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1. Introductions

One of the main purpose of this paper is to compare those well-known canonical and complete
metrics on the Teichmüller and the moduli spaces of Riemann surfaces. We use as bridge two new
metrics, the Ricci metric and the perturbed Ricci metric. We will prove that these metrics are
equivalent to those classical complete metrics. For this purpose we study in detail the asymptotic
behaviors and the signs of the curvatures of these new metrics. In particular we prove that the
perturbed Ricci metric is a complete Kähler metric with bounded negative holomorphic sectional
curvature and bounded bisectional and Ricci curvature.

The study of the Teichmüller spaces and moduli spaces of Riemann surfaces has a long
history. It has been intensively studied by many mathematicians in complex analysis, differential
geometry, topology and algebraic geometry for the past 60 years. They have also appeared in
theoretical physics such as string theory. The moduli space can be viewed as the quotient of
the corresponding Teichmüller space by the modular group. There are several classical metrics
on these spaces: the Weil-Petersson metric, the Teichmüller metric, the Kobayashi metric, the
Bergman metric, the Caratheodory metric and the Kähler-Einstein metric. These metrics have
been studied over the years and have found many important applications in various areas of
mathematics. Each of these metrics has its own advantages and disadvantages in studying
different problems.

The Weil-Petersson metric is a Kähler metric as first proved by Ahlfors, both of its holo-
morphic sectional curvature and Ricci curvature have negative upper bounds as conjectured by
Royden and proved by Wolpert. These properties have found many applications by Wolpert,
and they were also used in solving problems from algebraic geometry by combining with the
Schwarz lemma of Yau ([5], [17]). But as first proved by Masur it is not a complete metric
which prevents the understanding of some aspects of the geometry of the moduli spaces. Siu
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and Schumacher extended some results to higher dimensional cases. The works of Masur and
Wolpert, Siu and Schumacher will play important roles in our study.

The Teichmüller metric, the Kobayashi metric and the Caratheodory metric are only Finsler
metrics. They are very effective in studying the hyperbolic property of the moduli space. Royden
proved that the Teichmüller metric is equal to the Kobayashi metric from which he deduced the
important corollary that the isometry group of the Teichmüller space is exactly the modular
group. Recently C. McMullen introduced a new complete Kähler metric on the moduli space
by perturbing the Weil-Petersson metric [9]. By using this metric he was able to prove that
the moduli space is Kähler hyperbolic, and also to derive several topological consequences. The
McMullen metric has bounded geometry, but we lose control on the signs of its curvatures.

In the early 80s Cheng-Yau [2] and Mok-Yau [10] proved the existence of the Kähler-Einstein
metrics on the Teichmüller space. Since the Kähler-Einstein metric is canonical, it also descends
to a complete Kähler metric on the moduli space. More than 20 years ago Yau [18] conjectured
the equivalence of the Kähler-Einstein metric to the Teichmüller metric. We will prove this
conjecture in this paper. Since the McMullen metric is equivalent to the Teichmüller metric, so
we have also proved the equivalence of the Kähler-Einstein metric and the McMullen metric.

The method of our proof is to study in detail another complete Kähler metric, the metric
induced by the negative Ricci curvature of the Weil-Petersson metric which we call the Ricci
metric. We first study its asymptotic behavior near the boundary of the moduli space, we prove
that it is asymptotically equivalent to the Poincaré metric, and asymptotically its holomorphic
sectional curvature has negative upper and lower bound in the degeneration directions. But
its curvatures in the non-degeneration directions near the boundary and in the interior of the
moduli space can not be controlled well. To solve this problem, we introduce another new
complete Kähler metric which we call the perturbed Ricci metric, it is obtained by adding a
multiple of the Weil-Petersson metric. We compute the holomorophic sectional curvature and
the Ricci curvature of this new metric. We show that they are all bounded below and above,
and the holomorphic sectional curvature has negative upper and lower bounds. By applying the
Schwarz lemma of Yau we can prove the equivalence of this new metric to the Kähler-Einstein
metric. The equivalence of the perturbed Ricci metric to the McMullen metric is proved by a
careful estimate of the asymptotic behavior of these two metrics.

To state our main results in detail, let us introduce some definitions and notations. Here for
convenience we will use the same notation for a Kähler metric and its Kähler form. First two
metrics ωτ1 and ωτ2 are called equivalent, if they are quasi-isometric to each other in the sense
that

C−1ωτ2 ≤ ωτ1 ≤ Cωτ2

for some positive constant C. We will write this as ωτ1 ∼ ωτ2 .
Our first result is the following asymptotic behavior of the Ricci metric near the boundary

divisor of the moduli space. Let Tg denote the Teichmüller space and Mg be the moduli space
of Riemann surfaces of genus g where g ≥ 2. Mg is a complex orbifold of dimension 3g − 3 as
a quotient of Tg by the modular group. Let n = 3g − 3. Let ωWP denote the Weil-Petersson
metric and ωτ = −Ric(ωWP ) be the Ricci metric. It is easy to show that there is an asymptotic
Poincaré metric on Mg. See Section 4 for the construction.

Theorem 1.1. The Ricci metric is equivalent to the asymptotic Poincaré metric.

This theorem is proved in Section 4. Our second result is the following estimates of the
holomorphic sectional curvature of the Ricci metric. Note our convention of the sign of the
curvature may be different from some literature.

Theorem 1.2. Let X0 ∈ Mg \Mg be a codimension m point and let (t1, · · · , tm, sm+1, · · · , sn)
be the pinching coordinates at X0 where t1, · · · , tm correspond to the degeneration directions.
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Then the holomorphic sectional curvature of the Ricci metric is negative in the degeneration
directions and is bounded in the non-degeneration directions. Precisely, there is a δ > 0 such
that if |(t, s)| < δ, then

R̃iiii =
3u4i

8π4|ti|4
(1 +O(u0)) > 0 if i ≤ m

and

R̃iiii = O(1) if i ≥ m+ 1.

Furthermore, on Mg the holomorphic sectional curvature, the bisectional curvature and the Ricci
curvature of the Ricci metric are bounded from above and below.

This is Theorem 4.4 of Section 4 of this paper. One of the main purposes of our work was to
find a natural complete metric whose holomorphic sectional curvature is negative. To do this,
we introduce the perturbed Ricci metric. In Section 5 we will prove the following theorem:

Theorem 1.3. For suitable choice of positive constant C, the perturbed Ricci metric

ωτ̃ = ωτ + CωWP

is complete and its holomorphic sectional curvatures are negative and bounded from above and
below by negative constants. Furthermore, the Ricci curvature of the perturbed Ricci metric is
bounded from above and below.

Note that the perturbed Ricci metric is equivalent to the Ricci metric, since its asymptotic
behavior is dominated by the Ricci metric. Now we denote the Kähler-Einstein metric of Cheng-
Mok-Yau by ωKE which is another complete Kähler metric on the moduli space. By applying
the Schwarz lemma of Yau we derive our fourth result in Section 6:

Theorem 1.4. We have the equivalence of the following three complete Kähler metrics on the
moduli spaces of curves:

ωKE ∼ ωτ ∼ ωτ̃ .

Our final result in this paper proved in Section 6 is the equivalence of the Ricci metric and
the perturbed Ricci metric to the McMullen metric. Let us denote the McMullen metric by ωM .

Theorem 1.5. We have the equivalence of the following metrics: the McMullen metric, the
Ricci metric and the perturbed Ricci metric:

ωM ∼ ωτ ∼ ωτ̃ .

As a corollary we know that these metrics are also equivalent to the Teichmüller metric, the
Kobayashi metric, and the Kähler-Einstein metric. This proved the conjecture of Yau [18]. In
the second part of this work, we will study the Bergman metric and the Caratheodory metric.
We believe that these two metrics are also equivalent to the above metrics. We will also study
the goodness of the Ricci metric in the sense of Mumford, discuss the bounded geometry of the
Kähler-Einstein metric and the perturbed Ricci metric, and study the stability of the tangent
bundle of the moduli space of curves.

This paper is organized as follows. In Section 2 we set up some notations and introduce the
Weil-Petersson metric and its curvatures. In Section 3 we introduce various operators needed
for our computations, we compute and simplify the curvature of the Ricci metric by using these
operators and their various special properties. This section consists of long and complicated
computations. Section 4 consists of several subtle estimates of the Ricci metric and its curvatures
near the boundary of the moduli space. In Section 5 we introduce the perturbed Ricci metric,
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compute its curvature and study its asymptotic behavior near the boundary of the moduli
space. These results are then used in Section 6 to prove the equivalence of the several well-
known classical complete Kähler metrics as stated above. In the appendix we add some details
of the computations for the convenience of the readers.

Acknowledgements The second author would like to thank H. Cao, P. Li, Z. Lu, R. Schoen
and R. Wentworth for their help and encouragement.

2. The Weil-Petersson metric

The purpose of this section is to set up notations for our computations. We will introduce
the Weil-Petersson metric and recall some of its basic properties. Let Mg be the moduli space
of Riemann surfaces of genus g where g ≥ 2. Mg is a complex orbifold of dimension 3g− 3. Let
n = 3g−3. Let X be the total space and π : X → Mg be the projection map. There is a natural
metric, called the Weil-Petersson metric which is defined on the orbiford Mg as follows:

Let s1, · · · , sn be holomorphic local coordinates near a regular point s ∈ Mg and assume that
z is a holomorphic local coordinate on the fiber Xs = π−1(s). For the holomorphic vector fields
∂

∂s1
, · · · , ∂

∂sn
, there are vector fileds v1, · · · , vn on X such that

(1) π∗(vi) =
∂
∂si

for i = 1, · · · , n;
(2) ∂vi are harmonic TXs-valued (0, 1) forms for i = 1, · · · , n.

The vector fields v1, · · · , vn are called the harmonic lift of the vectors ∂
∂s1
, · · · , ∂

∂sn
. The existence

of such harmonic vector fields was pointed out by Siu [12]. In his work [11] Schumacher gave an
explicit construction of such lift which we now describe.

Since g ≥ 2, we can assume that each fiber is equipped with the Kähler-Einstein, or the

Poincare metric, λ =
√
−1
2 λ(z, s)dz ∧ dz. The Kähler-Einstein condition gives the following

equation:

∂z∂z log λ = λ.(2.1)

For the rest of this paper we denote ∂
∂si

by ∂i and
∂
∂z by ∂z. Let

ai = −λ−1∂i∂z log λ(2.2)

and let

Ai = ∂zai.(2.3)

Then we have the following

Lemma 2.1. The harmonic horizontal lift of ∂i is

vi = ∂i + ai∂z.

In particular

Bi = Ai∂z ⊗ dz ∈ H1(Xs, TXs)

is harmonic. Further more, the lift ∂i 7→ Bi gives the Kodaira-Spencer map TsMg → H1(Xs, TXs).

Now we have the well-known definition of the Weil-Petersson metric:

Definition 2.1. The Weil-Petersson metric on Mg is defined to be

hij(s) =

∫

Xs

Bi ·Bj dv =

∫

Xs

AiAj dv,(2.4)

where dv =
√
−1
2 λdz ∧ dz is the volume form on the fiber Xs.

4



It is known that the curvature tensor of the Weil-Petersson metric can be represented by

Rijkl =

∫

Xs

{
(Bi · Bj)(� + 1)−1(Bk ·Bl) + (Bi ·Bl)(�+ 1)−1(Bk ·Bj)

}
dv,

where � is the complex Laplacian defined by

� = −λ−1 ∂2

∂z∂z
.

By the expression of the curvature operator, we know that the curvature operator is nonpos-
itive. Furthermore, the Ricci curvature of the metric is negative.

However, the Weil-Petersson metric is incomplete. In [13] Trapani proved the negative Ricci
curvature of the Weil-Petersson metric is a complete Kähler metric on the moduli space. We call
this metric the Ricci metric. It is interesting to understand the curvature of the Ricci metric,
at least asymptotically. To estimate it, we first derive an integral formula of its curvature.

3. Ricci metric and its curvature

In this section we establish an integral formula (3.30) of the curvature of the Ricci metric.
The importance of this formula is that the functions being integrated only involve derivatives in
the fiber direction which we are able to control. Thus we can use this formula to estimate the
asymptotics of the curvature of the Ricci metric in next section.

The main tool we use is the harmonic lift of Siu and Schumacher described in the previous
section. These lifts together with formula (3.2) enable us to transfer derivatives in the moduli
direction into derivatives in the fiber direction.

We use the same notations as in the previous section. We first introduce several operators
which will be used for the computations and simplifications of the curvatures of the Ricci metric.

Define an (1, 1) form on the total space X by

g =

√
−1

2
∂∂ log λ =

√
−1

2
(gijdsi ∧ dsj − λaidsi ∧ dz − λaidz ∧ dsi + λdz ∧ dz).

The form g is not necessarily positive. Introduce

eij =
2√
−1

g(vi, vj) = gij − λaiaj

be a global function. Let us write fij = AiAj . Schumacher proved the following result:

Lemma 3.1. By using the same notations as above, we have

(�+ 1)eij = fij.(3.1)

Since eij and fij are the building blocks of the Ricci metric, it is interesting to study its
property under the action of the vector fields vi’s.

Lemma 3.2. With the same notations as above, we have

vk(eij) = vi(ekj).

Proof. Since dg = 0, we have the following

0 = dg(vi, vk, vj) = vi(ekj)− vk(eij) + vjg(vi, vk)

− g(vi, [vk, vj]) + g(vk, [vi, vj ])− g(vj , [vi, vk]).

The Lie bracket of vj with vj or vk are vector fields tangent to Xs, which are perpendicular to
the horizontal vector fields vi with respect to the form g. Thus the last three terms of the above
equations are zero. On the other hand, g(vi, vk) = 0. The lemma thus follows from the above
equation.

�
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We also need to define the following operator

P : C∞(Xs) → Γ(Λ1,0(T 0,1Xs)), f 7→ ∂z(λ
−1∂zf).

The dual operator P ∗ can be written as follows

P ∗ : Γ(Λ0,1(T 1,0Xs)) → C∞(Xs), B 7→ λ−1∂z(λ
−1∂z(λB)).

The operator P is actually a composition of the Maass operators. We recall the definitions
from [16]. Let X be a Riemann surface and let κ be its canonical bundle. For any integer p, let

S(p) be the space of smooth sections of (κ⊗ κ−1)
p
2 . Fix a conformal metric ds2 = ρ2(z)|dz|2.

Definition 3.1. The Maass operators Kp and Lp are defined to be the metric derivatives Kp :
S(p) → S(p+ 1) and Lp : S(p) → S(p− 1) given by

Kp(σ) = ρp−1∂z(ρ
−pσ)

and

Lp(σ) = ρ−p−1∂z(ρ
pσ)

where σ ∈ S(p).

Clearly we have P = K1K0. Also each element σ ∈ S(p) has a well-defined absolute value |σ|
which is independent of the choice of the local coordinate. We define the Ck norm of σ as in
[16]:

Definition 3.2. Let Q be an operator which is a composition of operators K∗ and L∗. Denote
by |Q| the number of such factors. For any σ ∈ S(p), define

‖σ‖0 = sup
X

|σ|

and

‖σ‖k =
∑

|Q|≤k

‖Qσ‖0.

We can also localize the norm on a subset of X. Let Ω ⊂ X be a domain. We can define

‖σ‖0,Ω = sup
Ω

|σ|

and

‖σ‖k,Ω =
∑

|Q|≤k

‖Qσ‖0,Ω.

Both of the above definitions depend on the choice of conformal metric on X. In the following,
we always use the Kähler-Einstein metric on the surface unless otherwise stated.

Since the Weil-Petersson metric is defined by using the integral along the fibers, the following
formula is very useful:

(3.2) ∂i

∫

Xs

η =

∫

Xs

Lviη

where η is a relative (1, 1) form on X.
The Lie derivative defined here is slightly different from the ordinary definition. Let ϕt be the

one parameter group generated by the vector field vi. Then ϕt can be viewed as a diffeomorphism
between two fibers Xs → Xs′ . Then we define

Lviη = lim
t→0

1

t
(ϕ∗

t (σ)− σ)

6



for any one form σ. On the other hand, let ξ be a vector field on the fiber Xs. Then we define

Lviξ = lim
t→0

1

t
((ϕ−t)∗ξ − ξ).

We have the following

Proposition 3.1. By using the above notations, we have

Lviσ = i(vi)d1σ + d1i(vi)σ,

where d1 is the differential operator along the fiber, and

Lviξ = [vi, ξ].

In the following, we denote Lvi by Li.

Lemma 3.3. By using the above notations, we have

(1) Lidv = 0;
(2) Ll(Bi) = −P (eil)− fil∂z ⊗ dz + fil∂z ⊗ dz;

(3) Lk(Bj) = −P (ekj)− fkj∂z ⊗ dz + fkj∂z ⊗ dz;

(4) Lk(Bi) = (vk(Ai)−Ai∂zak)∂z ⊗ dz;
(5) Ll(Aj) = (vl(Al)−Al∂zal)∂z ⊗ dz.

Proof. The first formula was proved by Schumacher in [11]. To check the other formulas, we
note that the third and fifth formulas follow from the second and fourth, which we will prove,
by taking conjugation. We first have

∂zak = ∂z(−λ−1∂k∂z log λ) = λ−2∂zλ∂k∂z log λ− λ−1∂z∂k∂z log λ

= −λ−1∂zλak − λ−1∂k∂z∂z log λ = −λ−1∂zλak − λ−1∂kλ.

We also have

∂lai = ∂l(−λ−1∂i∂z log λ)) = λ−2∂lλ∂i∂z log λ− λ−1∂z∂i∂l log λ

= −λ−1∂lλai − λ−1∂zgil = −λ−1∂lλai − λ−1∂z(eil + λaial)

= −λ−1∂lλai − λ−1∂zeil − λ−1∂zλaial −Aial − ai∂zal

= −(λ−1∂lλ+ λ−1∂zλal + ∂zal)ai − λ−1∂zeil −Aial

= −λ−1∂zeil −Aial.

For the second formula we have

Ll(Bi) = vl(Ai)∂z ⊗ dz +Ai(−∂zal∂z)⊗ dz +Ai∂z ⊗ (∂zaldz + ∂zaldz)

= (vl(Ai) +Ai∂zal)∂z ⊗ dz − fil∂z ⊗ dz + fil∂z ⊗ dz.

So we only need to check that vl(Ai) +Ai∂zal = −∂z(λ−1∂zeil). To prove this, we have

vl(Ai) +Ai∂zal = al∂zAi + ∂lAi +Ai∂zal = ∂z(Aial) + ∂z∂lai

= ∂z(Aial)− ∂z(λ
−1∂zeil)− ∂z(Aial) = −∂z(λ−1∂zeil).

This proved the second formula. For the fourth one, we have

Lk(Bi) = vk(Ai)∂z ⊗ dz +Ai(−∂zak∂z)⊗ dz = (vk(Ai)−Ai∂zak)∂z ⊗ dz.

This finishes the proof.
�

An interesting and useful fact is that the Lie derivative of Bi in the direction of vk is still
harmonic. This result is true only for the moduli space of Riemann surfaces. In the general case
of moduli space of Kähler -Einstein manifolds, we only have ∂

∗
LkBi = 0.

Lemma 3.4. Lk(Bi) ∈ H1(Xs, TXs) is harmonic.
7



Proof. From Lemma 3.3 we know that Lk(Bi) = (vk(Ai)−Ai∂zak)∂z ⊗ dz ∈ H0,1(Xs, TXs).

So it is clear that ∂(Lk(Bi)) = 0. To prove ∂
∗
(Lk(Bi)) = 0 we only need to check that

∂z(λ(vk(Ai)−Ai∂zak)) = 0.

From the computation in the above lemma, we have

vk(Ai)−Ai∂zak =λaiak − ∂z(λ
−1∂k∂i∂z log λ)

=λaiak + λ−2∂zλ∂k∂i∂z log λ− λ−1∂k∂i∂z∂z log λ

which implies

∂z(λ(vk(Ai)−Ai∂zak)) =∂z(λ
2aiak + λ−1∂zλ∂k∂i∂z log λ− ∂k∂i∂z∂z log λ)

=∂z(λ
2aiak) + ∂z(λ

−1∂zλ)∂k∂i∂z log λ+ λ−1∂zλ∂z(∂k∂i∂z log λ)

− ∂k∂i∂z∂z∂z log λ

=∂z(λ
2aiak) + λ∂k∂i∂z log λ+ λ−1∂zλ∂k∂iλ− ∂k∂i∂zλ.

(3.3)

Now we analyze the second term in (3.3). We have

λ∂k∂i∂z log λ =λ∂k∂i
∂zλ

λ
= λ∂k

λ∂i∂zλ− ∂iλ∂zλ

λ2

=λ
λ2(∂kλ∂i∂zλ+ λ∂k∂i∂zλ− ∂k∂iλ∂zλ− ∂iλ∂k∂zλ)

λ4

− λ
2λ∂kλ(λ∂i∂zλ− ∂iλ∂zλ)

λ4

=− λ−1∂kλ∂i∂zλ+ ∂k∂i∂zλ− λ−1∂k∂iλ∂zλ− λ−1∂iλ∂k∂zλ

+ 2λ−2∂iλ∂kλ∂zλ

=− ∂iλ(λ
−1∂k∂zλ− λ−2∂kλ∂zλ)− ∂kλ(λ

−1∂i∂zλ− λ−2∂iλ∂zλ)

+ ∂k∂i∂zλ− λ−1∂k∂iλ∂zλ

=− ∂iλ∂k∂z log λ− ∂kλ∂i∂z log λ+ ∂k∂i∂zλ− λ−1∂k∂iλ∂zλ

=λ∂iλak + λ∂kλai + ∂k∂i∂zλ− λ−1∂k∂iλ∂zλ.

(3.4)

By combining (3.3) and (3.4) we have

∂z(λ(vk(Ai)−Ai∂zak)) =∂z(λ
2aiak) + λ∂iλak + λ∂kλai

=2λ∂zλaiak + λ2∂zaiak + λ2ai∂zak + λ∂iλak + λ∂kλai

=λ2ak(λ
−1∂zλai + ∂zai + λ−1∂iλ)

+ λ2ai(λ
−1∂zλak + ∂zak + λ−1∂kλ)

=0.

This proves that ∂
∗
(Lk(Bi)) = 0.

�

The above lemma is very helpful in computing the curvature when we use normal coordinates
of the Weil-Petersson metric. We have

Corollary 3.1. Let s1, · · · , sn be normal coordinates at s ∈ Mg with respect to the Weil-
Petersson metric. Then at s we have, for all i, k,

LkBi = 0.

8



Proof. From Lemma 3.4 we know that LkBi is harmonic. Since B1, · · · , Bn is a basis of
TsMg, we have

LkBi = hpq(

∫

Xs

LkBi · Bq dv)Bp = hpq∂khiqBp = 0.

�

The commutator of vk and vl will be used later. We give a formula here which is essentially
due to Schumacher.

Lemma 3.5. [vl, vk] = −λ−1∂zekl∂z + λ−1∂zekl∂z.

Proof. From a direct computation we have

[vl, vk] = vl(ak)∂z − vk(al)∂z.

By using Lemma 3.3 we have

vl(ak) = al∂zak + ∂lak = −λ−1∂zekl

and

vk(al) = ak∂zal + ∂kal = λ−1∂zekl.

These finish the proof.
�

Remark 3.1. In the rest of this paper, we will use the following notation for curvature:
Let (M,g) be a Kähler manifold. Then the curvature tensor is given by

Rijkl =
∂2gij

∂zk∂zl
− gpq

∂giq

∂zk

∂gpj

∂zl
.(3.5)

In this situation, the Ricci curvature is given by

Rij = −gklRijkl.

In [12] and [11], Siu and Schumacher proved the following curvature formula for the Weil-
Petersson metric. This formula was also proved by Wolpert in [14]. Here we give a short proof
here.

Theorem 3.1. The curvature of Weil-Petersson metric is given by

Rijkl =

∫

Xs

(eijfkl + eilfkj) dv.(3.6)

Proof. We have

Rijkl =∂l∂khij − hpq∂khiq∂lhpj

=∂l

∫

Xs

LkBi ·Bj dv − hpq
∫

Xs

LkBi ·Bq dv

∫

Xs

Bp · LlBj dv

=

∫

Xs

(LlLkBi ·Bj + LkBi · LlBj) dv − hpq
∫

Xs

LkBi ·Bq dv

∫

Xs

Bp · LlBj dv.

(3.7)

Since B1, · · · , Bn is a basis of TsMg, we have

hpq
∫

Xs

LkBi · Bq dv

∫

Xs

Bp · LlBj dv =

∫

Xs

LkBi · LlBj dv.

9



By combining this formula with (3.7) we have

Rijkl =

∫

Xs

LlLkBi · Bj dv =

∫

Xs

LkLlBi · Bj dv +

∫

Xs

L[vl,vk ]Bi ·Bj dv

=∂k

∫

Xs

LlBi ·Bj dv −
∫

Xs

LlBi · LkBj dv +

∫

Xs

L[vl,vk]Bi ·Bj dv

=−
∫

Xs

LlBi · LkBj dv +

∫

Xs

L[vl,vk ]Bi ·Bj dv

(3.8)

since
∫
Xs
LlBi · Bj dv = 0. Now we compute

∫
Xs
L[vl,vk]Bi · Bj dv. Let π1

1
(L[vl,vk]Bi) be the

projection of L[vl,vk]Bi onto H
0,1(Xs, TXs) which gives the ∂z ⊗ dz part of L[vl,vk]Bi. Since Bi is

harmonic, we know ∂z(λAi) = 0 which implies ∂zAi = −λ−1∂zλAi. By Lemma 3.5 we have

π1
1
(L[vl,vk]Bi) =(−λ−1∂zekl∂zAi +Ai∂z(λ

−1∂zekl) + ∂z(λ
−1Ai∂zekl))∂z ⊗ dz

=(λ−2∂zλAi∂zekl − λ−2∂zλAi∂zekl −Ai�ekl + ∂z(λ
−1Ai∂zekl))∂z ⊗ dz

=(−Ai�ekl + ∂z(λ
−1Ai∂zekl))∂z ⊗ dz.

(3.9)

This implies
∫

Xs

L[vl,vk]Bi · Bj dv =

∫

Xs

π1
1
(L[vl,vk]Bi) ·Bj dv

=

∫

Xs

(−Ai�ekl + ∂z(λ
−1Ai∂zekl))Aj dv

=−
∫

Xs

fij�ekl dv +

∫

Xs

∂z(λ
−1Ai∂zekl)Aj dv

=−
∫

Xs

fij�ekl dv −
∫

Xs

λ−2Ai∂zekl∂z(λAj) dv

=−
∫

Xs

fij�ekl dv.

(3.10)

To compute
∫
Xs
LlBi · LkBj dv, by using Lemma 3.3 we obtain

∫

Xs

LlBi · LkBj dv =

∫

Xs

(∂z(λ
−1∂zeil)∂z(λ

−1∂zekj)− 2fkjfil) dv

=

∫

Xs

(λ−2∂zekj∂z(λ∂z(λ
−1∂zeil)) dv − 2

∫

Xs

fkjfil dv

=−
∫

Xs

(λ−2∂zλ∂zekj∂z(λ
−1∂zeil) + λ−1∂zekj∂z∂z(λ

−1∂zeil)) dv − 2

∫

Xs

fkjfil dv

=

∫

Xs

(λ−2∂zeil∂z(λ
−1∂zλ∂zekj) + λ−1∂z∂zekj∂z(λ

−1∂zeil)) dv − 2

∫

Xs

fkjfil dv

=

∫

Xs

(λ−2∂zeil(λ∂zekj − ∂zλ�ekj)−�ekj(−λ−2∂zλ∂zeil −�eil)) dv − 2

∫

Xs

fkjfil dv

=

∫

Xs

(λ−1∂zeil∂zekj) +�ekj�eil) dv − 2

∫

Xs

fkjfil dv

=

∫

Xs

(�ekjeil +�ekj�eil) dv − 2

∫

Xs

fkjfil dv

=

∫

Xs

(�ekjfil − 2fkjfil) dv = −
∫

Xs

(fkjfil + ekjfil) dv.

(3.11)
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By combining (3.8), (3.10) and (3.11) with the identity fkjfil = AiAjAkAl = fijfkl, we have

Rijkl =

∫

Xs

(fkjfil + ekjfil − fij�ekl) dv =

∫

Xs

(fijekl + filekj) dv

=

∫

Xs

(eijfkl + eilfkj) dv.

(3.12)

Here we have used the fact the (� + 1) is a self-adjoint operator. This finished the proof.
�

It is well-known that the Ricci curvature of the Weil-Petersson metric is negative which implies
that the negative Ricci curvature of the Weil-Petersson metric defines a Kähler metric on the
moduli space Mg.

Definition 3.3. The Ricci metric τij on the moduli space Mg is the negative Ricci curvature
of the Weil-Petersson metric. That is

τij = −Rij = hαβRijαβ.(3.13)

Now we define a new operator which acts on functions on the fibers.

Definition 3.4. For each 1 ≤ k ≤ n and for any smooth function f on the fibers, we define the
commutator operator ξk which acts on a function f by

ξk(f) = ∂
∗
(i(Bk)∂f) = −λ−1∂z(Ak∂zf).(3.14)

The reason we call ξk the commutator operator is that ξk is the commutator of (� + 1) and
vk and the following lemma.

Lemma 3.6. As operators acting on functions, we have
(1) (� + 1)vk − vk(�+ 1) = �vk − vk� = ξk;
(2) (� + 1)vl − vl(�+ 1) = �vl − vl� = ξl;
(3) ξk(f) = −Ak∂z(λ

−1∂zf) = AkP (f) = −AkK1K0(f).
Furthermore, we have

(�+ 1)vk(eij) = ξk(eij) + ξi(ekj) + LkBi ·Bj .(3.15)

Proof. To prove (1), we have

(� + 1)vk − vk(�+ 1) =�vk + vk − vk�− vk = �vk − vk�

=− λ−1∂z∂z(ak∂z + ∂k)− (ak∂z + ∂k)(−λ−1∂z∂z)

=− λ−1∂z(Ak∂z + ak∂z∂z + ∂k∂z)

+ ak∂z(λ
−1)∂z∂z + λ−1ak∂z∂z∂z + ∂k(λ

−1)∂z∂z + λ−1∂k∂z∂z

=− λ−1∂z(Ak∂z)− λ−1∂zak∂z∂z − λ−1ak∂z∂z∂z − λ−1∂k∂z∂z

− λ−2∂zλak∂z∂z + λ−1ak∂z∂z∂z − λ−2∂kλ∂z∂z + λ−1∂k∂z∂z

=ξk − λ−1(∂zak + λ−1∂zλak + λ−1∂kλ)∂z∂z = ξk

where we have used Lemma 3.3 in the last equality of the above formula. By taking conjugation
we can prove (2) by using (1). To prove (3), we use the harmonicity of Bk. Since ∂

∗
Bk = 0 we

have ∂z(λAk) = 0. So

ξk(f) = −λ−1∂z(Ak∂zf) = −λ−1∂z(λAkλ
−1∂zf) = −λ−1λAk∂z(λ

−1∂zf) = −Ak∂z(λ
−1∂zf).
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To prove the last part, by using part 1 of this lemma, we have

(�+ 1)vk(eij) =vk((� + 1)(eij)) + ξk(eij) = vk(fij) + ξk(eij)

=LkBi ·Bj +Bi · LkBj + ξk(eij) = LkBi · Bj −Ai∂z(λ
−1∂zekj) + ξk(eij)

=LkBi ·Bj + ξi(ekj) + ξk(eij).

This finishes the proof.
�

Remark 3.2. From Corollary 3.1 and the above lemma, when we use the normal coordinates on
the moduli space, we have the clean formula (�+ 1)vk(eij) = ξi(ekj) + ξk(eij).

The main result in this section is to prove the curvature formula of the Ricci metric. The
terms produced here are very symmetric with respect to indices. For convenience, we introduce
the symmetrization operator.

Definition 3.5. Let U be any quantity which depends on indices i, k, α, j, l, β. The symmetriza-
tion operator σ1 is defined by taking the summation of all orders of the triple (i, k, α). That
is

σ1(U(i, k, α, j, l, β)) =U(i, k, α, j, l, β) + U(i, α, k, j, l, β) + U(k, i, α, j, l, β) + U(k, α, i, j, l, β)

+ U(α, i, k, j, l, β) + U(α, k, i, j, l, β).

Similarly, σ2 is the symmetrization operator of j and β and σ̃1 is the symmetrization operator
of j, l and β.

Now we are ready to compute the curvature of the Ricci metric. For the first order derivative
we have

Theorem 3.2.

∂kτij = hαβ
{
σ1

∫

Xs

(ξk(eij)eαβ) dv

}
+ τpjΓ

p
ik(3.16)

where Γp
ik is the Christoffell symbol of the Weil-Petersson metric.

Proof. From Lemma 3.1 we know that (�+ 1)eij = fij. By using Lemma 3.6 and Theorem
3.1 we have

∂kRijαβ =∂k

∫

Xs

(eijfαβ + eiβfαj) dv

=

∫

Xs

(vk(eij)fαβ + eijvk(fαβ) + vk(eiβ)fαj + eiβvk(fαj)) dv

=

∫

Xs

((� + 1)vk(eij)eαβ + eijvk(fαβ) + (�+ 1)vk(eiβ)eαj + eiβvk(fαj)) dv

=

∫

Xs

(vk(fij)eαβ + eijvk(fαβ) + vk(fiβ)eαj + eiβvk(fαj)) dv

+

∫

Xs

(ξk(eij)eαβ + ξk(eiβ)eαj) dv

=

∫

Xs

((LkBi ·Bj)eαβ + (LkBα · Bβ)eij + (LkBi · Bβ)eαj + (LkBα · Bj)eiβ) dv

+

∫

Xs

((Bi · LkBj)eαβ + (Bα · LkBβ)eij + (Bi · LkBβ)eαj + (Bα · LkBj)eiβ) dv

+

∫

Xs

(ξk(eij)eαβ + ξk(eiβ)eαj) dv.

(3.17)
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Now we simplify the right hand side of (3.17). Since B1, · · · , Bn is a basis of TsMg, we know
that the first line of the right hand side of (3.17) is

∫

Xs

((LkBi ·Bj)eαβ + (LkBα · Bβ)eij + (LkBi · Bβ)eαj + (LkBα · Bj)eiβ) dv

=

∫

Xs

(LkBi · (Bjeαβ +Bβeαj) + LkBα · (Bjeiβ +Bβeij)) dv

=hpq
∫

Xs

(LkBi · Bq) dv

∫

Xs

(Bp · (Bjeαβ +Bβeαj) dv

+ hpq
∫

Xs

(LkBα ·Bq) dv

∫

Xs

(Bp · (Bjeiβ +Bβeij) dv

=hpq∂khiqRpjαβ + hpq∂khαqRijpβ = Γp
ikRpjαβ + Γp

αkRijpβ.

(3.18)

We deal with the second line of the right hand side of (3.17) by using Lemma 3.3 and Lemma
3.6 to get

Bi · LkBj = −Ai∂z(λ
−1∂zekj) = ξi(ekj).(3.19)

This implies
∫

Xs

((Bi · LkBj)eαβ + (Bα · LkBβ)eij + (Bi · LkBβ)eαj + (Bα · LkBj)eiβ) dv

=

∫

Xs

(ξi(ekj)eαβ + ξα(ekβ)eij + ξi(ekβ)eαj + ξα(ekj)eiβ) dv.

(3.20)

We also have

∂kτij = hαβ∂kRijαβ + ∂kh
αβRijαβ = hαβ(∂kRijαβ −RijpβΓ

p
kα).(3.21)

By combining (3.17), (3.18), (3.20) and (3.21), together with the fact that ξi is a real symmetric
operator and the definition of τij, we have proved this theorem.

�

To compute the second order derivative, we need to compute the commutator of ξk and vl.
We have

Lemma 3.7. For any smooth function f ∈ C∞(Xs),

vl(ξkf)− ξk(vlf) = P (ekl)P (f)− 2fkl�f + λ−1∂zfkl∂zf.(3.22)

Proof. We will fix local holomorphic coordinates and compute locally. First we know that
the commutator of vl and ∂z is

vl∂z − ∂zvl = −∂zal∂z = −Al∂z.(3.23)

Similarly, the commutator of vl and λ
−1∂z is

vl(λ
−1∂z)− λ−1∂zvl = vl(λ

−1)∂z + λ−1(vl∂z − ∂zvl) = λ−1∂zal∂z − λ−1Al∂z.(3.24)

The above two formulae imply

vlP − Pvl =− vl(∂z(λ
−1∂z)) + ∂z(λ

−1∂z)vl

=(Al∂z − ∂zvl)(λ
−1∂z) + ∂z(vl(λ

−1∂z)− λ−1∂zal∂z + λ−1Al∂z)

=Al∂z(λ
−1∂z)− ∂z(λ

−1∂zal∂z) + ∂z(λ
−1Al∂z)

=− λ−2∂zλAl∂z + λ−1Al∂z∂z + λ−2∂zλ∂zal∂z − λ−1∂zAl∂z − λ−1∂zal∂z∂z

− λ−2∂zλAl∂z + λ−1∂zAl∂z + λ−1Al∂z∂z.

(3.25)
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By using the harmonicity, we have ∂z(λAl) = 0 which implies ∂zAl = −λ−1∂zλAl. By plugging
this into formula (3.25) we have

vlP − Pvl =− 2Al�+ λ−2∂zλ∂zal∂z − λ−1∂zal∂z∂z − λ−2∂zλAl∂z + λ−1∂zAl∂z

=− 2Al�+ ∂zalP − λ−2∂zλAl∂z + λ−1∂zAl∂z.
(3.26)

Now, since ξk = AkP , we have

vl(ξkf)− ξk(vlf) =vl(Ak)P (f) +Ak(vlP (f)− Pvl(f))

=(vl(Ak) +Ak∂zal)P (f)− 2fkl�f − λ−2∂zλAkAl∂z + λ−1Ak∂zAl∂z.
(3.27)

From the proof of lemma 3.3 we know vl(Ak) +Ak∂zal = P (ekl). By using the harmonicity we

have −λ−1∂zλAk = ∂zAk. So from (3.27) we have

vl(ξkf)− ξk(vlf) =P (ekl)P (f)− 2fkl�f + λ−1∂zAkAl∂zf + λ−1Ak∂zAl∂zf

=P (ekl)P (f)− 2fkl�f + λ−1∂zfkl∂zf.
(3.28)

This finishes the proof.
�

From the above lemma, it is convenient to define the commutator of ξk and vl as an operator.

Definition 3.6. For each k, l, we define the operator Qkl which acts on a function to produce
another function by

Qkl(f) = P (ekl)P (f)− 2fkl�f + λ−1∂zfkl∂zf.(3.29)

Now we are ready to compute the curvature tensor of the Ricci metric. The formula consists
of four types of terms.

Theorem 3.3. Let s1, · · · , sn be local holomorphic coordinates at s ∈Mg. Then at s, we have

R̃ijkl =h
αβ

{
σ1σ2

∫

Xs

{
(� + 1)−1(ξk(eij))ξl(eαβ) + (�+ 1)−1(ξk(eij))ξβ(eαl)

}
dv

}

+ hαβ
{
σ1

∫

Xs

Qkl(eij)eαβ dv

}

− τpqhαβhγδ
{
σ1

∫

Xs

ξk(eiq)eαβ dv

}{
σ̃1

∫

Xs

ξl(epj)eγδ) dv

}

+ τpjh
pqRiqkl.

(3.30)

Proof. By Lemma 3.4 we know that LkBi is harmonic. Since B1, · · · , Bn is a basis of
harmonic Beltrami differentials, from the proof of Theorem 3.1 we have

LkBi = Γs
ikBs.(3.31)
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We first compute ∂l
∫
Xs
ξk(eij)eαβ dv. By Lemma 3.6 and Lemma 3.7 we have

∂l

∫

Xs

ξk(eij)eαβ dv =

∫

Xs

(vl(ξk(eij))eαβ + ξk(eij)vl(eαβ)) dv

=

∫

Xs

(ξk(vl(eij))eαβ + ξk(eij)vl(eαβ) +Qkl(eij)eαβ) dv

=

∫

Xs

(ξk(eαβ)vl(eij) + ξk(eij)vl(eαβ) +Qkl(eij)eαβ) dv

=

∫

Xs

(�+ 1)−1(ξk(eαβ))(� + 1)(vl(eij)) dv

+

∫

Xs

(�+ 1)−1(ξk(eij))(� + 1)(vl(eαβ)) dv +

∫

Xs

Qkl(eij)eαβ dv

=

∫

Xs

(�+ 1)−1(ξk(eαβ))(ξl(eij) + vl(fij)) dv

+

∫

Xs

(�+ 1)−1(ξk(eij))(ξl(eαβ) + vl(fαβ)) dv

+

∫

Xs

Qkl(eij)eαβ dv

=

∫

Xs

((� + 1)−1(ξk(eαβ))ξl(eij) + (�+ 1)−1(ξk(eij))ξl(eαβ)) dv

+

∫

Xs

(�+ 1)−1(ξk(eαβ))(ξj(eil) +Ai · LlAj) dv

+

∫

Xs

(�+ 1)−1(ξk(eij))(ξβ(eαl) +Aα · LlAβ) dv

+

∫

Xs

Qkl(eij)eαβ dv.

(3.32)

Now by using (3.31) we have

∫

Xs

((�+ 1)−1(ξk(eαβ))(Ai · LlAj) + (�+ 1)−1(ξk(eij))(Aα · LlAβ)) dv

=

∫

Xs

((�+ 1)−1(ξk(eαβ))(Γ
t
jlAi · At) + (�+ 1)−1(ξk(eij))(Γ

t
βlAα · At)) dv

=Γt
jl

∫

Xs

ξk(eαβ)(�+ 1)−1(Ai · At) dv + Γt
βl

∫

Xs

ξk(eij)(�+ 1)−1(Aα ·At) dv

=Γt
jl

∫

Xs

ξk(eαβ)eit dv + Γt
βl

∫

Xs

ξk(eij)eαt dv.

(3.33)
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By combining (3.32) and (3.33) we have

∂l

∫

Xs

ξk(eij)eαβ dv =

∫

Xs

(�+ 1)−1(ξk(eij))(ξl(eαβ) + ξβ(eαl)) dv

+

∫

Xs

(�+ 1)−1(ξk(eαβ))(ξl(eij) + ξj(eil)) dv

+ Γt
jl

∫

Xs

ξk(eαβ)eit dv + Γt
βl

∫

Xs

ξk(eij)eαt dv

+

∫

Xs

Qkl(eij)eαβ dv.

(3.34)

We also have

∂lΓ
p
ik =∂l(h

pq∂khiq) = −hpβhαq∂lhαβ∂khiq + hpq∂l∂khiq

=hpq(∂l∂khiq − hαβ∂lhαq∂khiβ) = hpqRiqkl.
(3.35)

From Theorem 3.2, formula (3.34) and (3.35) we derive

∂l∂kτij =(∂lh
αβ)

{
σ1

∫

Xs

ξk(eij)eαβ dv

}
+ hαβ

{
σ1∂l

∫

Xs

ξk(eij)eαβ dv

}

+ hγδ
{
σ̃1

∫

Xs

ξl(epj)eγδ dv

}
Γp
ik + τpqΓ

p
ikΓ

q
jl + τpjh

pqRiqkl

=− hαtΓβ
lt

{
σ1

∫

Xs

ξk(eij)eαβ dv

}

+ hαβ
{
σ1σ2

∫

Xs

(�+ 1)−1(ξk(eij))(ξl(eαβ) + ξβ(eαl)) dv

}

+ hαβ
{
σ1

∫

Xs

Qkl(eij)eαβ dv

}
+ hαβΓt

jl

{
σ1

∫

Xs

ξk(eit)eαβ dv

}

+ hαβΓt
βl

{
σ1

∫

Xs

ξk(eij)eαt dv

}
+ hγδ

{
σ̃1

∫

Xs

ξl(epj)eγδ dv

}
Γp
ik

+ τpqΓ
p
ikΓ

q
jl + τpjh

pqRiqkl.

(3.36)

Now from the above formula, by using Theorem 3.2 we can easily check the formula (3.30).
�

The curvature formula of the Ricci metric would be simpler if we have used the normal
coordinates. However, when we estimate the asymptotic behavior of the curvature, it is hard
to describe the normal coordinates near the boundary points. Thus we will use this general
formula directly in our computations. The estimates are quite subtle.

4. The asymptotics of the Ricci metric and its curvatures

From formula (3.6) we can easily see the sign of the curvature of the Weil-Petersson metric
directly. However, the sign of the curvature of the Ricci metric cannot be derived from formula
(3.30). In this section, we estimate the asymptotics of the Ricci metric and its curvatures.
We first describe the local pinching coordinates near the boundary of the moduli space due to
the plumbing construction of Wolpert. Then we use Masur’s construction of the holomorphic
quadratic differentials to estimate the harmonic Beltrami differentials. Finally, we construct ẽij
which is an approximation of eij . By doing this we avoid the estimates of the Green function of
�+ 1 on the Riemann surfaces.
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Let Mg be the moduli space of Riemann surfaces of genus g ≥ 2 and let Mg be its Deligne-

Mumford compactification [3]. Each point y ∈ Mg \Mg corresponds to a stable nodal surface
Xy. A point p ∈ Xy is a node if there is a neighborhood of p which is isometric to the germ
{(u, v) | uv = 0, |u|, |v| < 1} ⊂ C

2.
We first recall the rs-coordinate on a Riemann surface defined by Wolpert in [16]. There are

two cases: the puncture case and the short geodesic case. For the puncture case, we have a
nodal surface X and a node p ∈ X. Let a, b be two punctures which are glued together to form
p.

Definition 4.1. A local coordinate chart (U, u) near a is called rs-coordinate if u(a) = 0 where
u maps U to the punctured disc 0 < |u| < c with c > 0, and the restriction to U of the Kähler-
Einstein metric on X can be written as 1

2|u|2(log |u|)2 |du|2. The rs-coordinate (V, v) near b is

defined in a similar way.

For the short geodesic case, we have a closed surface X, a closed geodesic γ ⊂ X with length
l < c∗ where c∗ is the collar constant.

Definition 4.2. A local coordinate chart (U, z) is called rs-coordinate at γ if γ ⊂ U where z

maps U to the annulus c−1|t| 12 < |z| < c|t| 12 , and the Kähler-Einstein metric on X can be written

as 1
2(

π
log |t|

1
|z| csc

π log |z|
log |t| )

2|dz|2.

Remark 4.1. We put the factor 1
2 in the above two definitions to normalize metrics such that

(2.1) hold.

By Keen’s collar theorem [4], we have the following lemma:

Lemma 4.1. Let X be a closed surface and let γ be a closed geodesic on X such that the length
l of γ satisfies l < c∗. Then there is a collar Ω on X with holomorphic coordinate z defined on
Ω such that

(1) z maps Ω to the annulus 1
ce

− 2π2

l < |z| < c for c > 0;
(2) the Kähler-Einstein metric on X restricted to Ω is given by

(
1

2
u2r−2 csc2 τ)|dz|2(4.1)

where u = l
2π , r = |z| and τ = u log r;

(3) the geodesic γ is given by the equation |z| = e−
π2

l .

We call such a collar Ω a genuine collar.

We notice that the constant c in the above lemma has a lower bound such that the area of
Ω is bounded from below. Also, the coordinate z in the above lemma is rs-coordinate. In the
following, we will keep using the above notations u, r and τ .

Now we describe the local manifold cover of Mg near the boundary. We take the construction
of Wolpert [16]. Let X0,0 be a nodal surface corresponding to a codimension m boundary point.
X0,0 have m nodes p1, · · · , pm. X0 = X0,0 \ {p1, · · · , pm} is a union of punctured Riemann
surfaces. Fix the rs-coordinate charts (Ui, ηi) and (Vi, ζi) at pi for i = 1, · · · ,m such that all the
Ui and Vi are mutually disjoint. Now pick an open set U0 ⊂ X0 such that the intersection of each
connected component of X0 and U0 is a nonempty relatively compact set and the intersection
U0∩(Ui∪Vi) is empty for all i. Now pick Beltrami differentials νm+1, · · · , νn which are supported
in U0 and span the tangent space at X0 of the deformation space of X0. For s = (sm+1, · · · , sn),
let ν(s) =

∑n
i=m+1 siνi. We assume |s| = (

∑ |si|2)
1

2 small enough such that |ν(s)| < 1. The

nodal surface X0,s is obtained by solving the Beltrami equation ∂w = ν(s)∂w. Since ν(s) is
supported in U0, (Ui, ηi) and (Vi, ζi) are still holomorphic coordinates onX0,s. Note that they are
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no longer rs-coordinates. By the theory of Alhfors and Bers [1] and Wolpert [16] we can assume
that there are constants δ, c > 0 such that when |s| < δ, ηi and ζi are holomorphic coordinates on
X0,s with 0 < |ηi| < c and 0 < |ζi| < c. Now we assume t = (t1, · · · , tm) has small norm. We do

the plumbing construction on X0,s to obtain Xt,s. We remove from X0,s the discs 0 < |ηi| ≤ |ti|
c

and 0 < |ζi| ≤ |ti|
c for each i = 1, · · · ,m, and identify |ti|

c < |ηi| < c with |ti|
c < |ζi| < c by

the rule ηiζi = ti. This defines the surface Xt,s. The tuple (t1, · · · , tm, sm+1, · · · , sn) are the

local pinching coordinates for the manifold cover of Mg. We call the coordinates ηi (or ζi) the

plumbing coordinates on Xt,s and the collar defined by |ti|
c < |ηi| < c the plumbing collar.

Remark 4.2. From the estimate of Wolpert [15], [16] on the length of short geodesic, we have

ui =
li
2π ∼ − π

log |ti| .

We also need the following version of the Schauder estimate proved by Wolpert [16].

Theorem 4.1. Let X be a closed Riemann surface equipped with the unique Kähler-Einstein
metric. Let f and g be smooth functions on X such that (� + 1)g = f . Then for any integer
k ≥ 0, there is a constant ck such that ‖g‖k+1 ≤ ck‖f‖k where the norm is defined by (3.2).

Now we estimate the asymptotics of the Ricci metric in the pinching coordinates. We will use
the following notations. Let (t, s) = (t1, · · · , tm, sm+1, · · · , sn) be the pinching coordinates near

X0,0. For |(t, s)| < δ, let Ωj
c be the j-th genuine collar on Xt,s which contains a short geodesic

γj with length lj. Let uj =
lj
2π , u0 =

∑m
j=1 uj +

∑n
j=m+1 |sj |, rj = |zj | and τj = uj log rj where

zj is the properly normalized rs-coordinate on Ωj
c such that

Ωj
c = {zj | c−1e

− 2π2

lj < |zj | < c}.
From the above argument, we know that the Kähler-Einstein metric λ on Xt,s restrict to the

collar Ωj
c is given by

λ =
1

2
u2jr

−2
j csc2 τj.(4.2)

For convenience, we let Ωc = ∪m
j=1Ω

j
c and Rc = Xt,s \ Ωc. In the following, we may change the

constant c finitely many times, clearly this will not affect the estimates.
To estimate the curvature of the Ricci metric, the first step is to find all the harmonic Beltrami

differentials B1, · · · , Bn which correspond to the tangent vectors ∂
∂t1
, · · · , ∂

∂sn
. In [8], Masur

constructed 3g−3 regular holomorphic quadratic differentials ψ1, · · · , ψn on the plumbing collars
by using the plumbing coordinate ηj . These quadratic differentials correspond to the cotangent
vectors dt1, · · · , dsn.

However, it is more convenient to estimate the curvature if we use the rs-coordinate on Xt,s

since we have the accurate form of the Kähler-Einstein metric λ in this coordinate. In [13],
Trapani used the graft metric constructed by Wolpert [16] to estimate the difference between
the plumbing coordinate and rs-coordinate and gave the holomorphic quadratic differentials
constructed by Masur in the rs-coordinate. We collect Trapani’s results (Lemma 6.2-6.5, [13])
in the following theorem:

Theorem 4.2. Let (t, s) be the pinching coordinates on Mg near X0,0 which corresponds to a

codimension m boundary point of Mg. Then there exist constants M, δ > 0 and 1 > c > 0

such that if |(t, s)| < δ, then the j-th plumbing collar on Xt,s contains the genuine collar Ωj
c.

Furthermore, one can choose rs-coordinate zj on the collar Ωj
c properly such that the holomorphic

quadratic differentials ψ1, · · · , ψn corresponding to the cotangent vectors dt1, · · · , dsn have the

form ψi = ϕi(zj)dz
2
j on the genuine collar Ωj

c for 1 ≤ j ≤ m, where
18



(1) ϕi(zj) =
1
z2j
(qji (zj) + β

j
i ) if i ≥ m+ 1;

(2) ϕi(zj) = (− tj
π )

1
z2j
(qj(zj) + βj) if i = j;

(3) ϕi(zj) = (− ti
π )

1
z2j
(qji (zj) + β

j
i ) if 1 ≤ i ≤ m and i 6= j.

Here βji and βj are functions of (t, s), qji and qj are functions of (t, s, zj) given by

q
j
i (zj) =

∑

k<0

α
j
ik(t, s)t

−k
j zkj +

∑

k>0

α
j
ik(t, s)z

k
j

and
qj(zj) =

∑

k<0

αjk(t, s)t
−k
j zkj +

∑

k>0

αjk(t, s)z
k
j

such that

(1)
∑

k<0 |α
j
ik|c−k ≤M and

∑
k>0 |α

j
ik|ck ≤M if i 6= j;

(2)
∑

k<0 |αjk|c−k ≤M and
∑

k>0 |αjk|ck ≤M ;

(3) |βji | = O(|tj |
1

2
−ǫ) with ǫ < 1

2 if i 6= j;
(4) |βj | = (1 +O(u0)).

An immediate consequence of the above theorem is the following refined version of Masur’s
estimates of the Weil-Petersson metric. In the following, we will fix (t, s) with small norm and
let X = Xt,s.

Corollary 4.1. Let (t, s) be the pinching coordinates. Then

(1) hii = 2u−3
i |ti|2(1 +O(u0)) and hii =

1
2

u3

i
|ti|2 (1 +O(u0)) for 1 ≤ i ≤ m;

(2) hij = O(|titj |) and hij = O(
u3

iu
3

j

|titj | ), if 1 ≤ i, j ≤ m and i 6= j;

(3) hij = O(1) and hij = O(1), if m+ 1 ≤ i, j ≤ n;

(4) hij = O(|ti|) and hij = O(
u3

i
|ti|) if i ≤ m < j or j ≤ m < i.

Proof. We need the following simple calculus results:∫ c

c−1e
−

2π2

lj

1

rj
sin2 τj drj = u−1

j (
π

2
+O(uj)).(4.3)

For any k ≥ 1, ∫ c

c−1e
−

2π2

lj

rk−1
j sin2 τj drj = O(u2j )c

k(4.4)

and for k ≤ −1,
∫ c

c−1e
−

2π2

lj

rk−1
j sin2 τj drj = O(u2j)c

−k

(
e
− 2π2

lj

)k

.(4.5)

On the collar Ωj
c, the metric λ is given by (4.2). hij is given by the formula

hij =

∫

X
ψiψjλ

−2dv.

By using the above calculus facts, we can compute the above integral on the collars. The bound
on Rc was calculated in [8]. A simple computation shows that the first part of all of the above

claims hold. The second parts of these claims can be obtained by inverting the matrix (hij)

together with Masur’s result on the nondegenerate extension of the submatrix (hij)i,j>m.This
finishes the proof.

�

Now we are ready to compute the harmonic Beltrami differentials Bi = Ai∂z ⊗ dz.
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Lemma 4.2. For c small, on the genuine collar Ωj
c, the coefficient functions Ai of the harmonic

Beltrami differentials have the form:

(1) Ai =
zj
zj

sin2 τj
(
p
j
i (zj) + b

j
i

)
if i 6= j;

(2) Aj =
zj
zj
sin2 τj(pj(zj) + bj)

where

(1) pji (zj) =
∑

k≤−1 a
j
ikρ

−k
j zkj +

∑
k≥1 a

j
ikz

k
j if i 6= j;

(2) pj(zj) =
∑

k≤−1 ajkρ
−k
j zkj +

∑
k≥1 ajkz

k
j .

In the above expressions, ρj = e
− 2π2

lj and the coefficients satisfy the following conditions:

(1)
∑

k≤−1 |a
j
ik|c−k = O(u−2

j ) and
∑

k≥1 |a
j
ik|ck = O(u−2

j ) if i ≥ m+ 1;

(2)
∑

k≤−1 |a
j
ik|c−k = O(u−2

j )O
( u3

i
|ti|

)
and

∑
k≥1 |a

j
ik|ck = O(u−2

j )O
( u3

i
|ti|

)
if i ≤ m and i 6= j;

(3)
∑

k≤−1 |ajk|c−k = O(
uj

|tj |) and
∑

k≥1 |ajk|ck = O(
uj

|tj |);

(4) |bji | = O(uj) if i ≥ m+ 1;

(5) |bji | = O(uj)O
( u3

i
|ti|

)
if i ≤ m and i 6= j;

(6) bj = − uj

πtj
(1 +O(u0)).

Proof. The duality between the harmonic Beltrami differentials and the holomorphic qua-
dratic differentials is given by

Bi = λ−1
n∑

l=1

hilψl(4.6)

which implies Ai = λ−1
∑n

l=1 hilϕl. Now by Wolpert’s estimate on the length of the short

geodesic γj in [16] we have lj = − 2π2

log |tj |(1 +O(uj)). This implies there is a constant 0 < µ < 1

such that µ|tj| < ρj < µ−1|tj |. The lemma follows from equation (4.6) by replacing c by µc, a
simple computation together with Theorem 4.2 and Corollary 4.1.

�

To estimate the curvature of the Ricci metric, we need to estimate the asymptotics of the
Ricci metric by using Theorem 3.1. So we need the following estimates on the norms of the
harmonic Beltrami differentials.

Lemma 4.3. Let ‖ · ‖k be the norm as defined in Definition 3.2. We have

(1) ‖Ai‖0,Ωi
c
= O

(
ui
|ti|

)
and ‖Ai‖0,X\Ωi

c
= O

( u3

i
|ti|

)
, if i ≤ m;

(2) ‖Ai‖0 = O(1), if i ≥ m+ 1;

(3) ‖fii‖0,Ωi
c
= O

( u2

i
|ti|2

)
and ‖fii‖0,X\Ωi

c
= O

( u6

i
|ti|2

)
, if i ≤ m;

(4) ‖fij‖0 = O(1), if i, j ≥ m+ 1;

(5) ‖fij‖0,Ωi
c
= O

( uiu3

j

|titj |
)
and ‖fij‖0,Ωj

c
= O

(u3

iuj

|titj |
)
and ‖fij‖0,X\(Ωi

c∪Ωj
c)
= O

(u3

iu
3

j

|titj |
)

if i, j ≤ m and i 6= j;

(6) ‖fij‖0,Ωi
c
= O

(
ui
|ti|

)
and ‖fij‖0,X\Ωi

c
= O

( u3

i
|ti|

)
, if i ≤ m and j ≥ m+ 1;

(7) |fij|L1 = O(1), if i, j ≥ m+ 1;

(8) |fij|L1 = O(
u3

i
|ti|), if i ≤ m and j ≥ m+ 1;

(9) |fij|L1 = O(
u3

i u
3

j

|titj |), if i, j ≤ m and i 6= j.

Proof. We choose c small enough such that for each 1 ≤ j ≤ m,

tan(uj log c) < −10uj
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when |(t, s)| < δ. A simple computation shows that, when 1 ≤ p ≤ 10, on the collar Ωj
c we have

|rkj sinp τj| ≤ ck| log c|pupj
if k ≥ 1, and

|rkj sinp τj | ≤ c−k| log c|pρkjupj
if k ≤ −1.

To prove the first claim, note that on Ωi
c we have

|Ai| =
∣∣∣∣
zi

zi

∣∣∣∣ | sin
2 τi(pi + bi)| ≤

∑

k≤−1

|aik|ρ−k
i rki sin

2 τi +
∑

k≥1

|aik|rki sin2 τi + |bj|

≤(log c)2u2i
( ∑

k≤−1

|aik|c−k +
∑

k≥1

|aik|ck
)
+ |bj |

=O(u2i )O
( ui
|ti|

)
+O(u2i )O

( ui
|ti|

)
+O

( ui
|ti|

)
= O

( ui
|ti|

)
.

Similarly, on Ωj
c with j 6= i, we have |Ai| = O

( u3

i
|ti|

)
. Also, on Rc we have |Ai| = O

( u3

i
|ti|

)
by the

work of Masur [8], equation (4.6) together with Theorem 4.2 and Corollary 4.1. This finishes
the proof of the first claim.

The second claim can be proved in a similar way. Claim (3)-(6) follow from the first and
second claims by using the fact that fij = AiAj . Claim (7) follows from claim (4) and the fact
that the area of X is a fixed positive constant using the Gauss-Bonnet theorem.

Now we prove claim (9). On Ωi
c, by using a similar estimate as above, we have

|fij | =| sin4 τi(pi + bi)(p
i
j + bij)| ≤ | sin4 τipipij|+ | sin4 τibipij|+ | sin4 τipibij |+ | sin4 τibibij|

≤O
(u3i u3j
|titj|

)
+ | sin4 τibibij| = O

(u3i u3j
|titj|

)
+O

(u2i u3j
|titj|

)
sin4 τi.

So

|fij|L1(Ωi
c)
≤

∫

Ωi
c

(
O
(u3iu3j
|titj|

)
+O

(u2iu3j
|titj |

)
sin4 τi

)
dv = O

(u3i u3j
|titj |

)
.

Similarly, |fij |L1(Ωj
c)

≤ O
(u3

i u
3

j

|titj |
)
. The estimate |fij |L1(X\(Ωi

c∪Ωj
c))

= O
(u3

iu
3

j

|titj |
)
follows from claim

(5). This proves claim (9). Similarly we can prove claim (8).
�

In the following, we will denote the operator (� + 1)−1 by T . We then have the following
estimates about L2 norms:

Lemma 4.4. Let f ∈ C∞(X,C). Then we have
∫

X
|Tf |2 dv ≤

∫

X
Tf · f dv ≤

∫

X
|f |2 dv.(4.7)

Proof. This lemma is a simple application of the spectral decomposition of the operator
(� + 1) and the fact that all eigenvalues of this operator are greater than or equal to 1. One
can also prove it directly by using integration by part.

�

To estimate the Ricci metric, we also need to estimate the functions eij . We localize these
functions on the collars by constructing the following approximation functions.

Pick a positive constant c1 < c and define the cut-off function η ∈ C∞(R, [0, 1]) by




η(x) = 1, x ≤ log c1;

η(x) = 0, x ≥ log c;

0 < η(x) < 1, log c1 < x < log c.

(4.8)
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It is clear that the derivatives of η are bounded by constants which only depend on c and c1.
Let ẽij(z) be the function on X defined in the following way where z is taken to be zi on the

collar Ωi
c:

(1) if i ≤ m and j ≥ m+ 1, then

ẽij(z) =





1
2 sin

2 τibib
i
j , z ∈ Ωi

c1 ;

(12 sin
2 τibib

i
j)η(log ri), z ∈ Ωi

c and c1 < ri < c;

(12 sin
2 τibib

i
j)η(log ρi − log ri), z ∈ Ωi

c and c
−1ρi < ri < c−1

1 ρi;

0, z ∈ X \ Ωi
c;

(2) if i, j ≤ m and i 6= j, then

ẽij(z) =





1
2 sin

2 τibib
i
j , z ∈ Ωi

c1 ;

(12 sin
2 τibib

i
j)η(log ri), z ∈ Ωi

c and c1 < ri < c;

(12 sin
2 τibib

i
j)η(log ρi − log ri), z ∈ Ωi

c and c
−1ρi < ri < c−1

1 ρi;
1
2 sin

2 τjb
j
i bj, z ∈ Ωj

c1 ;

(12 sin
2 τib

j
i bj)η(log rj), z ∈ Ωj

c and c1 < rj < c;

(12 sin
2 τib

j
i bj)η(log ρj − log rj), z ∈ Ωj

c and c−1ρj < rj < c−1
1 ρj;

0, z ∈ X \ (Ωi
c ∪ Ωj

c);

(3) if i ≤ m, then

ẽii(z) =





1
2 sin

2 τi|bi|2, z ∈ Ωi
c1 ;

(12 sin
2 τi|bi|2)η(log ri), z ∈ Ωi

c and c1 < ri < c;

(12 sin
2 τi|bi|2)η(log ρi − log ri), z ∈ Ωi

c and c
−1ρi < ri < c−1

1 ρi;

0, z ∈ X \ Ωi
c.

Also, let f̃ij = (� + 1)ẽij . It is clear that the supports of these approximation functions are
contained in the corresponding collars. We have the following estimates:

Lemma 4.5. Let ẽij be the functions constructed above. Then

(1) eii = ẽii +O
( u4

i
|ti|2

)
, if i ≤ m;

(2) eij = ẽij +O
(u3

i u
3

j

|titj |
)
, if i, j ≤ m and i 6= j;

(3) eij = ẽij +O
( u3

i
|ti|

)
, if i ≤ m and j ≥ m+ 1;

(4) ‖eij‖0 = O(1), if i, j ≥ m+ 1.

Proof. The last claim follows from the maximum principle and Lemma 4.3. To prove the
first claim, we note that the maximum principle implies

‖eii − ẽii‖0 ≤ ‖fii − f̃ii‖0.

Now we compute the right hand side of the above inequality. Since f̃ii |X\Ωi
c
= 0, by Lemma 4.3

we know that ‖fii − f̃ii‖0,X\Ωi
c
= O

( u6

i
|ti|2

)
. On Ωi

c1 we have

|fii − f̃ii| ≤ | sin4 τipibi|+ | sin4 τibipi|+ | sin4 τipipi| = O
( u6i
|ti|2

)
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which implies ‖fii − f̃ii‖0,Ωi
c1

= O
( u6

i
|ti|2

)
. On Ωi

c \ Ωi
c1 with c1 ≤ ri ≤ c, we have

|fii − f̃ii| ≤(1− η)|bi|2 sin4 τi + | sin4 τipibi|+ | sin4 τibipi|+ | sin4 τipipi|

+
|bi|2u−2

i |η′′|
4

sin4 τi +
|bi|2u−1

i |η′|
2

sin2 τi| sin 2τi|

=O
( u4i
|ti|2

)
.

Similarly, on Ωi
c \ Ωi

c1 with c−1ρi ≤ ri ≤ c−1
1 ρi, we have |fii − f̃ii| ≤ O

( u4

i
|ti|2

)
. By combining the

above estimate, we have ‖fii − f̃ii‖0 = O
( u4

i
|ti|2

)
which implies the first claim. The second and

the third claims can be proved in a similar way.
�

As a corollary we prove the following estimates which are more refined than those of Trapani’s
on the Ricci metric [13]. The precise constants of the leading terms will be used later to compute
the curvature of the Ricci metric.

Corollary 4.2. Let (t, s) be the pinching coordinates. Then we have

(1) τii =
3

4π2

u2

i
|ti|2 (1 +O(u0)) and τ

ii = 4π2

3
|ti|2
u2

i
(1 +O(u0)), if i ≤ m;

(2) τij = O

(
u2

iu
2

j

|titj | (ui + uj)

)
and τ ij = O(|titj|), if i, j ≤ m and i 6= j;

(3) τij = O
( u2

i
|ti|

)
and τ ij = O(|ti|), if i ≤ m and j ≥ m+ 1;

(4) τij = O(1), if i, j ≥ m+ 1.

Remark 4.3. The second part of the above corollary can be made sharper. However, it will not
be useful for our later estimates.

Proof. The second part of the corollary is obtained by inverting the matrix (τij) in the first

part together with the fact that the matrix (hij)i,j≥m+1 is nondegenerate which was proved by

Masur and the fact that the matrix (τij)i,j≥m+1 is bounded from below by a constant multiple

of the matrix (hij)i,j≥m+1 which was proved by Wolpert.
Now we prove the first part. In the following, we use C0 to denote all universal constants

which may change. Recall that

τij = hαβRijαβ.(4.9)

To prove the last claim, let i, j ≥ m+ 1. We first notice that if α 6= β or α = β ≥ m+ 1, then

|hαβ |‖Aα‖0‖Aβ‖0 = O(1) by Lemma 4.3 and Corollary 4.1. In this case, we have

|Rijαβ| ≤
∣∣∣∣
∫

X
eijfαβ dv

∣∣∣∣+
∣∣∣∣
∫

X
eiβfαj dv

∣∣∣∣ ≤ C0(‖eij‖0‖fαβ‖0 + ‖eiβ‖0‖fαj‖0)

≤C0(‖fij‖0‖fαβ‖0 + ‖fiβ‖0‖fαj‖0) = O(1)‖Aα‖0‖Aβ‖0
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which implies |hαβRijαβ | = O(1). If α = β ≤ m we have

|Rijαα| ≤
∣∣∣∣
∫

X
eijfαα dv

∣∣∣∣+
∣∣∣∣
∫

X
eiαfαj dv

∣∣∣∣ ≤ (‖eij‖0|fαα|L1 +

(∫

X
|eiα|2 dv

∫

X
|fαj |2 dv

) 1

2

≤O(1)O
( u3i
|ti|2

)
+

(∫

X
|fiα|2 dv

∫

X
|fαj |2 dv

) 1

2

=O
( u3i
|ti|2

)
+

(∫

X
fiifαα dv

∫

X
fααfjj dv

) 1

2

≤ O
( u3i
|ti|2

)
+ ‖Ai‖0‖Aj‖0|fαα|L1 = O

( u3i
|ti|2

)

which implies |hααRijαα| = O(1). So we have proved that last claim.
To prove the third claim, let i ≤ m and j ≥ m + 1. If α 6= β or α = β ≥ m + 1 in formula

(4.9), by using integration by part we have

|Rijαβ | ≤
∣∣∣∣
∫

X
fijeαβ dv

∣∣∣∣+
∣∣∣∣
∫

X
fiβeαj dv

∣∣∣∣ ≤ C0(‖eαβ‖0|fij |L1 + ‖eαj‖0|fiβ|L1)

≤C0(‖fαβ‖0|fij|L1 + ‖fαj‖0|fiβ|L1) = O
( u3i
|ti|

)
‖Aα‖0‖Aβ‖0 +O(1)‖Aα‖0|fiβ|L1 .

By the above argument we have |hαβO
( u3

i
|ti|

)
‖Aα‖0‖Aβ‖0| = O

( u3

i
|ti|

)
and by Lemma 4.3 we have

|hαβ‖Aα‖0|fiβ|L1 | = O
( u3

i
|ti|

)
. So the claim is true in this case.

If α = β ≤ m and α 6= i, we have

|Rijαα| ≤
∣∣∣∣
∫

X
fijeαα dv

∣∣∣∣+
∣∣∣∣
∫

X
fiαeαj dv

∣∣∣∣ .

To estimate the second term in the above formula, we have

∣∣∣∣
∫

X
fiαeαj dv

∣∣∣∣ ≤ ‖eαj‖0|fiα|L1 ≤ ‖fαj‖0|fiα|L1 = O
( uα
|tα|

)
O
(u3iu3α
|titα|

)
= O

( u3iu
4
α

|ti||tα|2
)
.

To estimate the first term, we have

∣∣∣∣
∫

X
fijeαα dv

∣∣∣∣ ≤
∣∣∣∣
∫

X
fij ẽαα dv

∣∣∣∣ +
∣∣∣∣
∫

X
fij(eαα − ẽαα) dv

∣∣∣∣

≤
∣∣∣∣∣

∫

Ωα
c

fij ẽαα dv

∣∣∣∣∣ + ‖eαα − ẽαα‖0|fij|L1

≤‖fij‖0,Ωα
c
|ẽαα|L1 +O

( u4α
|tα|2

)
O
( u3i
|ti|

)
= O

( u3i u
3
α

|ti||tα|2
)

which implies |hααRijαα| = O
( u3

i
|ti|

)
.

Finally, if α = β = i, we have

|Rijii| = 2

∣∣∣∣
∫

X
fijeii dv

∣∣∣∣ ≤ 2‖eii‖0|fij|L1 ≤ 2‖fii‖0|fij|L1 = O
( u2i
|ti|2

)
O
( u3i
|ti|

)
= O

( u5i
|ti|3

)

which implies |hiiRijii| = O
( u2

i
|ti|

)
. This proves the third claim.
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The second claim can be proved in a similar way. Now we prove the first claim. If α 6= β or
α = β ≥ m+ 1 in formula (4.9), we have

|Riiαβ | ≤
∣∣∣∣
∫

X
fiieαβ dv

∣∣∣∣ +
∣∣∣∣
∫

X
fiβeαi dv

∣∣∣∣ ≤ ‖eαβ‖0|fii|L1 +

(∫

X
|eαi|2 dv

∫

X
|fiβ|2 dv

) 1

2

≤‖fαβ‖0|fii|L1 +

(∫

X
|fαi|2 dv

∫

X
|fiβ|2 dv

) 1

2

≤ (‖fαβ‖0 + ‖Aα‖0‖Aβ‖0)|fii|L1

which implies |hαβRiiαβ| = O
( u3

i
|ti|2

)
.

If α = β ≤ m and α 6= i, we have

|Riiαα| ≤
∣∣∣∣
∫

X
eiifαα dv

∣∣∣∣+
∣∣∣∣
∫

X
eiαfαi dv

∣∣∣∣ .

To estimate the second term in the above inequality, we have
∣∣∣∣
∫

X
eiαfαi dv

∣∣∣∣ ≤ ‖eiα‖0|fαi|L1 ≤ ‖fiα‖0|fαi|L1 = O
( uiuα
|titα|

)
O
(u3i u3α
|titα|

)
= O

( u4iu4α
|titα|2

)
.

To estimate the first term in the above inequality, we have∣∣∣∣
∫

X
eiifαα dv

∣∣∣∣ ≤
∣∣∣∣
∫

X
ẽiifαα dv

∣∣∣∣ +
∣∣∣∣
∫

X
(eii − ẽii)fαα dv

∣∣∣∣

≤
∣∣∣∣∣

∫

Ωi
c

ẽiifαα dv

∣∣∣∣∣+ ‖eii − ẽii‖0|fαα|L1

≤‖fαα‖0,Ωi
c
|ẽii|L1 + ‖eii − ẽii‖0|fαα|L1

=O
( u6α
|tα|2

)
O
( u3i
|ti|2

)
+O

( u3α
|tα|2

)
O
( u4i
|ti|2

)
= O

( u3iu3α
|titα|2

)
.

These imply |hααRiiαα| = O
( u3

i
|ti|2

)
.

Finally, we compute hiiRiiii. Clearly Riiii = 2
∫
X eiifii dv and

∫

X
eiifii dv =

∫

X
ẽiif̃ii dv +

∫

X
ẽii(fii − f̃ii) dv +

∫

X
(eii − ẽii)fii dv.

We also have ∣∣∣∣
∫

X
ẽii(fii − f̃ii) dv

∣∣∣∣ ≤ ‖fii − f̃ii‖0|ẽii|L1 = O
( u7i
|ti|4

)

and ∣∣∣∣
∫

X
fii(eii − ẽii) dv

∣∣∣∣ ≤ ‖eii − ẽii‖0|fii|L1 = O
( u7i
|ti|4

)
.

Also, we have ‖ẽii‖0,Ωi
c\Ωi

c1
= O

( u4

i
|ti|2

)
and ‖f̃ii‖0,Ωi

c\Ωi
c1

= O
( u4

i
|ti|2

)
. So

∫

X
ẽiif̃ii dv =

∫

Ωi
c1

ẽiif̃ii dv +

∫

Ωi
c\Ωi

c1

ẽiif̃ii dv =
3π2

16
|bi|4ui(1 +O(u0)) +O

( u8i
|ti|4

)
.

By using Corollary 4.1 we have hiiRiiii =
3

4π2

u2

i
|ti|2 (1 + O(u0)). By combining the above results

we have proved this corollary.
�

It is well known that there is a complete asymptotic Poincaré metric ωp on Mg. We briefly
describe it here. Please see [7] for more details.

Let M be a compact Kähler manifold of dimension m. Let Y ⊂ M be a divisor of normal
crossings and let M = M \ Y . Cover M by coordinate charts U1, · · · , Up, · · · , Uq such that
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(Up+1 ∪ · · · ∪ U q) ∩ Y = Φ. We also assume that, for each 1 ≤ α ≤ p, there is a constant nα
such that Uα \Y = (∆∗)nα ×∆m−nα and on Uα, Y is given by zα1 · · · zαnα

= 0. Here ∆ is the disk

of radius 1
2 and ∆∗ is the punctured disk of radius 1

2 . Let {ηi}1≤i≤q be the partition of unity

subordinate to the cover {Ui}1≤i≤q. Let ω be a Kähler metric on M and let C be a positive
constant. Then for C large, the Kähler form

ωp = Cω +

p∑

i=1

√
−1∂∂

(
ηi log log

1

zi1 · · · zini

)

defines a complete metric on M with finite volume since on each Ui with 1 ≤ i ≤ p, ωp is
bounded from above and below by the local Poincaré metric on Ui. We call this metric the
asymptotic Poincaré metric.

As a direct application of the above corollary, we have

Theorem 4.3. The Ricci metric is equivalent to the asymptotic Poincaré metric. More precisely,
there is a positive constant C such that

C−1ωp ≤ ωτ ≤ Cωp.

Now we estimate the holomorphic sectional curvature of the Ricci metric. We will show that
the holomorphic sectional curvature is negative in the degeneration directions and is bounded in
other directions. We will need the following estimates on the norms to estimate the error terms.

Lemma 4.6. Let f, g ∈ C∞(X,C) be smooth functions such that (� + 1)f = g. Then there is
a constant C0 such that

(1) |K0f |L2 ≤ C0|K0g|L2 ;
(2) |K1K0f |L2 ≤ C0|K0g|L2 ;

Proof. Let h = |K0f |2. By using Schwarz inequality, we easily see that the lemma follows
from the Bochner formula:

�h+ h+ |K1K0f |2 = K0fK0g +K0fK0g − |f − g|2.
�

We also need the estimates on the sections K0fij. We have:

Lemma 4.7. Let K0 and K1 be the Maass operators defined in Section 3. Then

(1) ‖K0fii‖0,Ωi
c
= O

( u2

i
|ti|2

)
and ‖K0fii‖0,X\Ωi

c
= O

( u6

i
|ti|2

)
, if i ≤ m;

(2) ‖K0fij‖0 = O(1), if i, j ≥ m+ 1;

(3) ‖K0fij‖0,Ωi
c
= O

( uiu
3

j

|titj |
)
and ‖K0fij‖0,Ωj

c
= O

(u3

iuj

|titj |
)
and ‖K0fij‖0,X\(Ωi

c∪Ωj
c)
= O

(u3

iu
3

j

|titj |
)
,

if i, j ≤ m and i 6= j;

(4) ‖K0fij‖0,Ωi
c
= O

(
ui
|ti|

)
and ‖K0fij‖0,X\Ωi

c
= O

( u3

i
|ti|

)
, if i ≤ m and j ≥ m+ 1;

(5) ‖fii − f̃ii‖1 = O
( u4

i
|ti|2

)
, if i ≤ m.

This lemma can be proved by using similar methods as we used in the proof of Lemma 4.3
together with direct computations. So are the following L1 and L2 estimates:

Lemma 4.8. Let P = K1K0 be the operator defined Section 3. We have

(1) |fii|2L2 = O
( u5

i
|ti|4

)
, if i ≤ m;

(2) |K0fii|2L2 = O
( u5

i
|ti|4

)
, if i ≤ m;

(3) |K0fij|2L2 = O
( u3

iu
3

j

|titj |2
)
, if i, j ≤ m and i 6= j;

(4) |K0fij|2L2 = O
( u3

i
|ti|2

)
, if i ≤ m and j ≥ m+ 1;
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(5) |K0fij|2L2 = O(1), if i, j ≥ m+ 1;

(6) |P (ẽii)|L1 = O
( u3

i
|ti|2

)
, if i ≤ m.

To estimate the curvature of the Ricci metric by using formula (3.30), we first expand the
term

∫
X Qkl(eij)eαβ dv. A simple computation shows that

Lemma 4.9. We have
∫

X
Qkl(eij)eαβ dv =−

∫

X
fkl(K0eijK0eαβ +K0eijK0eαβ) dv

−
∫

X
(�eijK0eαβK0ekl +�eαβK0eijK0ekl) dv.

To estimate the holomorphic sectional curvature, in formula (3.30) we let i = j = k = l. We

decompose R̃iiii into two parts:

R̃iiii = G1 +G2

where G1 consists of those terms in the right hand side of (3.30) with all indices α, β, γ, δ, p

and q equal to i and G2 = R̃iiii − G1 consists of those terms in (3.30) where, in each term, at
least one of the indices α, β, γ, δ, p or q is not i. If i ≤ m, the leading term is G1 which is given
by

G1 =24hii
∫

X
(� + 1)−1(ξi(eii))ξi(eii) dv

+ 6hii
∫

X
Qii(eii)eii dv

− 36τ ii(hii)2
∣∣∣∣
∫

X
ξi(eii)eii dv

∣∣∣∣
2

+ τiih
iiRiiii.

(4.10)

The main theorem of this section is the following estimate of the holomorphic sectional cur-
vature of the Ricci metric.

Theorem 4.4. Let X0 ∈ Mg\Mg be a codimension m point and let (t1, · · · , tm, sm+1, · · · , sn) be
the pinching coordinates at X0 where t1, · · · , tm correspond to the degeneration directions. Then
the holomorphic sectional curvature is negative in the degeneration directions and is bounded in
the non-degeneration directions. More precisely, there is a δ > 0 such that, if |(t, s)| < δ, then

R̃iiii =
3u4i

8π4|ti|4
(1 +O(u0)) > 0(4.11)

if i ≤ m and

R̃iiii = O(1)(4.12)

if i ≥ m+ 1.
Furthermore, on Mg, the holomorphic sectional curvature, the bisectional curvature and the

Ricci curvature of the Ricci metric are bounded from above and below.

Proof. We first compute the asymptotics of the holomorphic sectional curvature. By Lemma
4.9 we know that ∫

X
Qii(eii)eii dv =

∫

X
|K0eii|2(2eii − 4fii) dv.
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By (4.10) we have

G1 =24hii
∫

X
T (ξi(eii))ξi(eii) dv + 6hii

∫

X
|K0eii|2(2eii − 4fii) dv

− 36τ ii(hii)2
∣∣∣∣
∫

X
ξi(eii)eii dv

∣∣∣∣
2

+ τiih
iiRiiii.

(4.13)

We first consider the degeneration directions. Assume i ≤ m. In this case G1 is the leading
term. We have the following lemma.

Lemma 4.10. If i ≤ m, then |G2| = O
( u5

i
|ti|4

)
.

Proof. The lemma follows from a case by case check. We will prove it in the appendix.
�

Now we go back to the proof of Theorem 4.4. We compute each term of G1. By the proof of

Corollary 4.2 we know that hiiRiiii =
3

4π2

u2

i
|ti|2 (1 +O(u0)). So we have

τiih
iiRiiii =

(
3u2i

4π2|ti|2
)2

(1 +O(u0)) =
9u4i

16π4|ti|4
(1 +O(u0)).(4.14)

Now we compute the second term. We have
∫

X
|K0eii|2(2eii − 4fii) dv

=

∫

X
|K0ẽii|2(2ẽii − 4f̃ii) dv +

∫

X
(|K0eii|2 − |K0ẽii|2)(2ẽii − 4f̃ii) dv

+

∫

X
|K0eii|2(2(eii − ẽii)− 4(fii − f̃ii)) dv.

(4.15)

For the second term in the above equation, we have
∣∣∣∣
∫

X
(|K0eii|2 − |K0ẽii|2)(2ẽii − 4f̃ii) dv

∣∣∣∣ ≤ ‖|K0eii|2 − |K0ẽii|2‖0
∫

X
(2|ẽii|+ 4|f̃ii|) dv

≤‖|K0eii|+ |K0ẽii|‖0‖K0(eii − ẽii)‖0
∫

X
(2|ẽii|+ 4|f̃ii|) dv = O

( u2i
|ti|2

)
O
( u4i
|ti|2

)
O
( u3i
|ti|2

)
= O

( u9i
|ti|6

)
.

For the second term in the above equation, we have
∣∣∣∣
∫

X
|K0eii|2(2(eii − ẽii)− 4(fii − f̃ii)) dv

∣∣∣∣ ≤ C0‖K0eii‖20(2‖eii − ẽii‖0 + 4‖fii − f̃ii‖0)

= O
( u4i
|ti|4

)
O
( u4i
|ti|2

)
= O

( u8i
|ti|6

)
.

So we get
∫

X
|K0eii|2(2eii − 4fii) dv =

∫

X
|K0ẽii|2(2ẽii − 4f̃ii) dv +O

( u8i
|ti|6

)

=

∫

Ωi
c1

|K0ẽii|2(2ẽii − 4f̃ii) dv +

∫

Ωi
c\Ωi

c1

|K0ẽii|2(2ẽii − 4f̃ii) dv +O
( u8i
|ti|6

)
.

(4.16)

We also have the estimate∣∣∣∣∣

∫

Ωi
c\Ωi

c1

|K0ẽii|2(2ẽii − 4f̃ii) dv

∣∣∣∣∣ ≤ C0‖K0ẽii‖20(‖ẽii‖0,Ωi
c\Ωi

c1
+ ‖f̃ii‖0,Ωi

c\Ωi
c1
) = O

( u8i
|ti|6

)
.
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A direct computation shows that
∫

Ωi
c1

|K0ẽii|2(2ẽii − 4f̃ii) dv = − 3u7i
64π4|ti|6

(1 +O(u0)).

So

6hii
∫

X
|K0eii|2(2eii − 4fii) dv = − 9u4i

16π4|ti|4
(1 +O(u0)).(4.17)

Now we compute the third term. We have
∫

X
ξi(eii)eii dv =

∫

X
ξi(ẽii)ẽii dv +

∫

X
ξi(ẽii)(eii − ẽii) dv +

∫

X
ξi(eii − ẽii)eii dv.(4.18)

By using the same method as above, we obtain
∣∣∣∣
∫

X
ξi(ẽii)(eii − ẽii) dv

∣∣∣∣ ≤ C0‖ξi(ẽii)‖0‖eii − ẽii‖0 ≤ C0‖Ai‖0‖K1K0(ẽii)‖0‖eii − ẽii‖0

≤C0‖Ai‖0‖ẽii‖2‖eii − ẽii‖0 = O
( ui
|ti|

)
O
( u2i
|ti|2

)
O
( u4i
|ti|2

)
= O

( u7i
|ti|5

)

and ∣∣∣∣
∫

X
ξi(eii − ẽii)eii dv

∣∣∣∣ ≤ ‖ξi(eii − ẽii)‖0
∫

X
eii dv ≤ ‖Ai‖0‖eii − ẽii‖2hii

≤‖Ai‖0‖fii − f̃ii‖1hii = O
( ui
|ti|

)
O
( u4i
|ti|2

)
O
( u3i
|ti|2

)
= O

( u8i
|ti|5

)

and ∣∣∣∣∣

∫

Ωi
c\Ωi

c1

ξi(ẽii)ẽii dv

∣∣∣∣∣ ≤ C0‖ξi(ẽii)‖0‖ẽii‖0,Ωi
c\Ωi

c1
= O

( u7i
|ti|5

)
.

By putting the above results together, we get
∫

X
ξi(eii)eii dv =

∫

Ωi
c1

ξi(ẽii)ẽii dv +O
( u7i
|ti|5

)
.

On Ωi
c1 we have

ξi(ẽii) = −zi
zi

sin2 τibiP (ẽii)−
zi

zi
sin2 τipiP (ẽii).

However, we have ‖zi
zi
sin2 τipiP (ẽii)‖0,Ωi

c1
= O

( u5

i
|ti|3

)
which implies

∣∣∣∣∣

∫

Ωi
c1

zi

zi
sin2 τipiP (ẽii)ẽii dv

∣∣∣∣∣ = O
( u8i
|ti|5

)
.

A direct computation shows that
∫

Ωi
c1

−zi
zi

sin2 τibiP (ẽii))ẽii dv = − u6i
32π3|ti|4ti

(1 +O(u0))

which implies ∫

X
ξi(eii)eii dv = − u6i

32π3|ti|4ti
(1 +O(u0)).

So we obtain

36τ ii(hii)2
∣∣∣∣
∫

X
ξi(eii)eii dv

∣∣∣∣
2

=
3u4i

16π4|ti|4
(1 +O(u0)).(4.19)
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Now we estimate the first term. We have∫

X
Tξi(eii)ξi(eii) dv =

∫

X
Tξi(ẽii)ξi(ẽii) dv +

∫

X
Tξi(eii − ẽii)ξi(ẽii) dv

+

∫

X
Tξi(eii)ξi(eii − ẽii) dv.

By using the same method we can get∣∣∣∣
∫

X
Tξi(eii − ẽii)ξi(ẽii) dv

∣∣∣∣ ≤C0‖Tξi(eii − ẽii)‖0‖ξi(ẽii)‖0 ≤ C0‖ξi(eii − ẽii)‖0‖ξi(ẽii)‖0

=O
( u5i
|ti|3

)
O
( u3i
|ti|3

)
= O

( u8i
|ti|6

)
.

Similarly, ∣∣∣∣
∫

X
Tξi(eii)ξi(eii − ẽii) dv

∣∣∣∣ = O
( u8i
|ti|6

)
.

So we have ∫

X
Tξi(eii)ξi(eii) dv =

∫

X
Tξi(ẽii)ξi(ẽii) dv +O

( u8i
|ti|6

)
.

To estimate Tξi(ẽii), we introduce another approximation function. Pick c2 < c1 and let η1 ∈
C∞(R, [0, 1]) be the cut-off function defined by

η1 =





η1(x) = 1, x ≤ log c2;

η1(x) = 0, x ≥ log c1;

0 < η1(x) < 1, log c2 < x < log c1.

(4.20)

For i ≤ m define the function di by

di(z) =





−1
8 sin

2 τi cos 2τi|bi|2bi, z ∈ Ωi
c2 ;

(−1
8 sin

2 τi cos 2τi|bi|2bi)η1(log ri), z ∈ Ωi
c1 and c2 < ri < c1;

(−1
8 sin

2 τi cos 2τi|bi|2bi)η1(log ρi − log ri), z ∈ Ωi
c1 and c−1

1 ρi < ri < c−1
2 ρi;

0, z ∈ X \ Ωi
c1 .

A simple computation shows that

‖ξi(ẽii)− (�+ 1)di‖0 = O
( u5i
|ti|3

)

which implies

‖Tξi(ẽii)− di‖0 = O
( u5i
|ti|3

)
.

So ∫

X
Tξi(ẽii)ξi(ẽii) dv =

∫

X
diξi(ẽii) dv +

∫

X
(Tξi(ẽii)− di)ξi(ẽii) dv.

We have the estimate∣∣∣∣
∫

X
(Tξi(ẽii)− di)ξi(ẽii) dv

∣∣∣∣ ≤ C0‖Tξi(ẽii)− di‖0‖ξi(ẽii)‖0 = O
( u8i
|ti|6

)

which implies ∫

X
Tξi(eii)ξi(eii) dv =

∫

X
diξi(ẽii) dv +O

( u8i
|ti|6

)
.

We also have

diξi(ẽii) = −di
zi

zi
sin2 τibiP (ẽii)− di

zi

zi
sin2 τipiP (ẽii).
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Since ‖di zizi sin
2 τipiP (ẽii)‖0 = O

( u8

i
|ti|6

)
and ‖di zizi sin

2 τibiP (ẽii)‖0,Ωi
c1

\Ωi
c2

= O
( u8

i
|ti|6

)
, we get

∫

X
Tξi(eii)ξi(eii) dv =

∫

Ωi
c2

diξi(ẽii) dv +O
( u8i
|ti|6

)
.

A direct computation shows that
∫

X
Tξi(eii)ξi(eii) dv =

3u7i
256π4|ti|6

(1 +O(u0))

which implies

24hii
∫

X
T (ξi(eii))ξi(eii) dv =

9u4i
16π4|ti|4

(1 +O(u0)).(4.21)

By combining formulas (5.3), (4.17), (4.19) and (4.14) we obtain

G1 =
3u4i

8π4|ti|4
(1 +O(u0)).

Together with Lemma 4.10 we proved formula (4.11). The formula (4.12) can be proved using
similar method with a case by case like the proof of Lemma 4.10.

Now we give a weak estimate on the full curvature of the Ricci metric. Let

(1) Λi =
ui
|ti| if i ≤ m;

(2) Λi = 1 if i ≥ m+ 1.

We can check the following estimates by using the methods in the proof of Lemma 4.10. We
have

R̃ijkl = O(1)(4.22)

if i, j, k, l ≥ m+ 1 and

R̃ijkl = O(ΛiΛjΛkΛl)O(u0)(4.23)

if at least one of these indices i, j, k, l is less than or equal to m and they are not all equal to
each other.

Now we prove the boundedness of the curvatures. For the holomorphic sectional curvature,
from (4.11) and (4.12) and Corollary 4.2, it is clear that there is a constant C0 > 1 depending
on X0 and δ such that if |(t, s)| ≤ δ, then

(1) C−1
0 τ2

ii
≤ R̃iiii ≤ C0τ

2
ii
, if i ≤ m;

(2) |R̃iiii| ≤ C0τ
2
ii
, if i ≥ m+ 1.

We cover the divisor Y = Mg \Mg by such open coordinate charts. Since Y is compact, we can
pick finitely many such coordinate charts Ξ1, · · · ,Ξq such that Y ⊂ ⋃q

s=1 Ξs. Clearly there is an

open neighborhood N of Y such that N ⊂ ⋃q
s=1 Ξs. From formulas (4.22), (4.23) and the above

argument, we know that the holomorphic sectional curvature of τ is bounded from above and
below on N . However, Mg \N is a compact set of Mg, so the holomorphic sectional curvature
is also bounded on Mg \ N which implies the holomorphic sectional curvature is bounded on
Mg.

The bisectional curvature and the Ricci curvature of the Ricci metric can be proved to be
bounded by using (4.22), (4.23) and a similar argument as above, together with the covering
and compactness argument. This finishes the proof.

�

Remark 4.4. The estimates of the bisectional curvature and the Ricci curvature are not optimal.
A sharper estimate will be given in our next paper [6].
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5. The perturbed Ricci metric and its curvatures

In this section we introduce another new metric, the perturbed Ricci metric. This metric
is obtained by adding a constant multiple of the Weil-Petersson metric to the Ricci metric.
By doing this we construct a natural complete metric whose holomorphic sectional curvature
is negatively bounded. We will see that the holomorphic sectional curvature of the perturbed
Ricci metric near an interior point of the moduli space is dominated by the curvature of the
large constant multiple of the Weil-Petersson metric. Similar argument holds for the holomor-
phic sectional curvature of the perturbed Ricci metric in the non-degenerate directions near a
boundary point.

Definition 5.1. For any constant C > 0, we call the metric

τ̃ij = τij + Chij

the perturbed Ricci metric with constant C.

We first give the curvature formula of the perturbed Ricci metric. We use Pijkl to denote the

curvature tensor of the perturbed Ricci metric.

Theorem 5.1. Let s1, · · · , sn be local holomorphic coordinates at s ∈Mg. Then at s, we have

Pijkl =h
αβ

{
σ1σ2

∫

Xs

{
(� + 1)−1(ξk(eij))ξl(eαβ) + (�+ 1)−1(ξk(eij))ξβ(eαl)

}
dv

}

+ hαβ
{
σ1

∫

Xs

Qkl(eij)eαβ dv

}

− τ̃pqhαβhγδ
{
σ1

∫

Xs

ξk(eiq)eαβ dv

}{
σ̃1

∫

Xs

ξl(epj)eγδ) dv

}

+ τpjh
pqRiqkl + CRijkl.

(5.1)

Proof. Let s1, · · · , sn be normal coordinates at a point s ∈ Mg with respect to the Weil-
Petersson metric. By formula (3.16), at the point s we have

∂k τ̃ij = ∂kτij + C∂khij = hαβ
{
σ1

∫

Xs

(ξk(eij)eαβ) dv

}
+ τpjΓ

p
ik +C∂khij

= hαβ
{
σ1

∫

Xs

(ξk(eij)eαβ) dv

}(5.2)

since Γp
ik = ∂khij = 0 at this point. Now at s the curvature of the Weil-Petersson metric is

Rijkl = ∂l∂khij .

The theorem follows from formulas (3.5), (5.2) and (3.36).
�

Now we estimate the curvature of the perturbed Ricci metric using formula (5.1). The fol-

lowing two linear algebra lemmas will be used to handle the inverse matrix τ̃ ij near an interior
point and a boundary point.

Lemma 5.1. Let D be a neighborhood of 0 in C
n and let A and B be two positive definite n×n

Hermitian matrix functions on D such that they are bounded from above and below on D and
each entry of them are bounded. Then each entry of the inverse matrix (A+ CB)−1 = O(C−1)
when C is very large.

Proof. Consider the determinant det(A+ CB). It is a polynomial of C of degree n and the
coefficient of the leading term is det(B) which is bounded from below. All other coefficients are
bounded since they only depend on the entries of A and B. So we can pick C large such that
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det(A+CB) ≥ 1
2 det(B)Cn. Now the determinant of the (i, j)-minor of A+CB is a polynomial

of C of degree at most n − 1 and the coefficients are bounded since they only depend on the
entries of A and B. From the fact that the (i, j)-entry is the quotient of the determinant of the
(i, j)-minor and the determinant of the matrix A+ CB, the lemma follows directly.

�

Lemma 5.2. Let X0 ∈ Mg be a codimension m boundary point and let (t1, · · · , sn) be the
pinching coordinates near X0. Then for |(t, s)| < δ with δ small, we have that, for any C > 0,

(1) 0 < τ̃ ii < τ ii for all i;

(2) τ̃ ij = O(|titj|), if i, j ≤ m and i 6= j;

(3) τ̃ ij = O(|ti|), if i ≤ m and j ≥ m+ 1;

(4) τ̃ ij = O(1), if i, j ≥ m+ 1.

Furthermore, the bounds in the last three claims are independent of the choice of C.

Proof. The first claim is a general fact of linear algebra. To prove the last three claims, we
denote the submatrices (τij)i,j≥m+1 and (hij)i,j≥m+1 by A and B. These two matrices represent
the non-degenerate directions of the Ricci metric and the Weil-Petersson metric respectively.
By the work of Masur, we know that the matrix B can by extended to the boundary non-
degenerately. This implies that B has a positive lower bound. By Corollary (4.1) we know that

B is bounded from above. Now by the work of Wolpert, since ωτ ≥ C̃ωWP where C̃ only depend
on the genus of the Riemann surface, we know that A has a positive lower bound. By Corollary
4.2 we know that A is bounded from above. So both matrices A and B are bounded from above
and below and all their entries are bounded as long as |(t, s)| ≤ δ.

By Corollary 4.1 and Corollary 4.2 we know that

(τ̃ij) =

(
Υ Ψ

Ψ
T

A+ CB

)

where Υ is an m×m matrix given by

Υ =




u2

1

|t1|2 (
3

4π2 + Cu1

2 )(1 +O(u0)) . . .
u2

1
u2
m

|t1tm|(O(u0) + CO(u1um))
...

...
...

u2

1
u2
m

|t1tm|(O(u0) + CO(u1um)) . . .
u2
m

|tm|2 (
3

4π2 + Cum
2 )(1 +O(u0))




which represent the degenerate directions of the perturbed Ricci metric and Ψ is an m× (n−m)
matrix given by

Ψ =




u2

1

|t1|(O(1) +CO(u1)) . . .
u2

1

|t1|(O(1) + CO(u1))
...

...
...

u2
m

|tm|(O(1) + CO(um)) . . .
u2
m

|tm|(O(1) + CO(um))




which represents the mixed directions of the perturbed Ricci metric.
A direct computation shows that

det τ̃ =
{ m∏

i=1

u2i
|ti|2

(
3

4π2
+
Cui

2
)
}
det(A+ CB)(1 +O(u0))

where the O(u0) term is independent of C. Let Φij be the (i, j)-minor of (τ̃ij) obtained by

deleting the i-th row and j-th column of (τ̃ij). By using the fact that

|τ̃ ij | =
∣∣∣∣
detΦij

det τ̃

∣∣∣∣
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the lemma follows from a direct computation of the determinant of Φij.
�

Now we prove the main theorem of this section.

Theorem 5.2. For a suitable choice of positive constant C, the perturbed Ricci metric τ̃ij =
τij + Chij is complete and its holomorphic sectional curvatures are negative and bounded from
above and below by negative constants. Furthermore, the Ricci curvature of the perturbed Ricci
metric is bounded from above and below.

Proof. It is clear that the metric τ̃ij is complete as long as C ≥ 0 since it is greater than the
Ricci metric which is complete.

Now we estimate the holomorphic sectional curvature. We first show that, for any codimension
m pointX0 ∈ Mg\Mg, there are constants C0, δ > 0 such that, if (t, s) = (t1, · · · , tm, sm+1, · · · , sn)
is the pinching coordinates at p with |(t, s)| < δ and C ≥ C0, the holomorphic sectional curvature
of the metric τ̃ is negative. We first consider the degeneration directions. Let i = j = k = l ≤ m.
As in the proof of Theorem 4.4, we let

G̃1 =24hii
∫

X
T (ξi(eii))ξi(eii) dv + 6hii

∫

X
|K0eii|2(2eii − 4fii) dv

− 36τ̃ ii(hii)2
∣∣∣∣
∫

X
ξi(eii)eii dv

∣∣∣∣
2

+ τiih
iiRiiii

(5.3)

and G̃2 be the summation of those terms in (5.1) in which at least one of the indices p, q, α, β, γ, δ

is not i. We have Piiii = G̃1 + G̃2 + CRiiii. We notice here that we can use Lemma 5.2 instead
of Corollary 4.2 in the proof of Lemma 4.10 without changing any estimate. This implies that

|G̃2| = O
( u5

i
|ti|4

)
. By the proof of Theorem 4.4 we have

G̃1 =

(
9

16π4
− 3

16π4
(
1 +

2π2Cui
3

)−1
)
u4i
|ti|4

(1 +O(u0))(5.4)

which implies

Piiii =

((
9

16π4
− 3

16π4
(
1 +

2π2Cui
3

)−1
)
u4i
|ti|4

+
3C

8π2
u5i
|ti|4

)
(1 +O(u0)) > 0(5.5)

as long as δ is small enough. Furthermore, Piiii is bounded above and below by constant
multiple of τ̃2

ii
where the constants may depend on C. However, when C is fixed, the constants

are universal if δ is small enough.
Now we let i = j = k = l ≥ m + 1. By the proof of Theorem 4.4 and Lemma 5.2 we know

that Piiii = O(1) + CRiiii. We also know that Riiii > 0 has a positive lower bound. Again, by
using the extension theorem of Masur, we can choose C0 large enough such that, when C ≥ C0,
we have Piiii > 0. Furthermore,Piiii is bounded from above and below by constant multiple of
τ̃2
ii
where the constants may depend on C,m,n, X0 and the choice of νm+1, · · · , νn if δ is small

enough. We also have estimates similar to (4.22) and (4.23):

Pijkl = O(1) + CRijkl(5.6)

if i, j, k, l ≥ m+ 1 and

Pijkl = O(ΛiΛjΛkΛl)O(u0) + CRijkl(5.7)

if at least one of these indices i, j, k, l is less than or equal to m and they are not all equal to
each other. So we can choose δ small such that, if |(t, s)| ≤ δ, then the holomorphic sectional
curvature is bounded from above and below by negative constants which may depend on C.

Now we consider the interior points. Fix a point p ∈ Mg and a small neighborhood D of p

such that D ⊂ Mg. Since the Ricci metric and Weil-Petersson metric are uniformly bounded in
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D, we have Piiii = O(1) + CRiiii. Using a similar argument as above, we can choose a C0 such
that, when C > C0, the holomorphic sectional curvature is bounded from above and below by
negative constants which may depend on C.

Since the divisor Mg \ Mg is compact, we can find finitely many boundary charts of Mg

described above such that the holomorphic sectional curvature of τ̃ is pinched by two negative
constants which depend on C on these charts. Furthermore, there is a neighborhood N of
Mg \ Mg in Mg such that N is contained in the union of these charts. It is clear that we
can find a constant C1 such that on N , the holomorphic sectional curvature of τ̃ is pinched by
negative constants when C ≥ C1.

Also, since the set Mg \ N is compact, by the above argument, we can find finitely many
interior charts described above such that their union covers Mg \ N and a constant C2, such
that the holomorphic sectional curvature of τ̃ is pinched by negative constants when C > C2.
Again, the bounds may depend on C.By taking a constant C > max{C1, C2}, we have proved
the first part of the theorem. The Ricci curvature can be estimated in a similar way as we did
in the proof of Theorem 4.4 together with Lemma 5.1 and 5.2.

�

Remark 5.1. By using the negativity of the Ricci curvature of the Weil-Petersson metric and
estimates (5.5), (5.6) and (5.7), we can actually show that the Ricci curvature of the perturbed
Ricci metric is pinched between two negative constants. The detail will be given in our next
paper.

6. Equivalent metrics on the moduli space

In this section, we prove the equivalence among the Ricci metric, perturbed Ricci metric,
Kähler-Einstein metric and the McMullen metric. These equivalences imply that the Teichmüller
metric is equivalent to the Kähler-Einstein metric which gives a positive answer to Yau’s Conjec-
ture. The main tool we use is the Schwarz-Yau Lemma. Also, to control the McMullen metric,
we give a simple formula of the first derivative of the geodesic length functions.

Lemma 6.1. The Weil-Petersson metric is bounded above by a constant multiple of the Ricci
metric. Namely, there is a constant α > 0 such that ωWP ≤ αωτ .

Proof. This lemma follows from Corollary 4.1 and Corollary 4.2. It also follows directly from
Schwarz-Yau Lemma.

�

By using this simple result, we have

Theorem 6.1. The Ricci metric and the perturbed Ricci metric are equivalent.

Proof. Since τ̃ij = τij + Chij and C > 0, we know that the Ricci metric is bounded above
by the perturbed Ricci metric. By using the above lemma, we also have the bound of the other
side.

�

By the work of Cheng and Yau [2] and Mok and Yau [10], there is a unique complete Kähler-
Einstein metric on the moduli space whose Ricci curvature is −1. One of the main results of
this section is the equivalence of the Kähler-Einstein metric and the Ricci metric. To prove this
result, we need the following simple fact of linear algebra.

Lemma 6.2. Let A and B be positive definite n×n Hermitian matrices and let α, β be positive
constants such that B ≥ αA and det(B) ≤ β det(A). Then there is a constant γ > 0 depending
on α, β and n such that B ≤ γA.

Theorem 6.2. The Ricci metric is equivalent to the Kähler-Einstein metric gKE.
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Proof. Consider the identity map i : (Mg, gKE) → (Mg, τ̃ ). We know that the Kähler-
Einstein metric is complete and its Ricci curvature is −1. By Theorem 5.2 we know that the
holomorphic sectional curvatures of the perturbed Ricci metric is bounded above by a negative
constant. From the Schwarz-Yau Lemma, there is a constant c0 > 0 such that

gKE ≥ c0τ̃ .

From Theorem 6.1 we know that the Kähler-Einstein metric is bounded below by a constant
multiple of the Ricci metric

gKE ≥ c̃0τ.(6.1)

Now we consider the identity map j : (Mg, τ) → (Mg, gKE). By Theorem 4.4 we know that
the Ricci curvature of the Ricci metric is bounded from below. Also, the Ricci curvature of
the Kähler-Einstein metric is −1. From the Schwarz-Yau Lemma for volume forms, there is a
constant c1 > 0 such that

det(gKE) ≤ c1 det(τ).(6.2)

By combining formula (6.1), (6.2) and Lemma 6.2 we have proved the theorem.
�

Now we consider the McMullen metric. In [9] McMullen constructed a new metric g1/l on

Mg which is equivalent to the Teichmḧller metric and is Kähler hyperbolic. More precisely, let
Log : R+ → [0,∞) be a smooth function such that

(1) Log(x) = log x if x ≥ 2;
(2) Log(x) = 0 if x ≤ 1.

For suitable choices of small constants δ, ǫ > 0, the Kähler form of the McMullen metric g1/l is

ω1/l = ωWP − iδ
∑

lγ(X)<ǫ

∂∂Log
ǫ

lγ

where the sum is taken over primitive short geodesics γ on X. We will also write this as ωM .
To compare the Ricci metric and the McMullen metric, we compute the first order derivative

of the short geodesics.

Lemma 6.3. Let X0 ∈ Mg be a codimension m boundary point and let (t1, · · · , sn) be the

pinching coordinates near X0. Let lj be the length of the geodesic on the collar Ωj
c. Then

∂ilj = −πujbji
if i 6= j and

∂ilj = −πujbi
if i = j. Here bji and bi are defined in Lemma 4.2.

Proof. It is clear that on the genuine collar Ωj
c, λAi is an anti-holomorphic quadratic dif-

ferential. By using the rs-coordinate z on Ωj
c, we can denote λAi by κi(z)dz

2. We consider the
coefficient of the term z−2 in the expansion of κi and denote it by C−2(κi). From formula (4.2)
and Lemma 4.2 we know that

C−2(κi) =
1

2
u2jb

j
i .(6.3)

Now we use a different way to compute C−2(κi). Fix (t0, s0) with small norm and let X = Xt0,s0 .
Let w be the rs-coordinates on the j-th collar of Xt,s and let z be the rs-coordinate on the j-th
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collar of X. Clearly w = w(z, t, s) is holomorphic with respect to z and when (t, s) = (t0, s0),
we have w = z. We pull-back the metric on the j-th collar of Xt,s to X. We have

Λ =
1

2
u2j |w|−2 csc2(uj log |w|)

∣∣∣∣
∂w

∂z

∣∣∣∣
2

is the Kähler-Einstein metric on the j-th collar of Xt,s. Now from formulas (2.2) and (2.3), at
point (t0, s0), a simple computation shows that

κi(z) = −uj∂iuj
z2

+
u2j + 1

z3
∂iw |(t0,s0) −

u2j + 1

z2
∂i∂zw |(t0,s0) −∂i∂z∂z∂zw |(t0,s0) .(6.4)

From the above formula we can see that C−2(κi) = −uj∂iuj since the contribution of the last
three terms in the above formula to C−2(κi) is 0. By comparing equations (6.3) and (6.4) we
have

∂iuj = −1

2
ujb

j
i .

The lemma follows from the fact that lj = 2πuj . Again, the above argument also works when

i = j. In this case, we replace bji by bi.
�

Now we can prove another main theorem of this section.

Theorem 6.3. The Ricci metric is equivalent to the McMullen metric, the Teichmüller metric
and the Kobayashi metric.

Proof. Royden proved that the Teichmüller metric is the same as the Kobayashi metric. Also,
the equivalence of the McMullen metric and the Teichmüller metric was proved by McMullen [9].
We only need to show the equivalence between the Ricci metric and the McMullen g1/l metric.

Since the Ricci curvature of the g1/l metric is bounded from below and it is complete, by the
Schwarz-Yau lemma we know that

τ < τ̃ ≤ C0g1/l

for some constant C0. Now we prove the other bound. Fix a boundary point X0 and the pinching
coordinates near X0. By Theorem 1.1 and Theorem 1.7 of [9] we know that there are constants
c1, c2 such that, when i ≤ m,

(g1/l)ii =

∥∥∥∥
∂

∂ti

∥∥∥∥
2

g1/l

< c1

∥∥∥∥
∂

∂ti

∥∥∥∥
2

T

≤ c2

(∥∥∥∥
∂

∂ti

∥∥∥∥
2

WP

+
∑

lγ<ǫ

∣∣∣∣(∂ log lγ)
∂

∂ti

∣∣∣∣
2 )

=c2

(∥∥∥∥
∂

∂ti

∥∥∥∥
2

WP

+

m∑

j=1

|∂i log lj |2
)
.

(6.5)

By Lemma 6.3 we know that

|∂i log lj |2 =
∣∣∣∣∣
−πujbji
lj

∣∣∣∣∣

2

=
1

4

∣∣∣bji
∣∣∣
2
.

From Lemma 4.2 we have
m∑

j=1

|∂i log lj|2 =
1

4

u2i
π2|ti|2

(1 +O(u0)).

From the above formulas and Corollary 4.1 and Corollary 4.2 we know that there is a constant
c3 such that ∥∥∥∥

∂

∂ti

∥∥∥∥
2

WP

+

m∑

j=1

|∂i log lj|2 ≤ c3τii
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which implies

(g1/l)ii ≤ c4τii(6.6)

where c4 is another constant. The same argument works when i ≥ m + 1. So formula (6.6)
holds for all i. Since the McMullen metric is bounded from below by a constant multiple of the
Ricci metric and the diagonal terms of its metric matrix is bounded from above by a constant
multiple of the diagonal terms of matrix of the Ricci metric, a simple linear algebra fact shows
that there is a constant c5 such that

τ ≥ c5g1/l.

The theorem follows from a compactness argument as we have used in previous sections.
�

7. Appendix: the proof of Lemma 4.10

We will prove Lemma 4.10 in this appendix which consists of some computational details.
We fix a nodal surface X0 which corresponding to a codimension m boundary point in Mg. Let
(t, s) be the pinching coordinates near X0 such that X0,0 = X0. Fix (t, s) with small norm, we
denote Xt,s by X. In the curvature formula (3.30), we let i = j = k = l ≤ m. The term G2 is a
summation of the following four types of terms:

(1) I = hαβ
{
σ1σ2

∫
X

{
T (ξk(eij))ξl(eαβ) + T (ξk(eij))ξβ(eαl)

}
dv

}
with (α, β) 6= (i, i);

(2) II = hαβ
{
σ1

∫
Xs
Qkl(eij)eαβ dv

}
with (α, β) 6= (i, i);

(3) III = τpqhαβhγδ
{
σ1

∫
Xs
ξk(eiq)eαβ dv

}{
σ̃1

∫
Xs
ξl(epj)eγδ) dv

}

with (p, q, α, β, γ, δ) 6= (i, i, i, i, i, i);
(4) IV = τpjh

pqRiqkl with (p, q) 6= (i, i)

where T = (�+ 1)−1. Now we check that the norm of each type is bounded by O
( u5

i
|ti|4

)
. In the

following, C0 will be a unversal constant which may change but is independent of the Riemann
surface as long as (t, s) has small norm.

Case 1. We check that each term in the sum IV has the desired bound. By Corollary 4.2
and its proof we have

Riqii =





O
( u5

i
|ti|3

)
, if q ≥ m+ 1;

O
( u5

iu
3
q

|ti|3|tq |
)
, if q ≤ m, and q 6= i;

O
( u5

i
|ti|4

)
, if q = i.

By using the above formula and Corollary 4.1 and 4.2, and by a case by case check we have

|τpihpqRiqii| = O
( u7i
|ti|4

)
.

This proves that the norm of the last term is bounded by = O
( u5

i
|ti|4

)
.
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Case 2. We check that each term in the sum I has the desired bound. Firstly, when
i = j = k = l, we have

σ1σ2

{
T (ξk(eij))ξl(eαβ) + T (ξk(eij))ξβ(eαl)

}

=2
{
T (ξi(eii))ξi(eαβ) + 2T (ξi(eiβ))ξi(eαi) + T (ξi(eii))ξβ(eαi)

}

+ 2
{
T (ξi(eαi))ξi(eiβ) + 2T (ξi(eαβ))ξi(eii) + T (ξi(eαi))ξβ(eii)

}

+ 2
{
T (ξα(eii))ξi(eiβ) + T (ξα(eiβ))ξi(eii) + T (ξα(eii))ξβ(eii)

}

+ 2T (ξα(eiβ))ξi(eii).

(7.1)

We estimate the integration of each term in the above summation. To estimate these terms, we
note that, if α 6= β or α = β ≥ m+ 1, then

∣∣∣hαβ‖fαβ‖1
∣∣∣ = O(1).(7.2)

Also, we have

‖P (eαβ)‖0 ≤ ‖eαβ‖2 ≤ C0‖fαβ‖1.(7.3)

These formulae can be checked easily by using Theorem 4.1, Corollary 4.1, Lemma 4.3 and
Lemma 4.7.

Now we estimate
∣∣∣hαβ

∫
X T (ξi(eii))ξi(eαβ) dv

∣∣∣. If α 6= β or α = β ≥ m+ 1, we have

∣∣∣∣
∫

X
T (ξi(eii))ξi(eαβ) dv

∣∣∣∣ ≤
(∫

X
|T (ξi(eii))|2 dv

∫

X
|ξi(eαβ)|2 dv

) 1

2

≤
(∫

X
|ξi(eii)|2 dv

∫

X
|ξi(eαβ)|2 dv

) 1

2

=

(∫

X
fii|P (eii)|2 dv

∫

X
fii|P (eαβ)|2 dv

) 1

2

≤‖P (eii)‖0‖P (eαβ)‖0hii ≤ C0‖fii‖1‖fαβ‖1hii = O
( u5i
|ti|4

)
‖fαβ‖1

since ‖fii‖1 = O
( u2

i
|ti|2

)
. Together with formula (7.2) we have

∣∣∣∣h
αβ

∫

X
T (ξi(eii))ξi(eαβ) dv

∣∣∣∣ = O
( u5i
|ti|4

)
.

If α = β ≤ m and α 6= i, we have

∣∣∣∣
∫

X
T (ξi(eii))ξi(eαα) dv

∣∣∣∣ ≤
∣∣∣∣
∫

X
T (ξi(eii))ξi(ẽαα) dv

∣∣∣∣

+

∣∣∣∣
∫

X
T (ξi(eii))ξi(eαα − ẽαα) dv

∣∣∣∣ .
(7.4)

From Lemma 4.7 we have

‖P (eαα − ẽαα)‖0 ≤ ‖eαα − ẽαα‖2 ≤ ‖fαα − ẽαα‖1 = O
( u4α
|tα|2

)
.
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So

∣∣∣∣
∫

X
T (ξi(eii))ξi(eαα − ẽαα) dv

∣∣∣∣ ≤ ‖P (eαα − ẽαα)‖0
∣∣∣∣
∫

X
|T (ξi(eii))||Ai| dv

∣∣∣∣

≤‖P (eαα − ẽαα)‖0
(∫

X
|T (ξi(eii))|2 dv

∫

X
fii dv

) 1

2

≤‖P (eαα − ẽαα)‖0
(∫

X
|ξi(eii)|2 dv

∫

X
fii dv

) 1

2

=‖P (eαα − ẽαα)‖0
(∫

X
fii|P (eii)|2 dv

∫

X
fii dv

) 1

2

≤‖P (eαα − ẽαα)‖0‖eii‖2hii = O
( u4α
|tα|2

)
O
( u5i
|ti|4

)
.

(7.5)

Since the support of ẽαα is inside Ωα
c , we know the support of P (ẽαα) is inside Ω

α
c . From Lemma

4.8 we have

∣∣∣∣
∫

X
T (ξi(eii))ξi(ẽαα) dv

∣∣∣∣ =
∣∣∣∣∣

∫

Ωα
c

T (ξi(eii))ξi(ẽαα) dv

∣∣∣∣∣
≤‖Ai‖0,Ωα

c
‖T (ξi(eii))‖0|P (ẽαα)|L1 ≤ ‖Ai‖0,Ωα

c
‖ξi(eii)‖0|P (ẽαα)|L1

=‖Ai‖0,Ωα
c
‖Ai‖0‖P (eii)‖0|P (ẽαα)|L1 = O

( u3i
|ti|

)
O
( ui
|ti|

)
O
( u2i
|ti|2

)
O
( u3α
|tα|2

)

=O
( u6i
|ti|4

)
O
( u3α
|tα|2

)
.

(7.6)

By combining the inequalities (7.5) and (7.6) we know that

∣∣∣∣
∫

X
T (ξi(eii))ξi(eαα) dv

∣∣∣∣ = O
( u5i
|ti|4

)
O
( u3α
|tα|2

)
.

From Lemma 4.1 we have

∣∣∣∣h
αα

∫

X
T (ξi(eii))ξi(eαα) dv

∣∣∣∣ = O
( u5i
|ti|4

)
.

We finish the estimate of the first term in the sum (7.1). The integration of other terms in this
sum can be estimated in a similar way.

Case 3. We check that each term in the sum III has the desired bound. By Lemma 4.2 we
first prove that when q 6= i and k = i,

∣∣∣∣h
αβ

{
σ1

∫

X
ξk(eiq)eαβ dv

}∣∣∣∣ =




O
( u

5
2

i
|ti|2

)
O
( uq

|tq|
)
if q ≤ m

O
( u

5
2

i
|ti|2

)
if q ≥ m+ 1

(7.7)
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Again, we do a case by base check. First we estimate
∣∣∣hαβ

∫
X ξi(eiq)eαβ dv

∣∣∣. If α 6= β or

α = β ≥ m+ 1, we have
∣∣∣∣
∫

X
ξi(eiq)eαβ dv

∣∣∣∣ =
∣∣∣∣
∫

X
eiqξi(eαβ) dv

∣∣∣∣ ≤
(∫

X
|ξi(eαβ)|2 dv

∫

X
|eiq|2 dv

) 1

2

≤
(∫

X
fii|P (eαβ)|2 dv

∫

X
|fiq|2 dv

) 1

2

≤ ‖P (eαβ)‖0
(∫

X
fii dv

∫

X
fiifqq dv

) 1

2

≤‖P (eαβ)‖0‖Aq‖0hii = O
( u3i
|ti|2

)
‖fαβ‖1‖Aq‖0.

(7.8)

This implies ∣∣∣∣h
αβ

∫

X
ξi(eiq)eαβ dv

∣∣∣∣ = O
( u3i
|ti|2

)
‖Aq‖0.

If α = β ≤ m and α 6= i, we have
∣∣∣∣
∫

X
ξi(eiq)eαα dv

∣∣∣∣ ≤
∣∣∣∣
∫

X
ξi(eiq)ẽαα dv

∣∣∣∣+
∣∣∣∣
∫

X
ξi(eiq)(eαα − ẽαα) dv

∣∣∣∣ .

For the second term in the above formula, we have
∣∣∣∣
∫

X
ξi(eiq)(eαα − ẽαα) dv

∣∣∣∣ =
∣∣∣∣
∫

X
eiqξi(eαα − ẽαα) dv

∣∣∣∣

≤
(∫

X
|eiq|2 dv

∫

X
|ξi(eαα − ẽαα)|2 dv

) 1

2

≤
(∫

X
|fiq|2 dv

∫

X
fii|P (eαα − ẽαα)|2 dv

) 1

2

≤‖P (eαα − ẽαα)‖0
(∫

X
fiifqq dv

∫

X
fii dv

) 1

2

≤ ‖eαα − ẽαα‖2‖Aq‖0hii

≤‖fαα − ẽαα‖2‖Aq‖0hii = O
( u4α
|tα|2

)
O
( u3i
|ti|2

)
‖Aq‖0.

For the first term in the above formula, we have
∣∣∣∣
∫

X
ξi(eiq)ẽαα dv

∣∣∣∣ =
∣∣∣∣∣

∫

Ωα
c

ξi(eiq)ẽαα dv

∣∣∣∣∣ ≤ ‖Ai‖0,Ωα
c
‖P (eiq)‖0

∫

Ωα
c

ẽαα dv

≤ ‖Ai‖0,Ωα
c
‖eiq‖2

∫

Ωα
c

ẽαα dv ≤ O
( u3α
|tα|2

)
O
( u3i
|ti|

)
‖fiq‖1.

By combining the above two formulas we have the desired bound for
∣∣hαα

∫
X ξi(eiq)eαα dv

∣∣.
When α = β = i, by using a similar method we can show that

∣∣∣hii
∫
X ξi(eiq)eii dv

∣∣∣ =

O
( u3

i
|ti|2

)
‖Aq‖0. From the above estimates we have proved that the term

∣∣∣hαβ
∫
X ξi(eiq)eαβ dv

∣∣∣
in formula (7.7) has the desired estimate. By using similar method we can show that the other
terms in (7.7) have the desired estimate. This proves formula (7.7).

In a similar way, in the case q = i we can prove that, when k = i,

∣∣∣∣h
αβ

{
σ1

∫

X
ξk(eiq)eαβ dv

}∣∣∣∣ =




O
( u3

i
|ti|3

)
, if α = β = i;

O
( u4

i
|ti|3

)
, if α 6= i or β 6= i.

(7.9)

By combining formulas (7.8) and (7.9) we conclude that each term in the sum III is of order

O
( u5

i
|ti|4

)
.
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Case 4. We need to show that each term in the sum II is of order O
( u5

i
|ti|4

)
. This case can

be proved by a case by case check by using the similar estimates as in the third case together
with Lemma 4.9. This finishes the proof.

�

Remark 7.1. The method we estimate these terms can be directly applied to the computations
of the full curvature tensor and we can get certain bounds for the bisectional curvature and the
Ricci curvature of the Ricci metric as well as the perturbed Ricci metric.
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Conférences de l’Union Mathématique Internationale [Lecture Series of the International Mathematics Union],
8.

42


	1. Introductions
	2. The Weil-Petersson metric
	3. Ricci metric and its curvature
	4. The asymptotics of the Ricci metric and its curvatures
	5. The perturbed Ricci metric and its curvatures
	6. Equivalent metrics on the moduli space
	7. Appendix: the proof of Lemma 4.10
	References

