ERRATUM FOR RICCI-FLAT GRAPHS WITH GIRTH AT LEAST FIVE

DAVID CUSHING, RIIKKA KANGASLAMPI, YONG LIN, SHIPING LIU, LINYUAN LU, AND SHING-TUNG YAU

Abstract

This erratum will correct the classification of Theorem 1 in [1] that misses the Triplex graph.

In Theorem 1 of [1], the classification of Ricci-flat graph with girth $g(G) \geq 5$ missed one graph - the Triplex graph, as discovered by three authors: Cushing, Kangaslampi, and Liu. Here is the correct theorem.
Theorem 1. Suppose that G is a Ricci-flat graph with girth $g(G) \geq 5$. Then G is one of the following graphs,
(1) the infinite path,
(2) cycle C_{n} with $n \geq 6$,
(3) the dodecahedral graph,
(4) the Petersen graph,
(5) the half-dodecahedral graph.
(6) the Triplex graph.

(A) Dodecahedral

(B) Petersen

(c)

Dodecahedral

(D) Triplex

Figure 1. The four Ricci-flat graphs with girth 5
This error was caused by an incorrect implicit statement (in [1]) that any 3 -regular Ricci-flat graph G has a surface embedding whose faces are all pentagons. In this erratum, we analyze the case that G does not have a surface embedding whose faces are all pentagons. We will show that this case leads a unique missing graph - the Triplex graph. An alternative method to correct Theorem 1 in [1] is given in [2].

Recall that Lemma 3 item 2 in [1] states:
Lemma 1. For any edge $x y$ of a graph of girth at least 5, if $d_{x}=d_{y}=3$ and $\kappa(x, y)=0$, then $x y$ belongs to two 5 -cycles P_{1} and P_{2} such that $P_{1} \cap P_{2}=x y$.

Since G contains no cycle of length 3 or 4 , any C_{5} containing the edge $x y$ is uniquely determined by a 3 -path passing through $x y$. Since $d_{x}=d_{y}=3$, there are four 3 -paths of form $x_{i} x y y_{j}$ for $i, j=1,2$. Here x_{1}, x_{2} are two neighbors of x other than y and y_{1}, y_{2} are two neighbors of y other than x. We say two C_{5} 's are opposite to each other at $x y$ if one C_{5} passes through $x_{i} x y y_{j}$ and the other one passes through $x_{3-i} x y y_{3-j}$. The above lemma says that there is a pair of opposite C_{5} 's sharing the edge $x y$. We say an edge $x y$ is irregular if there are three or four C_{5} passing through it.

From this lemma, we have the following corollary.
Corollary 1. If G is a 3-regular Ricci-flat graph and contains no irregular edge, then G can be embedded into a surface so that all faces are pentagons.

Proof. View G as 1-dimension skeleton and glue pentagons to G recursively. Starting with any C_{5} and glue a pentagon to it as a face, call the two-dimensional region M.

Let $x y$ be a boundary edge of M, that is, an edge belonging to only one pentagon f in M. This pentagon f determines an opposite C_{5} of G with respect to the edge $x y$. We glue a pentagon face to the opposite C_{5} at $x y$ to enlarge M. Since G contains no irregular edge, every edge must be in exactly two pentagons. Therefore, the process will continue until M has no boundary edge. When this process ends, we get an embedding of G into some surface so that every face is a C_{5}.

We are ready to fix the proof of Theorem 1 in [1].
Proof of Theorem [1: In the original proof of Theorem 1 in [1], we have taken care of all the cases except that G is 3 -regular and contains an irregular edge $x y$. The edge $x y$ is either in three C_{5} 's or four C_{5} 's. We will show that the first case leads to the Triplex graph while the second case leads to the Petersen graph.

First assume the edge $x y$ is contained in three C_{5} 's: $u x_{2} x y y_{2} u$, $v x_{1} x y y_{1} v$, and $w x_{2} x y y_{1} w$. The path $x_{1} x y y_{2}$ is not in any C_{5}. Let w_{1} be the third neighbor of x_{1}, and w_{2} be the third neighbor of y_{2}. Then w_{1}, w_{2} are two distinct vertices, and they cannot be coincident with any vertex on the three C_{5} 's. This is our starting configuration (See Figure 2 with solid lines).

Figure 2. Starting configuration and possible extensions

Now consider the edge $x x_{1}$. Observe that the path $w_{1} x_{1} x y$ is not on any C_{5}. Thus, the path $w_{1} x_{1} x x_{2}$ must be extended to a C_{5}. Either $w_{1} u$ is an edge or $w_{1} w$ is an edge. Similarly, by considering the edge $y y_{2}$, either $w_{2} w$ or $w_{2} v$ is an edge. These four possible edges are shown as dashed lines i), ii), iii), and iv) in Figure 2, There are four combinations: i) + iii), i) + iv), ii) + iii), ii) + iv). The combination i) + iii) is impossible since $d_{w}=3$. The two cases i) +iv) and ii) +iii) are symmetric. Essentially we have two cases to consider:

Case: i)+iv): Now consider the edge $w_{1} x_{1}$. By Lemma 1, there are a pair of opposite C_{5} sharing the edge $w_{1} x_{1}$. Such a pair of opposite pentagons can be obtained only by adding a new vertex w_{3} as the third neighbor of w_{1} and connecting w_{3} to w_{2}, since connecting w_{1} to u would cause a C_{4}. Now $x_{1} w_{1} w_{3} w_{2} v x_{1}$ and $x_{1} w_{1} w x_{2} x x_{1}$ are the two opposite pentagons at $x_{1} w_{1}$. But, in order to have two opposite pentagons also at the new edge $w_{1} w_{3}$ we must have $w_{3} u$ as an edge, which then creates a C_{4} : $w_{3} u y_{2} w_{2} w_{3}$. Contradiction!
Case: ii) +iv). Let w_{3} be the third neighbor of $w .\left(w_{3}\right.$ is distinct from w_{1} and w_{2} since the girth of G is at least 5.) Applying Lemma 1 on the edge $w x_{2}$, we must have a pair of opposite C_{5} 's passing through $w x_{2}$. This will force $w_{3} w_{1}$ to be an edge. Similarly, by considering $w y_{1}$, we conclude that $w_{3} w_{2}$ must be an edge. This completes a 3-regular graph. It is easy to check this is the Triplex graph.

Now we assume $x y$ is in four C_{5} 's. For $i=1,2$ and $j=1,2$, write $k=2(i-1)+j$ and let u_{k} be the vertex in the C_{5} extending the path $x_{i} x y y_{j}$. Observe that connecting any pair $u_{1} u_{2}, u_{2} u_{4}, u_{4} u_{3}$, or $u_{1} u_{3}$

Figure 3. Two non-isomorphic ways to continue

Figure 4. Unique way to complete into the Triplex graph.
results a triangle. So only $u_{2} u_{3}$ and $u_{1} u_{4}$ can be connected (See Figure (5).

Note that $y y_{1}$ are in two non-opposite C_{5} 's: $x y y_{1} u_{1} x_{1} x$ and $x y y_{1} u_{3} x_{2} x$. So either $u_{2} u_{3}$ or $u_{1} u_{4}$ must be an edge.

Figure 5. Starting configuration and possible extension when $x y$ is in four C_{5} 's.

If both $u_{1} u_{4}$ and $u_{2} u_{3}$ are edges, then the graph is completed and it is the Petersen graph.

Figure 6. The Petersen Graph.

Figure 7. The edge $z u_{2}$ is not in any C_{5}. Contradiction!

If only one of them is an edge, by symmetry, we can assume $u_{1} u_{4}$ is an edge but $u_{2} u_{3}$ are not. Then u_{2} must have an new neighbor, called z. Now the edge $z u_{2}$ can not be in any C_{5}. Otherwise, say $z u_{2} X Y Z z$ is the C_{5}. We must have $X \in\left\{x_{1}, y_{2}\right\}, Y \in\left\{x, u_{1}, y, u_{4}\right\}$, and $Z \in\left\{x_{2}, y_{1}\right\}$. But now $Z z$ is not an edge. Contradiction!

References

[1] Y. Lin, L. Lu, and S.-T. Yau, Ricci-flat graphs with girth at least five, Comm. Anal. Geom. 22 (2014), no 4, 671-687.
[2] D. Cushing, R. Kangaslampi, Y. Lin, S. Liu, L. Lu, and S.-T. Yau, Ricci-flat cubic graphs with girth five, preprint.
D. Cushing, Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK

E-mail address: david.cushing@durham.ac.uk
R. Kangaslampi, Computing sciences, Faculty of information technology and communication sciences, Tampere University, FI-33014 Tampere, Finland

E-mail address: riikka.kangaslampi@tuni.fi
Y. Lin, Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

E-mail address: yonglin@mail.tsinghua.edu.cn
S. Liu, School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China

E-mail address: spliu@ustc.edu.cn
L. Lu, Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

E-mail address: lu@math.sc.edu
S.-T. Yau, Department of Mathematics, Harvard University, CamBRIDGE, MA 02138, USA

E-mail address: yau@math.harvard.edu

