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Abstract. Finding surface mappings with least distortion arises from many applications in
various fields. Extremal Teichmüller maps are surface mappings with least conformality distortion.
The existence and uniqueness of the extremal Teichmüller map between Riemann surfaces of finite
type are theoretically guaranteed [1]. Recently, a simple iterative algorithm for computing the
Teichmüller maps between connected Riemann surfaces with given boundary value was proposed in
[11]. Numerical results was reported in the paper to show the effectiveness of the algorithm. The
method was successfully applied to landmark-matching registration. The purpose of this paper is to
prove the iterative algorithm proposed in [11] indeed converges.

Key words. Teichmüller map, extremal map, quasiconformal map, harmonic energy optimiza-
tion, registration.

1. Introduction. Finding meaningful surface mappings with least distortion
has fundamental importance. Applications can be found in different areas such as
registration, shape analysis and grid generation. Conformal mapping has been widely
used to establish a good one-to-one correspondence between different surfaces, since
it preserves the local geometry well [2, 3, 4, 5, 6, 7, 8, 9, 10]. The Riemann mapping
theorem guarantees the existence of conformal mappings between simply-connected
surfaces. However, this fact is not valid for general Riemann surfaces. Given two
Riemann surfaces with different conformal modules, there is generally no conformal
mapping between them. In this case, it is usually desirable to obtain a mapping
that minimizes the conformality distortion. Every diffeomorphic surface mapping is
associated with a unique Beltrami differential, which is a complex-valued function, µf ,
defined on the source surface. The Beltrami differential, µf , measures the deviation
of the mapping from a conformal map. Given two Riemann surfaces S1 and S2,
there exists a unique and bijective map f : S1 → S2, called the Teichmüller map,
minimizing the L∞ norm of the Beltrami differential [1]. Therefore, the extremal
Teichmüller map can be considered as the ‘most conformal’ map between Riemann
surfaces of the same topology, which is a natural extension of conformal mappings.

1.1. Extremal problem. Mathematically, the extremal problem for obtaining
a surface mapping with least conformality distortion can be formulated as follows.
Suppose (S1, σ|dz|2) and (S2, ρ|dw|2) are two Riemann surfaces of finite type, where
z and w are their conformal parameters respectively. Every diffeomorphism between
S1 and S2 is associated with a unique Beltrami differential. A Beltrami differential
µ(z)dz̄dz on the Riemann surface S1 is an assignment to each chart (Uα, φα) of an L∞

complex-valued function µα, defined on local parameter zα. Then, f : S1 → S2 is said

to be a quasi-conformal mapping associated with the Beltrami differential µ(z)dzdz if for
any chart (Uα, φα) on S1 and any chart (Vβ , ψβ) on S2, the mapping fαβ := ψβ◦f◦φ−1

α

is quasi-conformal associated with µα(zα)dzαdzα
.

Our goal is to look for an extremal quasi-conformal mapping, which are extremal
in the sense of minimizing the || · ||∞ over all Beltrami differentials corresponding to
quasi-conformal mappings between S1 and S2. The idea of extremality is to make
the supreme norm of the Beltrami differential as small as possible such that f is as
‘nearly conformal’ as possible.

The extremal problem can therefore be formulated as finding f : S1 → S2 that
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solves:

f = argming∈A{||µg||∞} (1.1)

where A = {g : S1 → S2 : g is a diffeomorphism}.
The above optimization problem (1.1) has a unique global minimizer provided

that S1 and S2 are Riemann surfaces of finite type. Also, the unique minimizer
f : S1 → S2 is a Teichmüller map, that is, its associated Beltrami differential µf is of
the following form:

µf = k
ϕ̄

|ϕ|
(1.2)

where 0 ≤ k < 1 is a non-negative real constant and ϕ is an integrable holomorphic
function defined on S1 (ϕ 6= 0). Beltrami differential of this form is said to be of
Teichmüller type.

1.2. An iterative algorithm for Teichmüller maps. To solve the extremal
problem (1.1) to obtain the Teichmüller map between connected surfaces, an iterative
algorithm was proposed in [11], called the quasi-conformal(QC) iteration. The ulti-
mate goal is to obtain the extremal map between connected (either simply-connected
or multiply-connected) surfaces with given boundary value, which minimizes the con-
formality distortion. The basic idea of the iterative algorithm is to project the Bel-
trami differential to the space of all Beltrami differentials of Teichmüller type, and
compute a quasi-conformal map whose Beltrami differential is closest to the projec-
tion in the least square sense. More specifically, the QC iteration for solving (1.1) can
be described as follows. 

fn+1 = LBS(µn+1),

µ̃n+1 = µn + αµ(fn+1, µn),

µn+1 = L(P(µ̃n+1))

(1.3)

where fn is the quasi-conformal map obtained at the nth iteration, νn is the Beltrami
differential of fn and µn is a Beltrami differential of constant modulus.

LBS(µ) is the operator to obtain a quasi-conformal mapping whose Beltrami
differential is closest to µ in the least square sense. In other words,

LBS(µ) = argminf∈A{
∫
S1

|∂f
∂z̄
− µ∂f

∂z
|2dS1} (1.4)

µ(fn+1, νn) denotes the Beltrami differential of fn+1 under the auxiliary metric
with respect to νn, namely, |dz + νndz̄|2 (|dz|2 is the original metric on S1). More
precisely, µ(fn+1, νn) can be explicitly computed as follows:

µ(fn+1, νn) =

(
∂fn+1

∂z̄
+ νn

∂fn+1

∂z

)
/

(
∂fn+1

∂z
− νn

∂fn+1

∂z̄

)
(1.5)

P(µ̃n+1) is the operator to project µ̃n+1 to the space of Beltrami differentials
with constant modulus. It is defined as:

P(µ̃n+1) = µn + εwn (1.6)

where wn : S1 → C and ε : S1 → R+ is a suitable real function on S1 such that
|µn + εwn| is a constant.
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In practice, the projection operator can be simplified as

P(µ̃n+1) =

(∫
S1
|µ̃n+1|dS1∫
S1
dS1

)
µ̃n+1

|µ̃n+1|
(1.7)

L is the Laplacian smoothing operator to smooth out P(µ̃n+1).
Both P(νn), LBS(µn+1) and µ(fn+1, νn) can be easily computed. In particular,

the discretization of LBS(µn+1) on a triangulation mesh can be reduced to a least
square problem of a linear system.

When µ(fn+1, µn) is small, α can be chosen to be 1. Then, µn + αµ(fn+1, µn) ≈
µ(fn+1, 0), where µ(fn+1, 0) is the Beltrami differential of fn+1 under the original
metric.. The QC iteration can be further modified as

fn+1 = LBS(µn),

µ̃n+1 = µ(fn+1, 0),

µn+1 = P(L(µ̃n+1)).

(1.8)

The QC iteration (1.3) is very efficient. Also, numerical results reported in [11]
demonstrate that the proposed iteration can compute the Teichmüller map accurately,
even on highly irregular meshes. The algorithm was successfully applied to landmark-
based registration for applications in medical imaging and computer graphics.

This paper is to provide a complete analysis of the above iterative algorithm (1.3).
In particular, we prove the convergence of (1.3) that fn and µn respectively converges
to the extremal map f∗ and its associated Beltrami differential µ∗, which solves the
optimization problem (1.1).

We remark that although the iterative algorithm is designed for obtaining ex-
tremal map between connected surfaces with given boundary values, the convergence
proof applies to general Riemann surfaces of finite type (such as high-genus closed sur-
faces). In other words, the QC iteration can be applied to computing extremal maps
between general Riemann surfaces. For the ease of the presentation, we will restrict
our discussion to the situation when both S1 and S2 are either simply-connected or
multiply-connected open surfaces.

1.3. Organization. This paper is organized as follows. In Section 2, we describe
some mathematical background, which is relevant to this work. In Section 3, we
reformulate the extremal problem defined by (1.1) as the optimization problem of the
harmonic energy, which helps us to understand the iterative algorithm (1.3) better.
In Section 4, we prove the convergence of the QC iteration to our desired extremal
Teichmüller map. A concluding remark will be given in Section 6.

2. Mathematical background.

2.1. Quasi-conformal mappings and Beltrami equation. In this section,
we describe some basic mathematical concepts relevant to our algorithms. For details,
we refer the readers to [12, 13].

A surface S with a conformal structure is called a Riemann surface. Given two
Riemann surfaces S1 and S2, a map f : S1 → S2 is conformal if it preserves the surface
metric up to a multiplicative factor called the conformal factor. A generalization
of conformal maps is the quasi-conformal maps, which are orientation preserving
homeomorphisms between Riemann surfaces with bounded conformality distortion,
in the sense that their first order approximations takes small circles to small ellipses
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Fig. 2.1. Illustration of how the Beltrami coefficient determines the conformality distortion.

of bounded eccentricity [12]. Mathematically, f : C → C is quasi-conformal provided
that it satisfies the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
. (2.1)

for some complex-valued function µ satisfying ||µ||∞ < 1. µ is called the Beltrami
coefficient, which is a measure of non-conformality. µf measures how far the map is
deviated from a conformal map. µ ≡ 0 if and only if f is conformal. Infinitesimally,
around a point p, f may be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(2.2)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter
domain, f may be considered as a map composed of a translation to f(p) together with
a stretch map S(z) = z + µ(p)z, which is postcomposed by a multiplication of fz(p).
All the conformal distortion of S(z) is caused by µ(p). S(z) is the map that causes f
to map a small circle to a small ellipse. From µ(p), we can determine the directions
of maximal magnification and shrinking and the amount of their distortions as well.
Specifically, the angle of maximal magnification is arg(µ(p))/2 with magnifying factor
1 + |µ(p)|; The angle of maximal shrinking is the orthogonal angle (arg(µ(p))− π)/2
with shrinking factor 1 − |µ(p)|. Thus, the Beltrami coefficient µ gives us all the
information about the properties of the map (see Figure 2.1).

The maximal dilation of f is given by:

K(f) =
1 + ||µ||∞
1− ||µ||∞

. (2.3)

Quasiconformal mapping between two Riemann surfaces S1 and S2 can also be
defined. Instead of the Beltrami coefficient, the Beltrami differential has to be used.
A Beltrami differential µ(z)dz̄dz on the Riemann surface S1 is an assignment to each
chart (Uα, φα) of an L∞ complex-valued function µα, defined on local parameter zα
such that

µα(zα)
dzα
dzα

= µβ(zβ)
dzβ
dzβ

, (2.4)

on the domain which is also covered by another chart (Uβ , φβ), where
dzβ
dzα

= d
dzα

φαβ
and φαβ = φβ ◦ φ−1

α .
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Fig. 2.2. Illustration of the definition of quasi-conformal map between Riemann surfaces.

An orientation preserving diffeomorphism f : S1 → S2 is called quasi-conformal

associated with µ(z)dzdz if for any chart (Uα, φα) on S1 and any chart (Vβ , ψβ) on S2,

the mapping fαβ := ψβ ◦ f ◦ φ−1
α is quasi-conformal associated with µα(zα)dzαdzα

. See
Figure 2.2 for an illustration.

2.2. Extremal maps and Teichmüller maps. A special class of quasi-conformal
maps is called the extremal maps, which minimize the conformality distortion. More
specifically, an extremal quasi-conformal map between S1 and S2 is extremal in the
sense of minimizing the || · ||∞ over all Beltrami differentials corresponding to quasi-
conformal mappings between the two surfaces. Extremal map always exists but need
not to be unique. Mathematically, an extremal quasi-conformal mapping can be de-
fined as follows:

Definition 2.1. Suppose S1 and S2 are connected Riemann surfaces with boundaries.
Let f : S1 → S2 be a quasi-conformal mapping between S1 and S2. f is said to be an
extremal map if for any quasi-conformal mapping h : S1 → S2 isotopic to f relative
to the boundary,

K(f) ≤ K(h) (2.5)

It is uniquely extremal if the inequality (2.5) is strict.
Closely related to the extremal map is the Teichmüller map. It is defined as

follows.

Definition 2.2. Let f : S1 → S2 be a quasi-conformal mapping. f is said to be a
Teichmüller map associated to the integrable holomorphic function ϕ : S1 → C if its
associated Beltrami differential is of the form:

µ(f) = k
ϕ

|ϕ|
(2.6)

for some constant k < 1 and holomorphic function ϕ 6= 0 with ||ϕ||1 =
∫
S1
|ϕ| <∞.

In other words, a Teichmüller map is a quasi-conformal mapping with uniform
conformality distortion over the whole domain.

Extremal map might not be unique. However, a Teichmüller map associated
with a holomorphic function is the unique extremal map in its homotopic class. In
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particular, a Teichmuller map between two connected open surfaces with suitable
given boundary values is the unique extremal map. The Strebel’s theorem explains
the relationship bewtween the Teichmüller map and extremal map.

Definition 2.3 (Boundary dilation). The boundary dilation K1[f ] of f is defined as:

K1[f ] = inf
C
{K(h|S1\C) : h ∈ F, C ⊆ S1, C is compact.} (2.7)

where F is the family of quasi-conformal homeomorphisms of S1 onto S2 which are
homotopic to f modulo the boundary.

Theorem 2.4 (Strebel’s theorem, See [14], page 319). Let f be an extremal
quasi-conformal map with K(f) > 1. If K1[f ] < K(f), then f is a Teichmüller map
associated with an integrable holomorphic function on S1. Hence, f is also an unique
extremal mapping.

In other words, an extremal map between S1 and S2 with suitable boundary
condition is a Teichmüller map. In particular, the Teichmüller mapping and extremal
mapping of the unit disk are closely related.

Theorem 2.5 (See [15], page 110). Let g : ∂D→ ∂D be an orientation-preserving
homeomorphism of ∂D. Suppose further that h′(eiθ) 6= 0 and h′′(eiθ) is bounded. Then
there is a Teichmüller map f that is the unique extremal extension of g to D. That
is, f : D→ D is an extremal mapping with f |∂D = g.

Thus, if the boundary correspondence satisfies certain conditions on its deriva-
tives, the extremal map of the unit disk must be a Teichmüller map.

Now, in the case when interior landmark constraints are further enforced, the
existence of unique Teichmüller map can be guaranteed if the boundary and landmark
correspondence satisfy suitable conditions. The unique Teichmüller map is extremal,
which minimizes the maximal conformality distortion. The following theorem can be
derived immediately from the Strebel’s Theorem (Theorem 2.4):

Theorem 2.6. Let {pi}ni=1 ∈ S1 and {qi}ni=1 ∈ S2 be the corresponding interior
landmark constraints. Let f : S1 \ {pi}ni=1 → S2 \ {qi}ni=1 be the extremal map, such
that pi corresponds to qi for all 1 ≤ i ≤ n. If K1[f ] < K(f), then f is a Teichmüller
map associated with an integrable holomorphic function on S1 \ {pi}ni=1. Hence, f is
an unique extremal map.

In particular, a unique Teichmüller map f : D→ D between unit disks with inte-
rior landmark constraints enforced exists, if the boundary map f |∂D satisfies suitable
conditions. The following theorem can be obtained directly from Theorem 2.5:

Theorem 2.7. Let g : ∂D → ∂D be an orientation-preserving homeomorphism
of ∂D. Suppose further that h′(eiθ) 6= 0 and h′′(eiθ) is bounded. Let {pi}ni=1 ∈ D
and {qi}ni=1 ∈ D be the corresponding interior landmark constraints. Then there is a
Teichmüller map f : D\{pi}ni=1 → D\{qi}ni=1 matching the interior landmarks, which
is the unique extremal extension of g to D. That is, f : D \ {pi}ni=1 → D \ {qi}ni=1 is
an extremal Teichmüller map with f |∂D = g matching the interior landmarks.
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2.3. Harmonic maps. Our iterative algorithm to compute Teichmüller maps is
closely related to harmonic maps. Let (S1, σ|dz|2) and (S2, ρ|dw|2) be two Riemann
surfaces of finite type, where z and w refer to the local conformal coordinate on the
surface S1 and S2.

For a Lipschitz map f : (S1, σ|dz|2)→ (S2, ρ|dw|2), we define the energy E(f ;σ, ρ)
of the map w to be

Eharm(f ;σ, ρ) =

∫
S1

1

2
‖df‖2dv(σ) =

∫
S1

ρ(w(z))

σ(z)
(|wz|2 + |wz̄|2)σ(z)dzdz̄. (2.8)

Therefore

Eharm(f ;σ, ρ) =

∫
S1

ρ(w(z))(|wz|2 + |wz̄|2)dzdz̄. (2.9)

It depends on the metric structure of the target surface ρ|dw|2 and the conformal
structure σ|dz|2 of the source.

A critical point of this functional is called a harmonic map. We will focus on
the situation where we have fixed the homotopy class f0 : S1 → S2 of maps into the
compact target S2 with non-positive curvature K(w) ≤ 0 everywhere. In that case,
there is a unique harmonic map f(σ, ρ) : (S1, σ) → (S2, ρ) in the homotopy class of
f0. If f is harmonic, then

fzz̄ + (log ρ)zfzfz̄ ≡ 0. (2.10)

The pull back metric on S1 induced by f is given by

f∗(ρ(w)|dw|2) = ρ(fzdz + fz̄dz̄)(f̄zdz̄ + fz̄dz) (2.11)

Then the Hopf differential is

Φ(f) := ρ(f(z))fzfz̄dz
2. (2.12)

It can be shown that f is harmonic if and only if its Hopf differential is a holomorphic
quadratic differential.

3. Quasi-conformal iteration. Before giving a complete analysis of the con-
vergence of the QC iteration, we reformulate the extremal problem (1.1) as the opti-
mization problem of the harmonic energy, in order to better understand the iterative
algorithm.

Consider two connected open surfaces S1 and S2 with boundaries, which are of
the same topology. S1 and S2 can either be simply-connected or multiply-connected.
Suppose σ|dz|2 and ρ|dw|2 are the Riemannian metric on S1 and S2 respectively.
Assume (S2, ρ|dw|2) has non-positive Gaussian curvature K(w) everywhere. Let f :
S1 → S2 be any quasi-conformal mapping between S1 and S2. In the homotopic class
[f ] of f , there exists a unique Teichmüller map, f∗. f∗ is also extremal within the
homotopic class [f ]. More specifically, the homotopic class [f ] can be defined as:

[f ] = {g : S1 : S2 : g|∂S1
= f |∂S2

}. (3.1)

We have, ||µf∗ ||∞ ≤ ||µg||∞ for all g ∈ [f ], where µf∗ and µg are the Beltrami
differentials of f∗ and g respectively.
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Consider the space of all admissible Beltrami differentials on S1, which is denoted
by B(S1, S2). Every Beltrami differential µ ∈ B(S1, S2) induces a conformal structure
g(µ) on S1, namely,

g(µ) = |dz + µdz̄|2 (3.2)

Suppose µ1, µ2 ∈ B(S1, S2), we say that they are globally equivalent, if there is a
biholomorphic mapping f : (S1, g(µ1))→ (S1, g(µ2)) such that f is homotopic to the
identity map of S1. The equivalence class of µ is represented by [µ]. Each global
equivalence class of Beltrami differentials has a unique representative of Teichmüller
form. We denote the space of all Beltrami differentials of Teichmüller form by

T (S1, S2) := {µ ∈ B(S1, S2) : |µ| is a constant.}. (3.3)

We can now define an energy functional EBC on B(S1, S2). For any µ ∈ B(S1, S2),
there exists a unique harmonic map f(µ, ρ) : (S1, g(µ)) → (S2, ρ|dw|2) ∈ [f ] , which
is solely determined by µ and ρ|dw|2. The value of EBC(µ) can then be defined as
the harmonic energy of f(µ, ρ). That is,

EBC(µ) = Eharm(f(µ, ρ)) =

∫
S1

1

2
||df(µ, ρ)||2 (3.4)

EBC : B(S1, S2)→ R is a smooth function.

Lemma 3.1. The energy functional EBC : T (S1, S2)→ R is bounded below by

EBC(µ) ≥
∫
S2

ρ(w)dudv (3.5)

where w = u + iv. The equality holds if and only if (S1, g(µ)) is conformally equiv-
alent to (S2, ρ|dw|2). And the harmonic map f(µ, ρ) : (S1, g(µ)) → (S2, ρ|dw|2) is a
conformal mapping.

Proof. Let z = x + iy be the local coordinate of (S1, g(µ)). The Jacobian of the
mapping f(µ, ρ) : (S1, g(µ))→ (S2, ρ|dw|2) is given by

J(z) = |wz|2 − |wz̄|2. (3.6)

Therefore,

J(z)dxdy = (|wz|2 − |wz̄|2)dxdy = dudv. (3.7)

The harmonic energy is given by

Eharm(f(µ, ρ)) = EBC(µ) =

∫
S1

ρ(w)(|wz|2 + |wz̄|2)dxdy

=

∫
S2

ρ(w)
|wz|2 + |wz̄|2

|wz|2 − |wz̄|2
dudv,

(3.8)

where

|wz|2 + |wz̄|2

|wz|2 − |wz̄|2
=

1 + |wz̄wz |
2

1− |wz̄wz |
2

=
1 + |µ|2

1− |µ|2

=
1 + k2

1− k2
=

1

2

(
1 + k

1− k
+

1− k
1 + k

)
=

1

2

(
K +

1

K

)
and

(3.9)
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k = |µ|, 0 ≤ k ≤ 1, K =
1 + k

1− k
, K ≥ 1. (3.10)

Hence,

EBC(µ) =
1

2

∫
S2

ρ(w)

(
K +

1

K

)
dudv ≥ 1

2

∫
S2

ρ(w)(2)dudv =

∫
S2

ρ(w)dudv. (3.11)

Equality holds if and only if K ≡ 1, namely, k ≡ 0. This implies f(µ, ρ) is a conformal
mapping.

Theorem 3.2. The global minimizer of the energy functional EBC : T (S1, S2)→
R is the Beltrami differerntial associated to the unique Teichmüller map between
(S1, σ|dz|2) and (S2, ρ|dw|2) in the homotopic class [f ] of f .

Proof. Let µ∗ be the Beltrami differential of the Teichmüller map f̃ . It suffices
to show that f̃ : (S1, g(µ∗))→ (S2, ρ|dw|2) is a conformal mapping.

To see this, let f̃∗(ρ|dw|2) denote the pull back metric. Then,

f̃∗(ρ|dw|2) = e2λ2(f̃(z))|df(z)|2. (3.12)

Under the pull back metric, the mapping f̃ : (S1, f̃
∗(ρ|dw|2)) → (S2, ρ|dw|2) is

isometric. We have

df̃(z) = ∂f̃(z)
∂z dz + ∂f̃(z)

∂z̄ dz̄

= ∂f̃(z)
∂z (dz + µ∗dz̄).

(3.13)

Hence,

f̃∗(ρ|dw|2) = e2λ2(f̃(z))|∂f̃(z)

∂z
|2|dz + µ∗dz̄|2. (3.14)

So, f̃∗(ρ|dw|2) = e2λ2(f̃(z))−2λ1(z)|∂f̃(z)
∂z |

2g(µ∗). f∗(ρ|dw|2) is conformal to g(µ∗).

We conclude that f̃ : (S1, g(µ∗)) → (S2, ρ|dw|2) is conformal. According to Theo-
rem 3.1, the Beltrami differential associated to f̃ is the global minimizer of EBC :
T (S1, S2)→ R.

In other words, finding the extremal Teichmüller map, f∗, is equivalent to mini-
mizing the energy functional EBC . During the QC iteration, the Beltrami differential
µn is iteratively adjusted and a new map is obtained by fn = LBS(µn). It turns out
LBS(µn) is equivalent to computing the harmonic map f(µn, ρ). It can be explained
in more details as follows.

Lemma 3.3. Suppose µ ∈ T (S1, S2). The mapping f := LBS(µ) is a harmonic
map between (S1, g(µ)) and (S2, ρ|dw|2).

Proof. Let ζ be the coordinates of S1 with respect to the metric g(µ). Let h be
the harmonic map between (S1, g(µ)) and (S2, g(ρ)). Then h is a critical point of the
following harmonic energy:

Eharm(h) =

∫
S1

ρ(h(ζ))(|hζ |2 + |hζ̄ |2)dxdy



10 Lui, Gu and Yau

Since f := LBS(µ), according to the definition, f is the critical point of the following
energy functional:

ELBS(f) =

∫
S1

ρ(f(z))(|fz̄ − µfz|2)dxdy

We will show that the above two energy functionals have the same set of critical
points.

Note that dζ = dz + µdz̄, then

dζ̄ = dz̄ + µ̄dz. (3.15)

We obtain

dz =
1

1− |µ|2
(dζ − µdζ̄); dz̄ =

1

1− |µ|2
(−µ̄dζ + dζ̄). (3.16)

Hence,

dz ∧ dz̄ =
1

1− |µ|2
dζ ∧ dζ̄; hζ̄ =

1

1− |µ|2
(hz̄ − µhz). (3.17)

Now, the Jacobian Jh of h and the Jacobian Jf of f are given by

Jh = |hζ |2 − |hζ̄ |2; Jf = |fz|2 − |fz̄|2 (3.18)

Hence,

Eharm(h) =

∫
S1

ρ(h(ζ))(2|hζ̄ |2 + Jh)idζ ∧ dζ̄

=

∫
S1

2

1− |µ|2
ρ(h(z))|hz̄ − µhz|2idz ∧ dz̄ +

∫
S1

ρ(h(ζ))Jhidζ ∧ dζ̄
(3.19)

Since µ ∈ T (S1, S2), |µ| is a constant. Thus,

Eharm(h) =
2

1− |µ|2

∫
S1

ρ(h(z))|hz̄ − µhz|2idz ∧ dz̄ +A (3.20)

where A is the surface area of S2. We conclude that Eharm and ELBS has the same
set of critical points. Since f is a critical point of ELBS , f is also a critical point of
Eharm. Hence, f is a harmonic map between (S1, g(µ)) and (S2, ρ|dw|2).

The Beltrami differential µn ∈ T (S1, S2) is iteratively adjusted during the QC
iteration. In the next section, we will prove that EBC(µn) monotonically decreases
to the global minimizer of EBC .

4. Proof of convergence. In this section, we prove the convergence of the
Quasi-conformal iteration to the desired Teichmüller map.

Lemma 4.1. Suppose µ ∈ B(S1, S2) is deformed by

µ→ µ+ εν ∈ B(S1, S2).

Then, the variation of EBC satisfies:

EBC(µ+ εν) ≤ EBC(µ)− 4Re

∫
S1

ε Φ(f(µ, ρ))ν
dzµ ∧ dz̄µ
−2i

+O(ε2).
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where zµ is the coordinates of S1 under the metric g(µ).
Proof. Let ζ be the coordinate of S1 under the metric g(µ + εν). For simplicity,

let z = zµ. Then, we have

dz = dζ − ενdζ̄; dz̄ = dζ̄ − εν̄dζ. (4.1)

The area element with respect to z is given by

dz ∧ dz̄ = dζ ∧ dζ̄ − ενdζ̄ ∧ dζ̄ − εν̄dζ ∧ dζ + ε2|ν|2dζ̄dζ. (4.2)

Hence,

dz ∧ dz̄ = dζ ∧ dζ̄ + ε2|ν|2dζ̄dζ. (4.3)

Similarly,

dζ ∧ dζ̄ = dz ∧ dz̄ + ε2|ν|2dz̄dz. (4.4)

Let w = f(µ, ρ). Then,

dw = wζdζ + wζ̄dζ̄

= wzdz + wz̄dz̄

= wz(dζ − ενdζ̄) + wz̄(dζ̄ − εν̄dζ),

(4.5)

Therefore,

wζwζ = (wz − εν̄wz̄)(wz − ενwz̄)
= |wz|2 + ε2|ν|2|wz̄|2 − ενwzwz̄ − εν̄wzwz̄.

(4.6)

Similarly,

wζ̄wζ̄ = (wz̄ − ενwz)(wz̄ − εν̄wz)
= |wz̄|2 + ε2|ν|2|wz|2 − ενwz̄wz − εν̄wzwz̄.

(4.7)

As a result, we get

EBC(µ+ εν) ≤ Eharm(w) =

∫
S1

ρ(w(ζ))(|wζ |2 + |wζ̄ |2)
dζ ∧ dζ̄
−2i

=

∫
S1

ρ(w(z))(|wz|2 + |wz̄|2)
dz ∧ dz̄
−2i

− 4Re

∫
S1

ερ(w(z))wzwz̄ν
dz ∧ dz̄
−2i

+O(ε2)

= EBC(µ)− 4Re

∫
S1

ε ρ(w(z))wzwz̄ν
dz ∧ dz̄
−2i

+O(ε2)

= EBC(µ)− 4Re

∫
S1

ε Φ(f(µ, ρ))ν
dzµ ∧ dz̄µ
−2i

+O(ε2).

(4.8)

This completes the proof of the inequality.

Theorem 4.2. Suppose µ ∈ T (S1, S2). For any α > 0, there exists w ∈ B(S1, S2)
and ε : S1 → R such that:
(i) µ+ εw ∈ T (S1, S2);
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(ii) |ε(p)w(p)| < α and |w(p)| = |Φ(f(µ, ρ))(p)| for all p ∈ S1;

(iii)
∫
S1
εwΦ(f(µ, ρ))

dzµ∧dz̄µ
−2i ≥ 0.

Proof. Let k̃ = |µ| and ν = Φ(f(µ, ρ)). Pick β ∈ R+ such that:

β sup
p∈S1

|ν(p)| < α/3. (4.9)

Consider µ̃ = µ+ βν.
Suppose:

Ω1 = {p ∈ S1 : arg(ν) = arg(µ)};
Ω2 = {p ∈ S1 : arg(ν) = − arg(µ)}.

(4.10)

Let:

γ =

∫
Ω1

|ν|2 dzµ ∧ dz̄µ
−2i

−
∫

Ω2

|ν|2 dzµ ∧ dz̄µ
−2i

. (4.11)

If γ > 0, choose k̃ < k < supp∈S1
|µ̃(p)|.

If γ < 0, choose infp∈S1
|µ̃(p)| < k < k̃.

If γ = 0 (including Ω1 = Ω2 = ∅), choose infp∈S1
|µ̃(p)| < k < supp∈S1

|µ̃(p)|.
Let:

r = k
µ̃

|µ̃|
; w =

r − µ
|r − µ|

|ν| and ε =
|r − µ|
|ν|

. (4.12)

By definition, µ+ εw = r = k µ̃
|µ̃| ∈ T (S1, S2). Hence, (i) is satisfied.

Now,

|w(p)| = |ν(p)| = |Φ(f(µ, ρ))(p)| for all p ∈ S1. (4.13)

Also,

|ε(p)w(p)| = |r − µ|
≤ |r − µ̃|+ |µ̃− µ|
= |r − µ̃|+ |βν|

<
2α

3
+
α

3
= α.

(4.14)

Thus, (ii) is also satisfied.
Finally, it is easy to check that:

∫
S1\(Ω1∪Ω2)

εwΦ(f(µ, ρ))
dzµ ∧ dz̄µ
−2i

≥ 0. (4.15)

Now, if γ > 0,∫
Ω1

εwΦ(f(µ, ρ))
dzµ ∧ dz̄µ
−2i

+

∫
Ω2

εwΦ(f(µ, ρ))
dzµ ∧ dz̄µ
−2i

=

∫
Ω1

(k − k̃)|ν|2 dzµ ∧ dz̄µ
−2i

−
∫

Ω2

(k − k̃)|ν|2 dzµ ∧ dz̄µ
−2i

= (k − k̃)γ > 0.

(4.16)
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If γ < 0, ∫
Ω1

εwΦ(f(µ, ρ))
dzµ ∧ dz̄µ
−2i

+

∫
Ω2

εwΦ(f(µ, ρ))
dzµ ∧ dz̄µ
−2i

= −
∫

Ω1

(k̃ − k)|ν|2 dzµ ∧ dz̄µ
−2i

+

∫
Ω2

(k̃ − k)|ν|2 dzµ ∧ dz̄µ
−2i

= −(k̃ − k)γ > 0.

(4.17)

We conclude that
∫
S1
εwΦ(f(µ, ρ))

dzµ∧dz̄µ
−2i ≥ 0 and hence (iii) is satisfied.

We can now proceed to prove the convergence of the Quasi-conformal iteration.

Theorem 4.3. Suppose S1 and S2 are open Riemann surfaces with boundaries
of the same topology. Given a smooth boundary correspondence h : ∂S1 → ∂S2, the
Quasi-conformal (QC) iteration (1.3) converges to the unique extremal map, which is
also a Teichmüller map.

Proof. Suppose the pair (fn, µn) is obtained at the nth iteration. The QC iteration
first compute a new quasi-conformal map by fn+1 = LBS(µn). According to Lemma
3.3, fn+1 is a harmonic map between (S1, g(µn)) and (S2, ρ|dw|2). The Beltrami
differential νn+1 of fn+1 can be computed by µ̃n+1 = µn + βµ(fn+1, µn). µ(fn+1, µn)
denotes the Beltrami differential of fn+1 under the auxiliary metric with respect to µn,
namely, |dz+µndz̄|2. A new Beltrami differential can then be obtained by projecting
µ̃n+1 onto T (S1, S2) to get

P(νn) = µn + εwn. (4.18)

Here, wn : S1 → C and ε : S1 → R is a suitable real function on S1 such that
|µn + εµ(fn+1, µn)| ≡ k, where k is a positive constant.

According to Theorem 4.2, by choosing a suitable k, we can assume that∫
S1

εwnΦ(f(µ, ρ))
dzµ ∧ dz̄µ
−2i

≥ 0. (4.19)

P(νn) is then smoothed out by the Laplacian operator L with the constraint that
it still preserves Equation 4.19. We get that

EBC(µn+1)− EBC(µn) = −4Re

∫
S1

εΦ(f(µn, ρ))wn
dzµ ∧ dz̄µ
−2i

+O(ε2) ≤ 0 (4.20)

Hence, E(µn) is monotonically decreasing. According to Lemma 3.1, E is bounded
from below. Hence, E(µn) converges. Also, the QC iteration is essential the gradient
descend algorithm of EBC and it converges at the critical point µ∗ = k∗eiθ. That is,
Φ(f(µ∗, ρ)) = 0. In this case, g(µ∗) is conformal to ρ and hence f(µ∗, ρ) is a quasi-
conformal map with Beltrami differential µ∗. Furthermore, at the critical point, the
Laplacian L of the Beltrami differential is zero. We conclude that θ is harmonic. Since
θ is harmonic, we can find its harmonic conjugate r such that r + iθ is holomorphic.
Define ϕ = er−iθ, which is also holomorphic. Then, µ∗ = k∗ ϕ|ϕ| is of Teichmüller type.

Since µ∗ is of Teichmüller type, f(µ∗, ρ) must be a Teichmüller map. Now, given a
smooth boundary correspondence h : ∂S1 → ∂S2, there exists a unique Teichmüller
map which is an extremal map. We conclude that f(µ, ρ) is the unique extremal
Teichmüller map.
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Fig. 4.1. Two simply-connected domains. (A) a unit disk D (B) an arbitrary simply-connected
domain.

Fig. 4.2. Extremal Teichmüller map between two simply-connected domains as shown in Figure
4.1(A) and (B), with given boundary correspondence.

5. Numerical experiments. Although the numerical testing is not the main
focus of this work, we demonstrate some numerical results in this section for the
completeness of the paper. The results agree with our theoretical findings.

Example 1. We first test the algorithm to compute the extremal Teichmüller
map between two simply-connected domains Ω1 and Ω2. Ω1 is chosen to be the unit
disk D as shown in Figure 4.1(A). Ω1 is deformed to an arbitrary simply-connected
shape Ω2 as shown in (B). The boundary correspondence h of Ω1 and Ω2 is given. We
compute the extremal Teichmüller map f : Ω1 → Ω2 such that f |∂Ω1 = h using the
proposed QC iterations. The obtained map is visualized using texture map as shown
in Figure 4.2. The small circles on the source domain is mapped to small ellipses
on the target domain with the same eccentricity. Figure 4.3(A) shows the energy
E(µn) := EBC(µn)−A(Ω2) versus each iterations in the QC iterations, where A(Ω2)
is the area of Ω2. The energy monotonically decreases to 0, which agrees with Theorem
4.3. (B) shows the histogram of the norm of the optimal Beltrami differential µ∗. It
accumulates at 0.33, which illustrates that the obtained map is indeed a Teichmüller
map. Since µ∗ is of Teichmüller type, its argument must be harmonic. (C) shows
the histogram of the Laplacian of arg(µ∗). It accumulates at 0, meaning that the
argument of µ∗ is indeed harmonic.

Example 2. In our second example, we test our algorithm to compute the
extremal Teichmuller map between two punctured unit disks. Figure 5.1(A) and
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Fig. 4.3. (A) shows the energy E(µn) := EBC(µn) − A(Ω2) per iterations during the QC
iterations of Example 1. (B) shows the histogram of the norm of the optimal Beltrami coefficient
µ∗. (C) shows the histogram of the Laplacian of arg(µ∗)

Fig. 5.1. Two punctured unit disks. (A) and (B) show two unit disks, each with 6 punctures.

(B) show two unit disks, each with 6 punctures. Denote the source domain by
Ω1 := D \ {pi}6i=1, and denote the target domain by Ω2 := D \ {qi}6i=1. The bound-
ary correspondence of ∂D is chosen to be the identity map. Using the QC iteration,
we compute the extremal Teichmüller map f : Ω1 → Ω2 such that f |∂D = id and
f(pi) = qi for 1 ≤ i ≤ 6. The obtained map is visualized using texture map as shown
in Figure 5.2. The small circles on the source domain is mapped to small ellipses
on the target domain with the same eccentricity. Figure 5.3(A) shows the energy
E(µn) := EBC(µn)−A(Ω2) versus each iterations in the QC iterations, where A(Ω2)
is the area of Omega2. The energy monotonically decreases to 0, which agrees with our
theoretical finding. (B) shows the histogram of the norm of the Beltrami differential.
It accumulates at 0.6, which illustrates that the obtained map is indeed a Teichmüller
map. (C) shows the histogram of the Laplacian of arg(µ∗). It accumulates at 0,
meaning that the argument of µ∗ is indeed harmonic.

Example 3. Finally, we test the QC iterations to compute the extremal Te-
ichmüller map between two triply-connected domains Ω1 and Ω2, each with 6 punc-
tures. As shown in Figure 5.4(A), Ω1 is chosen to be unit disk with three inner disks
and six points removed (denote it by {pi}6i=1). Ω2 is chosen to be unit disk with three
inner regions (with arbitrary shapes) and six points removed (denote it by {qi}6i=1),
as shown in (B). Again, the boundary correspondence h : ∂Ω1 → ∂Ω2 is given. Using
the QC iterations, we compute the extremal Teichmüller map f : Ω1 → Ω2 such that
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Fig. 5.2. Extremal Teichmüller map between two punctured unit disks as shown in Figure
5.1(A) and (B), with given boundary correspondence. .

Fig. 5.3. (A) shows the energy E(µn) := EBC(µn) − A(Ω2) per iterations during the QC
iterations of Example 2. (B) shows the histogram of the norm of the optimal Beltrami coefficient
µ∗. (C) shows the histogram of the Laplacian of arg(µ∗)

f |∂Ω1
= h and f(pi) = qi for 1 ≤ i ≤ 6. The obtained map is visualized using texture

map as shown in Figure 5.5. The small circles on the source domain is mapped to
small ellipses on the target domain with the same eccentricity. Figure 5.6(A) shows
the energy E(µn) := EBC(µn) − A(Ω2) versus each iterations in the QC iterations,
where A(Ω2) is the area of Ω2. The energy monotonically decreases to 0, which agrees
with our theoretical finding. (B) shows the histogram of the norm of the Beltrami
differential. It accumulates at 0.42, which illustrates that the obtained map is in-
deed a Teichmüller map. (C) shows the histogram of the Laplacian of arg(µ∗). It
accumulates at 0, meaning that the argument of µ∗ is indeed harmonic.

6. Conclusion. This paper gives the convergence proof of the iterative algorithm
proposed in [11] to compute the extremal Teichmüller map between Riemann surfaces
of finite type. The iterative algorithm, which is named as quasi-conformal (QC)
iteration, can be formulated as the optimization process of the harmonic energy. With
this formulation, the QC iteration can be considered as the gradient descent of the
harmonic energy under the auxiliary metric given by the Beltrami differentials.

In the future, we will further improve the efficiency of the iterative scheme to
optimize the harmonic energy. The proposed framework will also be further extended
to compute Teichmüller maps between high-genus surfaces (genus ≥ 1).
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