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0 Introduction and statement of results 

Let M be a compac t  complex manifold. Denote  by ~- (M)  the space of  all 
Kfihler metrics on M with non-posi t ive ho lomorphic  bisectional curvature.  Since 
the summat ion  of  two such metrics still has the same curvature  property,  o~(M) 
forms a convex subset in r the linear span of  the space of all K~ihler 
metrics on M. 

Definition. M is said to be semi-rigidly non-positively curved, or simply semi-rigid, 
if ~ ( M )  is not  empty, and its linear span in Cg(M) is finite dimensional.  

It is not  hard to see that  for a finite unbranched  cover n: M ~ N ,  M is 
semi-rigid if and only if N is so; and for a p roduc t  manifold M=Mt  x M 2 ,  
M is semi-rigid if and only if both  M1 and M2 are so. 

Apparent ly ,  if there is a metric g on M which has strictly negative ho lomor-  
phic bisectional curvature  at a point  x~M, then any small per turbat ion of  g 
near x is also in i f (M) ,  so M cannot  be semi-rigid. In other  words, semi-rigidity 
is likely to occur only when the cotangent  bundle T* is semi-ample but not  
ample in certain strong way, which could give lots of  flat directions for the 
curvature  of  any g in f "  (M). This would  tie the elements of  ~ together. 
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For  example, any complex torus M = T "  is semi-rigid, since each g ~ ( M )  
must be flat, and the flat metrics on M are contained in a finite dimensional 
linear space. 

But certainly it is more interesting to consider the case when M is of general 
type. The first result in this direction was obtained by Mok in [M]. Let us 
state the following special case of his main theorem : 

Theorem (Mok) Let M = D / F  be a smooth compact quotient of an irreducible 
bounded symmetric domain of rank bigger than one. Then o~(M)=R + {go}, i.e., 
the non-positively curved metric on M is unique up to a constant multiple. 

In this paper, we study a class of general type manifolds which are semi-rigid 
(but not rigid in general). Our main results can be stated as the following. 

Theorem A. Let (M, g) be a n-dimensional compact Kdhler manifold with: 

(1) n_>2, and (c~-c~). [coh] "-2 = 0  for a Kdhler metric h; 
(2) ge m(M) ,  i.e., the holomorphic bisectional curvature is non-positive; 
(3) {x~M:Ric~(x)4=O} is dense in M, and { x e M :  Ric~ l ( x ) , 0 }  is a Zariski 

open subset in M. 
Then there exists an isometric holomorphic immersion f:  (~'I, ~,) ~ (C "+ 1,go) 

from the universal covering space of (M, g) into the complex euclidean space, 
and for each 7erCl (M), there is a rigid motion 4)~ in C" +1 such that fo 7 = (a~ of 

Theorem B. Let (M, g) be as in Theorem A. Then for any h e ~ ( M ) ,  (M, h) also 
satisfies the condition (3); and for any two isometric holomorphic immersions 
f :()~,  g ) ~ (  C"+1, go) and fin): (1~1, ~)--*(C "+l, go), there always exists an affine 
transformation 49 in C ~ 1 such that f~h)= 49of 

In particular, M is semi-rigid. 

Note that by the beautiful theorem of Fulton and Lazarsfeld IF-L], the semi- 
ampleness of the cotangent bundle T* gives a bunch of inequalities on the 
Chern classes, where cZt-c2__>0 is among the first a few ones; and all these 
inequalities become sharp when T* is ample. Therefore, the condition (1) in 
Theorem A says in a strong tone that T* is not ample. The third condition 
guarantees that M is of general type, and it is satisfied by any smooth theta 
divisor in a complex torus T" + ~. 

From the differential-geometric point of view, Theorem A says that locally 
(M, g) looks like a piece of hypersurface in the complex euclidean space; while 
Theorem B implies that for any two metrics in ~-(M), their holomorphic bisec- 
tional curvature tensore are conformal to each other. 

1 Decomposition of the holomorphic bisectional curvature 

Through out this section, let us assume that (M, g) is a fixed K/ihler manifold 
satisfying the conditions in Theorem A. 

Under any tangent frame (e l , . . . ,  e,}, let 0, O and g be the n • n matrices 
of the connection, curvature, and the metric itself. Let O =  O-g be the matrix 
of holomorphic bisectional curvature. Also write e=t(e l  . . . . .  e,), ~0=t(qh . . . . .  ~o,) 
as column vectors, where {qh . . . . .  ~o,} is the coframe dual to e. Let Ug denote 
the dense open subset {x e m :  Ric~ (x) ~ 0} = {x E M: Ric e (x) < 0}. 
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Proposition 1 For any x ~ M  and any ve  TxM, (~r~vtV)2 = 0 .  

Proof  Let n: P = P ( T u ) - ~ M  be the projectified tangent  bundle and L the dual 
of the tautological  line bundle on P. For  any (x, [v])~P,  let (zx . . . . .  z,) be a 
ho lomorphic  coordinate  contered at x, and {e~ . . . . .  e,} a ho lomorphic  tangent  
frame near x which is normal  at x and [e~ (0 ) ]=Iv] .  Then  (z, t)=(z~ . . . . .  z,; 

t2 . . . . .  t,) gives the ho lomorph ic  coordinates  of the point  z, ti~g~ near  

(x, [v]). Here t~ - 1. - ~i,~=~ 
Let ~ be the metric on L induced by g, and co be the K/ihler form of  h 

in (1) of Theorem A, then at (x, Iv]), 

cl (L, ~) [~.t~l) = ~3 ~ log ti giy(z 
- i , j =  1 ]1 (0 ,0 )  

- ~ q -d t z ^d t - z+  ... + d t . ^ d t .  
gve 

�9 (cx (L, ~))" +~ ^ ~z* (e~"- 2)I~x. t,~ 

=c  - - ~ ' ~  ^ r t * ( c o " - 2 ) ^ ( d t 2 ^ d t - z + . . .  + d t .  Adt-.)"+~>__O. 
\ g~o/ 

Since c ~ - c z . [ c o ] " - 2 = 0  and / 2 - / 2 - 1 . ~ * C 1  + ... + n * c , = 0  as cohomology  
classes, we get the pointwise identity: 

(~r~v 0)2 A ((D) n - 2 = 0 

hence (~r~vt?)2 = 0  as ~c~v6~_0. Q E D  

Lem ma  1 For any i, j ,  k in { 1, 2 . . . . .  n} : 

t2iUx (2~]= ~2j1^ s 0 

( 0 0 2  = t2~r^ t2j~ + t2j~ ^ ~2jr= 0. 

Proof  Let v=e~+te j .  Then ~v~=t2~+t- t2~j+t t ] j r+t t -Qi t .  Since ( (2~)2=0 for 
arbi t rary t, one gets ~ a  ^ g2k] 2 t2j] A (~2~]) 2 = 0. Similarly, let v = e~ + t ej + s ek and 
consider the tg terms in (t2~) =0 ,  one gets t2~r^ t2 j~+ t2~^  ~j~--0. Q E D  

Proposition 2 For any x e  U~, and any tangent f rame e near x, there exist (1, 0)- 
forms ~1, ... , ~O, in a neighbourhood o f  x, such that 

~ =  - 0 ^ r  

where ~' = ' (~1 . . . .  , qJ,), and t~* = ~ .  

Proof  Without  loss of generality, we may assume that  e is an uni tary frame. 
For  each i between 1 and n, write t2it= tip A q3. Then  rank (A) < 1 by Proposi t ion 1, 
and A ( x ) . O  as x ~ U  8, hence r a n k ( A ) = l  in a small ne ighbourhood  of x. Since 
A is Hermi t ian  and semi-negative definite, we get 121~= -~0~ ^ ff~ for some (1, 0)- 
form ~,~. By Ric~ < 0, ~, forms a coframe near  x. 
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For  any  i<j ,  write f2ij= ~ Ck~Ok^t~l. Then  by L e m m a  1, 12i l=c~]Oi^~  
k , l = l  

+ c j ~ 0 j ^  q~ ~, and c~j.c~r=O, I g i l 2 + l c j ~ l =  = 1. By the first Bianchi identi ty 'q~^ ~9 
= 0 ,  here O = ~ 9  as e is unitary,  we k n o w  tha t  cj~ mus t  vanish. Therefore,  f2~] 
= g l 0 i ^  ffj, g ~ = l ,  and Igyl= = 1. 

Let  C = (g~). Then  C is a nowhere  zero Hermi t i an  matr ix.  By the last equal i ty 
in L e m m a  1, r a n k ( C ) < l ,  hence C = b . b *  for a co lumn vector  b. Replace 0i 
by bi0i ,  we get the desired decompos i t ion  of f2. Q E D  

Proposition 3 For any x ~ U s, and any tangent frame e near x, let O be a coframe 
near x satisfying f 2 = - O  ^ O* as in Proposition 2. Then there exists a 1-form 
2 near x such that %= - 2 ,  dO =0  ^ O - 2  ^ ~ and d 2 =  - R i c ,  (0 is the connection 
matrix under e). 

Proof Again  we m a y  assume that  e is unitary.  Since d ~ o = - * 0  ^ cp, and  0 
forms a coframe,  one can write d r 1 6 2  for some n x n  matr ix  of  1- 
forms ~. Plug it into the second Bianchi identi ty d O = O h  69-~9 ^0 ,  and 
O = f 2 =  -~b  ^ O*, one gets: 

I ts  (2, 1)-parts gives: 

This implies tha t  

Therefore  

Let  2 = ~ -  ~, then 

~ ^ 0 ^ r 1 6 2  

Differentiate the last equality,  one gets dJt = - Ric e. 

~.o~ ^ 0 ^ 0* + 0 ^ 0* ^ r ~ ,  = 0. 

~lo, 1). = ~ I  

~ ^ ~ , = - ( ~ - ~ 2 ) ^  0.  

~= -3~; d O = o ^ o - 2 ^ O .  

Q E D  

2 Curvature decomposition in the degenerate case 

Let Vg be the Zariski  open set { x ~ M :  Ric~- l (x) #: 0}. In this section, we shall 
consider  the decompos i t i on  of f2 in V,, since it will be needed later  in the 
p roo f  of  T h e o r e m  A. 

Let  us fix a poin t  x e  Vs\Ug. Choose  an uni tary  f rame e with the dual  f rame 
~o such tha t  

- Ric~ =)- i  ~Ol ^ ~ 1 +  .-- + 2 ,  q9, ^ s 

where 21 > ... > 2._ 1>  2, > 0  in a ne ighbourhood  V of x. Wri te  U = V~ Uz, then 
).. > 0 in U and = 0 a long  l/'k U. 

Since f2ir<0, and tr~,f2i~x)= Ric(ei, e~)lx = -2 i (x ) ,  hence f2ir(x) 4:0 for 1 < i 
< n - 1 and O,n(x) = O. 

Therefore,  there exist (1, 0)-forms ~b~ . . . . .  0 , - ~  in V such tha t  f2g~= - 0 ~  ^ ffl 
for each i ~ n -  1, and  0 a A ... A 0 , -  a 4= 0 in E 
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n - 1  

Write  O i=  ~, auq~+bi~o ., and A=(au ) .  Then  f2 ,n(x)=0 gives 'AA(x) 
j = l  

=diag( ;H (x), . . . ,  Z,_ 1 (x)) >0 ,  hence det A(x) 4=0. Thus  by shrinking V if neces- 
sary, we have ~/1 ^ " "  ^ I~n--  1 A ~0 n :~= 0 in V. 

F o r  any y~U, P r o p o s i t i o n 2  gives that  f l = - - O ' A t ~  ' for some coframe 
~b'=B~o near  y. Then  for l<i<_n--1,  ~9'~=cfi~i near  y for some I~l-- 1. By the 
first Bianchi identity: t~0 A O = 0, hence 'B = B. 

Wri te:  

Since 

we have 

therefore 

Ric~ = tr (Q) = - '~9 '  A q~' = -- tq~ (BB) (o 

Hlq+bq;;= diag(21 . . . . .  2 ._ 1) 

H b - + b ~ = 0  

tb b-+ c ~ = 2, 

n-1 n-1 

2 ~'ilb,12=)~. Z Ib~l 2" 
i = 1  i = 1  

This together  with the fact tha t  21 > ... > 2 . - 1  >)~. > 0  implies tha t  near  y: 

b = 0 ;  f2.n= - c~tp. A q3.. 

N o w  if we write f2,n= -tq~Eq~ in V, where 

E _ F  

Then  h = 0 in U, hence in V. Since rank (E) < 1, while in U, a = I cl 2 > 0, therefore 
F = 0 in U, hence in V. N a m e l y  we have 

o..= -~ .^~ . ;  r 

in the whole ne ighbourhood  V. 
Use the denseness of  U and {q/1 . . . . .  ~ ' , -  1, q~.} as the coframe,  a little modifi-  

ca t ion of the proofs  of Propos i t ions  2 and 3 gives the following: 

Proposition 4 For any x~ V 8 and any frame e near x, there exist (1, O)-forms 
~1 . . . . .  ~.  and 1-form 2 in a neighbourhood of with Y~= - 2  such that 

t 2=  _ ~  A t~; d~O = 0 A ~k--2 A 4; d ) . =  -- Ricg. 
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3 Proof  of  Theorem A 

First let us recall the fundamental theorem for complex hypersurfaces. 
Suppose (X, g) is a n-dimensional K~ihler manifold. Let {e I . . . . .  en} be a tan- 

gent frame, with {rp~,..., q~,} its dual frame. Still denote by 0, f2 the matrix 
of connection and holomorphic bisectional curvature. 

For  a covariant 2-tensor A of type (2,0), write A =  ~ aijpi |  Let r 
i , j = l  

= a~jq~j. Then A can be written as t~0 | ~ and A is symmetric if and only 
j = l  

if t~o A ~, = 0, where qo = t(rpl . . . .  , ~o,), ~, = '(~, 1 . . . . .  ~.) are the column vectors. Let 
us call q, the associated (column of) (1, 0)-forms of A under the frame e. 

Definition. A covariant 2-tensor A is called a second fundamental tensor, if A 
is symmetric, of type (2, 0), and there exists a 1-form 2 with ~ = - 2 ,  such that 
the associated (1, 0)-forms ~ of A satisfies: 

f l=  - ~ ^ ~ f f ;  dO=OA~, - -2^~b;  d):= - R i % .  

Note that 2 (once exists) is uniquely determined by A (or ~,) while the above 
conditions are independent of the choices of the frames. Now we can state 
a weak version of the fundamental theorem for complex hypersurfaces as the 
following: 

Theorem. Let (X, g) be a n-dimensional Kdhler manifold with Ri% being negative 
definite in a dense open subset. Assume that for any x e X ,  there exists a second 
fundamental tensor near x. Then: 

(1) For any x 6 X ,  there exists a neighborhood U of x and an isometric holo- 
morphic immersion from U into C "+ 1, the (n+ 1)-dimensional complex euclidean 
space; and such map is unique up to a rigid motion in C "+t. 

(2) I f  furthermore X is simply-connected, then there is a global isometric ho~o- 
morphic immersion f: X ~ C  ~+1, which is also unique up to a rigid motion. {In 
particular, for any isometry y on X,  there exists a rigid motion Cp~ in C "+t such 
that joy  = ~b~ of.) 

The proof is standard. Its key point is that the following system of linear equa- 
tions has local existence and uniquencess for any initial conditions: 

V~ - - p A = O  

d p - p l + g ( ~ ,  4 ) = 0  

where p is a function, ~ is a (1, O)-form, and g(r A) denote the 1-form ~ ~igiJ~j 

under a frame e with q~ its dual frame and ~ = ~ ~ol. 
i 

For  any point x ~ X  and any unitary coframe {al . . . . .  a~} at x, let (~v, p~.) 
be the unique solution near x of the above system together with the initial 
condition 

(~V(x),pV(x)l=(o.o); v = l  . . . . .  n 

(~(x),p~(x))=(O, 1); v = n + l  
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then the symmetry property 'r qs = 0 will imply that ~ ' s  are exact forms. Write 
~ =  d f  ~, then f =  ( f l  . . . . .  f , +  1) is an isometric holomorphic immersion into C "+ i 
(with (p~ .... , p,+ 1) an unit normal vector field along its image). 

When Ricg is negatively definite in a dense subset, A (or equivalently, ~J) 
is determined by the curvature t2 up to a multiple function z with Iv[ = 1. While 
when A is replaced by zA, 2 will be changed to 2 - z - l d z .  In this case the 
~-part of the solution remains the same, that is to say, different second fundamen- 
tal tensors on (X, g) will change the isometric immersions from X into C"-1 
only by the composition of a rigid motion. 

Now let us turn to the proof of Theorem A, but first we need the following: 

Lemma 2 Suppose that (M, g) satisfies the conditions in Theorem A. Then M 
is projective, with canonical line bundle K~  ample, and the analytic subset M \  Vg 
= {x ~ M: Ric~- 1 (x) = 0} is of codimension at least two. 

Proof. Since Ug={xeM:  Ric~+0} is not empty, so K ~ t = ( - c 0 " > 0 .  By the Rie- 
mann-Roch Theorem, 

K~4 l) 
z (mKM)=nT  m" + O(m"- . 

On the other hand, since R i c < 0  and <0  in a non-empty set, a generalized 
version of the Kodaira vanishing theorem (see Theorem 2.27 in [-S-S], for exam- 
ple) says that h~(mKM)=O for any q > 0  and m>2.  So M is of general type, 
hence projective as it is K/~hlerian. 

By a result of Kawamata [K], if the canonical line bundle KM of a general 
type projective manifold M is not ample, the M will contain a rational curve. 
So in our case, Ku  must be ample. 

Now if {x~M: R i c e - l = 0 }  contains a divisor D, then K ~ I . D = O  which 
contradicts the ampleness of KM, therefore this set is of codimension at least 
two. QED 

Proof of Theorem A. Let ~z: (]C/I,~,)~(M,g) be the universal covering space. 
Then ~-IV~ is still simply connected as its complement is of codimension at 
least two. Now by Proposition 4 and the fundamental theorem for complex 
hypersurfaces we get an isometric holomorphic immersion f:  (n-1 V~,g) 
--* (C" + 1, go), which is unique up to a rigid motion in C" + 1. The Hartogs' exten- 
sion theorem then gives us the map that we want. QED 

Remark. One can replace the condition (3) in Theorem A by the following: 
(3') M is of general type, and g is real analytic. 
In this case U S is not empty (otherwise K ~ = 0 ,  so the numerical Kodaira 

dimension of M is less than n). The above argument shows that any simply- 
connected open subset in U S can be isometrically immersed into (C" +1, go). By 
the result of Calabi [C] one has the global isometric immersion f :  (M, ~) ~ (M, g). 

4 The conformal relations of holomorphic bisectional curvature 

Throughout this section, let us assume that (M,g) satisfies the conditions in 
Theorem A, and he~(M) is another metric on M with non-positive holomor- 
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phic bisectional curvature .  Let S = V h - - V  g, and  s = O ( h ) - O ( g )  be the mat r ix  of  
S under  a frame e. 

L e m m a  3 In U,, s can be locally written as s =  ~b'~, where ~O is as in Proposition 2 
and ct = r(~ t . . . . .  ~,) is a column vector o f  smooth functions. 

Proo f  Since h + g  also belongs to ~ ( M ) ,  by Propos i t ion  1, we have  (f2~o(h+g)) 2 
= (f2~o(h)) 2 = 0. Le t  q = f2(g) + f 2 ( h ) -  f2(h + g), then  it is easy to verify that :  

r l = s g ( h + g )  -~ htg 

under  any frame e. This implies r />  0, therefore the vanishing of the square of 

( - f2ve (h + g)) = ( - f2~ og)) + (  - f~  o(h)) + r/~c 

gives: 

for any v. 
F o r  any xeUg,  let e be a g-uni tary  frame near  x such that  the mat r ix  of  

h under  e (also denote  by h) is d iagonal :  

h = diag (al . . . . .  G ) .  

By Propos i t ion  2, there exist ~ such that  f l ( g )=  --g,  ^ '~.  Wri te  v = ~ v~e~, then 

we have ~= 

n~=-~^G; ~,~= ~ ~,r 
i = l  

~= l)jSjk ^ VjSjk 
ak 

therefore ~ ^ ~, vsssk = 0  for  each k. This implies s~j = ~ J  for each i,j. Q E D  
) = 1  

Next  we prove  the following: 

Proposition 5 There is a positive constant c such that: 

12 (h). det (h) = c-f2 (g). det  (g). 

Proof. We need only to p rove  this identi ty in the dense open subset Ug. F o r  
any  direct ion v at a point  x e U~, by the fact (f2,~(h))2 = f2v~(h),~ f 2 ~ ( g ) = 0  and 
Q ~ ( g ) =  - ~ v  ^ ~ ,  we k n o w  tha t  

Q.~,(h)= p.~, ,~(g)  

where p~ depends  (continuously} on the direct ion v. Since both  g and h are 
Kfihlerian, we get: 

(p,, --  p.)  R~,,,~(g) = O 

for any two tangent directions u, v at x. As Rics(x)<O, R~o.r for generic 
u and v. Hence  p = p(x) is independent  of  the directions. 
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Write t2(h).det(h)=f(x).O(g).det(g),  f is a non-negative smooth function 
in Ug which is independent of the choices of the frames. We want to show 
that d f  =-O. 

Fix a point x~ Ug, and let e be a holomorphic tangent frame near x which 
det(h) 

is g-normal at x, i.e., g(x) = I, 0g(x) = 0. Write ~ = h g  -1, f l= det(g)' then: 

0 (h). ~. fl =f .  0 (g) 

(recall that Og.g=(2~). Differentiate the above equality and take the trace, we 
have: 

Of A Ri% = tr O (Oh ~ fl) 

= tr 0 (0~  4)fl + tr (Oh ~) A ~fl 
= tr (s ^ Oh 4) fl + tr (Oh ~) ̂  f~ tr (s) 

= f { t r  (s) ̂  tr (t2s) + tr (s ^ ~g)} 
= - f  {tr (~,':t) ^ tr (~ A @) + tr (~h t~ ̂  ~ ^ tqT)} 

- -0 .  

Therefore a f = 0 ,  hence df=O in Ug as f is real-valued. This implies that f 
is constant in each connected component of U s. Since (M, h) cannot be flat, 
and Vg is connected, it is not hard to see that these constants must be 
equal. QED 

Corollary 1 I f  (M,g) satisfies the conditions in Theorem A, then any h6a-J(M) 
also satisfies the same conditions, and Uh = U s ; Vh = Vg. 

5 Proof  of  Theorem B 

Again let (M, g) be a Kiihler manifold satisfying the conditions in Theorem A, 
and h ~ ( M )  be another Kfihler metric on M with non-positive holomorphic 
bisectional curvature. By Corollary 1, (M, h) also satisfies those conditions, so 
Theorem A gives isometric holomorphic immersions: 

f :  (M, ~) -+ (C" + t, go); f(h): (~ ,  ~) __+ (C" + 1, go) 

from the universal covering spaces into the complex euclidean space. In this 
section we are going to show that there exists an affine transformation 4) in 
C,+ 1 such that f(h)= q~of 

First of all let us recall that in the fundamental theorem for complex hyper- 
surfaces, a second fundamental tensor A for (M, g) with associated 1-form 2 
gives a linear system (* s): 

V ~ - p A = O  

d p - p 2 + g ( 4 , A ) = O  

and if {(~*, p*); v=1 ,2  . . . . .  n+  1)} is a basis of solutions of (*g) under suitable 
initial conditions, then ~*'s are all exact: 4*=df  *, and f = ( f l  .... .  f " )  gives the 
local isometric immersion. For (M, h), one has parallel situations and the corre- 
sponding system (*h). So for our purpose it would be sufficient to show that 
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the i - p a r t  so lu t ions  of ( .g)  and  ( .h)  are the same. In o rde r  to do  this, first 
let us fix some nota t ions .  

Loca l ly  near  a po in t  xcUg=Uh, let 4,  )- be as in P r o p o s i t i o n 4  for 
(M, g), and  r  2' for (M, h). Then  ~, ~ '  bo th  give local  coframes near  x. By 
P ropos i t i on  5 we have 

where bo th  a and  b are real. Also  be L e m m a  3, we can wri te  s-O~-O~=~'c~. 

L e m m a  4 Under the above notations, 

2 ' = ) . - i d b + S a - J a ;  2 0 a =  - q k  c~. 

Proof. Plug ~k' = e ~ + b i ~ and  d ~, = ~ A $, - 2 t, ~ in to  d ~ '  = 0' A ~b' - 2'/x ~ ' ,  we get :  

( ) J - ) . - s  +da+ idb)A ~'=O. 

Since ~ '  is a coframe,  the (0, 1)-part of the braces  must  vanish,  while s is of 
type (1, 0), hence 

~'. = ) . - - i d b + O a - ~ a .  

Next,  since e 2a det  g = c ~ ( -  h , so (when e is a h o l o m o r p h i c  frame):  

2 ~ a = • log det  g - ~ log det  h = - tr s = - '~b ~. 

No te  that  the two very end terms are independen t  of the choice of the frame, 
therefore this equa l i ty  ho lds  for any frame e. Q E D  

L e m m a  5 For any (1, O)-form ~ = ~i~oi, write e(~_)= ~ ~ .  Then: 
i = l  i - 1  

Proof. By s = 0 /x  'c~ and A = 'q0 | t) = t 0 | O, a s t ra ight  ca lcu la t ion  shows tha t :  

v'r162162 E 
~ = t  i = 1  

i , j = l  

Propos i t ion  6 I f  (~, p) is a sotution of (*~), let p '=e-"-~b(p-a(O).  Then (~, p') 
is a solution for (*h). 

Proof. Cons ide r  the  system (*h): 

dp ' -p '2 '+h(~ ,A ' )=O.  
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Since (~,p) satisfies (*~) and p'=e-"-ib(p--a(4)),  the first equa t ion  of (*h) is 
immedia te  by L e m m a  5: 

V' ~= V ~ - a ( ~ ) A = p  A--a(~) A=p '  A'. 

For  the second equat ion,  let B denote  the value of its right hand  side mul t ip ly  
by e "+ib. Then by L e m m a  4 we have:  

B=e~+~b { d p ' - p '  2' + h(~,~')} 

= d ( p - a ( ~ ) ) - ( p - ~ ( ~ ) ) ( d a + i d b +  2- - idb+Oa-Ja)+eZ"h(4 ,  A) 

= d ( p - , ~ ( 4 ) ) -  ( p - , ~ ( 4 ) ) ( , Z - ' O  ~) + e ~ ~ h(~, ~) 
=(d p -  p 2)-d~r(~) + a(4) 2 + (p-~(4)) 'O ~ + eZ"h(~, A) 

=eZ"h({, A ) - g ( { ,  A ) - d t r ( { ) +  e ( O 2  + ( p - a ( 4 ) ) ' 0  ~t. 

Wri te  ~=*({~ . . . . .  4,) also as the co lumn vector  of its coefficients under  the 
coframe ~o, then as it satisfies (*~), one has:  V( t4rp)=d ' { |174  
= p ' ~ ,  | cp. Hence  d'~'O+p'q, and:  

while 

therefore 

e 2~ h ({,/1) - g (~,/1) = '~ (e =" ~h - 1 _ ,g - 1) 

B = ' 4  {(e 2"'h - t  - - t g - , ) ~ _ , 0 c t _ d a  + ~ 2 -  ~'~b~}. 

Let us denote  the { } te rm by q, which is a co lumn vector  of  l - forms.  In  order  
to show that  ~ vanishes, it suffices to check it under  a special frame. F o r  any 
point  x, let e be a ho lomorph ic  f rame which is g -normal  at  x, i.e., g(x)=I,  
d g ( x ) = 0 .  So at x, 0 = 0 ,  O'=s=~'~, and:  

ds=d(O'-O)=O'+O'  ^ O ' - O = ~ ' h - l - f ~ g - l  + s ^ s .  

By Propos i t ion  5, and take trace, we have that  at x: 

d's = (e za 'h - 1 _ ,g - 1) ~ A t@ _ 'S A Ot qlt. 

On the other  hand,  

dts = d ( ~  ' ~ ) =  dee ^ '~9 - ~ 2  ^ '~9 

therefore at the point  x, 

{(e2"'h - '  - ' g -  * ) ~ - ' s a - d ~ +  ~2}/x ' 6  = 0  

hence q (x )=0 .  Since x is arbi t rary ,  we proved  that  q = 0 ,  so B=O as we 
wanted. Q E D  

Proof of Theorem B. Let (M,g)  and h E ~ ( M )  be as in Theo rem B. By Corol -  
lary 1, (M, h) also satisfies the same conditions.  Hence  there are isometr ic  holo-  
morph ic  immers ions:  

f :  ( ~ ,  ~) __+ (C,+ 1, go) 

f(h~: ( ~ ,  ~) _+ (C" + 1, go) 
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from the universal covering spaces into the complex euclidean space. By Proposi- 
tion 6, we know that locally f and f~h) differ only by an affine transformation 
in C "+ l, that is, there is an open covering ~q/~} of M' and affine transformations 
~ in C "+1 with f~h~[~ =~b~of[~ for each ~t. For  any :~, fl with q/~c~q/p=k~b, 
one has qS~ot~p=id on f(q/~c~q/B). Since the fixed point set of any non-trivial 
affine transformation is an proper affine subspace (or empty), while f(q/~ n q/B) 
can not be flat as R i % < 0  in a dense subset. Therefore ~b~=~ba whenever 
q/~ c~ q/~ =F q~, hence all the qS~'s are the same, and Theorem B is proved. QED 

In the following, let us give an alternative and shorter proof of Theorem B, 
by using the conformal relation Proposition 5 and Theorem A (for both g and 
h). This proof is suggested to us by the referee of this paper: 

Proposition 6' Suppose f, f '  are two holomorphic embeddings from a small piece 
of complex n-manifold X into the complex Euclidean space (C ~+ 1, go). Let A, 
A' be any second fundamental tensor corresponds to f and f ' ,  respectively. Suppose 
~ : X ~ X is a biholomorphism such that A (u, v) = 0 if and only if A' ( a , u, a ,  v) = O. 
I f  A or A' is of rank >= 2 somewhere, then ~ is induced by an affine transformation 
on C n+l 

Proof. Without loss of generality, let us assume that ~r is the identity map, 
and locally the two hypersurfaces are given by graphs z~+~=F(z~,..., z~) and 
z~+ 1 =G(z~ .. . . .  z,), respectively. Under the coordinate {z~ . . . . .  z,}, a straight- 
forward calculation shows that the bisectional curvature tensors are I2= 
(1 + [FILE+ .. .  + [fnlE)- l'(dF1 . . . . .  dFn) ^ (~F l . . . . .  dFn) and similarly for O'. Now 
the condition in Proposition 6' says that A and A' are proportional to each 
other, therefore f2 and rE' are also proportional. Hence there is a holomorphic 
function b on X such that G~i=b.F~j for any l < i , j < n .  From this one gets 
bkF~i-biF~=O for any i,j,k. It follows that bk--O for all k, since the rank 
of the n x n matrix (F~i) is >2  by the assumption. Therefore b is a constant. 
So by the relation Gij=b.Fij  we know that f and f '  (or rather f'oo-) differ 
by an affine transformation of C ~+~. QED 

6 An example 

In this final section, let us consider the following class of manifolds which satisfies 
the conditions of Theorem A. 

Assume that M is a n-dimensional compact complex manifold of general 
type such that there is a holomorphic immersion y : M ~ T  n+l from M into 
a complex (n + 1)-torus. 

Lemma 6 For any flat metric go on T "+1, let g=~*(go). Then (M,g) satisfies 
the conditions in Theorem A. 

Proof. Certainly (M, g) is a compact K~ihler manifold with non-positive holo- 
morphic bisectional curvature, and the short exact sequence: 

0--, TM ~ 7 "  TT~,I =~7~ § ~ V "  ~ 0  

implies that Jff ~ KM, and c 2 ( M ) -  c2 (M) -- 0. 



Non-positively curved compact K/ihler manifolds 599 

Let Dk = {x e M:  Ric~ (x) = 0}. Then  V~ = M \ D , _ ,  ~ U s = M \ D , .  Since M does 
not contain  any rat ional  curve, by  [K] ,  KTu > 0, hence Dn + M, or  U,4= ~b. N o w  
it suffices to show that  each D k is an analytic subset in M. In order  to see 
this, locally let (z .. . .  , z ,+ l )  be natural  coordinates  of  T n+l such that  a small 
piece (say, U) of ~(M) is defined by a ho lomorph ic  function z.+ 1 =f(z~ . . . . .  z.). 
Then it is a straight calculation to verify that D k c~ U = {x e U: rank (F) < k}, where 

0 2 f  which are ho lomorph ic  F is the n x n  matrix with entries Fi j -?z~Oz  J 
functions. Q E D  

Coro l la ry2  Suppose that 3 , :M- - .T  n+l is a holomorphic immersion from a n- 
dimensional general type manifold into a complex (n + 1)-torus. Then o~ (M) consists 
of the pull-backs of the flat metrics on T ~+1 
In particular, M is semi-rigid. 

Proof. Let g=3,*(g0) be the pull-back of a fiat metric on T ~+1, and suppose 
that h is an arbi t rary metric in ~,~(M). Let f :(M',g')-*(C~+l,go) be the lift 
of 7 to the universal covering spaces. By Lemma 6 and Theorems A and B, 
there is also an isometric ho lomorph ic  immersion 

f(h): ( ~ ,  ~) ~ (cn+ 1, go) 

for h, and an affine t ransformat ion ~b in C ~ § 1 such that f(h) = t~ of. Furthermore ,  
for any deck t ransformat ion a~r~l(M), there are rigid mot ions  ~b,, qS', in C n+~ 
such that  

fo a = q~, of; f(h) o a = ~ of(h). 

Combine  these two identities we get ~b; = ~b o qS, o q5- ~ for each a e rc~ (M). 
Since f is the lift of  3' to the universal covers, all qS~'s are translations, hence 

the conjugat ions  0 ;  are also translations, which preserve any fiat metric on 
C~+ 1, hence h = 3,* (ho) for a fiat metric ho on T ~§ Q E D  

Remark, In Theorem A, if one assume that  rq (M) contains an abelian subgroup 
of  finite index, then it is easy to show that  there exists an ho lomorphic  isometric 
immersion from a finite cover of M into an abelian variety T "§ However,  
we do not  know if this should be the case in general. 
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