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0 Introduction and statement of results

Let M be a compact complex manifold. Denote by % (M) the space of all
Kihler metrics on M with non-positive holomorphic bisectional curvature. Since
the summation of two such metrics still has the same curvature property, % (M)
forms a convex subset in ¥(M), the linear span of the space of all Kahler
metrics on M.

Definition. M is said to be semi-rigidly non-positively curved, or simply semi-rigid,
if # (M) is not empty, and its linear span in €(M) is finite dimensional.

It is not hard to see that for a finite unbranched cover n: M - N, M is
semi-rigid if and only if N is so; and for a product manifold M=M xM,,
M is semi-rigid if and only if both M, and M, are so.

Apparently, if there is a metric g on M which has strictly negative holomor-
phic bisectional curvature at a point xeM, then any small perturbation of g
near x is also in & (M), so M cannot be semi-rigid. In other words, semi-rigidity
is likely to occur only when the cotangent bundle T} is semi-ample but not
ample in certain strong way, which could give lots of flat directions for the
curvature of any g in # (M). This would tie the elements of % (M) together.
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For example, any complex torus M =T" is semi-rigid, since each ge# (M)
must be flat, and the flat metrics on M are contained in a finite dimensional
linear space.

But certainly it is more interesting to consider the case when M is of general
type. The first result in this direction was obtained by Mok in [M]. Let us
state the following special case of his main theorem:

Theorem (Mok) Let M =D/I" be a smooth compact quotient of an irreducible
bounded symmetric domain of rank bigger than one. Then F (M)=R" {g,}, i.e,
the non-positively curved metric on M is unique up to a constant multiple.

In this paper, we study a class of general type manifolds which are semi-rigid
(but not rigid in general). Our main results can be stated as the following.

Theorem A. Let (M, g) be a n-dimensional compact Kdhler manifold with:

(1) n=>2, and (c? —c;) [@,]" " *=0 for a Kéhler metric h;

(2) ge F (M), i.e, the holomorphic bisectioral curvature is non-positive;

(3) {xeM:Ricj(x)+0} is dense in M, and {xe M:Ric; '(x)=%0} is a Zariski
open subset in M.

Then there exists an isometric holomorphic immersion f: (M, §)—(C"*"', go)
from the universal covering space of (M, g) into the complex euclidean space,
and for each yen, (M), there is a rigid motion ¢, in C"*' such that foy=¢.f.

Theorem B. Let (M, g) be as in Theorem A. Then for any he & (M), (M, h) also
satisfies the condition (3); and for any two isometric holomorphic immersions
fi(M,3)—(C"*, go) and f®: (M, h)—>(C""L, g,), there always exists an affine
transformation ¢ in C"*! such that f®=¢of.

In particular, M is semi-rigid.

Note that by the beautiful theorem of Fulton and Lazarsfeld [F-L], the semi-
ampleness of the cotangent bundle T} gives a bunch of inequalities on the
Chern classes, where ¢ —c,=0 is among the first a few ones; and all these
inequalities become sharp when T,} is ample. Therefore, the condition (1) in
Theorem A says in a strong tone that T} is not ample. The third condition
guarantees that M is of general type, and it is satisfied by any smooth theta
divisor in a complex torus T"*!,

From the differential-geometric point of view, Theorem A says that locally
(M, g) looks like a piece of hypersurface in the complex euclidean space; while
Theorem B implies that for any two metrics in & (M), their holomorphic bisec-
tional curvature tensore are conformal to each other.

1 Decomposition of the holomorphic bisectional curvature

Through out this section, let us assume that (M, g) is a fixed Kéhler manifold
satisfying the conditions in Theorem A.

Under any tangent frame {e,,...,e,}, let 8, @ and g be the nxn matrices
of the connection, curvature, and the metric itself. Let Q=g be the matrix
of holomorphic bisectional curvature. Also write e="(e,,...,e,), @ =Qy,..., ©)
as column vectors, where {¢,,...,¢,} is the coframe dual to e. Let U, denote
the dense open subset {xe M: Ric;(x)+0} = {xe M: Ric,(x) <0}.
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Proposition 1 For any xeM and any ve T M, (Q,,)?=0.

Proof. Let n: P=P(T,;) > M be the projectified tangent bundle and L the dual
of the tautological line bundle on P. For any (x,[v])eP, let (z4,...,2,) be a
holomorphic coordinate contered at x, and {e,,...,e,} a holomorphic tangent
frame near x which is normal at x and [e, (0)]={[¢]. Then (z, t)=(z,,..., z,

ts,-..,t,) gives the holomorphic coordinates of the point (z,[ Y ot g,-;]) near

(x,[v]). Here t, = 1. hi=1
Let ¢ be the metric on L induced by g, and @ be the Kédhler form of h
n (1) of Theorem A, then at (x, [v]),

Cl(La g)i(x,[u])=aglog( Z t gl] Z))

(0,0)

Q _ _
=——224dt, Adty+ ... +dt, Adt,

v

- (cy (L, g))n+ N (@™ %) l¢x. )]

2
=c(—§ﬂ) An*(@" Y Aa(diyndty+ .. +di, Adt) T 20.
vo

Since ¢?—c¢, - [w]" ?=0and '~ "' n*C,+ ... + n*c,=0 as cohomology
classes, we get the pointwise identity:

Qo) A (@)™ 2=0

hence (2,,)>°=0as ,,<0. QED
Lemma 1 Foranyi, j kin{l1,2,...,n}:

Qi A Q=91 2;;=0
(Qi))* =Qur A Qe+ Qe A Q;:=0.

Proof. Let v=e;+te;. Then Q,,=Q;;+1Q;;+1tQ;;+11Q;;. Since (Q,,)*=0 for
arbitrary t, one gets Q,,/\Q,j Q51 (82:7)° —0 Slmllarly, let v=e,4+te;+se, and
consider the 3 terms in (2,,)* =0, one gets ;A Qp+ QA Q; r—O QED

Proposition 2 For any xeU,, and any tangent frame e near x, there exist (1, 0)-
Jorms ., ..., ¥, in a neighbourhood of x, such that

Q=—yry*
where y="(y,..., ¥,), and y*="y.

Proof. Without loss of generality, we may assume that e is an unitary frame.
For each i between 1 and n, write Q;;= (pA(p Then rank (4)< 1 by Proposition 1,
and A(x)+0 as xeU,, hence rank(4)=1 in a small neighbourhood of x. Since
A is Hermitian and semi-negative definite, we get Q;;= — W, AY; for some (1, 0)-
form ;. By Ric, <0,  forms a coframe near x.
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For any i<j, writ¢ ;7= Y c¢u¥xA Y, Then by Lemma 1, Q;=c;¢; A Y;
k,I=1
+c;i¥;AY;, and c;5-¢;;=0, |ei5|? +c;1* = 1. By the first Bianchi identity ‘o A ©
=0, here 2=@ as ¢ is unitary, we know that c;; must vanish. Therefore, Q;;
=c;j¥; A, =1, and |¢;52 =1.
Let C=(c;;. Then C is a nowhere zero Hermitian matrix. By the last equality
in Lemma 1, rank(C)=<1, hence C=b-b* for a column vector b. Replace Y,
by b;ir;, we get the desired decomposition of Q. QED

Proposition 3 For any xeU,, and any tangent frame e near x, let \y be a coframe
near x satisfying Q= —y AY* as in Proposition 2. Then there exists a 1-form
A near x such that A= — 2, dy =0 Ay — A Ay and d /.= —Ric, (0 is the connection
matrix under e).

Proof. Apgain we may assume that e is unitary. Since do=—'0 A, and ¢
forms a coframe, one can write diy =0 Ay + & Ay for some n xn matrix of 1-
forms & Plug it into the second Bianchi identity dO@=0A0—@ A0, and
@ =Q0=— AY*, one gets:

EAY AY* Y AY* AEF=0.
Its (2, 1)-parts gives:

EQODAYAY*F+ Y A* AEOD*=0,
This implies that

EOV%
ELO A= —a Al

Therefore
EAy=—(a—)AY.

Let A=a—a, then
A=—A; dy=0ry—iny.

Differentiate the last equality, one gets dA= —Ric,. QED

2 Curvature decomposition in the degenerate case

Let V, be the Zariski open set {xeM: Ric} " !(x)#0}. In this section, we shall
consider the decomposition of Q in V,, since it will be needed later in the
proof of Theorem A.

Let us fix a point xe V;\U;. Choose an unitary frame e with the dual frame
¢ such that

—Ric,=4, 0, AP+ ... + 4,0, A 0,

where 4, = ... =2 4,.;> 4,20 in a neighbourhood V of x. Write U=VnU,, then

A, >01in U and =0 along N\ U.

Since Q;;<0, and tr,Q;{x)=Ric(e;, )|, = — 4;(x), hence Q;;(x)+0 for 1<i
<n-1and Q,,(x)=0.

Therefore, there exist (1,0)-forms y,..., ¥, in V such that Q;;= —y; A J;

foreachisn—1l,and y; A ... AY,_,+0in V.
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n—1
Write ;= ), a;;¢;+b;p,, and A=(a;). Then Q,,(x)=0 gives *AA(x)
i= 1
=diag(i,(x),..., A,—1(x)) >0, hence det 4(x)=0. Thus by shrinking V if neces-
sary, we have % AV, AP, E0In V.
For any yeU, PropositionZ gives that Q= —y’ A%’ for some coframe
Y’ =B near y. Then for 1 <i<n—1, Y=o, near y for some |¢|=1. By the
first Bianchi identity: ‘o A ® =0, hence ‘B=B.

Write:
:(H b)
b e
Since
Ric,=tr(Q)= —"Y' Ay'= —'o(BB)§
we have
HH+b'b=diag(A,,..., A,_,)
Hb+bc=0
'bbh+ci=2,
therefore

n—1 n—1
Z li|bi|2=)~n Z |bi|2-
i=1 i=1

This together with the fact that 4, = ... 2 4,., > 4,20 implies that near y:
b=0; Qup=—CCP NPy

Now if we write 2,,= —'¢ E¢ in V, where

=(F h)zo.
th a/

Then h=0 in U, hence in V. Since rank(E) <1, while in U, a=|c{* >0, therefore
F=0in U, hence in V. Namely we have

Qnﬂ=_¢’n/\ ns lpn=r(pn
in the whole neighbourhood V.

Use the denseness of U and {,...,¥,—, @, as the coframe, a little modifi-
cation of the proofs of Propositions 2 and 3 gives the following:

Proposmon4 For any xeV, and any frame e near x, there exist (1,0)-forms
Wys..., W, and 1-form i ina nelghbourhood of with 2= — A such that

Q=—ynrY; dy=0ry—ind; di=—Ric,.
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3 Proof of Theorem A

First let us recall the fundamental theorem for complex hypersurfaces.

Suppose (X, g} is a n-dimensional Kéhler manifold. Let {e,,...,e,} be a tan-
gent frame, with {¢,,...,¢,} its dual frame. Still denote by 6, Q the matrix
of connection and holomorphic bisectional curvature,

For a covariant 2-tensor 4 of type (2,0), write A= Y a;;¢0,® ¢;. Let ¢,

n i,j=1

=Y a;;¢;. Then A can be written as ‘9 ®y and A is S)Jlmmetric if and only
ji=1

if ‘o Ay =0, where o ="0,,..., ®,), Y="¥,,...,¥,) are the column vectors. Let

us call ¢ the associated (column of) (1, 0)-forms of A under the frame e.

Definition. A covariant 2-tensor A is called a second fundamental tensor, if A
is symmetric, of type (2,0), and there exists a 1-form 1 with 1= — 4, such that
the associated (1, 0)-forms ¥ of A satisfies:

Q=—ya;, dyp=0Ay—Ainy; di=—Ric,.

Note that A (once exists) is uniquely determined by A (or ) while the above
conditions are independent of the choices of the frames. Now we can state
a weak version of the fundamental theorem for complex hypersurfaces as the
following:

Theorem. Let (X, g) be a n-dimensional Kdhler manifold with Ric, being negative
definite in a dense open subset. Assume that for any xe X, there exists a second
Sundamental tensor near x. Then:

(1) For any xe X, there exists a neighborhood U of x and an isometric holo-
morphic immersion from U into C"*!, the (n+ 1)-dimensional complex euclidean
space; and such map is unique up to a rigid motion in C"**,

(2) If furthermore X is simply-connected, then there is a global isometric holo-
morphic immersion f X - C"*1, which is also unique up to a rigid motion. (In
particular, for any isometry y on X, there exists a rigid motion ¢, in C"*! such

that foy = ,°f.)

The proof is standard. Its key point is that the following system of linear equa-
tions has local existence and uniquencess for any initial conditions:

VE—pA=0
dp—pi+g(¢ A)=0

where p is a function, ¢ is a (1, 0)-form, and g(£, A) denote the 1-form )| ¢ gy ;
" i,j=1
under a frame e (with @ its dual frame and &= ) ¢, qo,.). !

i=1

For any point xeX and any unitary coframe {¢,,...,0,} at x, let (&, p*)

be the unique solution near x of the above system together with the initial
condition

(& (%), p*(x))=(0,,0); v=1,...,n
& (x) p"(x)=(0,1); v=n+l
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then the symmetry property ‘@ A =0 will imply that £*’s are exact forms. Write
E=df” then f=(f%,...,f™" ') is an isometric holomorphic immersion into C**!
(with (p',..., p"*') an unit normal vector field along its image).

When Ric, is negatively definite in a dense subset, A (or equivalently, ¥)
is determined by the curvature € up to a multiple function t with |t|= 1. While
when 4 is replaced by 14, 4 will be changed to A—t"'dr. In this case the
&-part of the solution remains the same, that is to say, different second fundamen-
tal tensors on (X, g) will change the isometric immersions from X into C"~!
only by the composition of a rigid motion.

Now let us turn to the proof of Theorem A, but first we need the following:

Lemma 2 Suppose that (M, g) satisfies the conditions in Theorem A. Then M
is projective, with canonical line bundle K, ample, and the analytic subset M\ V,
={xeM: Ric]”'(x)=0} is of codimension at least two.

Proof. Since U, ={xeM: Ric; %0} is not empty, so K3 =(—c,)">0. By the Rie-
mann-Roch Theorem,

n

(mKM)—K m'+0(m" 1),

On the other hand, since Ric<0 and <0 in a non-empty set, a generalized
version of the Kodaira vanishing theorem (see Theorem 2.27 in [S-S], for exam-
ple) says that h?(mK,,)=0 for any ¢>0 and m=2. So M is of general type,
hence projective as it is Kédhlerian.

By a result of Kawamata [K], if the canonical line bundle K,, of a general
type projective manifold M is not ample, the M will contain a rational curve.
So in our case, K,, must be ample.

Now if {xeM: Ric; '=0} contains a divisor D, then K}, '-D=0 which
contradicts the ampleness of K,,, therefore this set is of codimension at least
two. QED

Proof of Theorem A. Let m: (M, §) —(M, g) be the universal covering space.
Then n~ 'V, is still simply connected as its complement is of codimension at
least two. Now by Proposition 4 and the fundamental theorem for complex
hypersurfaces we get an isometric holomorphic immersion f: (n~'V,,§)
—(C"*1, g,), which is unique up to a rigid motion in C**!, The Hartogs’ exten-
sion theorem then gives us the map that we want. QED

Remark. One can replace the condition (3) in Theorem A by the following:

(3) M is of general type, and g is real analytic.

In this case U, is not empty (otherwise K3 =0, so the numerical Kodaira
dimension of M is less than n). The above argument shows that any simply-
connected open subset in U, can be isometrically immersed into (C"“, go). By
the result of Calabi [C] one has the global isometric immersion f: (M, §) —» (M, g).

4 The conformal relations of holomorphic bisectional curvature

Throughout this section, let us assume that (M, g) satisfies the conditions in
Theorem A, and he # (M) is another metric on M with non-positive holomor-
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phic bisectional curvature. Let S=V*— V2, and s=0(h)—0(g) be the matrix of
S under a frame e.

Lemma 3 In U, s can be locally written as s=1'a, where y is as in Proposition 2
and a="a,..., o) is a column vector of smooth functions.

Proof. Since h+ g also belongs to 4 (M), by Proposition 1, we have (Q,,(h+ g))?
=(Q,,(N)?=0. Let n=Q(g) + Q(h)—Q(h+ g), then it is easy to verify that:

n=sgh+g) ' h's
under any frame e. This implies # =0, therefore the vanishing of the square of

(= Qup(h+g) =(—2,,8) +(— s (h) + 15
gives:
Q5@ A Moo=, A Q,:(h)=0
for any v.
For any xeU,, let e be a g-unitary frame near x such that the matrix of
h under e (also denote by h) is diagonal:

h=diag(a,,...,q,).

By Proposition 2, there exist ¥ such that Q(g)=—y A'Y. Write v= ) v,e;, then
i=1

we have i=

Qvﬂ=—l//u/\ v '//L=Z vi'ﬁi

i=1

n ak n n
Noo= 2. ( v-s-k)/\< v-s-k)
v ) 1+ak v = )

j=1

therefore Y, A Y. v;s;, =0 for each k. This implies s;; =y, «; for each i,j. QED
j=1
Next we prove the following:

Proposition 5 There is a positive constant ¢ such that:
Q(h)-det(h)=c-Q(g)-det(g).

Proof. We need only to prove this identity in the dense open subset U,. For
any direction v at a point xe U, by the fact (2,,(h)>=Q,,(h) A 2,,(g)=0 and
Q,.(8)= —, A, we know that

Quﬂ(h)=pugvﬁ(g)

where p, depends (continuously) on the direction ». Since both g and h are
Kdhlerian, we get:

(pv—pu)Rvﬂuﬂ(g)=0

for any two tangent directions u, v at x. As Ricy(x) <0, R,,4(g)+ 0 for generic
u and v. Hence p = p(x) is independent of the directions.
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Write Q(h)-det(h)=f(x)-Q(g) -det(g). f is a non-negative smooth function
in U, which is independent of the choices of the frames. We want to show
that df =0.

Fix a point xel,, and let e be a holomorphic tangent frame near x which
det(h) then:
det(g)’ '

is g-normal at x, i.e., g(x)=1I, 0,(x)=0. Write {=hg™', f=
Oh)-¢ f=1-0()

(recall that @,-g=2Q,). Differentiate the above equality and take the trace, we
have:
df ARic,=tr 0(0,¢P)
=tr0(0, &) B+1tr (0,8 Adf
=tr{sAn @, &)B+tr (@, A Btr(s)
=/f{tr () Atr(Q)+1tr (s A Q,)}

= —f{tr (W' atr (Y AY)Hir (Y lany Alp)}
=0.

Therefore df =0, hence df=0 in U, as f is real-valued. This implies that f
is constant in each connected component of U,. Since (M, h) cannot be flat,
and ¥, is connected, it is not hard to see that these constants must be
equal. QED

Corollary 1 If (M, g) satisfies the conditions in Theorem A, then any he # (M)
also satisfies the same conditions, and U, =U,; V,=1,.

5 Proof of Theorem B

Again let (M, g) be a Kihler manifold satisfying the conditions in Theorem A,
and he# (M) be another Kéhler metric on M with non-positive holomorphic
bisectional curvature. By Corollary 1, (M, h) also satisfies those conditions, so
Theorem A gives isometric holomorphic immersions:

[i(M,8)—>(C"* Y go);  f™:(M,B)—(C™, go)

from the universal covering spaces into the complex euclidean space. In this
section we are going to show that there exists an affine transformation ¢ in
C"*! such that f®=¢of.

First of all let us recall that in the fundamental theorem for complex hyper-
surfaces, a second fundamental tensor A4 for (M,g) with associated 1-form A
gives a linear system (*,):

VéE—pA=0
dp—pi+g( A)=0

and if {(¢% p*); v=1,2,...,n+1)} is a basis of solutions of (*,) under suitable
initial conditions, then &’s are all exact: &*=df”, and f=(f",...,f™ gives the
local isometric immersion. For (M, h), one has parallel situations and the corre-
sponding system (#,). So for our purpose it would be sufficient to show that
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the {-part solutions of (*,) and (*,) are the same. In order to do this, first
let us fix some notations,

Locally near a point xelU,=Uj,, let , 2 be as in Proposition4 for
(M, g), and ¥/, A’ for (M, h). Then y, ¢’ both give local coframes near x. By
Proposition 5 we have

Y=t Qu=e*tQ,
where both a and b are real. Also be Lemma 3, we can write s=0,— 0, =y "a.
Lemma 4 Under the above notations,
N=)—idb+Ca—0da; 20a=—"Yu.
Proof. Plug ' =e*?y and dy=0A Yy —AAyinto dy =0 af' — A’ Ay, we get:
(A —A—s+da+idb)ny'=0.

Since ' is a coframe, the (0, 1)-part of the braces must vanish, while s is of
type (1, 0), hence
V=A—idb+da—ca.

de: i, so (when e is a holomorphic frame):

]
de

20a=0logdetg—alogdeth= —trs=—"ya.

Note that the two very end terms are independent of the choice of the frame,
therefore this equality holds for any frame e. QED

n

Lemma 5 For any (1,0)-form &= Y &, ¢, write 6(§)= Y. o;&;. Then:

i=1 i=1
VE-VE=—a()-A.
Proof. By s=y A'axand A="p ® Y ="} ® ¢, a straight calculation shows that:

V,f—vf=s(é)=_z éiS((pi)='Z fi(_sji®(l’j)

i=1

fi¢j°‘i®¢j= —ad(f)-A. QED

1

.M=

fl

i
Proposition 6 If (&, p) is a solution of (x), let p'=e """ (p—a(&)). Then (£, p')
is a solution for (*;).
Proof. Consider the system (*,):

VE-p' A'=0

dp'—p' A +h(Z, A)=0.
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Since (&, p) satisfies (x,) and p'=e™*"?(p—a(&)), the first equation of (x,) is
immediate by Lemma 5:
Vi=Vi—0()A=pA—0a(l)A=p A

For the second equation, let B denote the value of its right hand side multiply
by e¢**®. Then by Lemma 4 we have:

B=e"*{dp'—p' N+ h( A)}
=d(p—a(&)—(p—o(&)(da+idb+i—idb+0da—0da)+e**h(& A)
=d(p—a(&)—(p—a(ENA—"Ya)+e**h(& A)
=(dp—ph)—da(&)+a(Q)i+(p—a)Ya+e*h( A)
=e**h(¢ A)—g(¢ A)~do(&)+a(O)A+(p—a()Pa.

Write &='(¢,,...,&,) also as the column vector of its coefficients under the
coframe ¢, then as it satisfies (*,), one has: V(€@)=d"¢®¢—-"¢'0@¢p=pA
=p"Y ® @. Hence d'&°0+p 'y and:
do(&)=d(*ta)="¢"0a+"Etda+p Y
while
e *h(g, A—g(& A)="¢*'h™ —"g" )Y
therefore
B="¢{(e**h ' —'g YW —"0a—da+al—a'Pa}.

Let us denote the { } term by 5, which is a column vector of 1-forms. In order
to show that # vanishes, it suffices to check it under a special frame. For any
point x, let e be a holomorphic frame which is g-normal at x, ie., g(x)=1,
dg(x)=0.So at x, =0, ' =s=y‘a, and:

ds=d(@'—0)=@' +0 A —-O=Qh ' —Qg '+sAs.
By Proposition 5, and take trace, we have that at x:
dis=(*h 1 -lg Ay —"snaly.
On the other hand,
dis=daY)=doAYy—al 'Y
therefore at the point x,
{(e**h ™' —'g Y —"sa—da+al} A'Yy=0

hence n(x)=0. Since x is arbitrary, we proved that n=0, so B=0 as we
wanted. QED

Proof of Theorem B. Let (M,g) and he % (M) be as in Theorem B. By Corol-
lary 1, (M, h) also satisfies the same conditions. Hence there are isometric holo-
morphic immersions:
[:(M,8)—~(C" Y, go)
SO (M, B)—(C" 7, go)
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from the universal covering spaces into the complex euclidean space. By Proposi-
tion 6, we know that locally f and f® differ only by an affine transformation
in C"*1, that is, there is an open covering {#,} of M’ and affine transformations
¢, in C**' with f®|, =¢,of|4, for each o. For any «, f with %, %+ ¢,
one has ¢,°¢z=id on f(%,n%U). Since the fixed point set of any non-trivial
affine transformation is an proper affine subspace (or empty), while f(%,N %)
can not be flat as Ric,<0 in a dense subset. Therefore ¢,=¢; whenever
U,N%g* ¢, hence all the ¢,’s are the same, and Theorem B is proved. QED

In the following, let us give an alternative and shorter proof of Theorem B,
by using the conformal relation Proposition 5 and Theorem A (for both g and
h). This proof is suggested to us by the referee of this paper:

Proposition 6 Suppose f, f' are two holomorphic embeddings from a small piece
of complex n-manifold X into the complex Euclidean space (C"*', g,). Let A,
A’ be any second fundamental tensor corresponds to fand f', respectively. Suppose
o: X - X is a biholomorphism such that A(u,v)=0if and only if A'(c, u,0,0)=0.
If A or A’ is of rank =2 somewhere, then o is induced by an affine transformation
on C"L,

Proof. Without loss of generality, let us assume that ¢ is the identity map,
and locally the two hypersurfaces are given by graphs z,,,=F(z,,...,z,) and
Zy+1=0G(zy, ..., 2,), respectively. Under the coordinate {z,,...,z,}, a straight-
forward calculation shows that the bisectional cutvature tensors are Q=
(L+|Fy >+ ... +| £,/ ' OF,,...,0F,) A(OF4,..., 0F,) and similarly for €. Now
the condition in Proposition 6’ says that 4 and A’ are proportional to each
other, therefore  and €' are also proportional. Hence there is a holomorphic
function b on X such that G;;=b-F;; for any 1<i,j<n. From this one gets
by F;;—b;F; =0 for any i,j,k. It follows that b,=0 for all k, since the rank
of the nxn matrix (F;;) is =2 by the assumption. Therefore b is a constant.
So by the relation G;;=b-F;; we know that f and f’ (or rather f'o0) differ
by an affine transformation of C**!. QED

6 An example

In this final section, let us consider the following class of manifolds which satisfies
the conditions of Theorem A.

Assume that M is a n-dimensional compact complex manifold of general
type such that there is a holomorphic immersion y:M —»T"*! from M into
a complex (n+ 1)-torus.

Lemma 6 For any flat metric g, on T"*1, let g=y*(go). Then (M, g) satisfies
the conditions in Theorem A.

Proof. Certainly (M, g) is a compact Kdhler manifold with non-positive holo-
morphic bisectional curvature, and the short exact sequence:

0- TM.—)‘Y*T}H*1=@'A’{+1_):/V‘_>O

implies that A = K,,, and ¢}(M)—c,(M)=0.
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Let D, ={xeM:Ricg(x)=0}. Then ¥,=M\D,_, 2 U, = M\D,. Since M does
not contain any rational curve, by [K], K},>0, hence D,+ M, or U, +¢. Now
it suffices to show that each D, is an analytic subset in M. In order to see
this, locally let (z,..., z,, ) be natural coordinates of T"*! such that a small
piece (say, U) of y(M) is defined by a holomorphic function z,,; =f(z,,..., z,).
Then it is a straight calculation to verify that D, n U= {xe U: rank (F) <k}, where

2

F is the nxn matrix with entries F;;= which are holomorphic

functions. QED 02,0z

Corollary 2 Suppose that y: M —>T"*! is a holomorphic immersion from a n-
dimensional general type manifold into a complex (n+ 1)-torus. Then F (M) consists
of the pull-backs of the flat metrics on T "1,

In particular, M is semi-rigid.

Proof. Let g=v*(g,) be the pull-back of a flat metric on T"*!, and suppose
that & is an arbitrary metric in & (M). Let f:(M', g)—(C"*1, g,) be the lift
of y to the universal covering spaces. By Lemma 6 and Theorems A and B,
there is also an isometric holomorphic immersion

f(h):(Ma E)_’(C"+1’ gO)

for h, and an affine transformation ¢ in C**? such that f® =¢f. Furthermore,
for any deck transformation gen,(M), there are rigid motions ¢,, ¢, in C**!
such that

fea=dpofs [Wo0=def®.

Combine these two identities we get ¢, =dog, ¢~ ! for each cen, (M)

Since f is the lift of y to the universal covers, all ¢,’s are translations, hence
the conjugations ¢, are also translations, which preserve any flat metric on
C"*! hence h=y*(h,) for a flat metric ho on T"*!. QED

Remark. In Theorem A, if one assume that =, (M) contains an abelian subgroup
of finite index, then it is easy to show that there exists an holomorphic isometric
immersion from a finite cover of M into an abelian variety T"*!. However,
we do not know if this should be the case in general.
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