)(b1−3b2+b3−b4)(b1+b2+b3−b4)(b1−b2−b3+b4)

−3 −1 0 1/8

32 − 50
(b1+b2−4b3−b4)(b1−4b2+b3−b4)(b1+b2+b3−b4)(b1−b2−b3+b4)

−4 −1 −1 1/10

86 − 36
(b1+b2−b4)(b1−b2+b4)(b1+b2−3b3−b4)(b1−5b2+3b3−b4)

−2 0 0 1/12

87 − 24
(b1+b2−b4)(2b1−b2+b4)(b1+b2−2b3−b4)(b1−3b2+2b3−b4)

−1 −1 −1 1/12

88 − 36
(b1+b2−3b3−b4)(b1−2b2+b3−b4)(b1+b2+b3−b4)(2b1−b2−b3+b4)

−3 −3 −2 1/12

89 − 72
(b1+b2−11b3−b4)(b1−2b2+b3−b4)(b1+b2+b3−b4)(b1−b2−b3+b4)

−5 −3 0 1/12

90 − 48
(b1+b2−5b3−b4)(b1−3b2+b3−b4)(b1+b2+b3−b4)(b1−b2−b3+b4)

−5 −2 −1 1/12

428 − 16
(b1−b4)(b1−2b2−b4)(b1−2b3−b4)(3b1−2b2−2b3+b4)

0 0 0 1/16

429 − 32
(b1+b2−b4)(b1−b2+b4)(b1+b2−4b3−b4)(b1−3b2+2b3−b4)

−3 −1 0 1/16
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Table 4. continued

# V (bi ;X ) b∗
1 b∗

2 b∗
3 V (b∗

i ; Y )

430 − 16
(b1+b2−b4)(3b1−b2+b4)(b1+b2−b3−b4)(b1−3b2+b3−b4)

0 0 0 1/16

431 − 32
(b1−3b2−b4)(b1+b2−b4)(b1+b2−4b3−b4)(b1−b2−b3+b4)

−3 −1 0 1/16

432 − 32
(b1−7b3−b4)(b1+b3−b4)(b1−2b2+b3−b4)(b1−b2−b3+b4)

−4 −2 0 1/16

742 − 24
(b1+b2−b4)(b1−b2+b4)(b1+b2−2b3−b4)(b1−5b2+2b3−b4)

−2 0 0 1/18

743 − 18
(b1+b2−b4)(2b1−b2+b4)(b1+b2−2b3−b4)(b1−2b2+b3−b4)

−1 −1 0 1/18

744 18
(b1+b2−3b3−b4)(b1+b2−b3−b4)(b1−2b2+b3−b4)(−2b1+b2+b3−b4)

−1 −1 0 1/18

745 − 18
(b1−5b3−b4)(b1+b3−b4)(b1−b2+b3−b4)(2b1−b2−b3+b4)

−2 −3 0 1/18

746 − 54
(b1+b2−8b3−b4)(b1−2b2+b3−b4)(b1+b2+b3−b4)(b1−b2−b3+b4)

−8 −5 −1 1/18

1115 − 40
(b1+b2−4b3−b4)(b1−3b2+b3−b4)(b1+b2+b3−b4)(b1−b2−b3+b4)

−9 −4 −3 1/20

1944 − 18
(b1−b4)(b1−3b2−b4)(b1−3b3−b4)(b1−b2−b3+b4)

−2 0 0 1/24

1945 − 24
(b1+b2−b4)(b1−b2+b4)(b1+b2−3b3−b4)(b1−3b2+2b3−b4)

−5 −3 −2 1/24

1946 − 12
(b1+b2−b4)(2b1−b2+b4)(b1+b2−b3−b4)(b1−3b2+b3−b4)

−1 −1 −2 1/24

1947 − 36
(b1−2b2−b4)(b1+b2−b4)(b1+b2−6b3−b4)(b1−b2−b3+b4)

−5 −3 0 1/24

Table 5. Volume functions V (bi ; Y )with their minima for reflexive toric Calabi–Yau 4-folds that are Abelian
orbifolds of C

4. (Part 2/2)

# V (bi ;X ) b∗
1 b∗

2 b∗
3 V (b∗

i ; Y )

1948 − 24
(b1−3b2−b4)(b1+b2−b4)(b1+b2−3b3−b4)(b1−b2−b3+b4)

−6 −2 −2 1/24

1949 − 24
(b1−5b3−b4)(b1+b3−b4)(b1−2b2+b3−b4)(b1−b2−b3+b4)

−7 −4 −1 1/24

1950 − 48
(b1+b2−7b3−b4)(b1−2b2+b3−b4)(b1+b2+b3−b4)(b1−b2−b3+b4)

−11 −7 −2 1/24

3039 − 30
(b1−2b2−b4)(b1+b2−b4)(b1+b2−5b3−b4)(b1−b2−b3+b4)

−7 −4 −1 1/30

3313 − 16
(b1+b2−b4)(b1−b2+b4)(b1+b2−2b3−b4)(b1−3b2+b3−b4)

−3 −1 0 1/32

3314 − 8
(b1−b4)(b1−2b2−b4)(b1−b3−b4)(3b1−2b2−b3+b4)

0 0 0 1/32

3315 − 16
(b1−b2+b4)(b1+b2−3b3−b4)(b1+b2−b3−b4)(b1−3b2+2b3−b4)

−3 −1 0 1/32

3316 − 16
(b1−b4)(b1−2b2−b4)(b1−4b3−b4)(b1−b2−b3+b4)

−4 −2 0 1/32

3726 − 24
(b1+b2−b4)(b1−b2+b4)(b1+b2−4b3−b4)(b1−2b2+b3−b4)

−5 −3 0 1/36

3727 − 12
(b1+b2−b4)(b1−b2+b4)(b1+b2−b3−b4)(b1−5b2+b3−b4)

−2 0 0 1/36

3728 12
(b1−3b3−b4)(b1+b3−b4)(b1−b2+b3−b4)(−2b1+b2+b3−b4)

−6 −9 −2 1/36

3994 − 20
(b1−4b3−b4)(b1+b3−b4)(b1−2b2+b3−b4)(b1−b2−b3+b4)

−13 −8 −3 1/40
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Table 5. continued

# V (bi ;X ) b∗
1 b∗

2 b∗
3 V (b∗

i ; Y )

4081 − 42
(b1+b2−6b3−b4)(b1−2b2+b3−b4)(b1+b2+b3−b4)(b1−b2−b3+b4)

−20 −13 −5 1/42

4229 − 12
(b1−b4)(b1−2b2−b4)(b1−3b3−b4)(b1−b2−b3+b4)

−8 −4 −2 1/48

4230 − 24
(b1−2b2−b4)(b1+b2−b4)(b1+b2−4b3−b4)(b1−b2−b3+b4)

−13 −7 −4 1/48

4256 − 10
(b1+b2−b4)(b1−b2+b4)(b1+b2−b3−b4)(b1−4b2+b3−b4)

−4 −2 −5 1/50

4282 6
(b1−b4)(b1−b2−b4)(b1−2b3−b4)(−2b1+b2+b3−b4)

−2 −3 −5 1/54

4283 − 18
(b1+b2−b4)(b1−b2+b4)(b1+b2−3b3−b4)(b1−2b2+b3−b4)

−8 −6 −3 1/54

4312 4
(b1−b4)(b1−b2−b4)(b1−b3−b4)(−3b1+b2+b3−b4)

0 0 0 1/64

4313 − 8
(b1−b4)(b1−b2+b4)(b1−2b3−b4)(b1−2b2+b3−b4)

−4 −2 0 1/64

4318 − 6
(b1−b4)(b1−b2+b4)(b1−b3−b4)(b1−3b2+b3−b4)

−2 0 0 1/72

4319 − 12
(b1−b2+b4)(b1+b2−3b3−b4)(b1+b2−b3−b4)(b1−2b2+b3−b4)

−5 −3 0 1/72

D. Enveloping Curves for V (b∗
i ;Y)

In this section, we numerically fit for the enveloping shape for the minimal volume
V (b∗

i ; Y ) with respect to the topological quantities we have discussed in Sect. 3.

D.1. Envelop for V (b∗
i ; Y )χ(X̃ (�)). In Fig. 19, we present the plots of 1/V (b∗

i ; Y )

against χ(X̃ (�)) for Calabi–Yau cones X of dimension 3 and 4. The orange line rep-

resents where 1/V (b∗
i ; Y ) = χ(X̃ (�)) corresponding to Abelian orbifolds. We fit the

lower enveloping curve in blue.

D.2. Maximum of V (b∗
i ; Y ). In Fig. 20, we plot the minimum volume V (b∗

i ; Y ) against

the Chern numbers
∫

X̃ (�)
cn1(X̃ (�n)) for n = 2, 3, corresponding to Calabi–Yau cones

of dimension 3 and 4. We fit the top envelop, which appears to be a straight line.
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(a)

(b)

Fig. 19. The reciprocal of the volume minimum has a bound at 1/V (b∗
i ; Y ) = χ(X̃ (�n)) for a reflexive toric

Calabi–Yau 3-folds and b 4-folds. Cf. Fig. 13. The orange straight lines indicate where V (b∗
i ; Y )χ(X̃ (�n))

attains the minimum of 1, corresponding to the Abelian orbifolds. The blue lines correspond to the other
extreme of the profile and have been fitted by regression (color figure online)
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Fig. 20. The minimum volume V (b∗
i ; Y ) seems bounded above by a linear relation V (b∗

i ; Y ) = mn
∫

cn1 for
X being an Calabi–Yau (n + 1)-cone, where m2 = 0.037 and m3 = 0.0039
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E. Dual Reflexive Polytopes

As discussed in Sect. 2.1, reflexive polytopes �n have dual polytopes �◦
n that are also

lattice polytopes. Some reflexive polytopes are self-dual. In the case of the 16 n = 2
reflexive polygons there are 5 self-dual polytopes while in the case of the 4319 n = 3
reflexive polytopes there are 79 polytopes which are self-dual.

In Figs. 21 and 22, we highlight dual polytopes and self-dual polytopes while plotting

different topological quantities of X̃ (�n) against the minimum volume.

(a) (b)

(c) (d)

Fig. 21. a The Euler number χ(X̃ (�2)) against the minimum volume V (b∗
i ; Y ), b the Euler number against

the inverse of the minimum volume, c the Euler number against χ(X̃ (�2))V (b∗
i ; Y ), and d the Chern number

C = ∫

c21(X̃ (�2)) against the minimum volume for the 16 reflexive toric Calabi–Yau 3-folds X . Red and
yellow points refer to dual reflexive polytopes �2 and the blue points refer to self-dual reflexive polytopes
(color figure online)
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(a) (b)

(c) (d)

Fig. 22. a The Euler number χ(X̃ (�3)) against the minimum volume V (b∗
i ; Y ), b the Euler number against

the inverse of the minimum volume, c the Euler number against χ(X̃ (�3))V (b∗
i ; Y ), and d the Chern number

C = ∫ c31(X̃ (�3)) against the minimum volume for the 4319 reflexive toric Calabi–Yau 4-folds X . Red and
yellow points refer to dual reflexive polytopes �3 and the blue points refer to self-dual reflexive polytopes
(color figure online)
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