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Abstract. Let X be a compact Kähler manifold and S a subvariety of X with
higher co-dimension. The aim is to study complete constant scalar curvature

Kähler metrics on non-compact Kähler manifold X − S with Poincaré–Mok–

Yau asymptotic property (see Definition 1.1). In this paper, the methods of
Calabi’s ansatz and the moment construction are used to provide some special

examples of such metrics.

1. Introduction

In Kähler geometry, a basic question is to find on a Kähler manifold a canonical
metric in each Kähler class, such as a Kähler–Einstein (K–E) metric, a constant
scalar curvature Kähler (cscK) metric, or even an extremal metric. If X is a com-
pact Kähler manifold with the definite first Chern class, the question has been
solved thoroughly and there are lots of references on this topic. Among these, the
fundamental one [18] is on the Calabi conjecture solved by Yau.

In the non–compact case, Tian and Yau proved in [16, 17] that there exists a
complete Ricci–flat metric on X∗ = X−D, where X is a compact Kähler manifold
and D is a neat and almost ample smooth divisor on X; or X is a compact Kähler
orbifold and D is a neat, almost ample and admissible divisor on X.

Several years ago, the second named author presented the following question:

Problem 1. Assume that X is a compact Kähler manifold and S is its higher
co-dimensional subvariety. Let X∗ = X − S. How to find a complete canonical
metric on such a non-compact Kähler manifold X∗?

Certainly, this problem is equivalent to finding a canonical metric on X̄ − D,
where X̄ is a compact Kähler manifold and D is a divisor on X̄. More precisely,
blowing up of X along S, one obtains a new compact Kähler manifold X̄ = BlS(X).
Then X∗ is bi-holomorphic to X̄ − D where D is the exceptional divisor of this
blow-up. Hence our problem is transferred to finding a complete canonical metric
on X̄ −D. However, this blowing up process can not make Problem 1 easier since
it does not alter the geometric properties of X∗. For example, although CP 2 − p
is bi–holomorphic to Blp(CP 2)−D, we can not use Tian–Yau’s results mentioned
above to get a complete K–E metrics on CP 2 − p since the exceptional divisor D
is not ample.

The basic strategy to solve Problem 1 is to perturb one family of approximate
metrics on X∗. This method has been carried out successfully in [2, 3, 4, 14, 15]
to construct cscK or extremal metrics on blow-up of a Kähler manifold at some
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points. The key point is that the csck metric of Burns-Simanca [13] on Bl0(Cn) is
asymptotic locally Euclidean (ALE) at infinity.

Motivated by this, if one want to solve Problem 1 on M − {p1, · · · , pl}, one
should first construct a canonical metric on Cn − 0 which is also ALE at infinity.
Fortunately, the metrics in the following theorem admit this asymptotic property.
Let r2 be the Euclidean norm squared function on Cn.

Theorem 1.1. There exist on Cn − 0 a family of complete zero scalar curvature
Kähler metrics ηa =

√
−1∂∂̄ua(r2) (a > 0) with the following asymptotic properties:

As r2 → 0,

ua(r2) = a log r2 − 2a

n(n− 1)
log(− log r2) +O((log r2)−1);

And as r2 →∞,

ua(r2) =

{
r2 + 2a log r2 + a2

2r2 +O( 1
r4 ), for n = 2,

r2 − nan−1

(n−1)(n−2) (r2)2−n + an

n (r2)1−n +O((r2)−n) for n ≥ 3.

Here O(h(r2)) is a smooth function whose k−th partial derivatives for all k ≥ 0 are
bounded by a constant times |∂kh(r2)|.

For the cases of constant scalar curvature c 6= 0, we have the following theorem.
Denote Dn as the unit disc of Cn.

Theorem 1.2. 1. For any c < 0, there exist on Dn−0 a family of complete Kähler
metrics

√
−1∂∂̄ua(r2) (a > 0) with constant scalar curvature c. As r2 → 1, these

metrics are asymptotic to the Poincaré metric

√
−1

n(n+ 1)

−c
∂∂̄ log(1− r2).

2. For c > 0 and a > 0 with ac < n(n − 1), there exists on Cn − 0 a Kähler
metric

√
−1∂∂̄ua(r2) with constant scalar curvature c which are not complete at

infinity and asymptotic to
√
−1∂∂̄(b log r2 + κr−

2
κ )

for two constants b(> a) and κ(> 1).
In both cases, the metrics have the following asymptotic property: As r2 → 0,

ua(r2) = a log r2 − 2a

n(n− 1)− ac
log(− log r2) +O((log r2)−1).

Naturally one would ask whether there are any complete K–E metrics on Cn− 0
or on Dn − 0. Using the method in [11], we can prove the following theorem which
turns out that in some sense the choice of cscK metrics is optimal.

Theorem 1.3 ([11]). There do not exist any complete Kähler-Einstein metrics on
Cn − 0 or on Dn − 0.

In fact, we can prove X∗ can not admit any complete Kähler-Einstein metrics in
our further paper [8]. Theorems 1.1 and 1.2 remind us to recall the Mok–Yau metric
in [11]. In 1980s, Mok and Yau introduced on Dn − 0 the metric with bounded
Ricci curvature √

−1∂∂̄(log r2 − log(− log r2)).
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They used this metric to characterize domains of holomorphy by holomorphic sec-
tional conditions. Comparing the Mok–Yau metric with the metrics in Theorems
1.1 and 1.2 leads to the following definition.

Definition 1.1 (see also [7]). Let X be a compact Kähler manifold with a Kähler
metric ωX and let S be a higher co–dimensional subvariety. A Kähler metric ω on
X−S has the Poincaré–Mok–Yau (PMY) asymptotic property if near the subvariety
S

ω = ωX +
√
−1∂∂̄(a log r2 − b log(− log r2) +O((log r2)−1)),

where r is some distance function to S, and a and b are two positive constants.

In the second part of this paper, we generalize Theorems 1.1 and 1.2 to the
cases of holomorphic vector bundles. We will use the moment construction to find
complete cscK metrics on the complement of the zero section in (the total space
of) a holomorphic vector bundle or a projective bundle (i.e. a ruled manifold).
There are many references such as [1, 9, 10, 12] which use the method of moment
construction to look for canonical metrics on Kähler manifolds. One can consult
[9] for construction of cscK metrics on vector bundles and [1] for extremal metrics
on ruled manifolds.

Let M be a compact m–dimensional Kähler manifold with a cscK metric ωM .
Let (L, h) be a holomorphic line bundle over M with a hermitian metric h, which
is given by local positive functions h(z) defined on the open sets which locally
trivialize L. For the technical reason, assume that there exists a constant λ such
that

(1)
√
−1∂∂̄ log h(z) = λωM .

Let (E, π) be the direct sum of n (≥ 2) copies of L with associate hermitian metric
h. Let ν be the logarithm of the fibre norm squared function defined by h and
consider Calabi’s ansate

ω = π∗ωM +
√
−1∂∂̄f(ν).

Denote the zero section of E simply by M . Also denote U as the set of points p in
E such that ν(p) < 0. We first concern about csck metrics with PMY asymptotic
property on E −M or on U−M .

Theorem 1.4. Let M be a compact Kähler manifold and ωM a Käler metric with
constant scalar curvature cM . Let L be a holomorphic line bundle over M with a
hermitian h. Assume that h and ωM satisfy (1). Let E be the direct sum of n (≥ 2)
copies of L.

1. If λ ≥ 0, there exists a constant c0 such that for any c ≤ c0, there exists
on U −M or on E −M a complete Kähler metric with constant scalar curvature
c. Such metrics admit the Poincaré–Mok–Yau asymptotic property except the case
that the metrics are defined on U−M with c = c0(< 0) and λ > 0.

2. If λ < 0 and cM > 0, there exists on E −M a complete positive constant
scalar curvature Kähler metric with Poincaré–Mok–Yau asymptotic property.

If λ = 0, this theorem generalizes Theorem 1.1 and the case c < 0 of Theorem
1.2.

We then consider Problem 1 on a projective bundle. Denote O as the structure
sheaf of M . The projective bundle P(E⊕O) over M has a globally defined section
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s: for q ∈ M , s(q) is a point corresponding to the line Oq. The following theorem
gives some special solutions to Problem 1.

Theorem 1.5. Under the assumptions of Theorem 1.4, if λ < 0 and cM ∈ R or
if λ > 0 and cM ∈ (m(m + 2n − 1)λ,+∞), there exists on P(E ⊕O) −M a com-
plete constant scalar curvature Kähler metric with Poincaré–Mok–Yau asymptotic
property.

Acknowledgement. Fu is supported in part by NSFC grant 11421061. Yau
is supported in part by NSF grant DMS-0804454. Zhou is supported by China
Postdoctoral Science Foundation funded project grant No.2015M571479 .

2. Complete cscK metrics on Cn − 0 and Dn − 0.

In this section, we construct complete cscK metrics on Cn∗ or Dn∗. Here denote
Cn∗ = Cn−0 and Dn∗ = Dn−0. We first follow Calabi’s method [6] to get an ODE
on the Kähler potential. Then we determine the constants of integration appeared
in the ODE by discussing completeness of the metric near the punctured point.
Afterwards we analyze the asymptotic properties of the Kähler potential. Thus,
Theorems 1.1 and 1.2 are proven. In the last subsection, we give some remarks and
a simple proof of Theorem 1.3.

2.1. Calabi’s ansatz. Let w = (w1, w2, · · · , wn) be the coordinates of Cn. Assume
that the Kähler metric we are seeking for is rotationally symmetric. That is, if we
let

r2 =

n∑
α=1

|wα|2 and t = log r2,

then the Kähler potential is a function u(t). By a direct calculation,

gαβ̄ :=
∂2u(t)

∂wα∂w̄β
= e−tu′(t)δαβ + e−2tw̄αwβ(u′′(t)− u′(t)).

Hence,

det(gαβ̄) = e−ntu′(t)n−1u′′(t),

and ω =
√
−1∂∂̄u(t) is a Kähler metric if and only if

u′(t) > 0 and u′′(t) > 0.

For simplicity, let

(2) v(t) = − log det(gαβ̄) = nt− (n− 1) log u′(t)− log u′′(t).

The components of the Ricci tensor of ω are

Rαβ̄ =
∂2v(t)

∂wα∂w̄β
= e−tv′(t)δαβ + e−2tw̄αwβ(v′′(t)− v′(t))

and then the scalar curvature is

(3) c(t) = gαβ̄Rαβ̄ = (n− 1)
v′(t)

u′(t)
+
v′′(t)

u′′(t)
.

Here (gαβ̄) denotes the inverse matrix of (gαβ̄). Explicitly,

gαβ̄ =
et

u′(t)
δαβ + wαw̄β(

1

u′′(t)
− 1

u′(t)
).
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Assume that the scalar curvature of ω is a constant c. Integrating (3) with
the integrating factor u′(t)n−1v′(t), we obtain the first order differential relation
between u(t) and v(t)

v′(t)u′(t)n−1 =
1

n
c(u′(t))n + c1

with an arbitrary constant c1. Substituting (2) to the above equation and multi-
plying both sides with u′′(t), we get the equation

nu′(t)n−1u′′(t)− (n− 1)u′(t)n−2u′′(t)2 − u′(t)n−1u′′′(t) =
1

n
cu′(t)nu′′(t) + c1u

′′(t).

Integrating the above equation, we obtain

u′(t)n − u′(t)n−1u′′(t) =
c

n(n+ 1)
u′(t)n+1 + c1u

′(t) + c2

with another arbitrary constant c2. If we denote φ(t) = u′(t), then the above
equation can be written as the first order differential equation

(4)
dφ

dt
=
F (φ)

φn−1

with

F (φ) = − c

n(n+ 1)
φn+1 + φn − c1φ− c2

or rewritten as

(5) dt =
φn−1dφ

F (φ)
.

It follows that u(t) is a Kähler potential if and only if

φ(t) > 0 and F (φ) > 0.

2.2. Completeness. Assume that φ = φ(t) is a solution to ODE (4) or (5) in an
interval (−∞, t0), where t0 can be equal to +∞, and assume that it determines a
Kähler potential u = u(t) in the punctured disc Dn∗(r0) with radius r0 = exp( t02 ).

In this subsection, for the sake of the completeness of ω = i∂∂̄u(t) near the punc-
tured point, the constants c1 and c2 in ODE (4) can be determined. The key point
is the following observation.

Lemma 2.1. Under the above assumption, the metric ω determined by the Kähler
potential u(t) is complete near the punctured point if and only if F (φ) has a factor
(φ− a)2 with a > 0 and limt→−∞ φ = a. Hence

(6) c1 = nan−1 − c

n
an and c2 = (1− n)an +

c

n+ 1
an+1.

Proof. Since the metric ω =
√
−1∂∂̄u(t) is rotationally symmetric, for any point

p ∈ Dn∗(r0), the ray γ(s) = sp, s ∈ (0, 1], is a geodesic. The tangent vector of this
curve at the point sp is p and its square norm under the metric ω is, if we assume
that r2(p) = 1,

|p|2sp =
∑

wα(p)w̄β(p)gαβ̄(sp) = u′′(t)r−2.

Then the length of γ(s) is

l =

∫ 1

0

|γ′(s)|spds =

∫ 1

0

√
u′′(t)

dr

r
=

1

2

∫ 0

−∞

√
u′′(t)dt =

1

2

∫ 0

−∞

√
dφ

dt
dt.
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Under the assumption that dφ/dt > 0 and φ(t) > 0, there is a nonnegative constant
a such that

lim
t→−∞

φ = a.

By equation (5), we have

l =
1

2

∫ φ(0)

a

√
φn−1

F (φ)
dφ.

The completeness requires l = +∞, which is equivalent to the fact that F (φ) has a
factor (φ− a)2. Hence, we can determine c1 and c2 as in (6).

We claim a > 0. If a = 0, F (φ) = φn(− cφ
n(n+1) +1). Hence, l < +∞, which leads

to a contradiction. �

2.3. Discussions of the solutions and proofs of Theorems 1.1 and 1.2.
Because of completeness, in this subsection assume that the constants c1 and c2
have been chosen as in (6). Hence, F (a) = F ′(a) = 0. Since

F ′′(φ) = (n(n− 1)− cφ)φn−2,

in case c ≤ 0, F ′′(φ) > 0 and so F (φ) > 0 on domain (a,+∞). In case c > 0, if
assume that the constants a and c satisfy

ac < n(n− 1),

then on domain (a, n(n−1)
c ), F ′′(φ) > 0 and so F (φ) > 0. Hence, F (φ) > 0 on

domain (a, b) for some constant b or b = +∞. Thus, we obtain the solution of
equation (5), up to a constant:

(7) t = t(φ) =

∫ φ

φ0

xn−1

F (x)
dx, φ ∈ (a, b),

for a given φ0 ∈ (a, b). Since F (φ) has the factor (φ− a)2, limφ→a+ t(φ) = −∞. In
the following we will discuss more details of the solutions (7) for different signs of
c and finish the proofs of Theorems 1.1 and 1.2.

1. Case c = 0. In this case,

F (φ) = φn − nan−1φ+ (n− 1)an.

Since the only root of F ′(φ) = 0 is a, F (φ) obtains its minimum at the point a

and F (φ) > 0 for all φ > a. As φ → ∞, φn−1

F (φ) →
1
φ and solution (7) has the

property that t ' log φ. Hence φ = φ(t) is defined on the entire punctured space
Cn∗. Therefore there exist a family (depending on a > 0) of zero cscK metrics with
Kähler potential u(t) such that u′(t) = φ(t).

Since φ→ a as t→ −∞,

dt =
φn−1dφ

F (φ)
∼ 2a

n(n− 1)

1

(φ− a)2
dφ.

It turns out that from φ(t) = u′(t) = r2u′(r2),

u(r2) ∼ a log r2 − 2a

n(n− 1)
log(− log r2).
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Moreover, by L’Hôsital’s rule we get the more accurate expression of u(r2):

u(r2) = a log r2 − 2a

n(n− 1)
log(− log r2) +O((log r2)−1).

On the other hand, we divide the case into n = 2 and n ≥ 3 to discuss the
approximation of the solution as r2 →∞. For n = 2,

dt =
φdφ

(φ− a)2
=
( 1

φ− a
+

a

(φ− a)2

)
dφ

and it follows that

(8) t = log(φ− a) +
1

(φ− a)

and u(r2) ' a log r2 + r2. Obviously, the derived metric is complete at entire Cn∗.
Moreover, L’Hôsital’s rule can be used to get more accurate estimate

u(r2) = r2 + 2a log r2 +
a2

2r2
+O(

1

r4
).

For n ≥ 3, as r2 →∞

dt =
1

φ

(
1 + nan−1φ1−n − (n− 1)anφ−n +O(φ−n−1)

)
and then

t = log φ+
n

1− n
an−1φ1−n +

n− 1

n
anφ−n +O(φ−n−1)

which implies

φ− et = φ
(
1− exp(

n

1− n
an−1φ1−n +

n− 1

n
anφ−n +O(φ−n−1)

)
=

n

n− 1
an−1φ2−n − n− 1

n
anφ1−n − n2

(1− n)2
a2n−2φ2−2n +O(φ−n−1

)
.

Replacing φ by et in the right hand side of the above equality, we have

φ = et +
n

n− 1
an−1(et)2−n − n− 1

n
an(et)1−n +O((et)−n−1)

or

u(r2) = r2 − nan−1

(n− 1)(n− 2)
(r2)1−2n +

an

n
(r2)1−n +O((r2)−n).

Thus we have finished the proof of theorem 1.1.
We give the picture of φ = φ(t) with n = 2 and a = 1 as Figure 1. Recall that

in this situation the function φ = φ(t) is defined in equation (8). Note that we also
have

det(g) = e−2tφ(t)φ′(t) = exp(− 2

φ− 1
).

We give a rotational picture of the function exp(− 2
φ−1 ) as Figure 2 which shows

the ALE and PMY properties of the metric.



8 JIXIANG FU, SHING-TUNG YAU, AND WUBIN ZHOU
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Figure 1. The graph of φ(t) with c = 0 and a = 1.

Figure 2. PMY and ALE.

2. Case c < 0. In this case, we have seen that F (φ) > 0 when φ ∈ (a,+∞).
From (7), we also see that when φ → +∞, the upper bound of t = t(φ) exists
since the degree of F is n+ 1. For simplicity, we take this upper bound to be zero
since the solution (7) is unique up to be a constant. Then u(r2) is defined on the
punctured unit disc Dn∗.

The analysis of the boundary behavior is as follows. As φ→∞,

t =
n(n+ 1)

−c
1

φ
+O(

1

φ2
)

which implies

u(r2) =
n(n+ 1)

−c
log(− log r2) +O(log r2)

or

u(r2) =
n(n+ 1)

−c
log(1− r2) +O(log r2),

where the right hand side is the Kähler potential of the standard Poincaré metric
on Dn. Hence, the metric we constructed is also complete near the boundary of
Dn.

For the asymptotic behavior of φ = φ(t) at the origin, it is the same as for the
case c = 0: As r2 → 0,

u(r2) = a log r2 − 2a

n(n− 1)− ac
log(− log r2) +O((log r2)−1).

Then we have finished the proof of Theorem 1.2 for the case c < 0.
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We give the picture of φ = φ(t) as n = 2, a = 1 and c = −6 as Figure 3. Note
in this situation,

dφ

dt
=

φ

(φ− 1)2(φ+ 3)
.

-0.12 -0.10 -0.08 -0.06 -0.04 -0.02
t

20

40

60

80

100

Φ

Figure 3. The graph of φ(t) with c = −6.

3. Case c > 0. We have seen that if the constants c and a satisfy the relation

ac < n(n − 1), then on domain (a, n(n−1)
c ), F (φ) > 0. Obviously, when φ is big

enough, F (φ) < 0. Hence we can let b be the first number in (a,+∞) such that
F (b) = 0. It follows that there is a polynomial G(φ) such that we can write

F (φ) =
c

n(n+ 1)
(φ− a)2(b− φ)G(φ).

We first claim G(b) > 0. If G(b) = 0, then F (b) = F ′(b) = 0. Together with
F (a) = F ′(a) = 0, there are at least two different positive roots for the equation
F ′′(φ) = 0. However, equation

F ′′(φ) = −cφn−1 + n(n− 1)φn−2 = 0

has only one positive root φ = n(n−1)
c , which leads to a contradiction. Hence, as

φ→ b,

(9) t ∼ −κ log(b− φ),

where

κ = − b
n−1

F ′(b)
> 0.

This implies that when φ ∈ (a, b), t ∈ (−∞,+∞) and then the Kähler potential
u(r2) is defined on entire Cn∗.

The approximation of u(r2) near the zero is the same as for the case c = 0:

u(r2) = a log r2 − 2a

n(n− 1)− ac
log(− log r2) +O((log r2)−1).

Whereas when t→∞, from (9) we can derive

u(r2) = b log r2 + κr−
2
κ +O(r−2).
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The metric is not complete as r2 → ∞. In fact as in the proof of Lemma 2.1, the
length of the geodesic ray γ(s) = sp on domain (1,+∞) is

l =

∫ b

φ(log(r2(p)))

√
φn−1

F (φ)
dφ '

∫ b

φ(log(r2(p)))

1

κ
√
φ− b

dφ <∞.

Thus we have finished the proof of Theorem 1.2 for the case c > 0.
We give the picture of function φ = φ(t) in case n = 2, a = 1 and c = 1 as Figure

4. In this situation,

dφ

dt
=

6φ

(φ− 1)2(4− φ)
.

-20 -10 10 20
t

1

2

3

4

Φ

Figure 4. The graph of φ(t) with c = 1.

2.4. Further remarks. 1. For n = 1, ∂∂̄ log r2 = 0 and
√
−1∂∂̄(− log(− log r2))

is the standard Poincaré metric on D∗ with Gauss curvature −1. One can also
construct on C∗ a complete metric with zero Gauss curvature

√
−1∂∂̄(log r2)2 =

√
−1

dz ∧ dz̄
r2

.

2. It is mentioned in Introduction that the Mok–Yau metric defined on D2∗ has
good properties. One can see that

√
−1∂∂̄(− log(− log r2)) is also a Kähler metric

on D2∗. However, its scalar curvature is infinity as r2 → 0. In fact, the term
log r2 in the Mok–Yau metric results in the boundedness of the scalar curvature
near the punctured point. Hence, the asymptotic property appeared in Definition
1.1 is named as the PMY asymptotic property.

3. Write CPn = Cn ∪ CPn−1 and viewed zero as a point p in Pn. One will ask
whether the metric on Cn∗ constructed above with c > 0 can be extended across
CPn−1. This is impossible. In fact, it can be seen form Lemma 4.1 in section 4
below that the metric

√
−1∂∂̄u(t) can be extended across CPn−1 if and only if

(10) κ = − b
n−1

F ′(b)
= 1.
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Replacing φ by aφ and c by a−1c, we can assume that a = 1 in F (φ). From

κ = − bn−1

F ′(b) and F (b) = 0, we get the relation

b =
n2 − 1− c+ (1− 1

κ )bn

n2 − c
.

Then b > a = 1 implies κ 6= 1, which is a contradiction to (10). So in this way we
can not get a complete cscK metric on CPn − p.

In our another paper [8], it has been proved that there also do not exist any
complete cscK metrics on CPn − p with PMY asymptotic property. Nevertheless,
a family of complete extremal metrics on CPn − p have been constructed in [8].

4. At last, we give a simple proof of Theorem 1.3 which states that there are not
any complete K–E metrics on Cn∗ or on Dn∗.

Proof of Theorem 1.3. Since Cn∗ and Dn∗ are not compact, by Myers’ theorem, we
only need to consider the cases c ≤ 0. In [11], Mok and Yau proved that if a bounded
domain Ω admits a complete hermitian metric such that −C ≤ Ricci curvature ≤ 0,
then Ω is a domain of holomorphy. Since Dn∗ is not a holomorphic domain, it does
not admit a complete E–K metric with c ≤ 0.

For the nonexistence of negative K–E metrics on Cn∗, we use generalized Yau’s
Schwarz Lemma.

Lemma 2.2. [11, 19] Let (M,ωg) be a complete hermitian manifold with scalar
curvature bounded below by −K1 and let (N,ωh) be a hermitian manifold of the
same dimension with Ricci curvature Ric ≤ −K2ωh for some K2 > 0. If f :
M → N is a holomorphic map and the Jacobian is nonvanishing at one point, then
K1 > 0 and

f∗ωnh ≤
(
K1

nK2

)n
ωng .

Now take M = N = Cn∗ and take the metric ωg on M as in Theorem 1.1. Then
the above lemma leads to the nonexistence of negative K–E metric on N = Cn∗.

As for the Ricci–flat case, if we let ω =
√
−1gij̄dzi∧dz̄j be a complete Ricci–flat

metric on Cn∗, then the function log det(gij̄) is pluriharmonic on it. Since the de

Rham cohomology group H1
dR(Cn∗,R) vanishes, log det(gij̄) is the real part of a

holomorphic function. By Hartogs’ extension theorem for holomorphic functions,
log det(gij̄) is pluriharmonic on the entire space Cn. Hence, (gij̄) > C(δij̄) for some
positive constant C. Then following the discussions on page 49 of [11], one can get
a contradiction to the completeness of the metric near the origin of Cn. �

3. A momentum construction of complete cscK metrics

This section is devoted to prove Theorem 1.4. The first subsection almost follows
the paper [9]. That is we first use the Calabi’s ansatz to derive an ODE and then
use the moment profile to simplify it. In the second subsection completeness of
metrics near zero section and at infinity are used to get constraint conditions. In
the third subsection, we then consider the existence of metrics and their asymptotic
property.
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3.1. The momentum construction. Let M be a compact Kähler manifold with
a Kähler metric ωM . Let π : L→M be a holomorphic line bundle with a hermitian
metric h. For any point q ∈ M , there is a holomorphic coordinate system (U, z =
(z1, · · · , zm)) of q with z(q) = 0 such that L|U is holomorphically trivial. Under
this trivialization, the hermitian metric h can be given by a positive function h(z).
Assume that ωM and h satisfy the condition

(11)
√
−1∂∂̄ log h = λωM , for some constant λ.

Let E be the direct sum of n (≥ 2) copies of L, i.e. E = L⊕n, with an associated
hermitian metric still denoted by h. We also denote π : E → M . We have a
local trivialization of E induced from one of L and denote the fiber coordinates by
w = (w1, · · · , wn). In the following, we denote α and β as the lower index of the
components of w and i and j as the lower index of the components of z. There is
a fibrewise norm squared function r2 on the total space of E defined by h

r2 = h(z)

n∑
α=1

|wα|2.

If M is viewed as the zero section of E, i.e. the set defined by r2 = 0, we want to
construct complete cscK metrics on E −M under condition (11). In this section
denote E −M simply by E∗.

Let

(12) ν = log r2 = log h(z) + t, with t = log
( n∑
α=1

|wα|2
)
.

Consider Calabi’s ansatz

ω = π∗ωM +
√
−1∂∂̄f(ν).

Using condition (11), we have

ω =(1 + λf ′(v))π∗ωM + f ′′(ν)
√
−1∂ log h ∧ ∂̄ log h

+ f ′(v) ·
√
−1(∂ log h(z) ∧ ∂̄t+ ∂t ∧ ∂̄ log h(z))

+ f ′(v) ·
√
−1∂∂̄t+ f ′′(v) ·

√
−1∂t ∧ ∂̄t

and

(13) ωm+n = (1 + λf ′(v))mπ∗ωmM ∧ (f ′(v) ·
√
−1∂∂̄t+ f ′′(v) ·

√
−1∂t ∧ ∂̄t)n.

The reason one can derived the above equality is det( ∂2t
∂wα∂w̄β

) = 0. In practise,

when computing at any point p ∈ π−1(q), one can let wα(p) = 0 for 2 ≤ α ≤ β.
Then ω is (strictly) positive if and only if

(14) f ′(ν) > 0, f ′′(ν) > 0, and 1 + λf ′(ν) > 0.

Definition 3.1. The above constructed metric ω is call a bundle adapted metric.

Next we compute the Ricci curvature and the scalar curvature of the bundle
adapted metric ω. From (13), we have

(15) det(ω) = det(ωM ) · (1 + λf ′(ν))me−ntf ′(ν)n−1f ′′(ν).

Let

Ψ(ν) = log
(
(1 + λf ′(ν))mf ′(ν)n−1f ′′(ν)

)
.
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For any q ∈ M , we can assume that the local coordinates z = (z1, · · · , zn) around
q also satisfy ∂h|q = ∂̄h|q = 0. Then under assumption (11), the Ricci form of ω at
a point p ∈ π−1(q) is

Ric(ω)|p =−
√
−1∂∂̄(log det(gM ) + Ψ(ν)− nt)|p

=Ric(ωM )|q − λΨ′(ν)ωM |q
− (Ψ′(ν)− n)

√
−1∂∂̄t|p −Ψ′′(ν)

√
−1∂t ∧ ∂̄t|p,

where Ric(ωM ) is the Ricci form of ωM on M . The matrix composed by components
of metric ω at p is(

(1 + λf ′(ν))(gij̄)m×m 0
0

(
f ′(ν)δαβ + f ′′(ν)w̄αwβ

)
n×n

)
,

where (gij̄)m×m is the coefficients matrix of metric ωM . Its inverse matrix is(
1

1+λf ′(ν) (gij̄)n×n 0

0 ( et

f ′(ν)δαβ + wαw̄β( 1
f ′′(ν) −

1
f ′(ν) ))n×n

)
.

If cM denotes the scalar curvature of ωM , the scalar curvature of ω at the point p
is

(16) c =
cM

1 + λf ′(ν)
− λmΨ′(ν)

1 + λf ′(ν)
− (n− 1)

Ψ′(ν)− n
f ′(ν)

− Ψ′′(ν)

f ′′(ν)
.

The above formula of scalar curvature is obviously globally defined.
Usually it is more suitable to use the Legendre transform to solve scalar curvature

equation (16). From the positivity (14) of ω, f(ν) must be strictly convex. Then
one can take the Legendre transform F(τ) of f(ν). The Legendre transform F(τ)
is defined in term of the variable τ = f ′(ν) by the formula

f(ν) + F(τ) = ντ.

Let I ⊂ R+ be the image of f ′(ν). The momentum profile ϕ(τ) of the metric is
defined to be ϕ : I → R,

ϕ =
1

F ′′(τ)
.

Then the following relations can be verified:

ϕ(τ) = f ′′(ν) and
dτ

dν
= ϕ.

Also, ν can be viewed as a function of τ , up to a constant,

(17) ν(τ) =

∫
1

ϕ(τ)
dτ.

The advantage of the Legendre transform is that the scalar curvature of ω can
be described in terms of ϕ(τ) and the domain I of τ . Especially, the boundary
completeness (see the next subsection) and the extendability properties (see the
next section) can also be read off from the behaviour of φ(τ) near the end points
of I.

Using these transformations, we have

Ψ(τ) = log((1 + λτ)mτn−1ϕ(τ)).

Let
Q(τ) = (1 + λτ)mτn−1.
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Then Ψ = log(Qϕ). By direct computation,

Ψ′(ν) =
1

Q

∂(Qφ)

∂τ

Ψ′′(ν) = −(mλτn−1 + (n− 1)(1 + λτ))
ϕ

Q2

∂(Qϕ)

∂τ
+
ϕ

Q

∂2(Qϕ)

∂τ2
.

Inserting the above equalities into (16), and replacing f ′(ν) by τ , then simplifying
it, at last we obtain

(18) c =
cM

1 + λτ
+
n(n− 1)

τ
− 1

Q

∂2(Qϕ)

∂2τ
.

Now we assume that cM is a constant. We want to look for ϕ such that c is a
constant. By integrations, we solve equation (18) as

(19)

(ϕQ)(τ) = (ϕQ)(a) + (ϕQ)′(a)(τ − a) + P (τ), with

P (τ) =

∫ τ

a

(τ − x)

(
cM

1 + λx
+
n(n− 1)

x
− c
)
Q(x)dx,

where a is the left endpoint of I. Here (ϕQ)(a) and (ϕQ)′(a) are constants. P (τ)
is a polynomial and hence ϕ(τ) is a real rational function.

3.2. Completeness. Assume that I = (a, b) ⊂ R+, b may be infinity, is the max-
imum interval where ϕ(τ) determined by (19) is defined and positive. Further
assume that

lim
τ→a+

ν(τ) = −∞

and

1 + λτ > 0, when τ ∈ (a, b).

Then from the above subsection, the bundle adapt metric ω is well-defined on
U∗(ν(b)) = {p ∈ E | −∞ < ν(p) < ν(b)} ⊂ E∗. Here ν(b) = limτ→b− ν(τ). If ν(b)
is infinity, then U∗(ν(b)) = E∗, and if ν(b) is a constant, we can take an integration
constant in (17) such that ν(b) = 0 and hence U∗(ν(b)) is U∗ = U −M as defined
in Introduction. We first establish the following lemma.

Lemma 3.1. Under the above assumptions, the bundle adapt metric ω is complete
near the zero (punctured) section if and only if a > 0 and ϕ(a) = ϕ′(a) = 0. Thus,

ϕ(τ) = P (τ)
Q(τ) .

Moreover, if b is finite, then ω is defined on E∗ and ω is complete if and only if
ϕ also satisfies ϕ(b) = ϕ′(b) = 0; Whereas if b is infinity, then ω is defined on E∗

or on U∗ and is automatically complete.

Proof. For any point q ∈ M , p ∈ π−1(q) ∩ U∗(ν(b)), we consider the ray starting
from q on the fiber π−1(q):

(20) γ(s) = s · p, s ∈ (0, 1] or s ∈ [1, s0)

for s2
0 = exp(ν(b)− ν(p)). Such an s0 can be derived from the following calculation

by (12):

ν(b) = ν(s0 · p) = log h(z(q)) + t(s0 · p) = log s2
0 + ν(p).

Since π−1(q) ∩ U∗(ν(b)) is a totally geodesic submanifold of (U∗(ν(b)), ω) and
the induced metric on π−1(q) ∩ U∗(ν(b)) is U(n)-invariant, γ(s) is a geodesic on
π−1(q)∩U∗(ν(b)), and hence is also a geodesic on U∗(ν(b)). Also sinceM is compact,
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the metric ω is complete if and only of the lengths of the rays γ(s) defined in (20)
are infinity.

As done in Lemma 2.1, the length of γ(s) on domain (0, 1] is

l1 =

∫ 1

0

|γ′(s)|ds =
1

2

∫ ν(p)

−∞

√
f ′′(ν)dν =

1

2

∫ τ(ν(p))

a

1√
ϕ(τ)

dτ.

The completeness near the zero section requires l1 = +∞, which is equivalent to
that ϕ(τ) has a factor (τ − a)2, i.e. ϕ(a) = ϕ′(a) = 0. We claim a > 0. If a = 0,
the lowest degree term of polynomial P (τ) defined in (19) would be determined as∫ τ

0

(τ − x)n(n− 1)xn−2dx = τn.

Hence we can write P (τ) as P (τ) = τn(1 + A(τ)) for some polynomial A(τ) and
thus get

ϕ(τ) =
P (τ)

Q(τ)
= τ

1 +A(τ)

(1 + λτ)m
.

In this way we find l1 < +∞, which is a contradiction.
Next, we should consider the endpoint b. The length l2 of γ(s) for s ∈ [1, s0) is

l2 =

∫ s0

1

|γ′(s)|ds =
1

2

∫ ν(s0·p)=ν(b)

ν(p)

√
f ′′(ν)dν =

1

2

∫ τ(ν((b)))=b

τ(ν(p))

1
√
ϕ
dτ

If b is finite, then P (τ) has a factor (τ − b). By (17), limτ→b− ν(τ) = +∞. Hence,
ω is well-defined on E∗. If ω is complete, the above l2 is also infinity, which is
equivalent to say that ϕ(b) = ϕ′(b) = 0. If b is infinity, then ϕ(τ) is defined on

(a,+∞). Since ℘ , degP (τ)− degQ(τ) = 2 or 1, from (17) if ℘ = 2, ω is defined
on U∗ and if ℘ = 1, ω is defined on E∗. Also since ℘ = 2 or 1, there exists a
constant C big enough such that ϕ(τ) < Cτ as τ →∞. Hence, in this situation, l2
is infinity and ω is automatically complete. �

3.3. Existence of complete cscK metrics. We discuss the solutions in this
subsection divided into three cases: λ > 0, λ = 0 and λ < 0.

1. Case λ > 0. Given constants cM , λ > 0, and a > 0, define the set C to be of
“allowable scalar curvatures” as

C = { c ∈ R | ϕ(τ) > 0 for τ ∈ (a,+∞) }.

C is not empty since ϕ(τ) is positive if c << 0. C has a supermum. In fact, if
c > 0, P (τ) and hence ϕ(τ) will be negative when τ is big enough. Hence, the
supermum c0 of C is nonpositive. We can easily get the conclusions: If cM ≥ 0,
c0 = 0 ∈ C; If cM < 0, two possibilities occur: one is c0 ∈ C, and the other is c0 /∈ C,
which means that there exists a constant b such that ϕ(b) = 0 and ϕ(τ) is positive
on (a, b). Hence we should consider the existence of Kähler metrics with constant
scalar curvature c as the following four cases:

(i) c < c0; (ii) c = c0 = 0 ∈ C; (iii) 0 > c = c0 ∈ C; or (iv) c = c0 6∈ C.

Proposition 3.1. Given constants cM , λ > 0 and a > 0, there exists a constant
c0 ≤ 0 such that:

1. For any c ≤ c0 in cases (i) and (iii), there exists a complete cscK metric ω on
U∗ with constant scalar curvature c; and
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2. For c = c0 in cases (ii) and (iv), there exists a complete cscK metric ω on E∗

with constant scalar curvature c.

Proof. For cases (i) and (iii), since the degrees of polynomials P (τ) and Q(τ) are
m + n + 1 and m + n − 1 respectively, the limit of ν(τ) defined by (17) is finite
as τ → +∞. Set this constant to be zero. Then the metric ω is defined on U∗.
According to Lemma 3.1, ω is complete.

For case (ii), degP (τ)− degQ(τ) = 1. The limit of ν(τ) is infinity as τ → +∞.
Hence the metric is defined on E∗ and is complete by Lemma 3.1.

For case (iv), ϕ(τ) ≥ 0 for τ ∈ (a,+∞). In this case there exists a constant b
such that ϕ(τ) > 0 in τ ∈ (a, b) and ϕ(b) = 0. Hence ϕ′(b) = 0. According to
Lemma 3.1, ω is defined on E∗ and is complete. �

We give two examples.

Example 3.1. Consider the case c0 ∈ C and c0 < 0. Take

c =
cM

1 + λa
+
n(n− 1)

a
.

We have

cM
1 + λx

+
n(n− 1)

x
− c

=
a− x

a(1 + λa)x(1 + λx)
(λ(cMa+ n(n− 1)(1 + λa))x+ n(n− 1)(1 + λa)) .

If cM < 0, λ > 0 and a > 0 satisfy

cM = −n(n− 1)(1 + λa)2

λa2
,

we find that P (τ) > 0 when τ ∈ (a,+∞). It is easy to check that

c0 = c = −n(n− 1)

λa2
.

Example 3.2. Then consider the case c0 /∈ C. Let m = 1, n = 2, λ = 1, cM = −4
and a = 1. It follows that

ϕ(τ) =

∫ τ

1

(τ − x)
(
− cx2 − (c+ 2)x+ 2

)
dx.

We can solve the inequality ϕ(τ) ≥ 0 to get c ≤ ψ(τ). Here

ψ(τ) =
1
3 − τ + τ2 − τ3

3
7
12 −

5
6τ + 1

6τ
3 + 1

12τ
4
.

Hence ϕ(b) = ϕ′(b) = 0 if and only if c0 = minτ∈(a,+∞) ψ(τ) = ψ(b).
The pictures of ψ(τ) and ϕ(τ) are given as Figure 5. We find that ψ(τ) achieves

its maximum at τ = 4.4641 with the maximum −0.3094. So c0 = −0.3094 and
b = 4.4641. Thus, ϕ(τ) gives a complete cscK metric on E∗ with scalar curvature
c0.

We consider the asymptotic property. Let

κ(τ) =
cM

1 + λτ
+
n(n− 1)

τ
− c.

Since ϕ(a) = ϕ′(a) = 0, κ(a) = ϕ′′(a).
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Figure 5. The case of c0 /∈ C.

Proposition 3.2. For cases (i), (ii) and (iv) the cscK metrics in Proposition 3.1 have
the PMY asymptotic property, and for case (iii), the metrics have the asymptotic
property: As r2 → 0,

f(r2) = a log r2 − 2(
3

κ′(a)
)

1
2 (− log r2)

1
2 +O(log(− log r2)),

or

f(r2) = a log r2 − 3

2
(

8

κ′′(a)
)

1
3 (− log r2)

2
3 +O((− log r2)

1
2 ).

Proof. For cases (i), (ii) and (iv), we claim that κ(a) > 0. If the claim holds, then
as r2 → 0,

dτ

dν
= ϕ(τ) =

κ(a)

2
(τ − a)2 +O(

1

τ − a
),

from which we can get

f(r2) = a log r2 − 2

κ(a)
log(− log r2) +O((log r2)−1),

which means that the metric is with PMY asymptotic property.

We prove the claim. For case (i), since cM
1+λa + n(n−1)

a − c0 ≥ 0, κ(a) = (κ(a) +

c− c0) + (c0 − c) > 0. For case (ii), if κ(a) = 0, then ϕ(3)(a) = κ′(a) and ϕ(τ) has
the Taylor expansion at τ = a:

ϕ(τ) =
κ′(a)

3!
(τ − a)3 + o((τ − a)3).
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The positivity of ϕ(τ) when τ > 0 implies κ′(a) ≥ 0. On the other hand, if κ(a) = 0,

i.e., cM
1+λa + n(n−1)

a = 0 as c = 0, then

κ′(a) =
−cM

(1 + λa)2
− n(n− 1)

a2
= − n(n− 1)

(1 + λa)a2
< 0,

which is a contradiction to κ′(a) ≥ 0. Hence κ(a) 6= 0 and κ(a) > 0 is deduced
from the positivity of ϕ(τ). We then consider case (iv). In this case, I = (a, b) and

ϕ(a) = ϕ′(a) = ϕ(b) = ϕ′(b) = 0.

These equalities guarantee that there are already two roots in (a,b) for ϕ′′(τ) =
κ(τ)Q(τ) = 0. Hence κ(a) = ϕ′′(a) 6= 0. The positivity of ϕ then implies κ(a) > 0.

For case (iii), we first prove that κ(a) = 0 which means that the metrics for this
case is not PMY. Since c = c0 < 0, there exist constants a0 ∈ (a,∞) and C > 0
such that κ(τ) ≥ C in [a0,∞). If κ(a) > 0, there would exist constants a1 > a and
C1 > 0 such that κ(τ) > C1 in (a, a1) and ϕ(τ) > C1 in (a1, a0]. Then we could
choose a positive constant ε such that ϕ(τ) is still positive by replacing c = c0 with
c = c0 + ε. Hence c = c0 + ε ∈ C which contradicts to that c0 is the supermum of C.

In this case, there are two subcases which should be considered: κ′(a) > 0 and
κ′(a) = 0: If κ′(a) > 0,

f ′′(ν) =
dτ

dν
= ϕ(τ) =

κ′(a)

3!
(τ − a)3 +O((τ − a)4);

If κ′(a) = 0, κ′′(a) 6= 0 and

f ′′(ν) =
dτ

dν
= ϕ(τ) =

κ′′(a)

4!
(τ − a)4 +O((τ − a)5).

The conclusion then follows. �

Proposition 3.3. The metrics in Proposition 3.1 with constant scalar curvature c
have the asymptotic property:

1. For cases (i) and (iii) (hence defined on U∗), as r2 → 1,

f(r2) = − (m+ n)(m+ n+ 1)

c
log(− log r2) +O(log r2);

2. For case (ii) (hence defined on E∗), as r2 →∞,

f(r2) =
1

θ1
(r2)θ1 + θ2 log r2 +O(r−2)

with θ1 = cM+n(n−1)λ
λ(m+n)(m+n+1) and θ2 = (m+n)(cM (m−1)+n(n−1)mλ)

m(m+n−2)(cM+n(n−1)λ) ;

3. For case (iv) (hence defined on E∗), as r2 →∞,

f(r2) = b log r2 − 2

κ(b)
log(log r2) +O((log r2)−1) with κ(b) > 0.

Proof. We omit the proof here. It is a calculus exercise. �

2. Case λ = 0. In this case, κ(τ) = cM + n(n−1)
τ − c. Hence c0 = cM .

Proposition 3.4. Given constants cM , λ = 0, and a > 0, there exists a complete
cscK metrics on U∗ with c < cM and on E∗ with c = cM . All these metrics admit
PMY asymptotic property.

Proof. The proof is the same as Propositions 3.1 and 3.2. �
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3. Case λ < 0. The method of this case is quite different from the cases λ ≥ 0.

Proposition 3.5. For any λ < 0 and cM > 0, there exists on E∗ a complete positive
cscK metric with PMY asymptotic property.

Proof. We need to prove that there exist two constants a and b with 0 < a < b < − 1
λ

such that the function ϕ(τ) is positive on domain (a, b) and ϕ(b) = ϕ′(b) = 0.
On interval (0,− 1

λ ), the polynomial Q(τ) is positive. Hence there is a number

b ∈ (a,− 1
λ ) such that ϕ(b) = ϕ′(b) = 0 if and only if P (b) = P ′(b) = 0, and when

τ ∈ (a, b), ϕ(τ) is positive if and only if P (τ) is positive.
From P (b) = P ′(b) = 0, we can solve cM and c as

(21) cM = n(n− 1)
H1(a, b)

H2(a, b)
and c = n(n− 1)

H3(a, b)

H2(a, b)
,

where we have defined

(22)

H1(a, b) =

∫ b

a

Q(x)

x
dx

∫ b

a

xQ(x)dx−
(∫ b

a

Q(x)dx
)2

,

H2(a, b) = − 1

λ

∫ b

a

Q(x)

1 + λx
dx

∫ b

a

(1 + λx)Q(x)dx+
1

λ

(∫ b

a

Q(x)dx
)2

,

H3(a, b) =

∫ b

a

xQ(x)

1 + λx
dx

∫ b

a

Q(x)

x
dx−

∫ b

a

Q(x)dx

∫ b

a

Q(x)

1 + λx
dx.

We first note that when λ < 0 and 0 < a < b < − 1
λ , the functions Hi(a, b) for

i = 1, 2, 3 are always positive. The proofs for the first and second functions are
direct by the Hölder inequality. The proof for the third one is also direct by using
the common techniques in calculus. Thus the constant cM and c defined in (21)
are indeed positive.

We need the following.

Claim: For any given positive cM , there exist two constants a and b with 0 < a <
b < − 1

λ such that the first equality in (21) holds.

Proof. Define a function

H(ζ, τ) =
H1(ζ, τ)

H2(ζ, τ)
, ζ, τ ∈ (0,− 1

λ
), ζ < τ.

By continuity, if we can prove that as ζ → 0, H(ζ, 2ζ) → ∞, and as ε → 0,
H( 1−2ε

−λ ,
1−ε
−λ ) → 0, then the claim holds. But as ζ → 0 and (hence) (1 + λζ) → 1,

one can easily estimate to get H1(ζ, 2ζ) = O(ζ2n) and H2(ζ, 2ζ) = O(ζ(2n+1)), and
hence H(ζ, 2ζ) = O(ζ−1). On the other hand, as ε→ 0, H1( 1−2ε

−λ ,
1−ε
−λ ) = O(ε2m+1),

and H2( 1−2ε
−λ ,

1−ε
−λ ) = O(ε2m) and hence H( 1−2ε

−λ ,
1−ε
−λ ) = O(ε). �

According to the claim, we have P (b) = P ′(b) = 0. The condition P (τ) > 0
for τ ∈ (a, b) is automatically satisfied. For if there exists a point ξ ∈ (a, b) such
that P (ξ) = 0, equation P ′′′(τ) = κ(τ)Q(τ) = 0 has three roots in (a, b). This is
impossible.

From the proof of Proposition 3.2, we see that if κ(a) > 0, then the metric has
the PMY asymptotic property. Since P (a) = P ′(a) = 0, κ(a) = 0 is equivalent to
P ′′(a) = 0, and hence P ′′′(τ) = 0 has three roots in (a, b). It is impossible. �

Proof of Theorem 1.4. It follows from Propositions 3.1, 3.2, 3.3, 3.4 and 3.5. �
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4. CscK PMY metrics on P(E ⊕O)−M

Recall that P(E ⊕ O) can be viewed as a compactification of E: E can be
imbedded into P(E ⊕O). In fact, let (U, z = (z1, · · · , zm)) be a local holomorphic
chart of M such that E|U is (holomorphically) isomorphic to U ×Cn. If we denote
the coordinates of Cn as w = (w1, · · · , wn), the imbedding map can be defined as
follows: for any p ∈ E|q, q ∈ U ,

p 7→ (q, w1(p), · · · , wn(q)) 7→ (q, [1, w1(p), · · · , wn(p)]).

This map is clearly well-defined on E. It defines a section s of P(E ⊕O):

q 7→ (q, (0, · · · , 0)) 7→ (q, [1, 0 · · · , 0])

which is just the zero section of E. Hence we still denote s(M) simply by M . Set
D∞ = P(E⊕O)−E. D∞ is a divisor on P(E⊕O) and is called the infinity divisor.
By these notations, E −M is bi-holomorphic to P(E ⊕ O) − s(M) − D∞. Now
the question is when the metric ω defined on E −M as the above section can be
extended across D∞.

First note that if ω can be extended across D∞, ω must be defined on E −M
and is not complete at infinity. Hence according to the proof of Lemma 3.1, the
endpoint b of I = (a, b) is finite.

Lemma 4.1. Let ω be the bundle adapted metric with momentum profile ϕ(t) in
(19). Assuming that there is a constant b such that ϕ(τ) is positive on (a, b) and
ϕ(b) = 0. Then ω defined on E −M can be extended across D∞ if and only if
ϕ′(b) = −1.

Proof. The proof of this lemma is well-known. One can consult references [6, 9, 1].
Here we write out details.

Since the metric ω on E −M is bundle adapt, we only need to prove that the
metric ω0 = i∂∂̄f(τ) defined on fiber E|q − π(q) = Cn − 0 can be extended to
CPn−1.

First recall that CPn \ [1, 0, · · · , 0] is bi-holomorphic to the line bundle O(1)
over CPn−1. Let [v0, · · · , vn] be the homogeneous coordinates of CPn. Here the
open set Cn is v0 = 1 and the hyperplane CPn−1 is v0 = 0. Hence wα = vα

v0
is the

α−th coordinate of Cn and [v1, · · · , vn] is the homogeneous coordinates of CPn−1.
Let Uα = {[v1, · · · , vn] | vα 6= 0} and define wαβ =

vβ
vα

with β 6= α. Let vα be the

coordinate of the trivialization of O(1)|Uα . Then its transition function defined on
Uα ∩ Uβ is

vα =
1

wαβ
vβ = wβαv

β .

The bi-holomorphic map ψ : CPn − [1, 0, · · · , 0]→ O(1) is

[v0, · · · , vn] 7→ [wα1 , · · · , wαβ−1, w
α
β+1, · · · , wαn ,

v0

vα
], for vα 6= 0.

Define on O(1) the function

r̃2 =
|vα|2

1 +
∑
β 6=α |wαβ |2

.

We have r̃2 = 1
r2 on Cn − 0.
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By Direct computation, we have

ω0 =−
√
−1f ′(t)∂∂̄ log r̃2 +

√
−1f ′′(t)∂ log r̃2 ∧ ∂̄ log r̃2

=(f ′(t) + f ′′(t))ωFS +
f ′′(t2)

r̃2
(
√
−1∂∂̄r̃2)

=(τ + ϕ(τ))ωFS +
ϕ(τ)

r̃2
(
√
−1∂∂̄r̃2)

Define the functions

f1(r̃2) =

{
τ + ϕ(τ), r̃2 > 0
b r̃2 = 0

,

and

f2(r̃2) =

{
ϕ(τ)
r̃2 r̃2 > 0

1 r̃2 = 0.

Since as r̃2 → 0, τ → b and limτ→b ϕ(τ) = 0, the function f1(r̃2) is continuous at
r̃2 = 0. As to f2, we shall prove that if we take a suitable constant in (17), then it
is also continues at r̃2 = 0.

In fact f2(r̃2) is smooth. Since ϕ(b) = 0, ϕ′(b) = −1, and ϕ is rational, we can
write

ϕ(τ) = (b− τ)(1 + (b− τ)ϕ1(τ))

for some smooth function ϕ1(τ). Then

t =

∫
1

ϕ(τ)
dτ = − log(b− τ)− ϕ2(τ).

Here ϕ2(τ) is a smooth function with ϕ2(b) = 0. Hence

(23) r̃2 =
1

r2
= e−t = eϕ2(τ)(b− τ)

and

f2(r̃2) = (1 + (b− τ)ϕ1(τ))e−ϕ2(τ)

is a smooth function of τ . Moreover, by the implicit function theorem, we can solve
(23) to get a smooth function τ = τ(r̃2). Hence f2(r̃2) is a smooth function of r̃2.
Now we can also see that f1(r̃2) is smooth at r̃2 = 0 since

f1(r̃2) = τ + f2(τ)r̃2.

The metric ω0 can be extended across CPn−1 by defining

ω̃0 = f1(r̃2)ωFS + f2(r̃2)(
√
−1∂∂̄r̃2)

Since d(ω0) = 0 and f1(r̃2) and f2(r̃2) is smooth at r̃2 = 0, ω̃0 is also Kähler. �

According to Lemma 4.1, the momentum profile ϕ in (19) gives a complete cscK
metric on P(E ⊕O)−M if and only if

(i) ϕ(b) = 0 and ϕ′(b) = −1 with b > a,
(ii) ϕ(τ) is positive on domain (a, b).

However, condition (ii) is satisfied automatically if condition (i) holds. For one
can show that under condition (i) a is the unique solution of P (x) = 0 for x ∈ (0, b).
In fact, we have the following result.

Lemma 4.2. If ϕ(b) = 0 and ϕ′(b) = −1, then ϕ(τ) > 0 on domains (0, a) and
(a, b).
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Proof. Since P ′′(τ) = κ(τ) = 0 has at most two roots and we have already P (a) =
P (b) = P ′(a) = 0, P (τ) = 0 has at most one root ξ in (0, a) or in (a, b). Also since
ϕ′(b) = −1 and ϕ(b) = 0, P (τ) is positive as τ → b. Hence if ξ ∈ (a, b), there
are two cases should be considered. One is ϕ(τ) > 0 on (a, ξ) ∪ (ξ, b), the other
is ϕ(τ) < 0 on (a, ξ). The former is impossible as ϕ′(ξ) = 0 which would lead to
κ(τ) = 0 has at least three roots. The latter is also impossible as from this one can
derive ϕ′′(a) = 0 which would also lead the contradiction. Thus, ξ /∈ (a, b).

Since ϕ(τ) > 0 when τ is near zero, as the same reason, ξ /∈ (0, a). �

Hence, in the following we only need to find a constant b such that condition (i)
is satisfied. We can solve constants cM and c from ϕ(b) = 0 and ϕ′(b) = −1 as:

(24) cM =
n(n− 1)H1 + L1

H2

and

c =
n(n− 1)H3 + L2

H2

with the definitions (22) and of

L1 = Q(b)

∫ b

a

xQ(x)dx− bQ(b)

∫ b

a

Q(x)dx,

L2 = bQ(b)

∫ b

a

Q(x)dx−Q(b)

∫ b

a

xQ(x)

1 + λx
dx.

So we should determine the range of cM such that ϕ(τ) satisfies (i).

Proposition 4.1. If λ < 0, the range of cM is R.

Proof. Let H̃ = n(n−1)H1+L1

H2
. First, we take b = 2a and estimate H̃(a, 2a) as

a→ 0+. We get

(n(n− 1)H1 + L1)(a, 2a) = α1a
2n +O(a2n+1)

with

α1 =
−2n−1(n+ 1)2 + n

n(n+ 1)
< 0,

and H2(a, 2a) = O(a2n+1). Since when λ < 0, H2(a, 2a) > 0, we have

lim
a→0+

H(a, 2a) = −∞.

On the other hand, we take b =
√
a and do estimates. As a→ 0+, we also have

(n(n−1)H1 +L1)(a,
√
a) = α2a

n+ 1
2 +O(an+1) with α2 =

−2λm

n(n+ 1)(n+ 2)
> 0,

and H2(a,
√
a) = O(an+1). Hence we have lima→0+ H̃(a,

√
a) = +∞.

Now the result follows from the continuity of H̃. �

Proposition 4.2. If λ > 0, the range of cM is (m(m+ 2n− 1)λ,∞).

Proof. First we note that when λ > 0, H2(a, 2a) < 0. Thus by the estimates in the

proof of the above lemma, we get lima→0+ H̃2(a, 2a)→ +∞.
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Next we do estimates: as b→ +∞

(n(n− 1)H1 + L1)(a, b) ∼ −m(m+ 2n− 1)

(m+ n)4 − (m+ n)2
b2(m+n)

H2 ∼
−λ2m−1b2m+2n

(m+ n)2(m+ n− 1)(m+ n+ 1)

Hence
lim
b→∞

cM = m(m+ 2n− 1)λ

At last, we need to prove

cM > m(m+ n− 1)λ

i.e., to prove when b ≥ a,

K(b) = n(n− 1)H1(b) + L1(b)−m(m+ 2n− 1)λH2(b) < 0.

This is a calculus exercise and we leave to readers.
In summary, the range of cM is (m(m+ 2n− 1)λ,∞). �

Proposition 4.3. The metrics in Propositions 4.1 and 4.2 admit the PMY asymptotic
property.

Proof. We need to prove κ(a) > 0. By Lemma 4.2, a is a minimum of ϕ(x). From

the Taylor expansion of ϕ(x) at x = a, if κ(a) = 0, κ′(a) = − λcM
(1+λa)2 −

n(n−1)
a2 = 0.

So if λcM ≥ 0, it is impossible. Thus for λ > 0 (hence cM > 0), or λ < 0 and
cM ≤ 0, the metrics are PMY. For the case λ < 0 and cM > 0, if k′(a) = 0, then

κ′′(x) =
2λ2cM

(1 + λx)3
+

2n(n− 1)

x3

would have one root in (0, b) when ϕ(a) = ϕ′(a) = ϕ′′(a)(= κ(a)) = ϕ(b) = 0. But
it is impossible when cM > 0. Hence κ′(a) 6= 0 and then κ(a) > 0. The metrics are
also PMY. �

The proof of Theorem 1.5. It follows from Propositions 4.1, 4.2, and 4.3. �

We give an example of cscK metric with λ > 0.

Example 4.1. Let m = 1, n = 2, λ = 1 and a = 1. Then

ϕ(τ) =
1

τ(τ + 1)

∫ τ

1

(τ − x)(cMx+ 2(1 + x)− cx(1 + x))dx

= − 1

12τ(τ + 1)
(−1 + τ)2

(
cτ2 + (4c− 2cM − 4)τ + 7c− 4cM − 20

)
We can solve ϕ(b) = ϕ′(b) = 0 to get

cM =
2(−13 + 37b+ 39b2 + 7b3 + 2b4)

(−1 + b)2(1 + 4b+ b2)
.

For example, let b = 2. Then

cM =
610

13
and c =

276

13

which implies

ϕ(x) =
−23x4 + 60x3 + 13x2 − 114x+ 64

13x(1 + x)
.
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We give a picture of ϕ(τ) as Figure 6.

0.5 1.0 1.5 2.0
Τ
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0.8

j

Figure 6. the graph of ϕ(τ) on [1, 2] with λ = 1, cM = 610
13

and c = 276
13

.

We also give two examples of csck metrics with λ < 0.

Example 4.2. Let m = 1, n = 2, λ = −1 and cM = 2. We choose a = 0.001,
then the graph as Figure 7 shows b ' 0.0893745 and c ' 68.7366, or b ' 0.998 and
c ' 11.9761. We give a picture of ϕ(τ) with b = 0.0894 as Figure 8.

0.2 0.4 0.6 0.8 1.0
Τ

-10

10

20
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Figure 7. the graph of cM with a = 0.001.
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Figure 8. the graph of ϕ(τ) with a = 0.001, λ = −1 and cM = 2.
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Example 4.3. Let m = 1, n = 2, λ = −1 and cM = −2. If a = 0.1, then
b ' 0.61146 and c ' 5.02242. We give a picture of ϕ(τ) as Figure 9.
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Figure 9. the graph of ϕ(τ) with a = 0.1, λ = −1 and cM = −2.
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