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RICCI-FLAT CUBIC GRAPHS WITH GIRTH FIVE

DAVID CUSHING, RIIKKA KANGASLAMPI, YONG LIN, SHIPING LIU,
LINYUAN LU, AND SHING-TUNG YAU

Abstract. We classify all connected, simple, 3-regular graphs
with girth at least 5 that are Ricci-flat. We use the definition
of Ricci curvature on graphs given in Lin-Lu-Yau, Tohoku Math.,
2011, which is a variation of Ollivier, J. Funct. Anal., 2009. A
graph is Ricci-flat, if it has vanishing Ricci curvature on all edges.
We show, that the only Ricci-flat cubic graphs with girth at least
5 are the Petersen graph, the Triplex and the dodecahedral graph.
This will correct the classification in [8] that misses the Triplex.

1. Introduction

Ollivier developed a notion of Ricci curvature of Markov chains valid
on metric spaces including graphs in [12]. The Ollivier-Ricci curva-
ture κp depends on an idleness parameter, p ∈ [0, 1]. For graphs,
the Ollivier-Ricci curvature has been studied mainly for idleness 0, see
[1, 5, 6, 9, 14], but for example in [13] Ollivier and Villani considered
idleness 1

d+1
, where d is the degree of a regular graph, in order to inves-

tigate the curvature of the hypercube. In [7], Lin, Lu, and Yau modified
the definition of Ollivier-Ricci curvature to compute the derivative of
the curvature with respect to the idleness, which they denote by κ.

Throughout this article, let G = (V,E) be a simple graph with vertex
set V and edge set E. Let dx denote the degree of the vertex x ∈ V .
Let d(x, y) denote the length of the shortest path between two vertices
x and y.

We define the following probability distributions µp
x for any x ∈

V, p ∈ [0, 1]:

µp
x(z) =











p, if z = x,
1−p
dx

, if z ∼ x,

0, otherwise.

Definition 1. Let G = (V,E) be a locally finite graph. Let µ1, µ2 be

two probability measures on V . The Wasserstein distance W1(µ1, µ2)
between µ1 and µ2 is defined as

(1) W1(µ1, µ2) = inf
π

∑

y∈V

∑

x∈V

d(x, y)π(x, y),
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where the infimum runs over all transportation plans π : V ×V → [0, 1]
satisfying

µ1(x) =
∑

y∈V

π(x, y), µ2(y) =
∑

x∈V

π(x, y).

The transportation plan π moves a distribution given by µ1 to a
distribution given by µ2, and W1(µ1, µ2) is a measure for the minimal
effort which is required for such a transition. If π attains the infimum
in (1) we call it an optimal transport plan transporting µ1 to µ2.

Definition 2. The p−Ollivier-Ricci curvature on an edge x ∼ y in

G = (V,E) is

κp(x, y) = 1−W1(µ
p
x, µ

p
y),

where p is called the idleness.

The Ollivier-Ricci curvature introduced by Lin-Lu-Yau in [7], is de-

fined as

κ(x, y) = lim
p→1

κp(x, y)

1− p
.

We call a graph Ricci-flat if κ(x, y) = 0 on all edges xy ∈ G. Note
that for regular graphs we can calculate the curvature κ(x, y) for an
edge xy as

κ(x, y) =
d+ 1

d
κ 1

d+1

(x, y),

as shown in [4] by Bourne, Cushing, Liu, Münch and Peyerimhoff. We
show, that the only Ricci-flat cubic graphs with at least girth 5 are the
Petersen graph, the Triplex and the dodecahedral graph (see Figure 1).

(a) Petersen graph (b) Triplex (c) Dodecahedral graph

Figure 1. The three Ricci-flat cubic graphs with girth 5

2. Classification of Ricci-flat cubic graphs with girth 5

In [8, Theorem 1] the authors classify Ricci-flat graphs with girth at
least 5, but there is one 3-regular graph missing from their classifica-
tion, namely the Triplex (Figure 1b). With the following theorem we
can complete the classification.
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Theorem 1. Let G be a 3-regular simple graph with girth g(G) ≥ 5. If
κ(x, y) = 0 on all edges (x, y) ∈ G, then G is the Petersen graph, the

Triplex, or the dodecahedral graph.

Assuming that these graphs can be embedded to surfaces in such a
way that they tile the surface with only pentagonal faces, the authors in
[8] deduce that they only need to consider graphs with 10 or 20 vertices,
obtaining the Petersen graph and the dodecahedral graph. However,
the Triplex can be embedded to a torus with three pentagonal, two
hexagonal and one 9-gonal face. A direct way to fix this problem in
the proof of [8, Theorem 1] is given in [2].

Using Theorem 1 together with the results for non-cubic graphs from
[8] we have the following classification:

Theorem 2. Suppose that G is a Ricci-flat graph with girth g(G) ≥ 5.
Then G is one of the following graphs: the infinite path, cycle Cn with

n ≥ 6, the dodecahedral graph, the Triplex, the Petersen graph and the

half-dodecahedral graph.

Before proving Theorem 1, let us first consider the local structure of
Ricci-flat cubic graphs. The following lemma shows that in order to
have zero curvature on an edge xy, the edge must lie on two pentagons.

Lemma 1. Let G = (V,E) be a 3-regular graph of girth g(G) ≥ 5.
If κ(x, y) = 0, then the smallest cycle Cn supporting the edge xy has

n = 5, and in addition xy belongs to two 5-cycles P1 and P2 such that

P1 ∩ P2 = xy.

Proof. Denote the two other neighbours of x in addition to y by x1

and x2, and the neighbours of y by y1 and y2. We can assume that
an optimal transport plan π only transports probability distribution
from x1 to y1 and x2 to y2. Since there are no triangles or squares,
d(xi, yi) ≥ 2. The only possibility to have κ(x, y) = 0 i.e. κ1/4(x, y) = 0
is if d(xi, yi) = 2, i = 1, 2. Since d(x1, y1) = 2, there exists a path x1uy1,
where the vertex u cannot be any of the vertices x1, x2, x, y, y1 or y2
without forming a triangle or a square. Similarly there exists another
vertex v and a path x2yy2. Thus we have two pentagons, xx1uy1y and
xx2uy2y, that intersect only on the edge xy, as in Figure 3.

�

Remark. Lemma 1 implies that Ricci-flat cubic graphs with girth at

least 5 in fact have girth exactly 5.

Let us now proceed to prove Theorem 1:

Proof of Theorem 1. Consider an edge xy in the graph. By lemma 1
we know that this edge is on two pentagons that intersect only on
xy, as in Figure 2. We will now construct all possible 3-regular, girth
5 simple graphs with κ = 0 on all edges, starting from these pen-
tagons. The vertices x2 and y2 cannot be adjacent to any other vertex
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Figure 2. Two pentagons that intersect only on xy

in {x, y, x1, y1, u, v} in order to have girth 5. Thus x2 and y2 are con-
nected to two new vertices, x3 and y3, respectively. The vertex u is
either connected to v or to a new vertex u1, as in Figure 3. Let us
consider these two cases separately.
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(a) Case 1
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(b) Case 2

Figure 3. Two possible graphs to start the construction

Case 1: Since the edge y2y3 has to lie on two pentagons, two of the
following three possible ways for such pentagons to exist must be true
(see Figure 4):

i) y3 is adjacent to x3,
ii) y3 is adjacent to x1 or
iii) there is a new vertex y4, adjacent to both y3 and y1.

The cases ii) and iii) cannot be true at the same time, since then
it would not be possible to continue the construction in order to have
pentagons with the edge (x2, x3): the only vertex with degree less than
three, y4, would be too far from x3.

If i) and ii) are true, then the only vertices with degree less that 3
are x3 and y1, and d(x3, y1) = 4. Thus, the last edge from x3 must go
to y1 for it to be on a pentagon. Now all edges lie on two pentagons,
and we have constructed the Petersen graph with 10 vertices.
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Figure 4. The three ways to construct a pentagon with
y2y3 in Case 1

If i) and iii) are true, then there must be another vertex x4 which
is adjacent to x1, since x1 cannot be adjacent to either of the existing
vertices with degree less than 3, that is, x3 or y4, without forming a
square. Let us then construct pentagons with x1x4. There are two
possibilities for the first pentagon: either x4 is adjacent to x3 or to y4.
Consider the first possibility. Then x4 cannot be adjacent to y4, since
that would create a square x4x3y3y4. So there must be yet another ver-
tex x5 to which x4 is adjacent, and which is adjacent to y4. But now all
other vertices in the graph but x5 have degree 3, and the construction
cannot be continued. Consider then the second possibility, x4 being
adjacent to y4. Similarly, now x4 cannot be adjacent to x3, we need a
new vertex x5 ∼ x4. Then the only other vertex with degree less than 3
is x3, and d(x5, x3) = 4, so x5 must be adjacent to x3. But that leaves
x5 the only vertex with degree less than 3, and the construction cannot
be continued. Thus, i) and iii) cannot be true at the same time, and
the only graph with the edge uv is the Petersen graph.

Case 2: Since the edge uu1 must lie on two pentagons, one of them
through x2 and another through y2, we have two isomorphically differ-
ent possibilities:

a) there is one new vertex x4 adjacent to u1 and x3 and u1 is also
adjacent to y1 (Figure 5) or

b) there are two new vertices, x4 adjacent to u1 and x3 and y4
adjacent to u1 and y3 (Figure 6).

If u1 were adjacent to both x1 and y1, that would create a square
u1y1vx1. The case where u1 would be adjacent to x1 and to a vertex
y4 with y4 ∼ y3 is isomorphic to the case a) above. Assume that a) is
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Figure 5. Case 2 a) with two non-isomorphic ways to
continue

true. Then there are two isomorphically different possibilities to have
a pentagon through x3x2x, illustrated in Figure 5:

i) Assume x4 ∼ x1. Then in order to have two pentagons with
y2y3, we must have y3 ∼ x3 and y3 ∼ v, which gives us the
Triplex.

ii) Assume that there is a new vertex x5 adjacent to x1 and x3.
Then there can exist two pentagons with y2y3 only if y3 ∼ x4

and y3 ∼ v. But then the graph cannot be continued from x5,
since all other vertices already have degree 3.

Note that having x3 ∼ v would also create a pentagon with x3x2x, but
that is in fact isomorphic to i).

Assume then that b) is true. Then there are three possibilities to
have a pentagon through x2xx1, illustrated in Figure 6 with labels i), ii)
and iii). Symmetrically, there is three possibilities to have a pentagon
with y2yy1, illustrated in Figure 6 with labels iv), v) and vi). Let us
consider the possible non-isomorphic cases with pentagons on x2xx1

and y2yy1. There are four of them, since i) & v) is just a mirror image
of ii) & iv), the four combinations i) & vi), its mirror iii) & iv), ii) &
vi) and its mirror iii) & v) all give in fact the same graph, and the case
ii) & v) would require d(v) = 4.

i) & iv) Assume that x4 ∼ x1 and y4 ∼ y1. Then in order to have a
pentagon with x4u1y4 the only possibility is that x3 ∼ y3. But
that leaves only the vertex v with degree less than three, and
the construction cannot be continued.
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Figure 6. Case 2 b) with possible continuations

i) & v) Assume that x4 ∼ x1 and y3 ∼ v. Then to have a pentagon with
x4x1v we must have x3 ∼ y1. But that leaves only the vertex
y4 with degree less than three, and the construction cannot be
continued.

i) & vi) Assume that x4 ∼ x1 and that there exists a vertex y5 such
that y3 ∼ y5 ∼ y1. Then to have a pentagon with u1x4x1 we
must have y4 ∼ v. But that leaves only the vertices x3 and y5
with degree less than three, and since now d(x3, y5) = 5, the
construction cannot be continued.

iii) & vi) Assume that there exists a vertex x5 such that x3 ∼ x5 ∼ x1

and that a vertex y5 such that y3 ∼ y5 ∼ y1. Then there is
two non-isomorphic ways to have a pentagon with vy1y5: either
x5 ∼ y5 or there exists two new verties v1 and y6 such that
v ∼ v1 ∼ y6 ∼ y5. In the first case we must then have v ∼ y4
to have a pentagon with y4y3y5. But then the only vertex with
degree less than three is x4, and the construction cannot be
continued. In the latter case (Figure 7) there is two possibilities
to have a pentagon with x5x1v: either x5 ∼ y6, or there is a
new vertex x6 with x5 ∼ x6 ∼ v1.

Assume first that x5 ∼ y6. Then there are three vertices
with degree less than three, v1, x4 and y4. Since d(v1, x4) =
d(v1, y4) = 4, v1 must be adjacent to either x4 or y4. But
that leaves only one vertex with degree less than three, and the
construction cannot be continued. Thus we must have x5 ∼
x6 ∼ v1. To have a pentagon with x4x3x5 we need yet another
vertex x7 with x4 ∼ x7 ∼ x6. Similarly for a pentagon with
y4y3y5 we need a vertex y7 with y4 ∼ y7 ∼ y6. Then there are
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Figure 7. The graph for case 2 b) with iii), vi) and
vertices v1 and y6 have two possible ways to continue

two vertices with degree less than three in the graph, x7 and y7,
and connecting them with an edge finalizes the construction by
creating the dodecahedral graph.

We have now shown that the only 3-regular graphs with girth 5 and
with every edge on two pentagons intersecting only at that edge are
the Petersen graph, the Triplex and the dodecahedral graph. Therefore
these are the only 3-regular Ricci-flat graphs with girth at least 5. �

We also calculated the curvatures of all cubic graphs with 20 ver-
tices or less, and obtained the same three Ricci-flat graphs with girth
5. We used the graph generator package nauty by B. D. McKay and
A. Piperno [11] to generate the graphs and the Graph Curvature Cal-
culator [3] to calculate the curvatures.
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