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The path complex and its homology were defined in previous papers of the authors. 
The notion of a path complex is a natural discrete generalization of the notion of 
a simplicial complex. The theory of path complexes contains homotopy invariant 
homology theory of digraphs and (nondirected) graphs.
In the paper we study the homology theory of path complexes. In particular, we 
describe functorial properties of paths complexes, introduce the notion of homotopy 
for path complexes and prove the homotopy invariance of path homology groups. 
We prove also several theorems that are similar to the results of classical homology 
theory of simplicial complexes. Then we apply this approach to construct homology 
theories on various categories of hypergraphs. We describe basic properties of these 
homology theories and relations between them. As a particular case, these results 
give new homology theories on the category of simplicial complexes.
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1. Introduction

In this paper we study functorial and homotopy properties of path complexes that were introduced in 
previous papers of the authors as a natural discrete generalization of the notion of a simplicial complex. Now 
we systematically describe properties of path complexes and provide new definitions, including notion of 
homotopy, and prove theorems that are similar to the results of simplicial homology theory. As an application 
we construct homology theories of various categories of hypergraphs (see [6]).
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Note that the particular case of the theory, the path homology theory of digraphs and (nondirected) graphs 
was investigated in [8], [9], [10], and [11]. For the case of (nondirected) graphs, the path homology coincides 
with the graph homology defined in [3] and [4] which is closely connected with the A-homotopy theory. See 
[1], [2], and [3]. The Künneth formulae for the Cartesian product and for the join of path complexes were 
proved in [7] and [12].

In Section 2, we recall the notion of the path complex on a finite set V and the definition of path 
homology. We describe also functorial properties of path homology.

In Section 3, we introduce the notion of homotopy for path complexes and prove the homotopy invariance 
of path homology groups.

In Section 4, we introduce the notion of a sub-complex of a path complex and corresponding relative 
homology groups. We construct also several natural homology exact sequences.

In Section 5, we apply obtained results to construct homology theories on various categories of hyper-
graphs and describe theirs properties. We provide also several examples of explicit computations of path 
homology groups of hypergraphs.
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2. Path complexes on finite sets

In this section we recall the notion of the path complex on a finite set V and define the path homol-
ogy theory of such complexes. Then we introduce a notion of morphism for path complexes and describe 
functorial properties of path homology groups.

Let V be an arbitrary non-empty finite set. We call a vertex any element v ∈ V . An elementary n-path
on a set V is a sequence i0 . . . in of n ≥ 0 vertices from V .

For a unitary commutative ring K, consider a free K-module Λn = Λn (V ) generated over K by elements 
ei0...in where i0...in is an elementary n-path. The elements of Λn for n ≥ 0 are called n-paths on V . Set also 
Λ−1 = K and Λ−2 = 0. Each n-path v ∈ Λn for n ≥ 0 has a unique representation of the form

v =
∑

i0,...,in∈V

vi0...inei0...in ,

where vi0...in ∈ K.
For n ≥ 1, define the boundary operator

∂ : Λn → Λn−1

as a linear operator that acts on elementary paths by

∂ei0...in =
n∑

s=0
(−1)s ei0...îs...in , (2.1)

where the hat îs means omission of the index is. For n = 0, −1 we define ∂ : Λ0 → Λ−1 = K as the 
augmentation homomorphism ε given by

ε
(∑

kpip

)
=

∑
kp, kp ∈ K, ip ∈ V,
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and define ∂ : Λ−1 → Λ−2 = 0 to be zero.
It is an easy exercise to check that ∂2 = 0 [7] and, hence, Λ∗ = {Λn} is a chain complex.
An elementary path i0...in is called non-regular if ik−1 = ik for some k = 1, . . . , n, and regular otherwise.
For n ≥ 2, let In = In(V ) ⊂ Λn(V ) be a submodule generated by non-regular paths. For n = −2, −1, 0, 1

we put In = 0. Then for n ≥ −1, the restriction of ∂ to In satisfies the condition ∂2 = 0: In → In−2 and 
hence a chain complex I∗ is defined. Thus we obtain a quotient chain complex

R∗ = R∗ (V ) := Λ∗(V )/I∗(V ),

and we continue to denote by ∂ the induced differential. It is clear, that for n ≥ 0 we have isomorphisms

Rn
∼= span

{
ei0...ip : i0...ip is regular

}
.

The elements of Rp are called regular p-paths.
Let V, V ′ be two finite set. Any map f : V → V ′ induces a morphism of chain complexes

f∗ : Λ∗(V ) → Λ∗(V ′)

given on the basis of Λn(V ) for n ≥ 0 by the rule

f∗ (ei0...in) = ef(i0)...f(in) and f∗ is an isomorphism for n = −1,−2. (2.2)

Since f∗(In(V )) ⊂ In(V ′), the morphism f∗ induces a morphism of chain complexes of regular paths

R∗(V ) → R∗(V ′) (2.3)

which we continue to denote f∗.

Definition 2.1. [7] A path complex over a set V is a collection P = P (V ) of elementary paths on V such 
that:

• i ∈ P for any i ∈ V ,
• if i0...in ∈ P then i0...in−1 ∈ P and i1...in ∈ P .

For n ≥ 0, the set of all n-paths from P is denoted by Pn. The (n − 1)-paths i0...in−1 and i1...in are 
called the truncated paths of the n-path i0...in. The elements of P are called allowed elementary paths, and 
the elementary paths that are not in P are called non-allowed. Note that P0 = V . The elements of P1 are 
called edges of P . It follows immediately from Definition 2.1 that for n-path i0...in ∈ P (n ≥ 1), all 1-paths 
ik−1ik are edges.

Definition 2.2. We say, that a map f : V → V ′ induces a morphism of path complexes P and P ′ if, for any 
path v ∈ P , the path f∗ (v) defined in (2.2) lies in P ′. We denote this morphism as

f• = (f, f∗) : (V, P ) → (V ′, P ′).

Let (V, P ), (V ′, P ′), (W, S) be path complexes and f : V → V ′, g : V ′ → W be maps of sets that define 
the morphisms

f• = (f, f∗) : (V, P ) → (V ′, P ′) and g• = (g, g∗) : (V ′, P ′) → (W,S)
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of path complexes. Then we define the composition g•f• as

g•f• : = (gf, g∗f∗).

The map gf : V → W defines a morphism of path complexes

(gf)• = (gf, (gf)∗) : (V, P ) → (W,S)

that evidently coincides with the morphism g•f•.
In this way we obtain a category P whose objects are path complexes and whose morphisms are morphisms 

of path complexes.
For any integer n ≥ 0, define the K-module An(P ) that is spanned by all the elementary n-paths from 

P :

An = An (P ) = 〈ei0...in |i0...in ∈ Pn〉 ,

and we put A−1 = K, A−2 = 0. The elements of An are called allowed n-paths of the path complex P . Thus 
we have a natural inclusion of modules An(P ) ⊂ Λn(V ) for n ≥ 1 and An(P ) = Λn(V ) for n = −2, −1, 0.

Note that the set of all paths on the set V gives a path complex which we denote by PV . We shall call 
PV a full path complex on the set V . For this path complex we have An(PV ) = Λn(V ).

For some path complexes it can happen that ∂An ⊂ An−1 (see [9], [7], [11]), but in the general case this 
is not true.

Define a submodule Ωn(P ) ⊂ An(P ) as follows. For n = −2, −1, 0, 1 we put Ωn(P ) = An(P ), and for 
n ≥ 2 we put

Ωn = Ωn (P ) = {v ∈ An|∂v ∈ An−1} .

It is clear that ∂(Ωn) ⊂ Ωn−1, since ∂2 = 0. The elements of Ωn are called ∂-invariant n-paths, and we 
obtain a reduced chain complex:

0 ← K ← Ω0 ← ... ← Ωn−1 ← Ωn ← Ωn+1 ← ... (2.4)

where the boundary maps are induced by ∂. The corresponding non-reduced chain complex has the form

0 ← Ω0 ← ... ← Ωn−1 ← Ωn ← Ωn+1 ← ... (2.5)

Homology groups of (2.5) are referred to as the path homology groups of the path complex P and are denoted 
by Hn (P ) , n ≥ 0. The homology groups of (2.4) are called the reduced path homology groups of P and are 
denoted by H̃n (P ) , n ≥ −1.

Now we introduce regular path homology groups of a path complex P . We have a commutative diagram 
of inclusions of K-modules

An(P ) −→ Λn(V )
↑ ↑

An(P ) ∩ In −→ In

which induces homomorphisms of K-modules

Rn(P ) = An(P )/{An(P ) ∩ In} → Λn(V )/In = Rn(V )

for n ≥ −2. Denote the image of this homomorphism as
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Rreg
n (P ) ⊂ Rn(V ).

Note, that Rn(P ) ∼= Rreg
n (P ).

Define a submodule Ωreg
n (P ) ⊂ Rreg

n (P ) as follows. For n = −2, −1, 0 we put Ωreg
n (P ) = Rreg

n (P ), and 
for n ≥ 1 we put

Ωreg
n = Ωreg

n (P ) =
{
v ∈ Rreg

n (P )|∂v ∈ Rreg
n−1(P ) where ∂ : Rn(V ) → Rn−1(V )

}
.

The elements of Ωreg
n are called ∂-invariant regular n-paths, and we obtain a reduced regular chain 

complex:

0 ← K ← Ωreg
0 ← ... ← Ωreg

n−1 ← Ωreg
n ← Ωreg

n+1 ← ... (2.6)

where the boundary maps are induced by ∂. The corresponding non-reduced complex has the form

0 ← Ωreg
0 ← ... ← Ωreg

n−1 ← Ωreg
n ← Ωreg

n+1 ← ... (2.7)

Homology groups of (2.7) are referred to as the regular path homology groups of the path complex P and 
are denoted by Hreg

n (P ) , n ≥ 0. The homology groups of (2.6) are called the reduced regular path homology 
groups of P and are denoted by H̃reg

n (P ) , n ≥ −1.
Some properties of the introduced chain complexes, various special types of path complexes, and examples 

of computing homology groups are given in [12] and [7]. From now on we shall consider only non-reduced 
chain complexes and non-reduced homology groups if otherwise is not state.

Let C∗ denote the category whose objects are chain complexes and whose morphisms are chain maps.
Now we discuss morphisms of chain complexes which are induced by morphisms of path complexes. The 

proofs of following statements follow immediately from definitions.

Lemma 2.3. (i) Let Λ∗ and Λ′
∗ be chain complexes with the differentials ∂ and ∂′, respectively, and f∗ : Λ∗ →

Λ′
∗ be a morphism. Let the submodules An ⊂ Λn and A′

n ⊂ Λ′
n be given in a such way that f∗(An) ⊂ A′

n.
Define the modules Ωn and Ω′

n in such a way

Ωn = {v ∈ An|∂v ∈ An−1} and Ω′
n =

{
v ∈ A′

n|∂v ∈ A′
n−1

}
. (2.8)

(i) Then

∂(Ωn) ⊂ Ωn−1, ∂(Ω′
n) ⊂ Ω′

n−1 (2.9)

and f∗ induces a morphism of chain complexes Ω∗ → Ω′
∗ which we continue to denote by f∗.

(ii) If f∗ : Λ∗ → Λ′
∗ is a monomorphism, then f∗ : Ω∗ → Ω′

∗ is a monomorphism, too.

Proposition 2.4. Any morphism f• : (V, P ) → (V ′, P ′) of path complexes induces a morphism f∗ of chain 
complexes

Ω∗(f•) = f∗ : Ω∗(P ) → Ω∗(P ′) (2.10)

and a morphism of regular chain complexes

Ωreg
∗ (f•) = f∗ : Ωreg

∗ (P ) → Ωreg
∗ (P ′) (2.11)

and, consequently, homomorphisms
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f∗ : H∗(P ) → H∗(P ′), f∗ : Hreg
∗ (P ) → Hreg

∗ (P ′), (2.12)

of homology and regular homology groups.

Corollary 2.5. We have functors Ω∗ and Ωreg
∗ from the category P of path complexes to the category C∗ of 

chain complexes.

Proposition 2.6. For any path complex P we have a morphism of chain complexes

Ω∗(P ) → Ωreg
∗ (P )

and hence the homomorphisms of homology groups

f∗ : H∗(P ) → Hreg
∗ (P ).

Now we give yet one definition we shall need in the next section (see [12] and [7]).

Definition 2.7. A path complex P is called regular if all the paths i0...in ∈ P are regular.

It is possible to give a weaker definition of a morphism of path complexes that induces a morphism of 
regular chain complexes [7].

Definition 2.8. [7] We say, that a map f : V → V ′ of sets provides a weak morphism of path complexes P
and P ′ if, for any path v ∈ P , the path f∗ (v) defined in (2.2) lies in P ′ or it is an irregular path in the full 
path complex PV ′ . In this case we shall write

f◦ : (V, P ) → (V ′, P ′).

Let

f◦ : (V, P ) → (V ′, P ′) and g◦ : (V ′, P ′) → (W,S)

be a weak morphism of path complexes. Similarly to the case of morphism of path complexes, the composition 
g◦f◦ is defined. Thus we obtain a category PW whose objects are path complexes and whose morphisms 
are weak morphisms of path complexes.

Proposition 2.9. Any weak morphism f◦ : (V, P ) → (V ′, P ′) of path complexes induces a morphism of chain 
complexes

Ωreg
∗ (f◦) : Ωreg

∗ (P ) → Ωreg
∗ (P ′) (2.13)

and, consequently, a homomorphism

Hreg
∗ (P ) → Hreg

∗ (P ′) (2.14)

of regular homology groups.

Proof. Let I ′n ⊂ Λn(V ′) be a submodule generated by non-regular paths. The result follows from the natural 
isomorphism
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An(P ′)/{An(P ′) ∩ I ′n}
∼=−→ An(P ′ ∪ I ′n)/{An(P ′ ∪ I ′n) ∩ I ′n}

and from Lemma 2.3 as above.
Consider a commutative diagram

An(P ) f∗→ An(P ′ ∪ I ′n) ← An(P ′)
↓ ↓ ↓

An(P )/{An(P ) ∩ In}
f∗→ An(P ′ ∪ I ′n)/{An(P ′ ∪ I ′n) ∩ I ′n}

∼=← An(P ′)/{An(P ′) ∩ I ′n}
|| ↓∼= ||

Rn(P ) f∗→ Rn(P ′) = Rn(P ′)
↓ ↓ ↓

Rreg
n (P ) f∗→ Rreg

n (P ′) = Rreg
n (P ′)

↓ ↓
R∗(V ) → R∗(V ′)

where the bottom vertical arrows are natural inclusions, and the morphism f induces the morphism of 
quotients

f∗ : R∗(V ) → R∗(V ′).

Now the morphism (2.13) follows from Lemma 2.3 and the rest of the claim is standard. �
Corollary 2.10. We have that Ωreg

∗ is a functor from the category PW of path complexes to the category C∗
of chain complexes.

3. Homotopy theory for path complexes

In this section we construct a homotopy theory for path complexes and prove the homotopy invariance 
of homology groups introduced above.

Let I = {0, 1} be a set with two elements. For any set V = {0, . . . , n}, let V ×I be the Cartesian product. 
Let V ′ be a copy of the set V and we denote such a set by V ′ = {0′, . . . , n′} where i′ ∈ V ′ corresponds to 
i ∈ V . Then we can identify V ×I with V ∪V ′ in such a way that (i, 0) corresponds to i and (i, 1) corresponds 
to i′ for any i ∈ V . Thus V is identified with V × {0} ⊂ V × I and V ′ is identified with V × {1} ⊂ V × I.

The natural isomorphism V ∼= V ′ defines a path complex P ′ on the set V ′ by the following condition: 
i′0 . . . i

′
n ∈ P ′ iff i0 . . . in ∈ P .

Define a path complex P × I as a path complex on V × I = V ∪ V ′ by

P × I = {w|w ∈ P} ∪ {w′|w′ ∈ P ′} ∪ {ŵ = i0 . . . iki
′
k . . . i

′
n|i0 . . . ikik+1 . . . in ∈ P} (3.1)

where 0 ≤ k ≤ n. It follows from (3.1) that we have natural morphisms

i• : (V, P ) → (V × I, P × I)

and

j• : (V ′, P ′) → (V × I, P × I)

which are induced by natural inclusions i : V → V × I = V ∪ V ′ and j : V ′ → V × I = V ∪ V ′.
Now, we define the notion of homotopy in the category of path complexes. Let P be a path complex on 

the set V and S be a path complex on the set W . Note that any map f : V → W defines naturally a unique 
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map f ′ : V ′ → W , and similarly, any morphism f• : (V, P ) → (W, S) defines naturally a unique morphism 
f ′
• : (V ′, P ′) → (W, S).

Definition 3.1. i) We call two morphisms f•, g• : (V, P ) → (W, S) of path complexes one step homotopic
(and write f• �1 g•) if there exists a morphism F• : (V × I, P × I) → (W, S) of path complexes such that 
at least one of the two following conditions are satisfied.

1. F•|(V,P ) = f•, F•|(V ′,P ′) = g′•.

2. F•|(V,P ) = g•, F•|(V ′,P ′) = f ′
•.

ii) We call two morphisms f•, g• : (V, P ) → (W, S) of path complexes homotopic and write f• � g• if 
there exists a sequence of morphisms

fi• : (V, P ) → (W,S)

such that f• = f0• �1 f1• �1 · · · �1 fn• = g•.
iii) Two path complexes (V, P ) and (W, S) are homotopy equivalent if there exist morphisms

f• : (V, P ) → (W,S), g• : (W,S) → (V, P )

such that

f•g• � IdW •, g•f• � IdV •

where IdV : V → V and IdW : W → W are the identity morphisms. In this case, we shall write (V, P ) �
(W, S) and shall call the morphisms f•, g• homotopy inverses to each other.

It follows directly from Definition 3.1, that the relation “to be homotopic” is an equivalence relation on 
the set of morphisms between two path complexes, and homotopy equivalence is an equivalence relation on 
the set of path complexes. Moreover, we will denote by P ′ the category whose objects are path complexes 
and morphisms are the classes of homotopic morphisms of path complexes.

Let V be a set. For n ≥ 0, define a homomorphism

τ : Λn(V ) → Λn+1(V × I)

on elementary n-paths v = ei0...in ∈ Λn(V ) by

τ(v) =
n∑

k=0

(−1)k ei0...iki′k...i′n , (3.2)

an extending to Λn(V ) by K-linearity. Recall that we consider non-reduced complexes, hence Λi = 0
for i ≤ −1 and we define τ = 0: Λ−1(V ) → Λ0(V × I). Recall that we have a natural isomorphism 

Λn(V ) 
∼=→ Λn(V ′) of submodules of Λn(V × I). It is given on the basis elements by ei0...in → ei′0...i′n and 

extending by linearity to Λn(V ). We shall denote by v′ ∈ Λn(V ′) ⊂ Λn(V × I) the image of the element 
v ∈ Λn(V ) ⊂ Λn(V × I)

Lemma 3.2. For n ≥ 0 and any path v ∈ Λn(V ) we have

∂τ(v) + τ(∂v) = v′ − v. (3.3)
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Proof. It is sufficient to prove the statement for basis elements v = ei0...in . For n = 0 and v = ei0 ∈ Λ0(V ), 
we have

∂τ(ei0) = ∂(ei0i′0) = ei′0 − ei0 , τ(∂v) = τ(0) = 0,

and the condition (3.3) is satisfied. Consider a path v = ei0...in ∈ Λn(V ) with n ≥ 1. We have

∂(τ(v)) = ∂

(
n∑

k=0

(−1)kei0...iki′k...i′n−1i
′
n

)

=
n∑

k=0

(−1)k
[(

k∑
m=0

(−1)mei0...̂im...iki′k...i
′
n

)
+

(
n∑

m=k

(−1)m+1ei0......iki′k...̂i′m...i′n

)]

=
∑

0≤m≤k≤n

(−1)k+mei0...̂im...iki′k...i
′
n

+
∑

0≤k≤m≤n

(−1)k+m+1ei0......iki′k...̂i′m...i′n

and

τ(∂v) = τ

(
n∑

m=0
(−1)mei0...̂im...in

)

=
n∑

m=0
(−1)m

[(
m−1∑
k=0

(−1)kei0...iki′k...̂i′m...i′n

)
+
(

n∑
k=m+1

(−1)k−1ei0......̂im...iki′k...i
′
n

)]

=
∑

0≤k<m≤n

(−1)k+mei0...iki′k...̂i′m...i′n
+

∑
0≤m<k≤n

(−1)k+m−1ei0......̂im...iki′k...i
′
n

Hence

∂τ(v) + τ(∂v) =
∑

0≤k≤n

(−1)k+kei0...̂iki′k...i′n
+

∑
0≤k≤n

(−1)k+k+1ei0......ik î′k...i′n

=
∑

0≤k≤n

ei0...ik−1i′k...i
′
n
−

∑
0≤k≤n

ei0......iki′k+1...i
′
n

= ei′0...i′n +
∑

1≤k≤n

ei0...ik−1i′k...i
′
n
−

⎛⎝ ∑
0≤k≤n−1

ei0......iki′k+1...i
′
n

+ ei0...in

⎞⎠
= ei′0...i′n − ei0...in +

⎛⎝ ∑
0≤k−1≤n−1

ei0...ik−1i′k...i
′
n
−

∑
0≤k≤n−1

ei0......iki′k+1...i
′
n

⎞⎠
= ei′0...i′n − ei0...in = v′ − v. �

Remark 3.3. It is easy to transfer results of Lemma 3.2 to the regular paths. The module Rn(V ) has the 
basis {ei0...in |i0 . . . in is regular path on V }. Then we can define

τ : Rn(V ) → Rn+1(V × I) (3.4)

by the same formulae as for τ : Λn(V ) → Λn+1(V × I).

Theorem 3.4. (i) Let

f• � g• : (V, P ) → (W,S)



10 A. Grigor’yan et al. / Topology and its Applications 267 (2019) 106877
be homotopic morphisms of path complexes. Then these morphisms induce chain homotopic morphisms of 
reduced and non-reduced chain complexes

f∗ � g∗ : Ω∗(P ) → Ω∗(S) and f∗ � g∗ : Ωreg
∗ (P ) → Ωreg

∗ (S)

and hence the same homomorphism of corresponding homology groups, respectively.
(ii) If the path complexes (V, P ) and (W, S) are homotopy equivalent, then they have isomorphic homology 

groups. Furthermore, if the homotopy equivalence is provided by homotopy inverse morphisms f• and g• (as 
in (iii) of Definition 3.1) then the induced homomorphisms f∗ and g∗ provide mutually inverse isomorphisms 
of reduced and non-reduced homology groups of (V, P ) and (W, S).

Proof. At first we prove the statement for non-regular and non-reduced chain complexes. It is sufficiently 
to consider only the first case of one-step homotopy F• between f• and g• as in (i) case 1 of Definition 3.1. 
By Definition 3.1 we have

F•i• = f• : Ω∗(P ) → Ω∗(S)

and

F•j• = g′• : Ω∗(P ′) → Ω∗(S)

which we identify naturally with the morphism

g• : Ω∗(P ) → Ω∗(S).

By Proposition 2.4, morphisms f• and g′• induce morphisms of chain complexes

f∗, g∗ : Ω∗(P ) → Ω∗(S),

and F• induces a morphism

F∗ : Ω∗(P × I) → Ω∗(S)

such that

F∗|Ω∗(P ) = f∗, F∗|Ω∗(P ′) = g′∗.

In order to prove that f∗ and g∗ induce the same homomorphism H∗(P ) → H∗(S), it suffices by [14, 
Theorem 2.1, p. 40] to construct a chain homotopy

Ln : Ωn(P ) → Ωn+1(S)

such that

∂Ln + Ln−1∂ = g∗ − f∗

For n ≥ 0, define a homomorphism

τ : An(P ) → An+1(P × I)
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on elementary n-paths v = ei0...in ∈ An(P ) by formulae (3.2) and extend it to An(P ) by K-linearity. We 
put also Ai = 0 for i = −1 and define τ = 0: A−1(P ) → A0(P × I). We prove now that if v ∈ Ωn(P ) then 
τ(v) ∈ Ωn+1(P × I). Let v ∈ Ωn(P ) that is v ∈ An(P ) ⊂ Ωn(V ) and ∂v ∈ An−1(P ) ⊂ Ωn−1(V ). Hence, by 
(3.2) and definition of A∗(P × I), we have τ(v) ∈ An+1(P × I) and τ(∂v) ∈ An(P × I). By Lemma 3.2, we 
have

∂τ(v) = −τ(∂v) + v′ − v

where the right summands lie in An(P × I). It follows that if v ∈ Ωn(P ) then τ(v) ∈ Ωn+1(P × I).
For n ≥ 0, define the homomorphism

Ln(v) : = F∗ (τ(v)) : Ωn(P ) → Ωn+1(S) for all v ∈ Ωn (P ) .

We obtain

(∂Ln + Ln−1∂)(v) = ∂(F∗(τ(v))) + F∗(τ(∂v)) (by definition L∗)

= F∗ (∂τ(v)) + F∗(τ(∂v)) (since F∗ is a chain map) 3.1)

= F∗(∂τ(v) + τ(∂v)) (since F∗ is a homomorphism)

= F∗ (v′ − v) (by Lemma 3.2)

= g∗ (v) − f∗ (v) (by definition of F ).

Thus the case (i) for reduced non-regular chain complexes is proved. The proof of (ii) in this case is 
standard.

For the case of non-reduced non-regular chain complexes the proof is similar. Recall that K is a ring of 
coefficients. In this case f∗|K = g∗|K = F∗|K is the identity map, and define τ : K → Ω0(P × I) as the 
trivial homomorphism.

In the case of reduced regular chain complexes the proof is similar. It is necessary to use the Remark 3.3
instead of Lemma 3.2. �

Now consider two full path complexes PV and PW . In this case any map of sets f : V → W defines the 
morphism f• : (V, PV ) → (W, PW ) of path complexes.

Proposition 3.5. Any two morphisms

f•, g• : (V, PV ) → (W,PW )

of full path complexes are one step homotopic and, hence, any full path complex is homotopy equivalent to 
the full path complex (∗, P∗) on the one point set ∗. The similar statement is true for any regular full path 
complex.

Proof. Define the map F : V × I = V ∪ V ′ → W by F |V = f, F |V ′ = g′. This map defines a morphism of 
path complexes

F• : (V × I, PV × I) → (W,PW )

which satisfies evidently the conditions on one-step homotopy from Definition 3.1. The Proposition is 
proved. �
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Corollary 3.6. For any full path complex (V, PV ) we have

Hn(PV ) = Hreg
n (PV ) =

{
K, for n = 0,
0, for n ≥ 1.

The proof is trivial.
Now we return to arbitrary path complexes.

Definition 3.7. i) We call two weak morphisms f◦, g◦ : (V, P ) → (W, S) of path complexes weak one step 
homotopic (and write f◦ ∼1 g◦) if there exists a weak morphism F◦ : (V × I, P × I) → (W, S) of path 
complexes such that at least one of the two following conditions are satisfied.

1. F◦|(V,P ) = f◦, F◦|(V ′,P ′) = g′◦.

2. F◦|(V,P ) = g◦, F◦|(V ′,P ′) = f ′
◦.

ii) We call two weak morphisms f◦, g◦ : (V, P ) → (W, S) of path complexes weak homotopic and write 
f◦ ∼ g◦ if there exists a sequence of weak morphisms

fi◦ : (V, P ) → (W,S)

such that f◦ = f0◦ ∼1 f1◦ ∼1 · · · ∼1 fn◦ = g◦.
iii) Two path complexes (V, P ) and (W, S) are weak homotopy equivalent if there exist weak morphisms

f◦ : (V, P ) → (W,S), g◦ : (W,S) → (V, P )

such that

f◦g◦ ∼ IdW ◦, g◦f◦ ∼ IdV ◦

where IdV : V → V and IdW : W → W are the identity morphisms. In this case, we shall write (V, P ) ∼
(W, S) and shall call the weak morphisms f◦, g◦ weak homotopy inverses to each other.

It follows directly from Definition 3.7, that the relation “to be weak homotopic” is an equivalence relation 
on the set of weak morphisms between two path complexes, and weak homotopy equivalence is an equivalence 
relation on the set of path complexes. Moreover, we will denote by PW′ the category whose objects are 
path complexes and morphisms are the classes of weak homotopic weak morphisms of path complexes.

Theorem 3.8. (i) Let

f◦ ∼ g◦ : (V, P ) → (W,S)

be weak homotopic morphisms of path complexes. Then these morphisms induce the chain homotopic mor-
phisms of regular chain complexes

f∗ � g∗ : Ωreg
∗ (P ) → Ωreg

∗ (S)

and hence the same homomorphism of corresponding homology groups.
(ii) If the path complexes (V, P ) and (W, S) are weak homotopy equivalent, then they have isomorphic 

regular homology groups. Furthermore, if the weak homotopy equivalence is provided by homotopy inverse 
morphisms f◦ and g◦ then the induced homomorphisms f∗ and g∗ provide mutually inverse isomorphisms 
of reduced and non-reduced homology groups of (V, P ) and (W, S).
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Proof. The proof is similar to the proof of Theorem 3.4. �
4. Relative path homology groups

In this section we introduce relative path homology groups and construct several exact sequences with 
these groups.

Let (W, S) be a path complex and V ⊂ W .

Definition 4.1. A path complex (V, P ) over a set V is a path subcomplex of the path complex (W, S) if any 
elementary path p ∈ P lies in S. We write in this case (V, P ) ⊂ (W, S) or, to simplify notations, P ⊂ S.

For a subcomplex P ⊂ S, the inclusion morphism i• : (V, P ) → (W, S) induces a monomorphism 
i∗ : Λ∗(V ) → Λ∗(W ) of chain complexes such that i∗(An(P )) ⊂ An(S). By Lemma 3.2, this implies that i•
induces a monomorphism of chain complexes i∗ : Ω∗(P ) → Ω∗(S). Thus we obtain a short exact sequence 
of (reduced and non-reduced) chain complexes

0 −→ Ω∗(P ) −→ Ω∗(S) −→ Ω∗(S)/Ω∗(P ) −→ 0. (4.1)

For the reduced chain complexes, the homomorphism i∗ in dimension −1 is the identity homomorphism 
K → K. Hence the factor-complex Ω∗(S)/Ω∗(P ) will be the same for the reduced and non-reduced chain 
complexes. We define homology groups H∗(S, P ) = H∗(Ω∗(S)/Ω∗(P )), that are called the relative path 
homology groups.

The same line of arguments show that we have also a short exact sequence of (reduced and non-reduced) 
regular chain complexes

0 −→ Ωreg
∗ (P ) −→ Ωreg

∗ (S) −→ Ωreg
∗ (S)/Ωreg

∗ (P ) −→ 0. (4.2)

Proposition 4.2. Let (V, P ) be a path subcomplex of (W, S). There are long exact sequences of homology 
groups

0 ← H0(S, P ) ← H0(S) ← H0(P ) ← H1(S, P ) ← H1(P ) ← . . .

and

0 ← Hreg
0 (S, P ) ← Hreg

0 (S) ← Hreg
0 (P ) ← Hreg

1 (S, P ) ← Hreg
1 (P ) ← . . .

and similarly for reduced homology groups.

Proof. Follows from (4.1) and (4.2). �
5. The path homology of hypergraphs

In this section we apply the above results to construct a homology theory on the category of hypergraphs. 
The homology theory based on the theory of path complexes for the particular case of digraphs and (nondi-
rected) graphs was constructed in [9], [10], [11]. As before, we fix a commutative ring K with a unity as a 
ring of the coefficients.

Definition 5.1. [5] (i) A finite hypergraph is a pair G = (V, E) where V is a non-empty set of vertices and E
is a family {e1, . . . , ek} of non-empty and non-ordered subsets of V such that
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k⋃
i=1

ei = V. (5.1)

The elements of E are called edges. A loop is an edge ei that has exactly one vertex v that is ei = {v}. 
Degree |ei| of an edge ei is defined as the number of containing in ei vertices.

The hypergraph is called simple if all edges are distinct. A hypergraph is called h-homogeneous if |ei| =
h ≥ 1 for all ei ∈ E.

(ii) We say that a hypergraph G = (VG, EG) is a sub-hypergraph of a hypergraph H = (VH , EH) if 
VG ⊂ VH and EG ⊂ EH . If for any e = {i1 . . . in} ∈ EH and i1, . . . , in ∈ VG, we have e ∈ EG, we call the 
sub-hypergraph G an induced sub-hypergraph.

It follows immediately from Definition 5.1 that simple 2-homogeneous hypergraph is a graph without 
isolated vertices.

Definition 5.2. In a hypergraph G = (V, E), two vertices are said to be adjacent if there is an edge e that 
contains both of these vertices. Two edges are said to be adjacent if their intersection is not empty. Two 
edges are said to be h-adjacent (h ≥ 1) if their intersection contains at least h vertices.

A walk in G is an alternating sequence v1, e1, v2, e2, . . . , en, vn+1 of vertices vi and edges ej of G such 
that: vi �= vi+1 and vi, vi+1 ∈ ei for 1 ≤ i ≤ n. In this case we say that there exists a walk from v1 to vn+1.

We call a hypergraph G connected if there is a walk between any two vertices of G.

Now we introduce the notion of a hypergraph morphism and a product of hypergraphs (as in [6]). These 
morphism and product have good categorical properties and they are effective to construct natural path 
complexes of hypergraphs.

Let V be a finite set. Denote by S(V ) the set of all non-empty non-ordered subsets of V . By Definition 5.1, 
for a hypergraph G = (V, E), we have a natural map

ϕG : E → S(V ) \ ∅.

Note that any map f : V → W induces a map

Sf : S(V ) \ ∅ → S(W ) \ ∅.

For example, f(0) = 0, f(1) = 0, f(2) = 1 implies, that Sf{0, 1, 2} = {0, 1}.

Definition 5.3. A morphism f : G → H of a hypergraph G = (VG, EG) to a hypergraph H = (VH , EH) is 
given by a pair of maps (fV , fE) where fV : VG → VH and fE : EG → EH provided the diagram

EG
ϕG−→ S(VG) \ ∅

↓ fE ↓ Sf

EH
ϕH−→ S(VH) \ ∅

is commutative. The set of morphisms from G to H we shall denote by Hom(G, H).

Let H denote the category whose objects are hypergraphs, and whose morphisms are morphisms of 
hypergraphs defined above.

Definition 5.4. Let G1 = (V1, E1) and G2 = (V2, E2) be two hypergraphs. Following [6,13], define the product 
G1 ×G2 = G = (V, E) as follows:
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V = V1 × V2 is the direct product with the natural projections pi : V → Vi,

and E is a family of triples {(A, e1, e2)} where e1 ∈ E1, e2 ∈ E2 and A is a subset of the direct product

ϕG1(e1) × ϕG2(e2) ⊂ V1 × V2,

for which pi(A) = ϕGi
(ei). Note, that ϕG(A, e1, e2) = A.

Definition 5.5. For a hypergraph G = (V, E) define a path complex (V, P q(G)) of density q ≥ 1 on the set V
of vertices in the following way. A path p of the length n ≥ 0 and density q is defined as the sequence p of 
n + 1 vertices i0 . . . in such that any q consecutive vertices of p lie in some edge of G.

For example, condition (5.1) implies that the path complex P 1(G) coincides with the full path complex 
PV defined in Section 2.

In what follows, we shall consider only non-reduced path-complexes and non-reduced homology groups. 
All results can be immediately transferred to the case of reduced homology. Thus, for a hypergraph G and 
any q ≥ 1 we have chain complexes

Ω∗(G, q) : = Ω∗(P q(G)) and Ωreg
∗ (G, q) : := Ωreg

∗ (P q(G))

which have the following homology groups

• H∗(G, q) : = H∗(Ω∗(G, q)) = H∗(P q(G)),
• Hreg

∗ (G, q) : = H∗(Ωreg
∗ (G, q)) = Hreg

∗ (P q(G)).

These homologies we call path q-homology and regular path q-homology, respectively. Recall that this ho-
mology groups depend also from the ring of coefficients K.

For example, Corollary 3.6 implies that for any hypergraph G we have

Hn(G, 1) = Hreg
n (G, 1) =

{
K, for n = 0,
0, for n ≥ 1.

In the case, when G is a simple graph without loops (in this case all edges consist of two vertices) the 
homology H∗(G, 2) coincide with the graph homology from [3], [4], [9].

We call an edge e ∈ E of a simple hypergraph G = (V, E) maximal if there is no an edge e1 ∈ E(e1 �= e)
such that φG(e) ⊂ φG(e1).

Proposition 5.6. The path homologies of a hypergraph depend only on the set of its maximal edges.

Proof. For any simple hypergraph G = (V, E) define a sub-hypergraph GM = (VM , EM ) as follows. We put 
VM = V and EM will be subset of E consisting only of maximal edges. We have a natural inclusion m : G →
GM that is the identity map on the set of vertices. For q ≥ 1, the map m induces the identity map of path 
complexes m• : P q(G) → P q(GM ) and the identity morphism of chain complexes Ω∗(G, q) → Ω∗(GM , q). 
Hence H∗(G, q) = H∗(GM , q). �
Proposition 5.7. For q ≥ 1, any morphism of hypergraphs f : G → H induces a morphism

P q(f) : = (fV , fV ∗) : (VG, P
q(G)) → (VH , P q(H))

of path complexes, and thus we have a functor P q : H → P.
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Proof. The result follows directly from Definition 5.3. �
Theorem 5.8. Let q ≥ 1. Any morphism of hypergraphs f : G1 → G2 induces morphisms

f∗ : Ω∗(G1, q) → Ω∗(G2, q) and f∗ : Ωreg
∗ (G1, q) → Ωreg

∗ (G2, q) (5.2)

of chain complexes and, consequently, homomorphisms

H∗(G1, q) → H∗(G2, q) and Hreg
∗ (G1, q) → Hreg

∗ (G2, q)

of homology and regular homology groups, respectively.

Proof. The result follows from Propositions 2.4 and 5.7. �
Corollary 5.9. For q ≥ 1, we have functors Ω∗(?, q) and Ωreg

∗ (?, q) from the category H to the category C∗.

Proposition 5.10. (i) For any hypergraph G and q ≥ 2, we have a morphism of path complexes Δq
G : P q(G) →

P q−1(G) and, hence, induced morphisms of chain complexes

Ω∗(G, q) −→ Ω∗(G, q − 1), Ωreg
∗ (G, q) −→ Ωreg

∗ (G, q − 1)

that define homomorphisms

H∗(G, q) → H∗(G, q − 1), Hreg
∗ (G, q) → Hreg

∗ (G, q − 1)

of homology groups.
(ii) Let f : G → H be a morphism of hypergraphs. Then the morphisms Δq

G and Δq
H fit into the commu-

tative diagram:

Ω∗(G, q) f∗−→ Ω∗(H, q)
↓ Δq

G ↓ Δq
H

Ω∗(G, q − 1) f∗−→ Ω∗(H, q − 1)

and there is a similar commutative diagram for regular chain complexes.

Proof. The condition p ∈ P q(G) implies evidently that p ∈ P q−1(G) and we obtain a morphism of path 
complexes. Now the result follows from Proposition 2.4 and Theorem 5.8. �
Definition 5.11. A simple hypergraph G = (V, E) is simplicial if the condition

e = {v0, v1, . . . , vn} ∈ E

implies that any non-empty subset e1 of {v0, v1, . . . , vn} is also an edge of G.

It follows immediately from this definition, that any simplicial complex Δ with the set of vertices V
defines a simplicial hypergraph Γ(Δ) with the same set of vertices and with the edges that are given by 
simplexes of Δ (and vice versa, a simplicial hypergraph defines an unique simplicial complex).

Let S be the category whose objects are finite simplicial complexes and whose morphisms are simplicial 
maps. Consider a simplicial map ψ : Δ1 → Δ2. The map ψ defines a morphism Γ(ψ) : Γ(Δ1) → Γ(Δ2) of 
hypergraphs by a natural way. It is easy to see that we obtained a functor Γ: C → H. In what follows, 
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we shall consider only finite simplicial complexes. For a simplicial complex Δ, we shall use the following 
notations

Ω∗(Δ, q) : = Ω∗(Γ(Δ), q) and Ωreg
∗ (Δ, q) : = Ωreg

∗ (Γ(Δ), q).

As follows from the consideration above, for any q ≥ 1 we have a functor Ω∗(?, q) from the category S of 
simplicial complexes to the category C of chain complexes. Thus (see Definition 5.12 below) we obtain a 
new collection of path homology theories on the category S of simplicial complexes.

Definition 5.12. For any simplicial complex Δ and q ≥ 1 define q-labelled path homology groups

H∗(Δ, q) : = H∗(Ω∗(Δ, q)) = H∗(P q(Γ(Δ)))

and

Hreg
∗ (Δ, q) : = H∗(Ωreg

∗ (Δ, q)) = Hreg
∗ (P q(Γ(Δ))).

It follows from this definition that the path homology groups depend functorially on the simplicial 
complex. Now we state a proposition which describes the dependence on q and follows immediately from 
the consideration above. Fix q ≥ 1.

Proposition 5.13. (i) For any simplicial complex Δ and q ≥ 2, we have a morphism of path complexes 
P q(Γ(Δ)) → P q−1(Γ(Δ)) which induce morphisms of chain complexes

Ω∗(Δ, q) −→ Ω∗(Δ, q − 1), Ωreg
∗ (Δ, q) −→ Ωreg

∗ (Δ, q − 1),

that defines homomorphisms

H∗(Δ, q) → H∗(Δ, q − 1), Hreg
∗ (Δ, q) → Hreg

∗ (Δ, q − 1)

of homology groups.
(ii) A simplicial map ψ : Δ1 → Δ2 induces a commutative diagram of chain complexes

Ω∗(Δ1, q)
ψ∗−→ Ω∗(Δ2, q)

↓ ↓
Ω∗(Δ1, q − 1) ψ∗−→ Ω∗(Δ2, q − 1)

(5.3)

and a similar diagram for regular chain complexes. These diagrams imply commutative diagrams of homology 
groups.

Now we apply path homology theory to the construction homology theories on the category of directed 
hypergraphs.

A partially ordered set V is called a linearly ordered if for any two distinct elements a, b ∈ V the one of 
the conditions a < b or b < a is satisfied.

We shall consider only finite directed hypergraphs without double edges. We shall use the bold fonts for 
designations directed hypergraphs and their morphisms, vertices, and edges.

Definition 5.14. A directed hypergraph is a couple G = (V,E) where V is a non-empty finite set of vertices, 
and E = {e1, . . . , ek} is a set of directed edges consisting of non-empty and distinct subsets of V such that ⋃

ei = V and the elements of any edge e = {i0, i1, . . . in} ∈ E are distinct and linearly ordered. Without 
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restriction of generality we suppose that i0 < i1 < · · · < in. We do not suppose that the order of elements 
are agree on the intersection of edges. If the order of the elements agree on the intersection of the edges, we 
call such a hypergraph strong directed.

Definition 5.15. A morphism f : G → H of directed hypergraphs is given by a pair of maps fV : VG → VH, 
fE : EG → EH that satisfy the following properties:

i) there is a commutative diagram

EG
ϕG−→ S(VG) \ ∅

↓ fE ↓ Sf
EH

ϕH−→ S(VH) \ ∅,

ii) for any edge e = {i0, i1, . . . in} ∈ EG we have fV(i0) ≤ fV(i1) ≤ · · · ≤ fV(in). The set of morphisms 
from G to H we shall denote by Hom(G, H).

It is clear that the set of directed hypergraphs with the defined above morphisms form a category which 
we denote by H+.

To any directed hypergraph G = (V,E) we can assign the hypergraph F(G) = G = (V, E) putting 
V = V and to any ordered edge e ∈ E we assign the edge e consisting from the same non-ordered elements 
as e. From Definitions 5.3 and 5.15 it follows that we have a (forgetting the order) functor F : H+ → H. A 
directed hypergraph G is h-homogeneous if the hypergraph G is h-homogeneous (connected, without loops) 
if the hypergraph G is homogeneous (connected, without loops).

Definition 5.16. For a directed hypergraph G = (V,E) define a path complex (V, P q(G)) of density q ≥ 1
on the set V of vertices by the following way. The path p of length n ≥ 0 is defined as the sequence of n +1
vertices i0i1 . . . in = p such that any q or less consequent vertices from p give an ordered subsequence of an 
edge e ∈ E.

Thus, for a directed hypergraph G and any q ≥ 1 we have chain complexes

Ω∗(G, q) : = Ω∗(P q(G)), Ωreg
∗ (G, q) : = Ωreg

∗ (P q(G))

that define the homology groups of G as follows:

H∗(G, q) : = H∗(Ω∗(G, q)), Hreg
∗ (G, q) : = H∗(Ωreg

∗ (G, q)).

Let G be a 2-homogeneous directed hypergraph. Then G defines a simple digraph (in this case, all edges 
consist of two ordered vertices). The homology Hreg

∗ (G, 2) coincides with the path homology of simple 
digraphs from [9], [11], [8].

For a directed hypergraph G, we have by Corollary 3.6

Hn(G, 1) ∼= Hn(G, 1) ∼= Hreg
n (G, 1) ∼= Hreg

n (G, 1) ∼=
{
K, for n = 0,
0, for n ≥ 1.

(5.4)

Let Gi = (Vi, Ei), (i = 1, 2) be directed hypergraphs. Analogously to Proposition 5.7, for q ≥ 1, any 
morphism f : G1 → G2 induces a morphism

P q(f) : (V1, P
q(G1)) → (V1, P

q(G2))

of path complexes, and thus we have a functor P q : H+ → P.
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Theorem 5.17. Any morphism of directed hypergraphs f : G1 → G2 induces morphisms of chain complexes

f∗ : Ω∗(G1, q) → Ω∗(G2, q), f∗ : Ωreg
∗ (G1, q) → Ωreg

∗ (G2, q)

and, consequently, homomorphisms

f∗ : H∗(G1, q) → H∗(G2, q), f∗ : Hreg
∗ (G1, q) → Hreg

∗ (G2, q)

of homology groups.

Proof. Similar to the proof of Theorem 5.8. �
The next statement is similar to Proposition 5.10.

Proposition 5.18. For any directed hypergraph G and q ≥ 2, we have a morphism of path complexes P q(G) →
P q−1(G) and, hence, morphisms of chain complexes

Ω∗(G, q) −→ Ω∗(G, q − 1), Ωreg
∗ (G, q) −→ Ωreg

∗ (G, q − 1)

that are natural relative to morphism of directed hypergraphs and that define homomorphisms

H∗(G, q) → H∗(G, q − 1), Hreg
∗ (G, q) → Hreg

∗ (G, q − 1)

of homology groups.

For any directed hypergraph G = (V,E) define a simple digraph R(G) = G = (V, E) as follows. We put 
V = V and we have an arrow (v → w) ∈ E for v,w ∈ V iff there is at least one edge e ∈ E such that 
v,w ∈ e and v < w. It is easy to see that we have a functor R from the category H+ to the category D of 
digraphs defined in [9, Section 2].

Consider several examples in which the ring of coefficients is Z.

Example 5.19. i) Let G = (V,E) be a directed connected hypergraph with

V = {1,2,3,4,5,6} and E = {ei|1 ≤ i ≤ 7}

where the vertices in the edges

e1 = {1,2,5}, e2 = {1,4,5}, e3 = {2,3,5}, e4 = {3,4,5},
e5 = {1,2,6}, e6 = {1,4,6}, e7 = {2,3,6} (5.5)

have the natural order. Now we compute the homology groups Hreg
∗ (G, q) for all q ≥ 1.

Note, that for q ≥ 1, the module Ωreg
0 (G, q) is generated by the set of vertices V.

The homology in the case q = 1 are given by (5.13) and we have

Hreg
n (G, 1) =

{
Z, for n = 0,
0, for n ≥ 1.

Let q = 2, the module Ωreg
n (G, q) is generated by the set of paths ei0...in in which any pair of consequent 

induces ijij+1 is an ordered subset of one from the edges in (5.5). Thus the regular chain complex Ωreg
∗ (G, 2)
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Fig. 1. The planar digraph G from Example 5.19.

is isomorphic to the regular chain complex (see, [8], [9], [10], and [11]) for path homology groups of the 
digraph G = (V, E) where V = V and E consists of the edges

1 → 2, 1 → 4, 1 → 5, 1 → 6, 2 → 3, 2 → 5, 2 → 6,

3 → 4, 3 → 5, 3 → 6, 4 → 5, 4 → 6.

The digraph G is presented on Fig. 1.
Thus we have

Ωreg
i (G, 2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈ei|i ∈ V〉 , for i = 0
〈eij|i → j ∈ E〉, for i = 1
〈e346, eijk|{i, j,k} = em, 1 ≤ m ≤ 7〉, for i = 2
0, for i ≥ 3,

(5.6)

where 〈. . . 〉 means the free abelian group generated by the elements in the angle brackets. Now it is easy 
to compute the homology group directly, using definition (2.1) of the of differentials. The that the planar 
digraph of Fig. 1 is the suspension SC over the following digraph C:

4 ←− 3
↑ ↑
1 −→ 2

and, hence, its regular homology groups are the following (see [8, Theorem 4.13])

Hreg
n (G, 2) = Hi(SC,Z) =

{
Z, for n = 0, 2
0, for others cases.

For q ≥ 3, we have

Ωreg
i (G, q) ∼=

⎧⎪⎪⎨⎪⎪⎩
Ωreg

i (G, 2), for i = 0, 1
〈eijk|{i, j,k} = em, 1 ≤ m ≤ 7〉, for i = 2
0, for i ≥ 3.

(5.7)

We note the groups Ωreg
2 (G, 2) and Ωreg

2 (G, q) differs only by one generator e346. We have
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∂e346 = e46 − e36 + e34 =
= ∂[e125 − e145 + e235 + e345 − e126 + e146 − e236]. (5.8)

Comparing (5.15) and (5.7) we see that the images of

∂ : Ωreg
3 (G, q) → Ωreg

2 (G, q) (5.9)

are the same for q = 2 and for q ≥ 3. Hence Hreg
1 (G, q) = 0 for q ≥ 3. Now we check directly (or using Euler

characteristic of chain complex), that the differential in (5.9) is a monomorphism. Hence Hreg
2 (G, q) = 0

for q ≥ 3.
i) Let G1 = (V,E) be directed connected hypergraph with the same set of vertices as G in the previous 

example and the set of edges

e2 = {1,4,5}, e3 = {2,3,5}, e4 = {3,4,5},
e5 = {1,2,6}, e6 = {1,4,6}, e7 = {2,3,6} (5.10)

that obtained from the set of edges G by deleting the edge e1.
Using the same line of arguments as in the previous example we obtain that

Hreg
n (G1, q) = Hreg

n (G, q) for q = 0, 1, 2

and, for any q ≥ 3,

Hreg
n (G1, q) =

⎧⎪⎪⎨⎪⎪⎩
Z, for n = 0
Z, for n = 1
0, for others cases.

Now we discuss the application of homotopy theory to the categories H+ and H of hypergraphs.
Let I = (VI , EI) be the hypergraph with two vertices V = {0, 1} and the set of edges EI = {f0 =

{0}, f1 = {1}, f2 = {0, 1}}. For any hypergraph G = (V, E) with the set of edges E = {e1, . . . , ek}, let 
H = G × I be the product of hypergraphs as in Definition 5.4. The hypergraph H has, in particular, the 
edges

(As, es, f0) with p1(As) = φG(es), p2(As) = f0

and

(As, es, f1) with p1(As) = φG(es), p2(As) = f1.

It is clear that p1|As
is the bijection in both cases.

Consider two natural inclusions of the hypergraphs i = (iV , iE) : G → G × I where

iV (v) = (v, 0) and iE(es) = (As, es, f0), v ∈ V, es ∈ E

and j = (jV , jE) : G → G × I where

jV (v) = (v, 1) and jE(es) = (As, es, f1), v ∈ V, es ∈ E.

Thus by means i we shall identify G with the sub-hypergraph of G × I that we shall call the bottom 
boundary of G × I and by means j we shall identify G with the sub-hypergraph of G × I that we shall call 
the top boundary of G × I.
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Definition 5.20. (i) We call two morphisms f, g : G → H of hypergraphs one-step homotopic and write 
f �1 g if there exists a morphism F : G × I → H of hypergraphs such that the restriction of F to the 
bottom boundary is f and the restriction of F to the top boundary is g.

ii) We call two morphisms f, g : G → H of hypergraphs homotopic and write f � g if there exists a 
sequence of morphisms of hypergraphs fi : G → H such that f = f0 �1 f1 �1 · · · �1 fn = g.

iii) Two hypergraphs G and H are homotopy equivalent if there exist morphisms

f : G → H, g : H → G such that fg � IdH , gf � IdG

where IdG : G → G and IdH : H → H are the identity morphisms. In this case, we write G � H and call 
the morphisms f , g homotopy inverses to each other.

Theorem 5.21. i) Let

f � g : G1 → G2

be homotopic morphisms of hypergraphs. Then for any q ≥ 1, these morphisms induce chain homotopic 
morphisms f∗ � g∗ of chain complexes

Ω∗(G1, q) → Ω∗(G2, q) and Ωreg
∗ (G1, q) → Ωreg

∗ (G2, q)

and, hence, the same homomorphism f∗ = g∗

H∗(G1, q) → H∗(G2, q) and Hreg
∗ (G1, q) → Hreg

∗ (G2, q)

of homology groups.
ii) If the hypergraphs G1 and G2 are homotopy equivalent, then for q ≥ 1, then theirs homology and 

regular homology groups are isomorphic:

H∗(G1, q) ∼= H∗(G2, q) and Hreg
∗ (G1, q) ∼= Hreg

∗ (G2, q).

Furthermore, if the homotopy equivalence is provided by the homotopy inverse morphisms f and g then 
theirs induced maps f∗ and g∗ provide mutually inverse isomorphisms of homology groups.

Proof. It is sufficiently to consider the case of one-step homotopy. For q ≥ 1, the morphisms i, j, f , g, and 
F induce morphisms of path complexes

f•, g• : P q(G1) → P q(G2),

i•, j• : P q(G1) → P q(G1 × I)

and

F• : P q(G1 × I) → P q(G2)

such that

F• ◦ i• = f• and F• ◦ j• = g•.

Consider the path complex P q(G1) × I as in (3.1) of Section 3. Any path of density q from P q(G1) × I that 
is in P or in P ′ (as in (3.1) has the form
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w = v0 . . . vk and w′ = v′0 . . . v
′
k,

respectively. These paths define evidently the unique paths

τ(w) = i•(w) = (v0, 0) . . . (vk, 0), τ(w′) = j•(w′) = (v0, 1) . . . (vk, 1) (5.11)

in P q(G1 × I). Consider the path ŵ = v0 . . . vkv
′
k . . . v

′
n ∈ P q × I where 0 ≤ k ≤ n and w = v0 . . . vk . . . vn ∈

P q(G1) (similarly to (3.1)).
We state that the path

τ(ŵ) = (v0, 0) . . . (vk, 0)(vk, 1) . . . (vn, 1) (5.12)

lies in P q(G1×I). Consider q or less consequent elements of the path τ(ŵ). If the set of these elements is the 
subset of (v0, 0) . . . (vk, 0) or the set (vk, 1) . . . (vn, 1) the statement directly follows from the hypothesis that 
w ∈ P q(G1). If these consequent elements have the form (vm, 0) . . . (vk, 0)(vk, 1) . . . (vl, 1) with 0 ≤ k ≤ l ≤ n

the statement also trivial, since the elements vm . . . vk . . . vl lies in some edge ei of G and hence the elements 
(vm, 0) . . . (vk, 0)(vk, 1) . . . (vl, 1) lies in the edge (A, ei, f2) of G1 × I. Hence (5.11) and (5.12) define natural 
inclusion

τ : P q(G1) × I → P q(G1 × I).

Hence the composition

F• ◦ τ : P q(G1) × I −→ P q(G2)

gives one-step homotopy f• �1 g•. Now the result follows from Theorem 3.4. �
Remark 5.22. For directed hypergraphs Theorem 5.21 remains valid.

Now we present several results about homology groups of hypergraphs.
Define a hypergraph path Iqn = (V, E) of density q ≥ 1 and of length n ≥ 0 as follows

V = {0, 1, . . . , n}, E = {e1, e2, . . . , ek|k = n− q + 2}

where e1 = {0, 1, . . . , q − 1}, e2 = {1, 2, . . . , q}, . . . , ek = {n − q + 1, n − q + 2, . . . , n}.

Proposition 5.23. For any simplicial hypergraph G = (V, E) we have an one-to-one correspondence 
P q
n(G) ←→ Hom(Iqn, G) between the paths of length n ≥ 0 from P q(G) and the set of hypergraph mor-

phisms Hom(Iqn, G).

Proof. Let p = i0i1 . . . in ∈ P q(G). We define the morphism (fV , fE) : Iqn → G putting fV (j) = ij for 
0 ≤ j ≤ n and for 1 ≤ j ≤ n − q + 2 we define fE(ej) as the unique minimal edge in G that consists 
of the vertices {fV (j − 1), . . . , fV (q + j − 2)}. Such edge exists as follows from definition p and since G is 
a simplicial hypergraph. It follows from Definition 5.3 of hypergraph morphism that any f ∈ Hom(Iqn, G)
defines a path p ∈ P q(G) by the rule p = fV (0) . . . fV (n). �

Now we describe one more relation of our construction to the simplicial theory. For a simple hypergraph 
H = (V, E), let Ĥ : = (V̂ , Ê) denote the simplicial hypergraph constructed in the following way. We put 
V̂ = V and we add a minimal number of edges to E to obtain Ê of the simplicial hypergraph Ĥ. We shall 
say that the simplicial hypergraph Ĥ is associated with the hypergraph H.
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Lemma 5.24. Any morphism f : G → H of simple hypergraphs induces a morphism f̂ : Ĝ → Ĥ of associated 
simplicial hypergraphs in such a way that fV = f̂V .

Proof. Any morphism f of simple hypergraphs is defined by the restriction fV : VG → VH and, hence, by the 
restriction fV to the maximal edges of G. Consider the restriction of fV |e on a maximal edge e = {i0, . . . , in}. 
By Definition 5.3, we have fE(e) = e′ ∈ EH where

e′ = {j0, . . . , jk} and fV ({i0, . . . , in}) = {j0, . . . , jk}.

The map fV |e gives a unique map of all subsets of the set {i0, . . . , in} to the all subsets of the set {j0, . . . , jk}
which automatically provide the well defined map fE on any edge e1 ⊂ e since f is the hypergraph map by 
assumption. Now the result follows. �
Proposition 5.25. Let H be a simple hypergraph and Ĥ be an associated simplicial hypergraph. Then the 
identity map on the set of vertices V for any q ≥ 1 gives the inclusion s : H → Ĥ of hypergraphs that 
induces identity map of path complexes

s∗ : P q(H) =−→ P q(Ĥ),

in particular, for any q ≥ 1 and n ≥ 0 we have

P q
n(H) =→ P q

n(Ĥ).

Moreover, any morphism f : G → H induces a morphism f̂ : P q(Ĝ) → P q(Ĥ) such that the diagram

P q(H) s∗−→
=

P q(Ĥ)
↓ f̂∗ ↓ f∗

P q(G) s∗−→
=

P q(Ĝ)
(5.13)

is commutative.

Proof. The first statement is trivial, since the collection of maximal edges of H and Ĥ is the same. The 
second statement follows from Lemma 5.24. �
Lemma 5.26. Let G1 = (V1, E1), G2 = (V2, E2) be two simplicial hypergraphs. Then the product G1 ×G2 is 
also a simplicial hypergraph.

Proof. It is enough to prove that for any two edges e1 ∈ G1, e2 ∈ G2 with e1 = {i0, . . . , in}, e2 = {j0, . . . , jk}
any subset A of the direct product

{i0, . . . , in} × {j0, . . . , jk}

of the sets defines an edge in the hypergraph G1 × G2. Let pi(A) = ai ⊂ ei ⊂ Vi(i = 1, 2) where pi are 
natural projections. Then ai is an edge of Gi, since Gi is simplicial. Hence the triple (A, a1, a2) is an edge 
in G1 ×G2 by Definition 5.4 and the result follows. �
Proposition 5.27. Let G1, G2 be two simplicial hypergraphs. Then for any q ≥ 1 we have an one-to-one 
correspondence

P q(G1 ×G2) ←→ P q(G1) × P q(G2) (5.14)
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between the path complexes which induces for n ≥ 0 an isomorphism of modules

Ω∗(G1 ×G2, q) ∼= Ωn(G1, q) ⊗ Ωn(G2, q). (5.15)
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