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Abstract

1 We study the limit of quasilocal energy defined in [7] and [8] for a fam-
ily of spacelike 2-surfaces approaching null infinity of an asymptotically flat
spacetime. It is shown that Lorentzian symmetry is recovered and an energy-
momentum 4-vector is obtained. In particular, the result is consistent with the
Bondi–Sachs energy-momentum at a retarded time. The quasilocal mass in [7]
and [8] is defined by minimizing quasilocal energy among admissible isometric
embeddings and observers. The solvability of the Euler-Lagrange equation for
this variational problem is also discussed in both the asymptotically flat and
asymptotically null cases.

1 Introduction

This is a continuation of [9] in which the spatial limit of the new quasilocal energy
defined in [7] and [8] is analyzed. In the present article, we address the question of
the null limit in Bondi–Sachs coordinates for an asymptotically flat spacetime. Let
N be a spacetime with metric gαβ in Bondi–Sachs coordinates given by

−UV dw2 − 2Udwdr + σab(dx
a +W adw)(dxb +W bdw) a, b = 2, 3

where
W a = O(r−2),

U = 1− X2 + Y 2

2r2
+ o(r−2),

1M.-T. Wang is supported by NSF grant DMS 0904281 and S.-T. Yau is supported by NSF
grant PHY-0714648.
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V = 1− 2m

r
+ o(r−1)

and the metric σab is given by

(
r2 + 2Xr + 2(X2 + Y 2) −2Y r sin θ

−2Y r sin θ sin2 θ[r2 − 2Xr + 2(X2 + Y 2)]

)

with
det σab = r4 sin2 θ.

The inverse of the metric is

gww = gwa = 0, gwr = −U−1, grr = U−1V, gra = U−1W a, and gab = σab.

Throughout the paper, coordinates are labeled by x0 = w, x1 = r, x2 = θ, x3 = φ

and the indexes are for α, β, γ, · · · = 0, 1, 2, 3, i, j, k, · · · = 1, 2, 3, a, b, c, · · · = 2, 3.
At a retarded time w = c, the Bondi–Sachs energy-momentum vector ([1] [6]) is

defined as

(E, P1, P2, P3) =
1

8π
(

∫

S2

2mdS2,

∫

S2

2mX̃1dS
2,

∫

S2

2mX̃2dS
2,

∫

S2

2mX̃3dS
2) (1.1)

where m = m(c, θ, φ) is the mass aspect function in the expansion of V and X̃i,
i = 1, 2, 3 are the three eigenfunctions sin θ sin φ, sin θ cosφ and cos θ of the Laplace
operator ∆̃ on S2 with eigenvalue −2.

We recall that given a 2-surface Σ in a spacetime, a quasilocal energy E(Σ, X, T0)
is defined in [7], [8] with respect to an isometric embedding X : Σ → R

3,1 and a
constant future timelike vector T0 ∈ R

3,1. For a family of surface Σr and a family of
isometric embeddings Xr of Σr into R

3,1, the limit of E(Σr, Xr, T0) is evaluated in
[9, Theorem 2.1] under the assumption that

lim
r→∞

|H0|
|H| = 1 (1.2)

where H and H0 are spacelike mean curvature vectors of Σr in N and the image of
Xr in R

3,1, respectively. In fact, the limit of E(Σr, Xr, T0) with respect to a constant
future timelike vector T0 ∈ R

3,1 is given by

lim
r→∞

1

8π

∫

Σr

[
−〈T0,

J0

|H0|
〉(|H0| − |H|)− 〈∇R

3,1

∇τ

J0

|H0|
,
H0

|H0|
〉+ 〈∇N

∇τ

J

|H| ,
H

|H|〉
]
dΣr

(1.3)
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where τ = −〈T0, Xr〉 is the time function with respect to T0. This expression is linear
in T0 and defines an energy-momentum 4-vector at infinity.

In this article, we consider a family of 2-surface Σr on a null cone w = c as r

goes to infinity in Bondi–Sachs coordinates. The limit of the quasilocal energy is
first computed with respect to isometric embedding Xr into R

3 which are essentially
unique and satisfy (1.2). We show in particular,

lim
r→∞

1

8π

∫

Σr

(|H0| − |H|)dΣr = E, and lim
r→∞

1

8π

∫

Σr

〈∇N
−∇Xi

J

|H| ,
H

|H|〉dΣr = Pi (1.4)

where (X1, X2, X3) are the coordinate functions of the isometric embedding Xr into
R

3. We remark that exactly the same limit expression on coordinate spheres of
asymptotically flat hypersurface gives the ADM energy-momentum in [9].

This computation is stable with respect to any O(1) perturbation of Xr in R
3,1

and is equivariant with respect to Lorentzian transformation acting on Xr. In par-
ticular, the reference hypersurface spanned by Xr can be either asymptotically flat
or asymptotically null.

In [7] and [8], the quasilocal mass of a 2-surface Σ is defined to be the minimum
of E(Σ, X, T0) among all admissible isometric embeddings X into R

3,1 and the Euler-
Lagrange equation is derived for an optimal isometric embedding. In the last section,
we show that the isometric embedding can be solved as an O(1) perturbation of
embeddings into a boosted totally geodesic slice in R

3,1 and it locally minimizes the
quasilocal energy.

Brown–Lau–York [2] and Lau [4] compute the null limit of the Brown–York energy
and we compare our calculation with theirs in the following:

1) Brown–York mass is gauge dependent. After fixing a reference isometric em-
bedding (either to flat R

3 [2] or to the null cone in R
3,1[4] ), a gauge is chosen

arbitrarily so that the limit of the mass coincide with the Bondi mass. In contrast,
in our case, once a reference isometric embedding is picked, the quasilocal energy
is determined by the canonical gauge condition (Eq (1.1) in [9]). Our calculation is
robust with respect to the choice of reference isometric embedding. In particular,
the reference family can be arranged to be asymptotically flat or asymptotically null
in R

3,1.
2) In [2], the momentum part came from the smear energy while in our case,

the momentum part came from the connection one-form associated with the mean
curvature gauge. This one form gives the right momentum contribution in the asymp-
totically flat case as well (see [9]).

3) In [2], the energy and momentum are defined separately. In our case, the
Lorentzian symmetric is recovered at infinity and the energy-momentum form a co-
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variant 4-(co)vector. We show that this (co)vector is equivariant with respect to the
reference isometric embeddings into R

3,1.
Acknowledgement: Part of the work is done while the authors are visiting the

Taida Institute for Mathematical Sciences in Taipei, Taiwan.

2 The geometry of 2-surface Σr in Bondi coordi-

nates

Let N be an asymptotically flat spacetime with Bondi–Sachs coordinates. Let Σr

be the 2-surface defined by w = c and a fixed r. In this section, we compute the
mean curvature vector H of Σr in N and the connection one-form of the normal
bundle of Σr in the mean curvature gauge. Denote Wa = σabW

b and let δaWa be the
divergence of the 1-form Wa on Σr with respect to the induced metric σab.

Lemma 1. Let Σr be the 2-surface defined by w = c and a fixed r. The mean
curvature vector H of Σr in N is given by

H =
1

U

[
2

r
(
∂

∂w
−W a ∂

∂xa
)− (

2V

r
+ δaWa)

∂

∂r

]
. (2.1)

In particular, H is spacelike when r is large enough with

|H|2 = 4

Ur
(
V

r
+ δaWa). (2.2)

Suppose J is the future timelike normal vector dual to H, then

〈∇ ∂

∂xb
J,H〉 = ∂b[

2

rU
(
V

r
+ δaWa)] +

2

rU2
(
V

r
+ δaWa)σcb∂rW

c. (2.3)

Proof. By definition, we have

H = σab(∇ ∂
∂xa

∂

∂xb
− (∇ ∂

∂xa

∂

∂xb
)T )

= σab(Γr
ab

∂

∂r
+ Γw

ab

∂

∂w
+ (Γc

ab − 〈∇ ∂
∂xa

∂

∂xb
,

∂

∂xd
〉σdc)

∂

∂xc
).

The last coefficient can be computed explicitly as

Γc
ab − 〈∇ ∂

∂xa

∂

∂xb
,

∂

∂xd
〉σdc

= Γc
ab − (Γr

abgrd + Γw
abgwd + Γe

abσed)σ
dc

= − Γr
abgrdσ

dc − Γw
abgwdg

dc

= Γw
abgwrσ

rc.
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Thus

H = σab(Γr
ab

∂

∂r
+ Γw

ab

∂

∂w
+ Γw

abgwrσ
rc ∂

∂xc
).

The relevant Christoffel symbols of gµν are given by

Γw
ab =

1

2
U−1∂rσab,

and

Γr
ab = −1

2
U−1[∂b(W

c)σac + ∂a(W
c)σbc + ∂wσab + V ∂rσab +W c∂cσab]

= −1

2
U−1[∂bWa + ∂aWb + ∂wσab + V ∂rσab − 2γd

abWd]

where γd
ab is the Christoffel symbol of the metric σab. When tracing with σab, we

notice that
σab∂ασab = ∂α(ln det σab) = ∂α ln(r

4 sin2 θ). (2.4)

Thus, we obtain equations (2.1) and (2.2). To compute the connection one-form, we
rewrite equation (2.1) as

UH = − (
2V

r
+ δaWa)

∂

∂r
+

2

r
(
∂

∂w
−W c ∂

∂xc
)

= − (
V

r
+ δaWa)

∂

∂r
+

2

r
(
∂

∂w
−W c ∂

∂xc
− V

2

∂

∂r
)

where ∂
∂r

and ∂
∂w

−W c ∂
∂xc − V

2
∂
∂r

are null vectors.
Thus we have

UJ = −(
V

r
+ δaWa)

∂

∂r
− 2

r
(
∂

∂w
−W c ∂

∂xc
− V

2

∂

∂r
).

For simplicity, let’s denote ∂
∂r

and ∂
∂w

−W c ∂
∂xc − V

2
∂
∂r

by ~n1 and ~n2 and the coefficients
V
r
+ δaWa and 2

r
by x and y in the following computation. Then,

〈∇ ∂

∂xb
J,H〉 = U−2〈∇ ∂

∂xb
x~n1 + y~n2, x~n1 − y~n2〉

= U−2{[(∂bx)(−y) + (∂by)(x)]〈~n1, ~n2〉 − xy(〈∇ ∂

∂xb
~n1, ~n2〉 − 〈∇ ∂

∂xb
~n2, ~n1〉)}

= U−2[(∂bx)(−y)〈~n1, ~n2〉 − 2xy〈∇ ∂

∂xb
~n1, ~n2〉+ xy∂b〈~n2, ~n1〉]

= ∂b[
2

Ur
(
V

r
+ δaWa)]−

4

rU2
(
V

r
+ δaWa)〈Γr

br

∂

∂r
+ Γc

br

∂

∂xc
,
∂

∂w
−W d ∂

∂xd
− V

2

∂

∂r
〉.
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Since ∂
∂xc is a tangent vector field, while ∂

∂w
−W d ∂

∂xd − V
2

∂
∂r

is normal, we have

〈∇ ∂

∂xb
J,H〉 =∂b

[
2

rU
(
V

r
+ δaWa)

]
− 4

rU2
(
V

r
+ δaWa)Γ

r
br

Substitute Γr
br =

1
2
U−1∂bU− 1

2
U−1σbc∂rW

c and rearrange terms, we obtain (2.3).

3 Limit of quasi-local energy

In this section, we compute the limit of quasi-local energy with respect to isometric
embeddings Xr of Σr into O(1) perturbations of a boosted totally geodesic slice in
R

3,1. First we quote the following lemma whose proof can be found in [3]:

Lemma 2. Let σr
ab be a family of metric on Σr ≃ S2 with σr

ab = r2σ̃ab + O(r) in
which σ̃ab is the standard round metric on S2. Let Xr = (X1, X2, X3) be the isometric
embedding into R

3 for r large and H0 be the mean curvature of Xr. Then

|H0| =
2

r
+O(r−2) and

∫

Σr

|H0|dΣr = 4πr +
Area(Σr)

r
+O(r−1).

We note that up to an isometry of R3, Xr can be arranged so that the coordinate
functions satisfy Xi = rX̃i +O(1).

Theorem 1. Let Σr be the 2-surface defined by w = c and a fixed r in an asymptoti-
cally flat spacetime with Bondi–Sachs coordinates. Suppose Xr is the (unique) family
of isometric embeddings of Σr into R

3 for r large, the limit of quasi-local energy with
respect to T0 = (

√
1 + |a|2, a1, a2, a3) is

lim
r→∞

E(Σr, Xr, T0) =
1

8π

∫

S2

2m(
√

1 + |a|2 + aiX̃i)dS
2. (3.1)

Proof. Let (0, X1, X2, X3) be the isometric embedding Xr of Σr into R
3 ⊂ R

3,1. In
this case, J0

|H0|
is simply the vector (1, 0, 0, 0). By the assumption on σab we can apply

Lemma 2 and ∫

Σr

|H0|dΣr = 8πr +O(r−1).

On the other hand, from equation (2.2) and the expansion for V , we obtain

|H| = 2

r
− 2m

r2
+ δaWa +O(r−3) (3.2)
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and thus ∫

Σr

|H|dΣr = 8πr −
∫

S2

2mdS2 +O(r−1).

Next we compute the physical hamiltonian

1

8π

∫

Σr

〈∇N
∇τ

J

|H| ,
H

|H|〉dΣr = −ai
1

8π

∫

Σr

〈∇N
∇Xi

J

|H| ,
H

|H|〉dΣr.

From equation (2.3) and the asymptotic expansions of V and W a , we derive

〈∇ ∂

∂xb
J,H〉 = 2

r
[∂b(δ

aWa −
2m

r2
)] +

4

r3
Wb +O(r−4).

Let Z be the vector on Σ dual to the connection one-from 〈∇N J
|H|

, H
|H|

〉. From
the above computation,

divΣr
Z =

1

r
[
1

2
(∆̃ + 2)(δaWa −

2m

r2
) +

2m

r2
] +O(r−4).

The limit of
∫
Σr
〈∇N

∇Xi

J
|H|

, H
|H|

〉dΣr as r → ∞ is thus the same as

lim
r→∞

∫

Σr

XidivΣr
ZdΣr =

∫

S2

X̃i[
1

2
(∆̃ + 2)(δ̃aW̃a − 2m) + 2m]dS2 =

∫

S2

X̃i2mdS2

In this case, the reference Hamiltonian term is zero as J0
|H0|

is a constant vector.

In view of expression (1.3), the theorem is proved.

Next we show that the limit of the quasilocal energy is invariant under O(1)
perturbations of embeddings into totally geodesic R3 and that it is Lorentzian equiv-
ariant.

Corollary 1. Suppose Xr = (τ0, X1, X2, X3) is a family of isometric embeddings of

Σr into R
3,1 with limr→∞ r2∇τ0 = ∇̃τ̃0 for some function τ̃0 on S2. Then we still

have

lim
r→∞

E(Σr, Xr, T0) =
1

8π

∫

S2

2m(
√
1 + |a|2 + aiX̃i)dS

2.

Proof. Let X̂r be the embedding of Σr by projecting Xr onto R
3 which is given by,

(0, X1, X2, X3). It is not hard to check that the induced metric by the embedding
X̂r agrees with the standard round metric of radius r up to the top order term and
its area agrees with that of the standard round metric of radius r up to the second
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order term. The mean curvature of the embedding X̂r is then (0, ∆̂X1, ∆̂X2, ∆̂X3).
By Lemma 2, the mean curvature Ĥ0 satisfies

|Ĥ0| =
2

r
+O(r−2), and

∫

Σr

|Ĥ0|dΣr = 8πr +O(r−1). (3.3)

The mean curvature H0 of Xr is given by

(∆τ0,∆X1,∆X2,∆X3).

The difference between σab and σ̂ab is of order

σab − σ̂ab = O(1) and σab − σ̂ab = O(r−4).

As a result, the difference between the two laplace operators is of order

∆̂Xi −∆Xi = O(r−3).

Hence |Ĥ0|2 − |H0|2 = O(r−4), and thus |Ĥ0| − |H0| = O(r−3).
By equation (1.3), the limit of quasi-local energy with respect to the embedding

(τ0, X1, X2, X3) is thus

1

8π
lim
r→∞

∫

Σr

(|H0| − |H|)dΣr =
1

8π
lim
r→∞

∫

Σr

(|Ĥ0| − |H|)dΣr.

Unlike the previous case, J0
|H0|

is no longer a constant vector for such an isometric
embedding Xr. However, the asymptotic expansion

−〈T0,
J0

|H0|
〉 =

√
1 + |a|2 +O(r−1)

is valid and the energy component is the same as the limit of quasi-local energy of
the isometric embedding into R

3 in view of (3.3).
Next we compute the physical hamiltonian. Since the induced metric on the

projection still agrees with the standard one up to lower order term, up to an isometry
of R3, Xi = rX̃i +O(1). The corresponding time function τ is

τ = −(
∑

i

aiXi) + τ0

√
1 +

∑

i

a2i = −(
∑

i

aiX̃i)r +O(1).

Thus the physical hamiltonian remains the same.
Lastly, we claim that the reference hamiltonian goes to 0 as r goes to infinity.
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Lemma 3. Let Σr be a family of surfaces with metric σr
ab = r2σ̃ab +O(r). Given an

O(1) time function τ0, let Xr(Σr) be the images of Σr under the isometric embedding
into R

3,1 determined by τ0. Let Z0 be the vector dual to the one form 〈∇(·)
J0
|H0|

, H0

|H0|
〉

on Xr(Σr) then

divΣr
Z0 =

1

2r3
∆̃(∆̃ + 2)τ0 +O(r−4).

Proof. We need to compute J0
|H0|

up to O(r−2). For this purpose, it is enough to

assume that the embedding is (τ0, rX̃1, rX̃2, rX̃3). Using
∑

i ∂cX̃i∂bX̃i = σ̃bc, we
derive that a normal vector is

(1,
1

r
∂aτ0∂bX̃iσ̃

ab)

where σ̃ is the standard metric on S2. As
∑

i X̃i∂aX̃i = 0, we check that

(1,
1

r
∂aτ0∂bX̃iσ̃

ab) +
∆τ0

|H0|2
H0

is a normal vector perpendicular to H0. Thus, J0
|H0|

, which is the unit normal per-
pendicular to H0 is, up to lower order, given by the same expression. As a result, we
compute

〈∇ ∂
∂xa

J0

|H0|
, H0〉 =

∑

i

∂a

[
1

r
(∂bτ0∂cX̃i)σ̃

bc +
∆τ0

|H0|2
∆Xi

]
∆Xi.

The right hand side equals to
[
∑

i

1

r
(∂bτ0)(∂a∂cX̃i)σ̃

bc∆Xi

]
+ ∂a∆τ0 +O(r−3).

Here one uses again that
∑

i X̃i∂aX̃i = 0 and thus from the first term, one has non-
zero contribution only when the derivative ∂a falls on ∂bX̃i. For the second term, the
leading term of |H0| is independent of θ and φ and

∑
i(∆Xi)

2 = |H0|2 up to lower
order terms. Thus one only has contribution when the derivative hits ∆τ0. Direct
computation using

∑
i X̃i∂a∂cX̃i = −σ̃ac shows that

∑

i

1

r
(∂bτ0)(∂a∂cX̃i)σ̃

bc∆Xi =
2

r2
∂aτ0.

As a result,

divΣr
Z0 =

1

2r3
∆̃(∆̃ + 2)τ0 +O(r−4)

9



Using the above lemma, the reference hamiltonian at infinity is

lim
r→∞

∫

Σr

XidivΣr
Z0dΣ =

∫

S2

1

2
X̃i∆̃(∆̃ + 2)τ0dS

2 = 0

Corollary 2. Suppose X ′
r is another family of isometric embeddings into R

3,1 such
that X ′

r = L̃(r)Xr for some Xr in the previous Corollary, and a family of Lorentzian
transformation L̃(r) such that the limit of the SO(3, 1) part of L̃(r) converges to an
L∞, then the energy-momentum 4-vector also transform by L∞.

Proof. Both |H0| and the connection one form 〈∇R
3,1

(·)
J0
|H0|

, H0

|H0|
〉 are invariant under

Lorentzian transformation, while 〈T0,
J0
|H0|

〉 and ∇τ = −∇〈T0, Xr〉 are Lorentzian
equivariant.

For example, if we take a family of isometric embedding Xr into R
3 and define

X ′
r = Xr + r, it is not hard to see that the hypersurface spanned by X ′

r is asymptot-
ically null.

4 Optimal embedding equation

In the previous sections, we compute the null limit of quasi-local mass with respect
to O(1) perturbations of embeddings into a boosted totally geodesic slice in R

3,1. In
[8], the quasilocal mass is defined to be the minimum of quasilocal energy among
admissible isometric embeddings into R

3,1. We address the following problem in this
section : is there an O(1) perturbation of embeddings into a boosted totally geodesic
slice that is a critical point of this variational problem?

The optimal embedding equation for minimizing the quasi-local energy is derived
in [8, Proposition 6.2]. The equation reads

−(Ĥσ̂ab− σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+divΣ(
∇τ√

1 + |∇τ |2
cosh θ|H|−∇θ−V ) = 0 (4.1)

where sinh θ = −∆τ

|H|
√

1+|∇τ |2
and V is the tangent vector on Σ that is dual to the

connection one-form 〈∇N
(·)

J
|H|

, H
|H|

〉. To solve for this equation, we start with data

on the 2-surface Σ given by (σab, |H|, V ). Take a function τ on Σ, we consider the

isometric embedding X̂ : (Σ, σ̂) → R
3 with the metric σ̂ab = σab + τaτb. Ĥ and ĥab

10



are the mean curvature and the second fundamental form of the image of X̂ in R
3

respectively.
We first observe that momentum become an obstruction to solving the optimal

embedding equation near R3 and then discuss how this can be resolved by boosting
the embedding. The discussion covers the spatial infinity case discussed in [9] as well.
In the last subsection, we show the solution obtained is locally energy-minimizing
up to lower order terms in r.

4.1 Embedding near R
3

In this subsection, we investigate the situation where the embedding is near the flat
R

3 in R
3,1. Namely. we assume that there exists a function τ̃ on S2 such that

∇τ =
∇̃τ̃

r2
+ o(r−2).

We have the following asymptotic expansion:

Ĥσ̂ab − σ̂acσ̂bdĥcd =
σ̂ab

r
+O(r−4),

sinh θ =
−∆τ

|H|
√
1 + |∇τ |2

=
−∆̃τ̃

2r
+O(r−2),

and

|H| = 2

r
+O(r−2) and 1 + |∇τ |2 = 1 +O(r−2).

Further, let’s assume that divΣr
V has the following asymptotic expansion

divΣr
V =

v(θ, φ)

r3
+O(r−4).

This assumption is true on the null cone w = c as r tends to infinity and at spatial
infinity, see [9]. We derive

divΣr
(

∇τ√
1 + |∇τ |2

cosh θ|H|) = 2∆̃τ̃

r3
+O(r−4),

∆θ = ∆(
−∆τ

|H|
√
1 + |∇τ |2

+O(r−2)) =
−1

2r3
∆̃(∆̃τ̃) +O(r−4),

11



and

−(Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

= −∆̃τ̃

r3
+O(r−4).

Hence, the leading order term of equation (4.1) is O(r−3) which reads

∆̃τ̃ +
1

2
∆̃(∆̃τ̃) = v. (4.2)

Equation (4.2) can be solved if and only if v is perpendicular to the kernel of

the operators L = ∆̃ + 2 and ∆̃. The second condition always holds. For the
first condition, the kernel of L is spanned by X̃i and hence momentum becomes an
obstruction to solving optimal embedding equation near R3. In the next subsection,
we boost the embedding inside R3,1 by an Lorentzian isometry to resolve this problem.

4.2 Embedding near a boosted slice in R
3,1

Suppose Σr is a family of spacelike 2-surfaces in spacetime such that
(1) The induced metric satisfies σr

ab = r2σ̃ab +O(r).

(2) The norm of the mean curvature vector satisfies 2
r
− |Hr| = 2h(θ,φ)

r2
+ o(r−2).

(3) The connection one-form in mean curvature gauge V satisfies divΣr
V = v(θ,φ)

r3
+

o(r−3).
These assumptions hold on coordinate spheres of an asymptotically flat hyper-

surface as well as the r level surfaces at a retarded time in Bondi-Sachs coordinates.
Altogether they guarantee the limit of the quasi-local energy-momentum (e, p1, p2, p3)
with respect to isometric embeddings of σr

ab into R
3 is well-defined.

Theorem 2. Suppose Σr satisfies (1), (2), and (3) and the limit of the quasi-local
energy-momentum (e, p1, p2, p3) is timelike. Take (b1, b2, b3) such that bi√

1+
∑

i b
2

i

= pi
e
,

then there exists a function τ ′ on S2 such that an isometric embedding Xr : Σ → R
3,1

with time function

τ = (
∑

i

biX̃i)r +
√

1 + b2i τ
′

solves equation (4.1) up to O(r−4).

Remark 1. It is not hard to see that Xr = LX ′
r for an isometric embedding X ′

r =
(τ ′, X̃1r, X̃2r, X̃3r) +O(1) and L ∈ O(3, 1).
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Proof. Under the assumption, the energy momentum vector (e, p1, p2, p3) and the
functions v and h are related by

∫

S2

hdS2 = 8πe and

∫

S2

vX̃idS
2 = 8πpi. (4.3)

Let Σ0
r be the image of the isometric embedding determined by τ in R

3,1.
The optimal embedding equation for the function τ on Σr is

− (Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divΣ(
∇τ√

1 + |∇τ |2
cosh θr|Hr| − ∇θr − Vr) = 0

(4.4)
We compare the above equation with the optimal embedding equation for τ over Σ0

r .

− (Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divΣ(
∇τ√

1 + |∇τ |2
cosh θ0|H0| − ∇θ0 − V0) = 0

(4.5)
which is automatically true since the surface Σ0

r is in R
3,1.

Subtracting equation (4.4) from equation (4.5), equation (4.4) is equivalent to

div[
∇τ√

1 + |∇τ |2
(cosh θr|Hr| − cosh θ0|H0|)−∇(θr − θ0)− Vr + V0] = 0.

where

cosh θr|Hr| − cosh θ0|H0| =
√
|Hr|2 +

(∆τ)2

1 + |∇τ |2 −
√

|H0|2 +
(∆τ)2

1 + |∇τ |2

sinh(θr − θ0) =
∆τ

|Hr||H0|
√

1 + |∇τ |2
(

√
|Hr|2 +

(∆τ)2

1 + |∇τ |2 −
√

|H0|2 +
(∆τ)2

1 + |∇τ |2 ).

Set

f =

√
|Hr|2 + (∆τ)2

1+|∇τ |2
−

√
|H0|2 + (∆τ)2

1+|∇τ |2√
1 + |∇τ |2

= O(r−2).

Equation (4.4) is equivalent to

div(f∇τ)−∆[sinh−1(
∆τf

|Hr||H0|
)] = divVr − divV0.
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Using the explicit form of τ and the given asymptotic expansion of |H0| − |Hr|, we
can compute directly that

f =
f2

r2
+O(r−3) where f2 =

−h√
1 +

∑
i b

2
i

.

Denote
∑

i biX̃i by τ1, we derive,

θr − θ0 =
1

4
(r∆τ1)f2 +O(r−2).

On the other hand, by Lemma 3,

divV0 =
1

2r3
∆̃(∆̃ + 2)τ ′ +O(r−4).

The leading term of equation (4.4) is equivalent to

3

2
∆̃(τ1)f2 + 2∇̃τ1 · ∇̃f2 +

1

2
τ1∆̃f2 = −1

2
∆̃(∆̃ + 2)τ ′ + v. (4.6)

The left hand side of the equation is

(∆̃ + 2)(f2τ1)− τ1(3f2 +
1

2
∆̃f2).

Thus, equation (4.6) can be solved if and only if

v + τ1(3f2 +
1

2
∆̃f2)

is perpendicular to the kernel of ∆̃+2, i.e. the vector space spanned by X̃j , j = 1, 2, 3.
For each j, we compute

∫

S2

vX̃j + τ1(3f2 +
1

2
∆̃f2)X̃jdS

2 =

∫

S2

[vX̃j − bjf2]dS
2 =

∫

S2

[vX̃j +
bj√

1 + |b|2
h]dS2

where we integrate by parts and use∇X̃i·∇X̃j = δij−X̃iX̃j and∇τ1·∇X̃j = bj−τ1X̃j .

Thus
∫
S2 [vX̃j +

bj√
1+|b|2

h]dS2 is zero if one picks

bi√
1 + |b|2

=
pi

e
.
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4.3 Locally energy minimizing

In this subsection, we show the solution obtained in Theorem 2 is locally energy-
minimizing up to lower order of r. We consider isometric embeddings into R

3,1 with
time functions

τs = (
∑

i

biX̃i)r +
√
1 + b2i τ

′
s +O(r−1)

where τ ′s is a family of O(1) function such that τ ′0 gives the solution in Theorem 2.
That is, we take the metric σr on Σr and consider isometric embedding X̂r of the
metric σ̂r = σr + (dτs)

2 into R
3. Let Σ0

r be the graph of τs over the image of X̂r in
R

3,1. The induced metric on Σ0
r is thus the same as σr. From Proposition 6.2 in [8],

the first variation of the quasilocal energy is
∫

Σr

[
−(Ĥσ̂ab − σ̂acσ̂bdĥcd)

∇b∇aτs√
1 + |∇τs|2

+ divΣr
(

∇τs√
1 + |∇τs|2

cosh θ|H| − ∇θ − Vr)

]
δτsdΣr.

Using (4.5), we can rewrite this as

∫

Σr

divΣr

[
∇τs√

1 + |∇τs|2
(cosh θr|Hr| − cosh θ0|H0|)−∇(θr − θ0)− Vr + V0

]
δτsdΣr

where |H0|, θ0 and V0 are data associated with Σ0
r .

Using the expansions computed in the previous subsection, the first variation has
the following expansion:

r−1

∫

S2

[f2∆̃τ1 + ∇̃f2 · ∇̃τ1 +
1

2
∆̃(τ1f2)− v +

1

2
∆̃(∆̃ + 2)τ ′s]δτ

′
sdS

2 +O(r−2).

We derive that the second variation of the quasilocal energy at s = 0 is

1

2r

∫

S2

[∆̃(∆̃ + 2)δτ ′]δτ ′dS2 +O(r−2).

We may assume
∫
S2 δτ

′dS2 = 0 by normalization. By decomposing δτ ′ into sum of
eigenfunctions of S2 and noting that the first non-zero eigenvalue of S2 is −2, this is
always non-negative.
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